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Abstract

| give an overview about some typical number sequences and polynomials which are related
to lattice paths in strips along the = — axis and compute their generating functions in terms of
Fibonacci and Lucas polynomials. In the course of this work | have been led to many
conjectures and curious number triangles.

0. Introduction

Consider lattice paths in Z* of length n which start at the origin (0,0) and have only up-
steps U :(i,j) — (i+1,j+1) and down-steps D : (i,7) — (i + 1,7 —1).

Let An’k be the set of all lattice paths of length » which start at (0,0), stop on heights 0 or

—1 and are contained in the strip — E+l <y< g of width g + E+1 = k. Note that
n n—+1
such a path has |—| up- steps and |——| down- steps.

The enumeration of such paths with suitable weights depending on 2 parameters ¢ and t

leads to Rogers-Ramanujan type identities (cf. e.g. [7]). In the present paper | consider the
polynomials which occur in the special case ¢ =1 in more detail.

In the first part | recall some results about the numbers a(n,k) = ‘Amk‘. It turns out that these

numbers also count the walks of length n on the path graph R, with vertices {1,2,---,k +1}

which start at the origin 1. Most of these results are known but perhaps my point of view
gives a novel approach.

For the general case | did not find anything in the literature. As for t =1 the generating
functions can be written as quotients of Fibonacci and Lucas polynomials. The detailed study
of some special cases led to many curious conjectures. Some have been found with the help of
the Mathematica package Guess [14] by Manuel Kauers. Of great use has also been The On-
Line Encyclopedia of Integer Sequences OEIS [18]. As far as | know the results about the
polynomials a(n,k,t) seem to be new, but if some of them are already known | would be very

grateful to receive references in order that | can give due credit in the next version of this
preliminary paper.



1. Background material

1.1. Lattice paths in strips along the x-axis

My starting point has been the set Amk of all lattice paths of length » which start at (0,0),

stop on heights 0 or —1 and are contained in the strip — E+l <y< k of width
E + ﬂ = k.
2 2
n
For n <k all ||n|| pathsof length n belong to A”’k. Note that for odd £ the strips are not
2

symmetric about the = — axis.

In general we get by inclusion — exclusion (see e.g. [7],[8] or [9] ) that

n
a(n, k) = ‘Ak‘ =S| |n + (k + 2)f]} (1.1)
jez 9
The set Am0 is empty for n > 0 which gives
n
4, =Y 1y |=[n=0) (1.2)
' ez 5 +7

For k =1 the sets Aml consist only of one path. If we denote a path by the sequence of its

successive heights this unique path is (0,—1,0,—1,---). We can write it also as
DUDU---DUD.

Therefore we have

n
A= DY ||n+35] =1 (1.3)
jez 9

The sets 4, are {(0)},{(0,-1)}.{(0.1,0),(0,~1,0)}.{(0,1,0,-1),(0,~1,0,~ 1)}, or
{5, {p}.,{vp, U} {UDD,DUD} {UDUD,UDDU, DUUD, DUDU},m} if we denote by &

the trivial path, which gives by induction
2



n

B

A= D |[n+4y : (1.4)
JEZL
2
A very interesting case occurs for £ = 3. In this case we have ‘AJ =F ,where F isa

Fibonacci number.

n—1
: : \7‘ n—1-—Fk : e
The Fibonacci numbers F = > L satisfy F = F_ + F _, with initial values
k=0

F =0 and F, =1. The first terms are 0,1,1,2,3,5,8,13,21, 34,--- (cf. OEIS [18], A000045).

Thus
" :
n—=k
AN=>"V|n+55]|=F,, = [ L ] (1.5)
JEZ 2 k=0

Since AQ3 = {0} and Am = {(0,—1)} we see that the initial values are F/ = F, = 1.

Consider now a path in Anﬁ. Let the path be given by the sequence of its y — coordinates. If
the path ends with (—1,0) or (0, —1) then the path is the unique continuation of a path in
A ” If the path ends with (O, 1,0) or (—1,—2,—1) then it is the unique continuation of a

n—

pathin A _, .. Therefore we have ‘As‘ =

Anfl.,B

A,

. This together with the initial

values gives ‘Ag‘ =k

Remark 1

Formula (1.5) has been obtained by G.E. Andrews [1], but already in 1917 1. Schur [20] has
studied the right-hand side of the identity

n

2 n—k i(55-1) n
> | | =20 2 |lln+s; (1.6)
k=0 JEL 9
q
for ‘q‘ < 1. Here Z = l: denotes a ¢ — binomial coefficient defined by
q

— J— 2 cee —_ n—k

Z :(1 q)<1 q2) (1 qk)forogkgn and 0 else.
. (1=d)f-a)1=d)




It is clear that (1.6) converges to (1.5) for ¢ — 1. Therefore (1.6) is called a ¢ — analogue of
(1.5).

If we let n — oo in (1.6) we get the famous first Rogers-Ramanujan identity

> . L sy (L.7)
S-gi-c)-(-1) [ii-q)=

J=1

Some of the sequences (a(n, k)) _, oceur in the literature in other contexts.

For small values of £ useful information can be found in OEIS [18]:

a(n,2)) _is AO16116,
is A000045,
1,1,2,3,6, 9,18,27,---) is A182522,
1,1,2,3,6,10,19, 33,~-.) is A028495,

-
o = |
= (1,1,2,3,6,10,20,34,68, ) is A030436,
= (1, 1,2,3,6,10,20, 35, 69,--~) is A061551 and
= (1,1,2,3,6,10,20,35,70,125,--) is A178381.
For some of these sequences in OEIS combinatorial interpretations in terms of graphs are

mentioned which | tried to generalize. Later | saw that these results were already well known.
But perhaps my approach will give a new point of view.

1.2. Some other combinatorial models
Proposition 1

The number a(n,2k 4+ 1) counts all non-negative lattice paths starting from (0,0) and ending
n (n,0), where besides up-steps and down-steps also horizontal moves (i,0) — (i + 1,0) on
height 0 are allowed and the maximal height of a path is £.

It is easy to find a bijection between these two lattice path models. Starting from the first
model we map each up-step (i,—1) — (i + 1,0) and each down-step (i,0) — (i + 1,—1) into
a horizontal move (4,0) — (i + 1,0). The non-negative parts of the path remain unaltered and

the negative paths (i,—1) — (j,—1) are reflected on the line y = —% into a non-negative
path (4,0) — (4,0). This map obviously has a unique inverse.

4



For example for £ =1 the lattice path
1.0}
2 4 6 8\/\
05t
1.0}

(1.5}
[12.0F

will be transformed to

1.0
0.8
0.6
0.4
0.2

(0] 2 4 6 8 10

Corollary

The number a(n,2k + 1) counts all walks of length n on the graph which arises by adjoining
a loop at an extremity of the path graph B, which start and end on this extremity.

Remark 2

If we let £ — oo in Proposition 1, i.e. consider non-negative lattice paths starting from (0, 0)
where besides up-steps and down-steps also horizontal steps (#,0) — (i + 1,0)on height 0
are allowed then the numbers ¢(n, 7) of all such paths ending in (n, j) satisfy

c(n,0) = ¢(n —1,0) + ¢(n —1,1) and ¢(n,j) = c(n,j — 1)+ c¢(n,j + 1) for 7 > 0.
We get the following table (cf. OEIS A061554)

1
11
| 2 11
(D), =|5 5 | i (1.8)
6 4 4 1 1
10 10 5 5 1 1




n n

It is easily verified that c(n, j) = ||n — j||. Of course we have c(n,0) =

2

nil-

2

If we make the further assumption that c¢(n,k + 1) = 0 then we get by Proposition 1 that
c(n,0) = a(n,2k +1).

For example for £ = 1 we get the table

o O O O o O

o Ut W N =
gt W NN~ RO

with ¢(n,0) = a(n,3) = F

n+1°

Another combinatorial model suggested by the entries in OEIS is

Proposition 2

The number a(n, k) counts all walks of length » on the path graph P, with vertices

{1,2,~~,l<: + 1} starting at 1.

The following proof uses an idea by S.V. Ault and Ch. Kicey [2].

Proof

Let v(n,m,k), 1 <m <k +1, bethenumber of all walks of length » on P which start
at 1 and end in the point m. Then the sequences v(n,m, k) are uniquely determined by the
recursion v(n,m,k) = v(n —1,m — L k) + v(n —1,m + 1,k) forall m € {1,~-,I<; + 1} with
initial values v(0,m,k) = [m = 1] if we set v(n,0,k) = v(n,k + 2,k) = 0.

Asshownin[2]for 0 < m <k +2

n n

—Z m—+n+1

+(k+2i| % (19)

m-+n

v(n,m,k) = Z

JEZ

+(k+2)j




To show this formula it suffices to check the recursion and the initial and boundary values.

The initial values are trivial.

Since
n n n

"+7;+1 +(k+2)j| [n- "+Z‘+1 —k+2)5] |2 m'—(k+2)j

we get
n n

v(n,O,k):JZeZ: g+(l€+2)j —jzez: n+1 1 2)i =

and
n n
v(n,k+2,k)=j§€; E+24n] oy —JZE; k+242rn+1 E+2)i
n n
:]ZE; k+242rn+1 k4G4 —; k+2+n (k42 41| IR 2R
and thus v(n,k +2,k) = 0.
The recurrence follows from
n n—1 n—1
m;—n +(k+2)) = lm—1+n—1 b (k+2)) +Fllm+1+n-—1 +(k—|—2)j'
Therefore
Fl n n
2tk =2 = k4 2)) R[S Ny
n

=> (D' ||n + (k +2)j|| = aln.k).

jeL — 5

For example for £ = 3 we have
v(2n,1,3) = F, ,v(2n,3,3) =v(2n +1,4,3) = F, ,v(2n +1,2,3) = F, _ and all other terms
vanish.



