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Abstract. Based on the Hermite–Biehler theorem, we simultaneously prove the real-
rootedness of Eulerian polynomials of type D and the real-rootedness of affine Eulerian
polynomials of type B, which were first obtained by Savage and Visontai by using the
theory of s-Eulerian polynomials. We also confirm Hyatt’s conjectures on the interlacing
property of half Eulerian polynomials. Borcea and Brändén’s work on the characterization
of linear operators preserving Hurwitz stability is critical to this approach.
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1 Introduction

Brenti [7] introduced the notion of Eulerian polynomials for finite Coxeter groups. Let
W be a finite Coxeter group with generators s1, s2, . . . , sn. The length of each σ ∈ W is
defined as the number of generators in one of its reduced expressions, denoted ℓ(σ). We
say that i is a descent of σ if ℓ(σsi) < ℓ(σ). Let des σ denote the number of descents. The
Eulerian polynomial of W is defined by

W (x) =
∑

σ∈W

xdes σ.

If W is of type An (resp. Bn or Dn), then we simply write An(x) (resp. Bn(x) or Dn(x))
for W (x). It is well known that An(x) is the classical Eulerian polynomial. Brenti [7]
conjectured that, for any finite irreducible Coxeter group W , the polynomial W (x) has
only real zeros, and left the case of Dn(x) open.

Dilks, Petersen, and Stembridge [9] studied the affine descent statistic, which is defined
by Cellini [8], and proposed a companion conjecture. Suppose that W is an irreducible
finite Weyl group with generators s1, s2, . . . , sn. Let s0 be the reflection corresponding to
the highest root. For each σ ∈ W , we say that i is an affine descent of σ if either i = 0
and ℓ(σs0) > ℓ(σ) or i is a descent for 1 ≤ i ≤ n. Denote d̃es σ the number of affine
descents of σ. Analogous to the definition of W (x), the affine Eulerian polynomial of W
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is defined as

W̃ (x) =
∑

σ∈W

xd̃es σ.

Similarly, we use Ãn(x) (resp. B̃n(x) or D̃n(x)) to represent W̃ (x) when W is of type An

(resp. Bn orDn). Dilks, Petersen, and Stembridge [9] conjectured that, for any irreducible

Weyl group, the affine Eulerian polynomial has only real zeros and left the cases of B̃n(x)

and D̃n(x) open.

By using the theory of s-Eulerian polynomials, Savage and Visontai [13] proved the

real-rootedness of Dn(x) and B̃n(x), and hence completely confirmed Brenti’s conjecture
on Eulerian polynomials for finite Coxeter groups. In particular, Savage and Visontai [13]
obtained the following result.

Theorem 1.1. Both Dn(x) and B̃n(x) have only real zeros. Moreover, we have

Dn(x) � B̃n(x).

Furthermore, Yang and Zhang [16] proved the real-rootedness of D̃n(x), and hence
completely confirmed Dilks, Petersen, and Stembridge’s conjecture on affine Eulerian
polynomials.

The key idea to prove Brenti’s conjecture and Dilks, Petersen, and Stembridge’s con-
jecture is to find some proper refinement of s-Eulerian polynomials, and then to prove
that the refined s-Eulerian polynomials satisfy certain interlacing property. Given two
real-rooted polynomials f(z) and g(z) with positive leading coefficients, let {ri} be the
set of zeros of f(z) and {sj} the set of zeros of g(z). We say that g(z) interlaces f(z),
denoted g(z) � f(z), if

· · · ≤ s2 ≤ r2 ≤ s1 ≤ r1.

Recently, Hyatt [11] proposed another approach to Brenti’s conjecture on the real-
rootedness of Eulerian polynomials by considering the interlacing property of half Eulerian
polynomials. Recall that the Coxeter group Bn of type B of rank n can be regarded as
the group of all bijections π of the set ±[n] = {±1,±2, . . . ,±n} such that π(−i) = −π(i)
for all i ∈ ±[n]. We usually write π in one-line notation (π1, π2, . . . , πn), where πi = π(i).
The half Eulerian polynomials of type B are given by

B+
n (x) =

∑

σ∈Bn:σn>0

xdesB σ and B−
n (x) =

∑

σ∈Bn:σn>0

xdesB σ.

The Coxeter group Dn of type D of rank n is composed of those even signed permutations
of Bn. In the same manner, the half Eulerian polynomials of type D are defined as

D+
n (x) =

∑

σ∈Dn:σn>0

xdesD σ and D−
n (x) =

∑

σ∈Dn:σn>0

xdesD σ.

Hyatt proposed the following conjectures, which have been confirmed by himself in the
new version of [11].
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Conjecture 1.2 ([11, Corollaries 4.6 and 4.8]). (i) For n ≥ 1 , B+
n (x) interlaces x

nB+
n (1/x)

and thus Bn(x) = B+
n (x) + xnB+

n (1/x) has only real zeros.

