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My procedure was this: I would count the stones by eye and write

down the figure. Then I would divide them into two handfuls that

I would scatter separately on the table. I would count the two

totals, note them down, and repeat the operation.

Borges, Blue tigers (translated by Andrew Hurley)

1. Introduction

In the last decades numerous interrelations were discovered between the combinatorics

and the theory of integrable systems. Mainly, these links involve solutions, either special

ones, such as the Painlevé transcendents [5] and solitons [9], or generic ones, such as the

tau-function of the Kadomtsev–Petviashvili hierarchy [1].

On the other hand, equations themselves exhibit a certain combinatorial nature,

due to the recurrent relations which govern the higher symmetries and conservation

laws of integrable hierarchies. This aspect was paid less attention so far, although a

quite simple description on the language of set partitions was known for long for the

Burgers hierarchy [12, 13]. We reproduce this combinatorial interpretation for the sake

of completeness and as a base for further generalizations. New results obtained in the

paper are related to the Ibragimov–Shabat and KdV hierarchies, see table 1. In these

cases the combinatorics becomes more complicated, since the ordinary set partitions are

replaced by special ones which are characterized by additional restrictions. Moreover,

http://arxiv.org/abs/1501.06086v1
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Table 1. Contents of the paper.

Hierarchy Combinatorial objects, their numbers

potential Burgers Set partitions, Bell polynomials Yn, Stirling

numbers of the 2nd kind, Bell numbers

Burgers Set partitions without distinguished singleton

Ibragimov–Shabat B-type partitions, polynomials (8), B-analogs of

Stirling numbers of the 2nd kind, Dowling numbers

Korteweg–de Vries Non-overlapping partitions, polynomials (10),

number triangle (12), Bessel numbers

this combinatorics comes in disguise: for instance, in the Burgers case we consider the

generating function intermediately for the higher flows, but in the KdV case we have

to consider a formal series for the logarithmic derivative of ψ-function which solves the

Riccati equation (inversion of the Miura map, see e.g. [8]). The flows and conservation

laws of the hierarchy are related with this generating function by simple algebraic

relations. In the Ibragimov–Shabat case a natural choice of the generating function

is dictated by the linearization procedure.

Although we are not interested in ‘explicit’ formulae for the coefficients of generating

functions here, it should be mentioned that such formulae for the potential KdV flows

actually do exist. One of them, obtained already in [8], represents the coefficient of a

given monomial as a certain multiple integral. Another formula obtained in [16] is of

more combinatorial nature, but it remains very complicated. Only in the case of pot-

Burgers hierarchy the formula for the coefficients can be considered as truly an explicit

one.

2. Potential Burgers hierarchy

The pot-Burgers hierarchy is obtained from the linear heat equation hierarchy

ψtn = ψn (1)

by means of the change of dependent variable ψ = ev. This yields

vtn = e−vDn(ev) = (D + v1)
n(1) = Yn(v1, . . . , vn), n = 0, 1, 2, . . . (2)

Here and further on we denote the derivatives as follows: vn = Dn(v), D = ∂/∂x,

vtn = ∂v/∂tn. Several first equations (2) are shown in the table 2. A meaningful

combinatorics appears just from nothing!

It is easy to see that Yn are polynomials with integer coefficients, homogeneous

with respect to the weight w(vj) = j. These polynomials play a fundamental role in

combinatorics and are known under the name of (full exponential) Bell polynomials [4].

An equivalent definition through the exponential generating functions reads
∞
∑

n=0

Yn
zn

n!
= e−v

∞
∑

n=0

Dn(ev)
zn

n!
= ev(x+z)−v(x) = exp

(

∞
∑

n=1

vn
zn

n!

)
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Table 2. The potential Burgers hierarchy (weight w(vj) = j).

vt0 = 1

vt1 = v1

vt2 = v2 + v2
1

vt3 = v3 + 3v1v2 + v3
1

vt4 = v4 + (4v1v3 + 3v2
2
) + 6v2

1
v2 + v4

1

vt5 = v5 + (5v1v4 + 10v2v3) + (10v21v3 + 15v1v
2

2) + 10v31v2 + v51

and this immediately implies the explicit formula

Yn =
∑

k1+2k2+...+rkr=n

n!

(1!)k1 . . . (r!)krk1! . . . kr!
vk11 . . . vkrr . (3)

Its combinatorial interpretation is obvious:

— monomials correspond to partitions of the number n;

— coefficients of monomials count partitions of the set [n] = {1, . . . , n} into the

subsets (or blocks) of prescribed size.