Remark 3

Proposition 2 can also be deduced from general results about lattice paths in corridors. E.g.
[15], formula (9) implies that the number of walkson 7, from 1 to m is O if

n —m = 0mod 2 and else

n n

Zm+n—1 _Z m+n+1

Jez T+(k+2)j jez T+(k+2)j'

Both results can be combined to give (1.9).

Remark 4

The number v(2n,1,k) counts the walks of length 2n on P which startand end in 1 or
equivalently the set of all non-negative lattice-paths of length 2» and height < & with up-
steps U and down-steps D which start at the origin and end in (2n,0) (Dyck-paths).

Helmut Prodinger has kindly brought my attention to the paper [3] by N.G. de Bruijn, D.E.
Knuth and S.O. Rice which gives some more information about these numbers. | prefer to
state their results in terms of Dyck paths:

Suchapath P is either the trivial path (0,0) — (0,0) of length 0 or has a uniquely

determined decomposition P = UFDUF,D---UP D where each P is a Dyck path with
height <k — 1.

Therefore
v, (2) = Z’U(n, Lk)" = Zv(?n, LE)™" (1.10)
n>0 n>0
satisfies
_ 2 2 2 2 3 _ 1
v(2) =1+2v_ (2)+ (z vk_l(z)) + (z vk_l(z)> 4= Tw (1.11)

Note that v,(z) = 1.

From (1 — zgkal(z)) v,(z) = 1 we get by comparing coefficients

n—1
v2n,Lk) = > v(25,1Lkw@n —2 — 24,1,k — 1) (1.12)
j=0
for n > 1. Since v(2n,1,0) = [n = 0] and v(0,1,k) = 1 all values v(2n,1, k) can recursively
be computed.



Formula (1.11) leads to a continued fraction.

For example from v(2n,1,3) = F, =~ we get (setting F' | =1)

2n—1

_1—z2

For arbitrary Dyck paths (1.11) gives the well-known fact that

z 1—-+1

_ 2n
or u(z) = 1-vizde > C 2" where C =
1—v(2) 2 = " oon+1|n

isa

w(z) = (2) =

Catalan number.

This implies that v(2n,1,k) = C ~ for n < k.

Problem
n
We have seen that the numbers a(n, k) = Z(— 1) || n + (k 4 2);|| count both the set of
JeZ - -
2

lattice paths A , and all walks of length n on F, ;. Itwould therefore be interesting to find

a simple bljectlon between walks on P, and the set of lattice paths 4 | .

1.3. Generating functions

The generating functions of these number sequences turn out to be quotients of Fibonacci and
Lucas polynomials or equivalently quotients of Chebyshev polynomials.

n—1
7]
Recall that the Fibonacci polynomials F (z,s) = Z

k=0

n—1-—k

L ]: ~1% sk satisfy the

recurrence relation F' (z,s) = oF _ (z,s) +sF _(x s) with initial values F,(z,s) = 0 and

F (x,s) =1 and the Lucas polynomials L (z,s) Z ]

k=0

L (z,8) = 2L (z,s)+sL__(z,s) withinitial values L (z,s) =2 and L,(z,s) = =.

shz" 7 satisfy

n—=k

Most identities about these polynomials can easily be proved by using the well-known Binet
formulae



no__ n 5
x— Az’ +4s
B = B(z,s) = —————" are the roots of the equation z* — zz — s = 0.

Let us do this for some formulae which will be needed in the sequel:

The identity L (z,s) = F _ (z,s)+ sF _ (x,s) follows from

n+

(&n N ﬁn)(a B ﬁ) _ g aﬂ(am _ ﬁ”’1>, the identity

E (z,8) = F (,5)L (x,s) from o™ — 3*" = (a" — ﬁ”)(a" + ﬁ") and

2n n n

F . (z,s) + sF (z,s) = F,_ (z,s) from

k+1 T T 2k+1
(akﬂ _ ﬁkH)Q B aﬁ<ak B ﬂk)Q _ (a _ ﬁ)(a%ﬂ B ﬁ2k+1).
Since a(z + v, —xy) =z and ﬁ(:r + v, —a:y) = y we get the well-known identities

L(z+y-zy)=2"+y",
F (z+y,—zy) = A (1.13)

n (L‘—y

If we choose z = e, y=e "' for 1< j <k weget

F., [2 cos kﬂl ,—1] = 0 orsince F,  (z,—1) is amonic polynomial of degree &
F (x,—l): : x — 2coS Im . (1.14)
k+1 i k _|_ 1
From (1.11) we deduce that
F_(1,-2’
v (z) = LZ) (1.15)
Ec+2(1’ - )
For this holds for £ = 0. Ifitistrue for £ —1 then
1 1 1
vk (.’17) - 2 - 2 - 2 2
-z (v) 1-2v_ (7) 17 F(1,—27)
F;wl(l’ _:EQ)
_ F;chl(l’ _IQ) _ F;c+1(17 _xQ)
FkH(l, —z?) — w2ﬁ;€(1, —z°) F/m(lv —z°)

10



Remark 5

Another way to obtain such results is by using the adjacency matrix M,_ = (m(i, j,k))]f, ) of
1,5=

the path graph P.. Note that m(i, j,k) = 1 if {4, j} isan edge and m(s,j,k) = O elsg, i.e.
m(L,2,k) =1, m(k,k—1,k)=1, and m(z’,z’ + 1,l<:) =1 for 1 <i < k. All other entries are

n k
0. If weset M} = (m(z,j,k + 1) ))

iyj=

 then itis obvious that m(L, j.k + D™ = v(n, j,k).

One of the reasons why Fibonacci polynomials occur in the study of path graphs is the well-
known formula

z -1 0 0 - 0
~1 z -1 0 - 0
0 -1 z -1 - 0

F,, (2,—1) = det 0 0 1 s 0 (1.16)
0 0 0 0 - z

which follows immediately from the recurrence relation for the Fibonacci polynomials. For

the right-hand side can be interpreted as the characteristic polynomial of the adjacency matrix
M, = (m(z’,j,k))]f, of the path graph P,

i,7=1
| became aware of this fact through the blog post [22] by Qiaochu Yuan. Of course this is an
old result. References may be found in the recent paper [13] by Stefan Felsner and Daniel
Heldt, where similar results are obtained and in the survey article [16] by Christian
Krattenthaler.

Let us recall some results from this point of view:

By (1.14) the eigenvalues of M, are givenby A = 2cos T

N for1<j<k.

Then v, = (Iﬂ(Aj,—l),FZ()\j,—l),-o~,Fk()\j,—1)>t is an eigenvector corresponding to A .

For Mkv], = )\jvj is equivalent with F, | ()\j,—l) +F,,, (AJ.,—l) = AF, (AJ.,—l) for
1</(<E.

Note that 7, (A ,~1) = F,_, (

k+1

>\.,—1> = 0.

J

11



sin
Since by (1.14) F/(\,—1) = F(2cos——, 1) = —F+1
’ ’ k+1 g
1n
E+1
the eigenvectors are (up to scaling) given by v. = |sin I ,sin T ,ooey,Sin I
! kE+1 kE+1 kE+1
. . 2 .
The normalized eigenvectors are ‘/ v, since
k+1"7
k Y 2 k M7 ,Nli
}:sm_@” :Z—l§:6“1—2+ek“ :—3{—2—%j:5ii.
=1 kE+1 49 4 2

Since M, is obviously symmetric we see that the matrix

J 2 J 9 9
Uy Uy a7 1%
E+1 "\ k+1 Vi +1

is orthogonal. Let A, = ()\j[z' = j])k

ij=

) be the diagonal matrix whose entries are the

eigenvalues. Then M, = UA U =UAU".

n n t H H H
Therefore from M;" = UA;, U we get the known trigonometric representation

n

k+1 . .
v(n, j, k) = —Zsin b sin tjm 2 cos J7T . (1.17)
k+2% k+2  k+2 k+2

In the same way as above we see that det (I L~ M k:n) =F (1,—2%).

k41

-1 , -1 (ldj(j — JM .7))
From (Ik — ka> = ”E>U Mka: and Cramer’s Rule (Ik — ka) = t( k kx)

we find again (1.15) by considering the top-left entry of these matrices.

As shown in [6] and [10] the generating functions of the sequences (a(n,k)) , are given by

n

E (1, —z°)
E a(n,2k +1)z" = — 5 (1.18)
n>0 }7k+2 (17 -z ) - xﬁ;g+1 (17 -z )

and

12



F(1,—2%) + 2F (1,—2*
S a(n,2k)z" = b —2) 42 ;< 7). (1.19)
n>0 Lk+1(17 z )
2 2 k + 1
Observe that deg(Fm(l, —o*) —aF, (L—z )) =k+1 and degL, (1,—27) =2 — |
Let (a(n)) _ be a sequence of real numbers with a(0) =1 and y _ a(n)z" = (—x)) with
n=0 n>0 ‘T

m

degc(x) < degd(z) = m and d(x Zd z' with d =1. Then the sequence (a( ))

d+-+ad =0 for n > 0.

n+m—1"1

satisfies the recursion a, . +a

We call d(z) the characteristic polynomial of the recursion. If we introduce the shift operator
E defined by Ea(n) = a(n + 1) then the recursion can also be formulated as D(E)a(n) = 0

where D(z) = Zdﬂ;"’“f =z"d
(=0

1] is the reciprocal polynomial of d(z).
X

The recursion can also be formulated as )\(:U"D(x)) = 0 if A denotes the linear functional on

the polynomials defined by )\(x) = a(n).