(ii) For n ≥ 2 , D+
n (x) interlaces xnD+

n (1/x) and thus Dn(x) = D+
n (x) + xnD+

n (1/x)
has only real zeros.

In this paper, we shall show that both Theorem 1.1 and Conjecture 1.2 can be derived
from the Hurwitz stability of certain polynomials.

2 Stability

In this section, we shall give an overview of some fundamental results on Hurwitz stability,
which serve as basic tools for our proofs of Theorem 1.1 and Conjecture 1.2.

Let C[z] denote the set of all polynomials in z with complex coefficients. Recall that
a polynomial P (z) ∈ C[z] is said to be weakly Hurwitz stable (resp. Hurwitz stable) if
P (z) 6= 0 whenever Re z > 0 (resp. Re z ≥ 0), where Re z denotes the real part of z.
This concept has been extended to multivariate polynomials. Let C[z1, z2, . . . , zn] denote
the set of polynomials in z1, z2, . . . , zn. We say that P (z1, z2, . . . , zn) ∈ C[z1, z2, . . . , zn]
is weakly Hurwitz stable (resp. Hurwitz stable) if P (z1, z2, . . . , zn) 6= 0 for all tuples
(z1, z2, . . . , zn) ∈ Cn with Re zi > 0 (resp. Re zi ≥ 0) for 1 ≤ i ≤ n.

The first tool to be used is the Hermite–Biehler theorem, a basic result in the Routh–
Hurwitz theory [12]. Suppose that

P (z) =
n∑

k=0

akz
k.

Let

PE(z) =

⌊n/2⌋∑

k=0

a2kz
k and PO(z) =

⌊(n−1)/2⌋∑

k=0

a2k+1z
k. (1)

As shown below, the stability of P (z) is closely related to the interlacing property between
PE(z) and PO(z).

Theorem 2.1 ([6, Theorem 4.1], [12, pp. 197]). Let P (z) be a polynomial with real
coefficients, and let PE(z) and PO(z) be defined as in (1). Suppose that PE(z)PO(z) 6≡ 0.
Then P (z) is weakly Hurwitz stable if and only if PE(z) and PO(z) have only real and
non-positive zeros, and PO(z) � PE(z).

The second tool to be used is Borcea and Brändén’s characterization of linear operators
preserving weakly Hurwitz stability, see [4]. Let Cm[z] denote the set of polynomials over
C with degree less than or equal to m.
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Theorem 2.2 ([5, Theorem 8], [4, Theorem 3.2]). Let m ∈ N and T : Cm[z] → C[z] be a
linear operator. Then T preserves weak Hurwitz stability if and only if

(a) T has range of dimension at most one and is of the form T (f) = α(f)P , where α
is a linear functional on Cm[z] and P is a weakly Hurwitz stable polynomial, or

(b) The polynomial

T [(zw + 1)m] :=

m∑

k=0

(
m

k

)
T (zk)wk (2)

is weakly Hurwitz stable in two variables z, w.

The polynomial T [(zw + 1)m] is called the algebraic symbol of the linear operator T .

With the above theorem, we obtain the following result, which plays an important
role in our approach to Theorem 1.1 and Conjecture 1.2.

Theorem 2.3. For any positive integer n ≥ 2 and any real number k ≥ −n, the polyno-
mial

Pn(x) = (x+ 1)An−1(x) + kxAn−2(x)

is weakly Hurwitz stable.

Proof. It is known that the Eulerian polynomials An(x) satisfy the following recurrence
relation:

An(x) = (nx+ 1)An−1(x)− x(x− 1)A′
n−1(x)

= (n+ 1)(xAn−1(x))− (x− 1)(xAn−1(x))
′,

with the initial condition A0(x) = 1. Thus, we find that

Pn(x) = (nx+ n + k) (xAn−2(x))−
(
x2 − 1

)
(xAn−2(x))

′ .

This formula could be restated as

Pn(x) = T (xAn−2(x)),

where

T = (nx+ n+ k)− (x2 − 1)
d

dx

denotes the operator acting on Cn[x]. It is easy to see that T is a linear operator. The
algebraic symbol of T is given by

T [(xy + 1)n] = (xy + 1)n−1 ((k + n)(xy + 1) + n(x+ y))

= n(xy + 1)n
(

x+ y

xy + 1
+

k + n

n

)
.
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We claim that
x+ y

xy + 1
+

k + n

n

is weakly Hurwitz stable in variables x, y if k ≥ −n. To prove this, let

x =
z − 1

z + 1
, y =

w − 1

w + 1
.

Note that Re x > 0 if and only if |z| > 1. It is obvious that

x+ y

xy + 1
=

zw − 1

zw + 1
.