Since xa[l,—l = oz(l,—:z:Q) and 23 l,—l] = ﬁ(l,—af) we have
T T
k— 1 k 1 1 1 _
X 1}7}{ [1,—?] = F;{(.’,E,—l), X Ec-&-l [1,—? _EP;‘ 1,—; = Ec-&-l ($,—1)—ﬂ($,—1)

and 2L, [1, —é] =L (z,—1).

Therefore the sequence (a(n,Zk)) satisfies the recurrence
L (E,—l)a(n,%) =0 (1.20)
and the sequence (a(n, 2k — 1)) satisfies
(F,,(B,~1) = F,(E,~1))a(n,2k — 1) = 0. (1.21)

Note that L, (a;,—l) and F, (z,—1)— F (z,—1) have analogous factorizations

(x —1) T 1[3: 2005[2 2—;; ! 7'(']] (1.22)

7=0

because
13



9411 2+, 2]+1/7r 25+, 25+ 2j+1, 2j+1,
L, 2COS[]+ F],—lZL e? 4e * —e? e * |=e? +e 2 =0
; 2]€ k
and
k—1 27 1
F(&,-1)— F(z,—1) = []|2 - 2cos 2.~ 7 (1.23)
20 2k +1
because for 0 < j <k -—1
(Qjﬂ)(kﬂ)m <2j+1)(k+1)m (Qjﬂ)km (2j+l)ki7r
2] + 1 2] + 1 B e 2k+1 —e 2k+1 e 2k+1 —e 2k+1
., (2cos 1 m,—1) — F,(2cos ok m—1) = 2jtDin (2jt1)in T 2jtin (2)+1)in
e 2kt e 2+l e 2kl _ o 2kl
_(2]'+1)k,i7r (2j+1)kiﬂ_
o 2641 (e<2j+1)m + 1) _p 2hH1 (67(2,7+1>m + 1)

- (2j41)ir (2j41)ir = 0.

e 2kl _ o 241
We now give another simple proof of (1.18) and (1.19).
Let v (z,m) = Zv(n, m, k)"

n>0
Since each path P from (0,0) to (2n +m—-1m— 1) has a unique decomposition
P =P RUPUF,---UP | weget
v, (z,m) = x’”’_lvk(x)kal(x)--~kam+l(az).
This implies
k41 k41
ak(x):Za(n,k)x":ZZ (n,m,k)x ZU x,m)
. nTO m=1 n>0 m=1 (124)
= Z " v (z)v, ()0, () = v (7) (1 + $ak71(x)).
m=1

Now a,(z) = 1 agrees with (1.19)

1
- we get a(z)=

and since v (z) =
(2) P -

. This agrees with (1.18).

14



If (1.18) and (1.19) hold for £ — 1 then we get

. _ ‘FQk+1(1’ _IQ) T F;i'(l’ _:B?)
a, (z) = u%(x)(1 - xa%_l(m)) - (1 xQ) 1+ ()~ ah (L)

2k+2

e e e,
F (1’ —*) L, (L 1 ) F, (=) — aF,(1,—2)
(£, (L=27) + oF, (1,-27))
L (1,—2)
and

E. . (1,-2° E (1,—2*)+ 2F (1,—2
a,,. (z) = vml(x)(l + m%(x)) — % 1+ x( k+1( Lm)(L _x;)( ))

F

2k+3(

T I e e

(FM (La*) —ar, 1~ >)(Fm (L) o, (1)) L (1)
BBl o)) Rp)
(B (rat) = x>)(Fk+2(L—w)H@H(L—w?)) (B (1) =, (1))

The denominators of (1.18) and (1.19) have a simple determinant representation. To show this
we need the following well-known result.
n—1

If the (Hankel-) determinants D = det( (i + j)) are non-vanishing then

Z]_

a(0) a(1) e oam—1) 1

a(1) a(2) - a(m) T

P(z) = det : : - : :
am—-1)  a(m) - a@m-—2) "'

a(m) a(m+1) - a2m-—-1) 2"

is a polynomial of degree m .

a(0) al) - a(m—=1)  a(n+m)
a(l) a(2) - a(m) a(n +m+1)
It satisfies \ (2" P(z)) = det| : : : =0
a(m—1) a(m) -+ a@m—2) a(n+2m—1)
a(m) a(m+1) -+ a@m—1) a(n+2m)

for all n > 0 since the rows are linearly dependent.

15



The reciprocal polynomial is given by

a(0) a(1) a(m—1) 2"
a(1) a(2) a(m) "
p(z) = det : f :
a(m—1)  a(m) a2m—2) =
a(m)  a(m+1) a@m—-1) 1

Proposition 3

The characteristic polynomial F, ,(1,—z*) — zF,

+2

2
F_,(,—27) —zF,

k k+1

(1,—2%) = det

n
where a(n) =

n
2

Proof

By Fehler! Verweisquelle konnte nicht gefunden werden. we have det(a(z‘ + j))

k+1

a(0 a(1)
a<1) a(.2)
a(‘k) a(k -I— 1)

a(k) J}kH
ak+1) 2

a(ék) x
a2k +1) 1

Therefore the constant terms of both sides of (1.25) coincide with 1. 1.

Thus the sequence a(n,2k + 1) is uniquely determined by the initial values

0 <n <2k + 1, and the determinant which also depends only on these initial values.

As an example consider the sequence a(n,3) = F_,. Here we have

2

n+

16

n

Y

n
2

n—1
=1.

i,5=0

(1,—2*) of the sequence a(n,2k + 1) is

(1.25)



11 2
det|1 2 =z :1—.’L'—$2:F3(1,—$2)—£IZF;(1,—$2):(1—.’1,'2)—$-1.
2 3 1

Proposition 4

The characteristic polynomial L, (1,—2) of the sequence a(n,2k) is

a(0) a(l) ak) 2"
a(1) a2) - alk+1) 2"
L, (,—2") = det : : : : (1.26)
alk) alk+1) - a(2k) T
ak+1) ak+2) - ak+1) 1
" 2k + 1
where a(n) = n for n <2k and a(2k +1) = a(2k + 1,2k) = Lol
2

2k +1
The identity a(2k + 1,2k) = [ k ] —1 follows from the fact that there are only two paths

which reach the boundary ‘y‘ = k from which the path D*U*** does not belong to A%H’Qk
because it ends on height 1.

(1.26) is clear if deg L, (1,—z*) =k +1. If k41 is odd we have

o (L—z%) =2 = k. Since L, (1,—2z) has constant term 1 we also get (1.26).

For example choose the sequence (a(n,4)) = (1,1,2,3,6,9,18,---). Here we have

112 7
, 1 2 3
1 23 =z _ . .
det 5 3 6 . Since det|2 3 6|= 0 the coefficient of z” vanishes and we get
v 369
3 6 9 1
11 2 2°
1 2 3 2
det o1t = L,(1,—z*).
2 3 6 =z
3 6 9 1

17



Since

F (1,—2 F (1,—2
Za(Qn +2,2k)z™" = kgl( 2 ) 1= k;l( 2 : T
>0 E (,—2")—2°F (1,—2") F o (L—2")—227F (1,—2")
222 F (1, —z* F(1,—z
_ 2B Tr) o PRI ) oS aon 41,2600
Lk+1(]-7 -z ) Lk+1(]'7 -z ) n=0
we have

a(2n 4 2,2k) = 2a(2n + 1,2k). (1.27)

This result also follows from the original lattice path interpretation by symmetry.

For example
F(1,—2%) + zF (1, —2° — 2 (

Za(n,él)x": 3( :E) :EQQ( 33):1+l‘ 21,' :1+$1+ :l;:1+(1+2$)<$+3$5+3x5+'“)
e L(1,—2%) 1— 3z 1— 3z

n
Therefore a(n,4) = Z(—l)j n+6j|| satisfies a(0,4) =1, a(2n+1,4)= 3" and

Jje7 - 4
2

a(@n +2,4) =2-3".

From (1.18) it is easily verified that for £ > 1

S a(n,2k + 1" — 1 _ (1.28)
n>0 1 _ L
1-— xz a(n,2k —1)(—x)"
n>0
For
F (1,2’
N T
1 _ F;H_l(l? -z )+ :BF; (17 -z )
T F(17 _:BQ)
1- n l—z—2z k? 2
1— x; a(n,2k —1)(—x) F (L—2")+zF (1,—z7)
. F_(1,-2° F. (1~
_ : k+1< 2) 2 _— k;l( ) = Za(n,Qk + D"
FLH (17 -z ) - xF;Hl (17 —T ) - F/L'(lv —Z ) F;{,‘+2 (1’ —T ) - xF;cH(l’ T ) n=0

18



Since ) "a(n,1)z" = we see that  "a(n,3)z" = ! e

n>0 —T n>0 1 _ xz
T
1 _
1+

The continued fraction for Za(n, 5)z" has been observed by M. Somos ([18], A028495).

n>0

2. Polynomials associated with 4 .

2.1. Definitions and known results

Instead of the numbers ‘Ak‘ we consider the following weights. Define a peak as a vertex

preceded by an up-step U and followed by a down-step D, and a valley as a vertex preceded
by a down- step D and followed by an up-step U. The height of a vertex is its y —
coordinate. The peaks with a height at least 1 and the valleys with height at most —2 are
called extremal points. Let E(v) be the set of » — coordinates of the extremal points of the

path v,e(v) = ‘E(v)‘ the number of extremal points of v and «(v) = Z i the sum of the

i€E(v)

x — coordinates of the extremal points. In [7] and [8] we defined the weight of v by
w(v,q) = ¢"t” and considered the polynomials w(A k,q) = > ¢t These

n,
ved,

polynomials are intimately connected with Rogers-Ramanujan type theorems.

In the present paper we consider only the case ¢ = 1 and study the polynomials

a(n,k,t) =Yt (2.1)

’ueA” "

in more detail. It is obvious that deg(a(n, k,t)) = B for k£ > 1 because the maximal

degree is obtained by the path UDUD ---.

If we set [Z] =0 for n < 0 it follows from the results in [7] and [8] that for £ > 1 these

polynomials can be written in the following form:

n+k—2)j|[{n+1—(k—2)j
a(n,k,t) =Y (—1)> 2 2 ' (2.2)
= 2] 0—j 0+

19



For ¢ =1 we have of course a(n,k,1) = ‘An_k‘.

Remark 6
A direct proof that (2.2) implies

n
a(n,k,1) =D (=1 ||n + (k +2);j (2.3)
JEL #
follows from the fact that |2 | 4 "+;_kj -
For
—2
n+k=2il([n+1-k=2)jl] _(|n+k=2); n_”+(/; )J
2 i X - ’ k—2)j
Ry (+] R G R e L R,
. [Pt k=2 n—7“+%‘2”
2
2 ln+(k—-2)5 n—w n n
= 2 _ B N n
;o . n+1—(k+2)j ntl-(k+2)j)|=|ntk+2);
1 _ 2 9
2
n n+1
For n <k we have (L(n,k,t):z 2 2 |
=

The simplest special cases are
a(n,1,t) =1,
a(n,2,t) =1+ t)u.

As a generalization of (1.5) we get

ST R [
a(n,3,t) = F (1) = [ L ]e’“ => (1> | 2 2 L4
k=0 jez. 42‘]“ / _j /¢ +]

20



The first terms of a(n,3,t) are
(LL14+ 6142614+ 36+ %1+ 48+ 38,1+ 5t + 68 + 17,14 6t +10¢° + 4¢",---)

To show that a(n,3,t) = F (1,t) consider a pathin A . If the next to the last point is not

n

extremal then the path is the unique continuation of a pathin 4 _ , if it is extremal then the

-1,17

last two steps are a peak or a valley and the rest of the path belongs to A , . Therefore we

have a(n,1,t) = a(n — 1,1,t) + ta(n — 2,1,¢). The initial values are a(0,1,¢) = a(1,1,¢) = 1.

Remark 7
Proposition 1 also holds in this case as shown in [7].

It would be interesting to know if Proposition 2 also has a simple generalization.

There is a simple table (c(n, 7y t)) which reduces to (1.8) for t = 1 such that

B
c(n,0,t) =>"||2 2 |t
g J
Let

c(n,0,t) = c¢(n — 1,0,t) + tc(n — 1, 1,1),

and let for even numbers j > 0

c(n,j,t) =c(n —1,7—1Lt)+ te(n — 1,7 + 1,¢)
and for odd numbers j

c(n,j,t) =cn —Lj—1t)+c(n —17+L1t).
The initial values are ¢(0, j,t) =[j = 0].

Then it is easily verified that

n n+1
c(n,2k,t)zz 2 2 7
20| ;
Itk ’ (2.5)
n n+1
c(n,2k+1,t)zz 2 2 7,
g+ k+1

21



The first terms are

1

1 1

1+t 1 1

1+ 2t 2+t 1 1 (26)
1+ 4t + ¢ 242t 242t 1 1
1+6t+3t7 3+6t+t° 2+3t 34+2t 1 1

In analogy to the case of numbers we could now study the polynomials c¢(n, j,t,2k + 1) which
satisfy the above relations together with c¢(n,k + 1,£,2k + 1) = 0. These polynomials satisfy
c(n,0,1,2k + 1) = a(n,2k + 1). For k > 1 they are different from a(n,2k + 1,¢).

| do not want to go into details but only state their generating functions without proof.

Their generating function is given by

c(n,0,t,2k + 1)z" = .
; ( ) d(k,z,t)

Here d(n,z,t) satisfies

d(2n,z,t) = d2n — L, z,t) — 2°d(2n — 2,z,1),
d(2n + 1,1,t) = d(2n,z,t) — tz*d(2n — 1,2,t)

with initial values d(—1,z,t) =1 and d(0,z,t) =1 — z.
And ¢(n,z,t) is defined by the same recurrence

c(2n,z,t) = c(2n — L, 1,t) — 2°c(2n — 2, 1, 1),

c(2n + 1, 3,t) = c¢(2n,z,t) — tz’c(2n — 1,z,1),

with initial values ¢(0,z,t) = ¢(1, z,t) = 1.

Note that d(n,z,1) = F ,(1,—2") —2F  (1,—2°) and ¢(n,z,1) = F _ (1,—2).

n+

2.2. Generating functions for the polynomials a(n,k,t).
We now want to determine the generating functions for the polynomials a(n,k,t).

Again we get different results for even and odd %.

22



Theorem 1

Let

O (5,t) = F (1+(1—t)a*,—2?) = Z[" Sk R B X )

Then for £ >0

P (z,t) — 2°®,_ (a,)

Z a(n,2k + Lt)z" = - :
(x,t) — x(z + l)CIDk(x, t)+x CIDk_l(:c, t)

n>0

(2.8)

k41

The denominator @, (x,t) — z(x 4+ 1)@, (z,t) + 2°®,_ (z,t) isapolynomial in z of degree
2k and a polynomial in ¢ of degree k. As a function of ¢ the first terms are

k—2
O, (z,t) — 2z + D) (,t) + 2°0,_ (2,t) =1— 2z —ktz® + (1 - x)x%Z (k—1— 52" + t*2'B(k,x,t)

j=0
for some polynomial B(k,z,t).

Theorem 2
Let
l

A (5,t) =L (1+(1—t)a? —2") = Z[" B k] - a - (1+a—ne)" (). (29)

Thenfor &k >1

S afn, 24, " = O DD — A+ A= 02),  (@,1)

: (2.10)
n>0 Ak(ﬁﬂ, t) - Akfl(x} t)

The denominator A, (z,t) — 2z°A, (z,t) isapolynomial in z of degree 2k and a polynomial
in ¢ of degree k. As a function in ¢ the first terms are

k
(@) =1—2" — kta® — tz 2% + 2 Ok, z,t).

j=2

A, (z,t) — 2°A

k

For ¢ =1 we get again (1.18) and (1.19).
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This follows from

q)k(xv 1) - :EQCDJC,l(x: 1) = FL(L _‘7:2) - :EQF;;I(L _‘7’2) =F (15 _xQ)a

T Tk

k k+1 k

d H(x, 1) —z(x + 1)(I>k(:1:, 1)+ :1:3<I>k_1(a;, )=F (1,—2°)—(z+2)F(1,—2°)+ x3}7;,’_1(1, —z°)
= (F,0,—2") = 2’F,(1,—2")) - 2(F,(1,—2") = 2°F,_ (1,—2")) = F,_,(1,—2") — 2F,_,(1,—2"),

k1 k+2 k+1
(1 + {L‘)q)k(l‘, 1) - xz(l + (1 - 1)'7’,)(1);‘7_1(377 1) = (1 + .’L’)FL(L _xQ) - ‘%2%_1(17 _:L,Z)
=F,_ (,—2") + 2F,(1,—2%)
and
A (x,1)— 2N, (2,1) =L (1,—2?).
Before we prove these theorems let us consider some special cases.
The simplest special cases are
n 1 + ‘/I'l ]‘ + x g n
a(n,2,t)x" = = = 1+1t)"x
; (m,21) 1+ 1—-t)r*)—22° 1—(1+t)’ §( )
and
Za(n, 3, t)x" = 1 = ! =) F . (Ltg"
>0 A+1=-t)2")—a(z+1) 1—z—tz" ="

Let us also consider a(n,4,t).
The first terms are
LL14 614261+ 4t +¢3,1+5t + 387,14+ 7t + 9° +¢*,1 + 8t + 14¢> 4 4¢°,---.

Here we have

1 — 1z’ 1—tz’ 1
Za(n,él,t)x” - 2 +I2 I4 2 14 2 2 - 4 2 4 +z 2 2 4 2 4
>0 l—z" —2tz" —tx” +t°x 1—2" =2tz —tx” +t'x 1—2" =2tz —tx” +t'x
= Z a(2n,4,t)x”" + xz a(2n + 1,4,t)z"".
n>0 n>0

_ 1— 22 2 201 — 422 4
Since 2 th 4 24_1: x_i—tx<2 tx)4+m.24

1—2" =2t —tx” +t'x 1—2" =2tz —ta” +t°x

we get by comparing coefficients and setting a(—1,4,¢) = 0
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a(2n 4 3,4,t) = a(2n + 2,4,t) + ta(2n + 1,4,t)
a(2n + 2,4,t) = a(2n + 1, 4,t) 4 ta(2n,4,t) + ta(2n — 1,4,t)
Thus the polynomials a(n,4,t) can easily be computed.