If Re x > 0 and Re y > 0, then |z| > 1 and |w| > 1, and hence |zw| > 1. Therefore, we
have Re zw−1

zw+1
> 0 and thus Re x+y

xy+1
> 0. Moreover, it is clear that xy + 1 6= 0 whenever

Re x > 0 and Re y > 0. It follows that T [(xy + 1)n] is weakly Hurwitz stable in variables
x, y.

By Theorem 2.2 , the linear operator T preserves stability. The weak Hurwitz stability
of Pn(x) immediately follows from that of xAn−2(x). This completes the proof.

As a final tool we shall need the Routh-Hurwitz stability criterion, which was given by
Hurwitz [10]. For more historical background on this criterion, see [12, pp. 393]. Given a
polynomial

P (z) =
n∑

k=0

an−kz
k,

for any 1 ≤ k ≤ n, let

∆k(P ) = det




a1 a3 a5 . . . a2k−1

a0 a2 a4 . . . a2k−2

0 a1 a3 . . . a2k−3

0 a0 a2 . . . a2k−r

. . . . . . . . . . . . . . .
0 0 0 . . . ak




k×k

.

These determinants are known as the Hurwitz determinants of P (z). Hurwitz showed
that the stability of P (z) is uniquely determined by the signs of ∆k(P ).

Theorem 2.4 ([10]). Suppose that P (z) =
∑n

k=0 an−kz
k is a real polynomial with a0 >

0. Then P (z) is Hurwitz stable if and only if the corresponding Hurwitz determinants
∆k(P ) > 0 for any 1 ≤ k ≤ n.
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3 Interlacing

The main objective of this section is to prove Theorem 1.1 and Conjecture 1.2.

Let us first review some formulas on the Eulerian polynomials. For Eulerian polyno-
mials of type A and B, it is known that

An−1(x)

(1− x)n+1
=
∑

i≥0

(i+ 1)nxi, (3)

and

Bn(x)

(1− x)n+1
=
∑

i≥0

(2i+ 1)nxi, (4)

see [7] and references therein.

By (3) and (4), we have

(x+ 1)n+1An−1(x) = (1− x2)n+1
∑

i≥0

(i+ 1)nxi

= (1− x2)n+1

(
2nx

∑

i≥0

(i+ 1)nx2i +
∑

i≥0

(2i+ 1)nx2i

)
,

which leads to the following identity,

(x+ 1)n+1An−1(x) = 2nxAn−1(x
2) +Bn(x

2). (5)

For Eulerian polynomials of type D, Stembridge [15, Lemma 9.1] discovered that
Dn(x) has a close connection with the Eulerian polynomials of type A and B:

Dn(x) = Bn(x)− n2n−1xAn−2(x). (6)

For affine Eulerian polynomials of type B, Dilks, Petersen, and Stembridge [9, Propo-
sition 6.3] established the following identity:

B̃n(x) = 2x (2nAn−1(x)− nBn−1(x)) . (7)

The first main result of this section is as follows.

Theorem 3.1. We have

(x+ 1)n+1An−1(x)− nx(x + 1)nAn−2(x) = Dn(x
2) +

1

2x
B̃n(x

2). (8)
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Proof. By (6) and (7), we obtain that

R.H.S. =
(
Bn(x

2)− n2n−1x2An−2(x
2)
)
+

1

x
x2
(
2nAn−1(x

2)− nBn−1(x
2)
)

=
(
2nxAn−1(x

2) +Bn(x
2)
)
− nx

(
2n−1xAn−2(x

2) +Bn−1(x
2)
)
,

where the desired identity follows from (5). This completes the proof.

Now we can give a proof of Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.3, the polynomial

(x+ 1)n+1An−1(x)− nx(x+ 1)nAn−2(x) = (x+ 1)n ((x+ 1)An−1(x)− nxAn−2(x))

is weakly Hurwitz stable. Combining (8) and Theorem 2.1, we complete the proof of
Theorem 1.1.

We proceed to prove Hyatt’s conjectures on half Eulerian polynomials. Here we need
the combinatorial characterization of the descent statistic and the affine descent statistic,
see Brenti [7] and Dilks, Petersen, and Stembridge [9].

From the equality that [3, (7.5) ]

B+
n (x)

(1− x)n
=
∑

i≥0

((2i+ 1)n − (2i)n)xi, (9)

as well as (4) and the fact that Bn(x) = B+
n (x) +B−

n (x), we get that

B−
n (x)

(1− x)n
=
∑

i≥0

((2i)n − (2i− 1)n) xi. (10)

Similar with (5), it follows from (3), (9), and (10) that

(x+ 1)nAn−1(x) = B+
n (x

2) +
1

x
B−

n (x
2). (11)

Note that Athanasiadis and Savvidou [3, Proposition 7.2] obtained that B+
n (x) is the

even part of (x+1)nAn−1(x). As remaked by Athanasiadis and Savvidou [3, Remark 7.3],
similar formula can be derived from [1, Theorem 4.4], see also Athanasiadis [2, Proposition
2.2].