2n

Let now b(n,t) = a(2n,4,t") + ta(2n — 1,4,8°) = > b t". Then the table (bk) begins as

k=0

follows
1
1 1 1
1 1 4 2 1
(2.11)
1 1 7 5 9 3 1
1 1 10 8 26 14 16 4 1
1 1 13 11 52 34 70 30 25 5 1

The sum of the rows is b(n,1) = a(2n,4,1) + a(2n —1,4,1) =2-3"" + 3" = 3" and the
alternating sum is

2n
(=1, = a(2n,4,1) —a(2n —1,4,1) =2-3"" =3"" =3"""

k=0

The table (bk) satisfies

n,2k+1 = bn,—1ﬁ2k—1 + bn,—l,2k’ (212)
bn,2k = bn71,2k72 + 2bn71.2k71 + bnfl,Qk'

2.3. Proofs

Proof of Theorem 1

[7] Theorem 3.1 implies that setting d(k,z,t) = ®
have

cn (@) — z(z + 1) (2,1) + 2°®, (x,1) we

d(k,,)Y " a(n,2k + L,t)z" = c(k,z,1) (2.13)

n>0

for some polynomial c(k,z,t) of degree degc(k,z,t) < degd(k,z,t) = 2k.

Let us recall the proof.

The polynomials @ (z,t) = F (14 (1—t)2*,—z°) satisfy

n
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P (z,t) =1+ 1A —1)2*)® (2,t)—2*® (,1). (2.14)
Therefore the polynomials
qbn(x, t) = (I)”H(.’L’, t) — z(z + 1)<I>n(x, t)+ :1:3<I>n_l(:1:, t) (2.15)
satisfy the same recurrence with initial values ¢,(z,¢t) =1—2z and ¢, (z,t) =1—z — ta”.

Since we did not define ®_ (z,#) we would have to consider the initial values ¢ (z,t) and

¢,(z,t). Butit is easy to verify that by choosing ¢, (z,t) = 1 —z we get the same result.

Letnow w = a(n,2k +1,1) = w(A )

n,2k+1

By symmetry it is clear that w is also the weight of all paths which start from (0,—1) and

end in 0 or —1. Therefore the weight of all paths which begin with a down- step D is w__ .

Let w;j be the weight of all paths of Am+1 which begin with at least j up-steps U.

Then

wh 4w

n,l n—1

=w Oor
n

w=w —w . (2.16)

n,l 1

The paths which begin with j up-steps U begin with one of the following steps:
U U'DU,U’D*U,---, U’ D’"'U, U’ D’ If we remove the part U‘D" which contributes the
factor ¢ to the weight we get

j—2
+ ot +
Wei = Yain + tz W, 9020 + twn72j' (2.17)
(=0
+ o+
Thus w, =w,+iw _,
This gives
+ o _ . .
wn,? - wn,l twn—? - wn wn—l twn—Q' (218)
From
j—2
+ + .
w7l7.j+1 o wﬂr,j tz wnf?€72,j7€ twrh?]’
(=0
we get for j > 2
j—3
+ + _ + .
W, o — W, 5, = tz W, oraj1-¢ twnﬂj
(=0
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Therefore

+

w —w Htwt =w" . —w'

n,j+1 n,J n—2,j n—2,j n—2,j—1
or
+ ot o + ot
w, o, =w, + (1 t)wnfzj W, o, (2.19)

Let now A be the operator defined by A’w = w, . and let w:,,jﬂ =h(Aw .
Then by (2.16) and (2.18) we have

h(A)=1—A, h(A)=1-—A—tA°

and by (2.19)

h(A) = (14 1= O)A)h_(A) - Ah_,(4).

j—1
Since ij = 0 we see that
h (Aa(n,2k +1L,t) =w,,  =0.

Since h, (z) satisfies the same recurrence and initial values as ¢, (z,t) we get (2.13).

It only remains to determine c(k, z,t).

From the definition of a(n,2k + 1,¢) it is obvious that a(n,2k + 1,t) = a(n,2k + 3,t) for
n<2k+1.

Let A(k,z,t) =) a(n,2k+1t)z" = )
() = 2ol B L0 = )

The denominator d(k,x,t) satisfies the recurrence

d(k,z,t) — (14 (1 —t)2*)d(k — L, z,t) + 2°d(k — 2,2,t) = 0.

Now we have

c(k,z,t) — 1+ (1 —t)a)e(k — 1, z,t) + 2°c(k — 2,7,1)

= d(k,x,t)A(k,x,t) — (1 + (1 — t)2*)d(k — Lz, t)A(k — L, z,t) + 2°d(k — 2,z,t) A(k — 2,2,t)

= (d(k,,t) = (1L+ (1= 8)2*)d(k — 1,3,1) + 2d(k — 2,2,1)) A(k, 2,1)

HL+ (1= )a)d(k — 1 3,t) Ak, z,t) — Ak —13,t)) — 2°d(k — 2,2,1) (A(k, 2,t) — Ak —2,2,1))
= 1+ (1= )2")d(k — La,t) (A, 2,t) — Ak —12,t)) — 2°d(k — 2,2,1) (A(k,2,t) — Ak — 2,2,1)).
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Since the coefficients of x/ for 0 < j <2k —10f A(k,z,t) and A(k — 1,2,t) are the same we
see that (1+ (1 — t)a”)d(k — 1,2,t)(A(k,z,t) — A(k —1,2,1)) and

’d(k — 2,7,t) (A(k, z,t) — A(k — 2, t)) are polynomials where all coefficients of z’ for

0 < j <2k —1 vanish. From the first line we see that this is a polynomial of degree < 2%.

Therefore
c(k,z,t) — 1+ (1 —t)*)e(k — Lo, t) + 2°c(k — 2,2,t) = 0
for k > 3. Direct inspection shows that c(1,z,t) = 1,¢(2,z,t) = 1 — tz’.

The uniquely determined polynomials satisfying this recurrence and initial values are
c(k,z,t) = @, (2,t) — 2°®, (z,1).

Proof of Theorem 2

[7] Theorem 4.1 implies that with d(k,z,t) = A, (z,t) — 2°A,_ (z,t) we have

d(k,z, t)z a(n,2k,t)z" = c(k,z,t) for some polynomial c(k,z,t) of degree

n>0

degc(k,z,t) < degd(k,z,t) = 2k.

Let us also recall this proof. It is somewhat more complicated because we now have no
symmetry for the weight.

Let w', be the weight of all paths which start with & up-steps U, w_, the weight of all paths

k

which start with & down-steps D and w,

_ + - _
=w,, +uw, Then we have w, =w,

o
wn,l - wn,‘z + twnsz’
w,o=w.,t+w

n,l n,2 2

and thus

wn‘Z = wn - (]' + t)wn,—Z'

For the paths which start with UU there are the following possibilities: they can start with
UUU,UUDU,UUDD. Therefore we get

w = w:,i +tw" .+ tw,

n,2 n—22

— ot + — ot + g2
-4 wn.?) + t(wnle twnf-l) + tw7174 - wn,?) + twan,l t w71,74 + tw"74.

For the negative part we get the simpler formula

w,=w ,+ tw

-, , because the valleys on height —1 are not extreme points.
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Combining the last two formulae we get

—2tw, , + t2wn’_ —tw

w = 'LU" - wn— 4 n—4"

n,3 2

For ;7 > 3 we have in the same way as above

j—1

w o= w +tZw

n,j n,j+1 n—20-2,j—0"
(=0

We now define polynomials g () as follows:

0.0 = 0,,(0) = 132", (1

with initial values

g,(x) =2 and g,(z) =1— (14 t)z* = A (z,t) — 2°A (,1).
Then g (z) = A (z,t) — 2’A__ (z,¢t) for n > 1.

Thisis true for 1 < n < 2. Let it be true for ¢ < n.

Then

n—1

g (x)=A_(zt)—2*A (z,t)— tz 7 (An% (z,t) —2*A__, (=, t)) — 2tz
=1

=A _(z,t)—2’N_(z,t) —tz’A _ (z,t) = A (z,t) —2°A_ (2,1).

n—1

We already know that

wn,l = g()(A)wn
wn,Z = gl (A)wn
wn,3 = 92 <A)wn

Thereforewe have 0 =w . = g, (Aw, .
Thus we know that with d(k,z,t) = A, (z,t) — 2°A,_ (z,t) we have

d(k,z, t)z a(n,2k,t)z" = c(k,z,t) for some polynomial c(k,z,t) of degree

n>0

degc(k,z,t) < degd(k,x,t) = 2k. We now must determine c(k, z,t).
From the definition of a(n,2k,t) it is obvious that a(n,2k,t) = a(n,2k + 2,t) for n < 2k.

Let B(k}, ,’I,', t) = Za(n’ 2k7 t)xn — C(k, x, t) '
n>0 d(k, xZ, t)

The denominator d(k,z,t) satisfies the recurrence
d(k,z,t) — (1 + (1 —t)z*)d(k — 1, z,t) + 2°d(k — 2,2,t) = 0.
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Now we have

c(k,x,t) — (14 (1 —t)z*)e(k — L z,t) + 2°c(k — 2,2,t)
= d(k,z,t)B(k,z,t) — (1 + (1 — t)z*)d(k — L, z,t)B(k — 1,2,t) + 2°d(k — 2,2,t)B(k — 2, z,t)
= (14 (1~ t)a”)d(k — 1L 2,t)(B(k,z,t) — B(k — L,t)) — 2”d(k — 2,, ) ( B(k,2,t) — B(k —2,1,t)).

From the first line we see that this is a polynomial of degree < 2k.

Since the coefficients of 2’ for 0 < j <2k —2 of B(k,z,t) and B(k — 1,,t) are the same
we see that

coeffla’)((1+ (1 = )a”)d(k — 1,2,t) (B(k,2,t) = B(k — 1,2,1))) = 0
for 0 < j <2k — 2. The same argument gives

coeff[z’] (xQd(k; —2,,1) (B(k;, z,t) — B(k — 2z, t))) =0

for 0< j<2k—2.

Now we must determine the coefficient of z*~'. We have

coeff[z (1 + (1 = t)a*)d(k — 1,2, ) (Blk, 2,t) — B(k —1,2,t))) = a(2k —1,2k,t) — a(2k — 1,2k — 2,1)
and

coett[z)(2%d(k — 2,2,t) (B(k,,t) — B(k —2,3,1))) = a(2k — 3,2k,1) — a(2k — 3,2k — 4,¢).

It suffices to show that
a(2k —1,2k,t) — a(2k — 1,2k — 2,t) = a(2k — 3,2k, t) — a(2k — 3,2k — 4,t) = ¢.

We know that a(2k — 1,2k,t) — a(2k — 1,2k — 2,t) is the weight of all paths from (0,0) to
(2k — 1,—1) which touch the boundary y = +k. The uniquely determined path with this
property is D'U"" with weight ¢. On the other hand a(2k — 3,2k,t) — a(2k — 3,2k — 4,t) is
the weight of all paths from (0,0) to (2k — 3,—1) which touch y = +(k —1). There is again
a unique such path D*'U* 2,

Therefore we see that
c(k,z,t) — 1+ (1 —t)x*)e(k — Lz, t) + 2’c(k — 2,2,t) = 0
for k > 3. Direct inspection shows that ¢(1,z,t) =1+ 2 and ¢(2,z,t) = 1 + = — tz°.

The uniquely determined polynomials satisfying this recurrence and initial values are
c(k,z,t) = 1+ 2)® (2,t) — 2(1+(1— t)z)®,_ (2,t).
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2.4. Generating functions of the coefficients
Let us now consider the number of paths in A, with j extremal points. For each k there is
precisely one path DUDUD--- with no extremal points.

For j >0 the shortest path with j extremal points is UDUD---UD =(UD)j of length 2j.

Therefore we can write the generating function of the polynomials a(n,k +2,t)for k >0 in
the form

Za(n,k +2,0)z" = A (z,k) + A (2,k)2’t + A (z,k)z't* + - (2.20)

n>0

1

1—z

with A (z,k) =

Experience with small values of k led to
Conjecture 1

For j >1 there exist polynomials v (z,k) with degv (z,k) = kjand positive coefficients
such that

v (z,k)
A (z,k) = — (2.21)
! 1—z)" 1+ =)
These polynomials have the surprising property that
v (Lk) = (k+ 1y, (2.22)
v(-12k+1)=0 (2.23)
and more precisely v (z,2k + 1) is divisible by (1 + z) and
v (—1,2k) = 2k + 1) (2.24)
Let us first consider some special cases.
For £k =0 we get
2j
Za(n, 2, t)x" = 1;3;2 = Zt‘j _xl -,
>0 -1+t = (I—2)"(1+a)
Therefore
v.(z,0)=1. (2.25)
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For £ =1 we see that

1 .
Za(n, )" = ———m— = Zti —:E—a;)’“

n>0 1 — T — tIQ §>0 (]_
implies
v (z,1) = (1+z). (2.26)

The next case is more interesting.
We know already that

1 _ 2
Salndte = ——
>0 1—2" —2tz" —tz” +t°z

Let us suppose that we have an expansion of the form

.1 3)21}1(.%, 2) x4112(a:, 2) ) x%g(x, 2)
;“("Mﬁj R Ry B S 7 R A B T Y

(2.27)

Multiplying both sides by 1 — z° — 2t2* — tz* + t*z" and comparing coefficients of ¢’ we get

27 252 254
(1—2°) ! jv+’1($7 2 - — (22 +2") - 1.{7.,1(33, 2).1 + ' v _va(L 2 — =0
(1—z)"(1+2a) (1—2)(1+z) 1—z)"(1+2z)
or equivalently
v,(z,2)=(2+ xQ)v].fl(x, 2)—(1— xQ)UH(x, 2). (2.28)

The initial values are v (z,2) =1 and v, (,2) = 1+ z + z* by direct computation.

So if there is an expansion of the form (2.27) then v (z,2) must be given by (2.28). But if we

define vj(a:, 2) satisfying (2.28) and the given initial values then we get

—

1—2° —2tz" —ta* + t2x4) Z a(n,4,t)z"

n>0

xQ)xQ(l—i—a:—i—xQ)t
(1—2z)(1+ )
1— 2% =2t —tz* + t2® + ¢ + t2? _ 1—2* —t* +t?

11—z 11—z

Thus (2.27) is in fact true.

= (1 —2® —2t® — tx4)m

+(1-

=14z —tz°.
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2
If we compute the polynomials v, (2,2) = Zc )z" we get the following array of the
(=0

coefficients ¢(j,¢)

1

1 1 1

1 2 4 1 1

1 3 9 5 7 1 1

1 4 16 14 26 8 10 1 1

1 ) 25 30 70 34 52 11 13
(2.28) implies the following formulae:

o(—1,0) = ¢(=2,0) = 0,¢(0,£) = [¢ = 0], c(L,0)=[¢<2],

c(4,0) =2c(j —L,0)—c(j—2,0)+c(j— 1,0 —2)+c(j— 2,0 —2).

Surprisingly this is almost the same array as (2.11) . More precisely
vj(x,2) = ijb[ j,l] since both sides satisfy the same recurrence (2.28).
X

2j

2j
Thus we have v (1,2) = > (4, ¢)=3" and v ( =3
=0

(:0

Let us also mention that v, (x,3) satisfies

Vi (x,3) = (X* + X+ 2)v ; (%,3) + (1= X)(L+X)°V;_,(x,3)
with vy (x,2) =1 and v;(x,1) = (L+ ) (1+x*).

For v;(x,4) we get

vi(x,4) = (x4 + X +3)VH(X,4) +(2x4 + X —3)vH(x, 4) +(1— x? )2 V(X 4).

If we let £ — oo we get

(2.29)



Here we have

2°r ()

2 4
> a(n, )" = L Ng(x) t+ x:l(x) ~t* + 2 1% 4
= -2 (1—-2z)(1+2x) (1—2)1+x) (1—2)(1+x)
(2.30)
where
- ol 20 . 20-1 ol 20 ol J 20-1
r(z) = x +Z‘7NN:L' _ZE = + ol . (2.31)
(=0 ¢ =1 ' (=0 =1 -1
n
The numbers N = ! " 1][k 1 are the Narayana numbers (cf. OEIS A001263).
’ - n

The coefficient table of (7}(:):)) is

>0
1
1 1 1
1 2 4 2 1 (2.32)
1 3 9 9 9 3 1

1 4 16 24 36 24 16 4 1

It should be noted that (2.32) consists of the even numbered rows of OEIS A088855.

Note that (2.30) is equivalent with

- n+2k||||n + 1+ 2k
1—2) (1 — x2) Z 2 2 "=r_ () (2.33)
n>0 k k
for all k.
To show this identity we make use of the identities
n+k—1|ln+k k k+1
1 — )2k " 2.34
D ;[]_1].} 23

and
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2 2
n+k Lk
(1_x)2k+1z z" :Z ’ !
n>0 k =0 | J
These imply
- n + 2k n+1+2k
(=22 S| 2 2 "
n>0 k k
2
2%+1 n+k—1|{n+k 2%+1 n+k
— 1_:172 2n—1 + 1_:1:2 xQn
i-v) z S I S v i
Fk—=1||k+1] .
—g; 53_4 = () ()
7=0 =1 j j

by observing that

e —1) . e (k—1)(k—1) . k—1)
1+ ) Y+ oY = 4+ 2
( ) = | J =1 J_l][ J ]! zj: J Z]_l
E—1|k -1 E—1|(k -1 E—1\[k—1
> AP SRS N N
E—1) (k—1| . E—1) (k—1) (k—1) (k-1
= . + |2+ . 2| +| |+
] []_1 j ] ?71][ []_1 j m]]
2
_ 1<;$QJ+ZI<;—1/<:+1$2j_1
~|J ~lJ-1) J

To prove (2.34) and (2.35) we show more generally that for m > 0

2%+1 n+klln+k—m Flk—ml||2k— 7 v .
1-a RS (11~ ay
Zk:[k m|lk+m m
et J |

+k
Slncezn —;
n>0 (1_x)k+l

we get
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k—m
n+k

2|

n>0

n—m

k k| (1 o x)k:-o—l E (1 o I)k:+1 k| e

o e

It remains to show that

gt -

j=m ] -m

M”

:O

k+m|
) ]4“"’. (2.36)
J

“M

This follows by comparing coefficients in two different expansions of (1 + 2)"*"(z + 2)* ™.
On the one hand we have

k—m , .
(1 + Z)k’-‘rm(x + Z)k—m — (1 + Z)k+m(flf -1 + 1 + Z)k—m — Z . (I‘ o 1)] (1 T Z)Zk-]

= J
|2k — 74|,
(:L’—l)J[2 , ]]zé

On the other hand we get

k+m

(1 + z)ker(:L‘ + z)kfm — Z .
J

gl

k -—m l_j+k—m—1C
z .
l

Comparing the coefficients of 2" in both sums we get (2.36).