From the involution on Bn that changes the sign of the first element in the one-line
notation, it follows that

2D+
n (x) =

∑

σ∈B+
n

xdesD σ and 2D−
n (x) =

∑

σ∈B−

n

xdesD σ.
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By further considering the combinatorial characterization of the descent statistic of type
D and the affine descent statistic of type B, we obtain that

B̃n(x) = 2(xD+
n (x) +D−

n (x)). (12)

Together with the fact that Dn(x) = D+
n (x) +D−

n (x), (8) turns out to be

(x+ 1)nAn−1(x)− nx(x + 1)n−1An−2(x) = D+
n (x

2) +
1

x
D−

n (x
2). (13)

It is not too hard to prove by the bijection from B
+
n to B

+
n that changes all signs of

the elements in one-line notation (see [3, Lemma 7.1]), it follows that

B−
n (x) = xnB+

n (1/x), (14)

D−
n (x) = xnD+

n (1/x). (15)

The second main result of this section is as follows, which gives an affirmative answer
to Conjecture 1.2.

Proof of Conjecture 1.2. Let us first prove (i). Since (x+1)nAn−1(x) has only non-positive
real zeros, Theorem 2.1 together with (11) implies that B+

n (x) interlaces B
−
n (x). By (14),

this shows that B+
n (x) interlaces x

nB+
n (1/x). The proof is complete.

In the same manner, we can prove (ii). Note that, by Theorem 2.3, the polynomial

(x+ 1)nAn−1(x)− nx(x+ 1)n−1An−2(x)

is weakly Hurwitz stable. Thus D+
n (x) interlaces D

−
n (x) by (13). By (14), that is to say,

D+
n (x) interlaces x

nD+
n (1/x). This completes the proof of (ii).

Note that the stability of the polynomial (x+1)An−1(x)−nxAn−2(x) is critical to our
approach. In Theorem 2.3, we have determined the stability of (x+1)An−1(x)+kxAn−2(x)
for k ≥ −n. It is natural to consider the possible values of k for which the stability of
this polynomial still holds. Let En be the n-th Euler zigzag number, see [14, A000111],
which is the number of up-down permutations of the set [n]. Using the Routh–Hurwitz
stability criterion (Theorem 2.4), computer evidence suggests the following conjecture.

Conjecture 3.2. For any n ≥ 3, the polynomial (x+ 1)An−1(x) + kxAn−2(x) is Hurwitz
stable if and only if k > −2En/En−1.

As pointed out by a referee, the Euler zigzag numbers also appeared in a conjecture
proposed by Zhang [17, Conjecture 4.1], which states that the polynomial An−1(x) +
kxAn−3(x) has all distinct real zeros if and only if k < −n(n − 1) or k > −a(⌊n/2⌋),
where a(n) = E2n+1/E2n−1. It is desirable to find some connections between these two
conjectures.
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[6] P. Brändén. Iterated sequences and the geometry of zeros. J. Reine Angew. Math.,
658:115–131, 2011.

[7] F. Brenti. q-Eulerian polynomials arising from Coxeter groups. European J. Combin.,
15(5):417–441, 1994.

[8] P. Cellini. A general commutative descent algebra. J. Algebra, 175(3):990–1014,
1995.

[9] K. Dilks, T. K. Petersen, and J. R. Stembridge. Affine descents and the Steinberg
torus. Adv. in Appl. Math., 42(4):423–444, 2009.

[10] A. Hurwitz. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit
negativen reellen Theilen besitzt. Math. Ann., 46(2):273–284, 1895.

[11] M. Hyatt. Recurrences for Eulerian polynomials of type B and type D.
arXiv:1404.3110 [math.CO].

[12] Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials, volume 26 of
London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, Oxford, 2002.

[13] C. D. Savage and M. Visontai. The s-Eulerian polynomials have only real roots.
Trans. Amer. Math. Soc., 367(2):1441–1466, 2015.

[14] N. J. A. Sloane. On-line encyclopedia of integer sequences. http://www.oeis.org.

[15] J. R. Stembridge. Some permutation representations of Weyl groups associated with
the cohomology of toric varieties. Adv. Math., 106(2):244–301, 1994.

9



[16] A. L. B. Yang and P. B. Zhang. Mutual interlacing and Eulerian-like polynomials
for Weyl groups. arXiv:1401.6273 [math.CO].

[17] P. B. Zhang. On the real-rootedness of the descent polynomials of (n − 2)-stack
sortable permutations. arXiv: 1408.4235.

10


	1 Introduction
	2 Stability
	3 Interlacing