Remark 8
For m = 0 identity (2.36) reduces to

Ek: [ ][Zkk—j] ¢ —x)j i[j]} (2.37)

J=0 J=0

It is mentioned in OEIS A063007 without proof. A combinatorial proof has been given by
H.S. Wilf [21], p. 117. The above proof is inspired by the paper [19] by Jocelyn Quaintance,
which contains tables of seven unpublished manuscript notebooks of H. W. Gould from 1945
—1990. Similar identities can be found in [4] and the literature cited there.

A more general identity of this sort has been proved combinatorially in [4]. It can equivalently
be formulated as
n n
=\ J

n+2m+zx
j+m

. n|2n+2m+z— 9
ZJ:Z , J
=0 (J
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](z —1) (2.38)

+k_ k—m 1_ 1_3; k—m k_
n mi 1 D z B 1Dk< ( )) i'DkZ(—l)][ .m



and reduces to (2.36) for (n,:z;) — (k—m,0).

Since there seems to be some interest in such identities I will give another proof of (2.33).

N
)

We first show by induction that

()= (1—ayn 2Ty
b(n,j,z) =1—2)""" ——— =
j! (1—33)“1 i=0

jt+k—n
k—1

Observe that b(n,0,2) = (1 —=z T =" = n
( ) ( ) (1 o :L,)k+1 —

j+k—mn
k—i

k—mn
because [k ] =[i =n] for i <n. We also have
—1
b(0, j, 7) = (1—x)k+j+1D_j 1L _[J+k
' J,%) = Ao | k|
Since D’zf(z) = 2D’ f(z) + D’ f(z) the sequence (b(n, 7, x)) ., satisfies
n>0,7>
b(”;jvx) = xb(n - l,j,l’) + (1 - :L’)b(n - 17] - 1;'7:)
Comparing coefficients this is equivalent with
J4+k—nl||n j+k—m+1|ln—1 j+k—n|ln—1 j4+k—n|n—1
k—i ||i| | k—iv1 |[io1]T| ki i | k—i+1]li-1]

This is clear because the right-hand side is

j+k—n+1||n—-1 j+k—nln—-1 j+k—nln—-1
k=il |lim1| |k—is1|li=1|T| k=i i
__j+k—n n—1 j+k—n n—l__j+k—n n
| k=i |li—1 k—i N I B = A A
Thus for m <k (2.39) gives
k—m k—m

(1 . I)k+j+l D_] T —

k—m}
. ‘. (2.40)

If we choose m =0 and j = k£ we get
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2
n+k k n+k
(1 . :E)QkJrlZ L " = (1 )2k+1 %Z L n+k
n>0 * n>0 (2 41)
wn D (k) |
=(1l-2)"" == |2
( ) k! (1—x)* ; J
For m=1and j=Fk—2 weget
n+klln+k—1 DF2 n+k
1 - 2k+1 n+1 — 1 _ 2k+1 n+k—1
(-2 Z; kol k-2 ]x (-2 (k:—2)!; k -
Dk-2 k-1 e — 1)k =1 (2.42)
=(1- I)2k+1 z _ i
(k=2)!Q—a2)" -1} ¢
Comparing coefficients gives
n+2k||[|n+1+2k 2
n+k n+klln+k+1
1 _ 2 2 2 n — 1 _ 2 2n 1 _ 2 2n+1
0> pe (I LS N FEREID » k}
2
n+k-1| n+k|ln+k-1,
_; k—1 ] +; k k—2 ]’ '
Combining these identities we finally get the desired result (2.33).
Computing b(n, 7,z) in another way we get
k—m k —-m
> -1)'t-a)
Dj k—m Dj — €
(1 _ l,)k+,i+1 - T — (1 _ x)k+,j+1 = (=0
(1= 2) 7! (1—a)"
. ikemlk —m k= Jk—m||k+j5—¢
— (1 . x>k+]+1 D_'Z ' (_ 1) é k-1 Z ] (1 . x)//
J+ =0 (=0 J
(2.43)
Comparison of (2.40) and (2.43) gives
k777Lj+m k_m . k—m k_m k_'_.]_g
Z L . ], = Z(—l)f[ ’ j (1—2)". (2.44)
=0 (=0

For m =0 and j = k this reduces again to (2.37).
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For m =1 and j =k —2 we get

1 (k- 1) (k-1 2 —1)(2k—2—¢
S e

which by £ — &k + 1 can be written as

N o = —a' =) (1) — -

; T ;[2—1][z]kx ;( )k+1 ¢ k ] x) (2.45)
e DI N (O |
_k':() n—0+1| n—4¢ k v

In this form it has been proved in [5], (2.2) and [17], (1.3).

Remark 9

A slight modification of the above proof gives the following ¢ —analogue of (2.33):

n+2k||||n+1+ 2k
(") (a%a), S| 2 2 2" =10 (2.46)
n>0
= k k
with
oy |G| T n . 41 o 2 ) -
r(z,q) =) q ! Jllld+1 xj:Zq 2 , a;”—f—quz g 27 (2.47)
=0 SIS =0 J = T
2 2
n n—1 )
Here k is ¢ —binomial coefficient and (x;q) = (1 — qjx).
T
Comparing coefficients gives
k n+2k n+1+2k n+k 2n n+k n+k 2n+1
(x;q)QZ 2 2 x' —Zq T +Zq b9 x .
n>0 k k n>0 n>0 -
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Let D be the g —differential operator defined by D, f(z) = f@) =~ flaz) and define

(1—q)x
] D’ z"
polynomials b(n, j,,q) by b(n, j,z,q) = (w:q)  —-
),
Then
+k—nln|l
b(n, j,x,q) Zq i PP (RES (2.48)
=0

Since D/af(x) = ¢’zD! f(x) + [5]D)" f(z) the sequence b(n, j,,q) satisfies

b(n, j,z,q) = ¢’zb(n — 1, j,2,q) + (1 — ¢"z)b(n — 1, j — 1,z,q). (2.49)

Comparing coefficients this is equivalent with

j—l—k:—nn it k=n+1in-1 |j+k—nln-1 popn |[J T E—nln—1
k—1 1 k—i+1 1—1 k—1 7 k—i+1||i—1
The right-hand side is
i tEk—n+1n-1 k—i+1j+k_n n—1 |7+k—nin—1
k—i1+1 i—1| k—i1+1 2'—1+ k—1 1
n=1j+k—n| |j+k—n|n—1 n|lj+k—n
i—1|| k—i k—i i\ il k=i |
Now observe that
1 n+kl
e
(’q)k+1 n=0
Therefore
+k2 k k k kz
n D :l:' 2 .
xq xn_ 4 F—— bk,k,.’l?,q = q1 . xz
( )2k+1 g k ( )2L+1 [k‘]' (l‘;q>k+1 ( ) ; 7
and
th—1 (k=1 = 12
2 n — 271,_ i 2 — '_ 2 -
(qx’q)%AZ E—1 (qx> _Zq i (qx) o ¢
n>0 i=0 j=0

In the same way we get
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n+kiin+k—1 D2 gt
I o i e e e ()
=blk—Lk—2z,q) = inq el kzlxi
and therefore
n+kljin+k— - 2 — 1|k -1 i
((] ,q)Man;qH k—2 l1q 7 !
From the easily verified formulae
" n l+1 nt
7" = 3 (=1, Y (ma), (2.50)
and
& (LIT;Q)[ — qu k + '] —t (x;q)é (251)
[7]! (:v; q)k+1 i (= q)kﬂ+1
we get
In e+ ‘ o [n]lk+ j— ¢
D g D Cof,e " (wa), > (1) q[ dl (234),
4 -4 - - .
[‘7]' (x;q)k+l [‘7]' ($5q>k+1 (x;q)k+j+1
(2.52)
As special cases we get
D' g : kl[2k — ] |}
( ’q)2k+1 (]! ( ,q)kH Zo 2 ]q (5’7:‘]>£
and
D" o= k 1 k—1|12k—2—¢
( 7Q)2k 1 [k 2] ( :’I;q) 2:0 —2 q”(%Q)E.
k+1

Comparing (2.52) with (2.48) we get as ¢ —analogue of (2.44)
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n

Zq j+i—n)

=0

j+k—n
k—1

n

The most interesting special cases are

for j=n =% and

k—1

Zqzzl

1=0

kE—1llk —

I

k-1
0

2k—2—4
k—2

(z:a),

for j=k—2 and n =k —1. By substituting £ — k£ + 1 this can be written as

E+1
14

2k —¢
k

Sy {"}1

[k +1]

(230),,

k
where i

Bt isa ¢ —analogue of a Narayana number.

1—1

Conjecture 2

For each j > 1 there exists a polynomial p.(z) = p,(z,z) with degree

o "
deg, p,(2) = Ulgﬂ and deg, p,(z,2) = [j ; ]— 1 such that

(z,z
Zv,(x, k)" = p’( ) .
=0 (1-2) ﬁ 2)i
(=1

Moreover it seems that the polynomials have a certain symmetry:

N2 i
(_1)[;] X[J3 ]—12(1 2)2(J : P, (%,%j =p,;(x,2).
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Let us consider some special cases.

First we have

v(zk)=> ' (2.57)

Let the coefficient of ¢ in a(n,k + 2,t) be [t](a(n,k + 2,t) = ¢(n). Then

c(n +2) — ¢(n) = min(n + 1,k + 1). This implies that

c(n+2)—c(n)— (c(n +1)—c(n — 1)) =1 for 0 < n <k and vanishes for n > &, which is
equivalent with (2.57).

To see this consider all paths with n + 2 steps which begin with DU. Their weight is ¢(n).
The remaining paths with weight ¢ start with UD,U°D’,--- and D°U?, D*U?,---. There

n—+ 2 n+3

2

number is

+ —1=n+1if n <k For n >k the heights are bounded by

IwJ and %' — 1. Therefore their number is k£ +1.

The coefficient table is

with generating function for the row sums
1
(1—2)(1—z2)

=1+Q+2)z+0+z+2°)t2" + .

Thus p,(x,z)=1.

For j = 2 we conjecture that
k . .
UQ(:B,k):1+Z$Z(i+1+£B+ZE2+"'+$Z) (2.58)
i=1

The coefficient table is
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(2.59)

B~ N

T = DN =

N O B~ N =
O ~J U = N =
W N N =
[NOI N S SO

NG I SN

1 1
1 2 1 1

This table consists of two sequences ¢ = (1,2,4,5,7,8,-) with generating function

14 2+ 22

———— and
(I—2)(1+2)

d= (1, 1,2,2,3, 3,~-) with generating function -
1+2)(1—2)

The sequence ¢ is the sequence of all positive integers which are not multiples of 3. Thus
¢, =3n+landc,  =3n+2.

2

The generating function of the rows is therefore

B 1_22.’1)3
kzz;vg(% k)Z = (1 _ z)(l ~ zx)2(1 ~ sz) . (2.60)

This implies p,(x,z) =1-x’z%.

. 1 !
For z =1 this reduces to +;3 = (k+1)2"
- k>0

2
For z = —1 we get (ELZZ(%JA)Z%.

- 22)2 n>0
Thus v,(1,k) = (k +1)* and v,(—1,2k) =2k +1 and v,(—1,2k +1) = 0.

It is perhaps interesting that the coefficient table (2.59) has the form

1
I ¢ 1
I ¢ ¢ d 1
1 ¢ ¢ ¢ d d 1
L ¢ ¢ ¢ ¢ d d, d 1
1 ¢ ¢ ¢ ¢ ¢ d d d, d 1

The sequences ¢ and d are uniquely determined by v, (1,k) = (k +1)*, v,(—1,2k) = 2k +1
and v,(—1,2k +1) = 0.
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Observe also that

CO—F(CI—|—d0>—|—(02—|—d1)+---—|—(cn—|—d”71):1—|—3—|—5—|—---—|—(2n—|—1):(n—{—l)Z,

¢ = (e, +d,)+ (e, +d)++(c, +d, | )=1-3++(dn+1)=2n+1

n—1

and ) (-1)*c, = —(n+1) and i(—l)’“d(lg) =n+1.

For 7 > 3 the situation becomes more complicated.

The coefficient table of v,(xz,k) = (u(k, j))jk0 starts with

J=

This table has some unusual properties.

Each column [az’“’j]vg(az, k) for k> j isgiven by (c) = (1, 3,9,15,27,55,69,93,111,---

with generating function

1422 + 42> +22° + 2*
Q-2’0 +2z)?

This implies that

cn:1—|—3n—i-5n2 and c, =5n" —3n +1.

2 1

On the right-hand side of the table each column [z***/]v,(z,k) for k > j equals

n+4

2 . Its generating function is = .
2 (1—a)'(1+2)

n>0

(1,1,3,3,6,6,--) =

If we write the table in the form
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13 3
uln kb)) =1 3 5 7 1 1
,n“,kzo
139 1210 9 3 1 1
139 15 16 20 12 14 5 3 1 1

then the table between the green and the red column looks like

3 u(1,2)
5 7 u(2,3) u(2,4)
12 10 9 u(3,4) u(3,5) u(3,6)
16 20 12 14| |u4,5) u(4,6) u(4,7) u(4,8)

It has some curious properties:
Let R =(u(n+12n+2-k)-u(n,2n—k)) _ be the sequence of successive differences of

n>k

the south-east columns (u(n,2n—k))

n>k+1 "

Then
R, =(4k+4,2k +2,4k +5,2k + 2,4k + 6,2k +2,--+)

and

Ryca = (4K +5,2K +2,4k + 6,2k + 2,4k +7,2k +2,-+-).

Let L =(u(n+Ln+2+k)—u(nn+k+1)) ., be the sequence of successive differences of

n>k

the south-west columns (u(n,n+k +1))

n>k+1 "

Then
L, =(k+2,5k+7,k+4,5k+11 k +6,5k +15,---)

and

Ly =(k+2,5k+5,k+4,5k +9,k+6,5k +13,---).
The exact values are

w(2k — 1,2k + 25) = 3K —ﬂ5]TJ’U

for0<j<k-1
and

u(2k—1,2k—1+2j):3k2—@for1§j§k—1.
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Furthermorefor 0 < j <k —1

u(2k,2k + 27) = 3k* + 2k _JBi+3)

and
w(2k, 2k + 2§ + 1) = 3K +4k—w.

The generating function is given by

(Y fl?, z =
= (e e sy
(2.61)

2
For x =1 this reduces to 1—'_4;—’_42 = Z(k +1)° 2"
1-2) k>0

2 4
and for x = —1 we get 1oz > o (2n 41727

(1 - Z2)3 n>0

More generally by choosing z =1 we get

Yo Lk =Y (k1) = ———. (2.62)

£>0 &>0 1+

(1-2)

n
Recall that the Eulerian numbers <k> defined by the recurrence

n n—1 n—1
. =(k+1) 1 +(n—k) Eq

0
with initial values <k> = [ = 0] and boundary values <_nl> = 0 satisfy
iy
J S
Sk 41y = = <€> (2.63)
£>0 1-— Z)]H

Comparing (2.62) with (2.63) we see that
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p.(Lz)=(1- z)[;]zj: <2> 2. (2.64)

Conjecture 3

Let 7}(3:) be the polynomial defined in (2.31). Then

i1 L \max(j+1—¢,0)
p@)=(1-2) [[1-2)"" "r_ . (2.65)
(=3
For example
p(e)=1-2"=(1—-2)(z)=1—2)(1+ 2z +2)
and

py(zl)=1+2"—52" +2' —2° +52° —2" =2’ =(1—2)’1—2°)(1 + 2z + 42” + 22" + 2").

3. Related results

At last let us consider the polynomials

n+k—=2)jllln+1—(k—-2)j
a(n,k,t,z) = ZZJZ 2 2 £ (3.1)
== | Iy
Computations for small values of £ suggest
Conjecture 4
For k > 1
Za(n, k.t z)x" = k2t 2) (3.2)
n>0 d(k,.’f),t,Z)
with
ek +1,3,1,2) = (1 + 2)° —12°) (P, (2,8) — 2(z + 1D, (2,) + ', (,1)) 3

(cbk(x, =2, (2, t)> + (14 2)2” ",

d(2k + 1,z,t,2)

(2,t) — 2(z + )P (z,t) + 2°®, (2, t))2 — th””, (34)

= (1 +2) —t2?)(® -

k+1
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and

c(2k, z,t,2)
= (A @) = 2A L @D)((+ 2)D, (2,6) = 2 (L+ (L= )2)D,_ (,1)) + t(1L+ 2)2™"
(3.5)
and
d(2k,z,t,2) = (Ak (z,t) — °A,_ (=, t))2 — th%”. (3.6)

z

Closely related is

Conjecture 5

A, (z,t) — (L= t)z* A, (z,1)

DL vy wa sy ey S L
and
Z a(n,?k, t, 1).’1,'” o (1 - .’I,')(pk (3:7 t) - xQ (1 - (1 - t)a:)q)k,l (.’L’, t) (38)

= (@ a) - (@ (e t) — 20, (21)

The following proposition has been proved with other methods in [6] and [10] and can also be
deduced from Conjecture 4.

Proposition 5

The generating function of the sequence

n

(ot k1,2)_, =224 ||n+ (k +2)5 (39)
- JEL - 45
2
n>0
is given by
F ‘ 1,_ 2 + F 1,_ 2 + k+1

Za(n,k,l,z)x" = polb =) + o, (L —a) 2 (3.10)

n 1
>0 L]H_Q (1’ _:EQ) _ :Bk+2 [Z + Z]

For z =1 further simplifications occur (cf. [6] or [10]).
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1,—z%) — aF, (1,—z°)

F(
> a(n,2k,11)z" = - (3.11)
>0 (1- Qaﬁ)Fk+1 (1,—z%)
and
L (1,—2°
Za(n, 2k +1,1,1)z" = k’;’l( ) - (3.12)
>0 L ,,-2")—zL  (1,—-2)
For small values of £ these sequences occur several times in the literature.
The sequence (a(n,l,l,l)) = (1, 1,3, 5,11,21,---) is the so-called Jacobsthal sequence
A001045 with generating function
L(1,—2
Za(n,l,l,l)x" = 21( Sl — = 1 .
>0 L(l,—x )—xLl(l,—x ) l1—z-2z
The sequence (a(n, 2.1, 1)) = (1, 1,2,4, 8,16,---) is A011782, the sequence
(a(n, 3,1, 1)) = (1,1,2, 3, 7,12,-~-) is A099163, and the sequence
(a(n, 4,1, 1)), = (1, 1,2,3,6,11,22, 43,-.) is A005578.
Finally let us mention that by (3.9)
a(n,k) = a(n,k,1,—1) = 2a(n, 2k + 2,1,1) — a(n, k,1,1). (3.13)
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