For example, let us list all set partitions for n = 2, 3, 4:

n = 2 : v2 v21
2 1 + 1

12 1|2

n = 3 : v3 3v1v2 v31
3 1 + 2 1 + 1 + 1

123 1|23 1|2|3
2|13
3|12

n = 4 : v4 4v1v3 3v22 6v21v2 v41
4 1 + 3 2 + 2 1 + 1 + 2 1 + 1 + 1 + 1

1234 1|234 12|34 1|2|34 1|2|3|4
2|134 13|24 1|3|24
3|124 14|23 1|4|23
4|123 2|3|14

2|4|13
3|4|12

Recall, that each set partition is considered as unordered set (with blocks as the

elements), that is, ordering of the blocks does not matter. However, it is often useful

to enumerate the blocks somehow. For the sake of definiteness, we will adopt the

enumeration corresponding to the ordering of the minimal elements in the blocks.

We see that the combinatorics behind the hierarchy (2) is quite simple. The

following statement is well known, see e.g. [12, 13].

Theorem 1. In the potential Burgers hierarchy, the coefficient of the monomial

vk11 . . . vkrr is equal to the number of partitions of the set of n = k1 + 2k2 + . . . + rkr
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elements into k1 blocks with 1 element, k2 blocks with 2 elements, . . . , kr blocks with r

elements.

Proof. One proof follows intermediately from the explicit formula (3) for the coefficients.

However, we will not always have such a formula at hand. The following reasoning

provides a more conceptual proof.

Let Πn,k denotes the set of all partitions of the set [n] into k blocks and Πn denotes

the set of all partitions of [n]. Let us consider operations

dj : Πn,k → Πn+1,k, j = 1, . . . , k, M : Πn,k → Πn+1,k+1

defined, respectively, as appending of the element n+1 to j-th block or adding it to the

partition as a new singleton. This can be visualized by the following diagram:

t❞ t❞ t❞
t❞ t❞

t❞ t❞ t❞
t❞

t❞ t❞ t❞

☛

✡

✟

✠❞
❞
❞
❞
❞
❞

1 2 n
1
2

k

d1
d2

dk
M

Starting from the partition {∅} of the set [0] = ∅ and applying operations dj ,M , one

can generate, in a unique way, any partition of [n]. Indeed, the required sequence of

operations is uniquely recovered by deleting elements in the inverse order from n to 1.

In the theorem, a set partition π with k1 1-blocks, . . . , kr r-blocks corresponds

to the monomial p(π) = vk11 . . . vkrr . The differentiation D(p(π)) by the Leibnitz rule

amounts to replacing of vi with vi+1 for each factor in turn, taking the multiplicity into

account. In the partition language, this means that we add the new element to each

block in turn. As the result, we obtain the sum of monomials p(dj(π)) for all admissible

values of j. Multiplication of the monomial p(π) by v1 gives the monomial p(M(π)).

Thus, the polynomials

Pn =
∑

π∈Πn

p(π)

are related by the recurrent relation Pn+1 = (D + v1)(Pn) and since P1 = v1, hence

Pn = Yn(v1, . . . , vn).

A less detailed statistics is obtained if we forget about sizes of blocks and consider

just their number in a given partition. Obviously, this correspond to summing up the

coefficients of terms of the same degree, which gives us the Bell polynomials of one

variable

Bn(u) = Yn(u, . . . , u) = (u∂u + u)n(1) =

n
∑

k=0

{

n

k

}

uk.
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The coefficient
{

n

k

}

of uk, that is, the number of partitions of [n] into k blocks, is called

the Stirling number of the second kind [15, A048993]:

1 1

0 1 1

0 1 1 2

0 1 3 1 5

0 1 7 6 1 15

0 1 15 25 10 1 52

0 1 31 90 65 15 1 203

0 1 63 301 350 140 21 1 877

By definition,
{

n

0

}

= 0 at n > 0 and
{

0

0

}

= #{∅} = 1. The total numbers of set

partitions with n elements, the Bell or the exponential numbers [15, A000110], are given

by the sums of the rows:

Bn = Bn(1) = Yn(1, . . . , 1) =

n
∑

k=0

{

n

k

}

,

∞
∑

n=0

Bn
zn

n!
= ee

z−1.

3. Burgers hierarchy

The right hand sides of equations (2) do not contain v and this makes the substitution

u = v1 possible. This brings to the Burgers hierarchy

utn = D(Yn(u, . . . , un−1)), n = 1, 2, . . . (4)

which is homogeneous with respect to the weight w(uj) = j + 1. Several first equations

are written down in the table 3. What is the combinatorial interpretation in this case?

This can be easily understood by the following example, for n = 3:

v3 3v1v2 v31

u2 3uu1 u3
D−→ u3 3uu2 3u21 3u2u1 0u4

123 1|23 1|2|3 1234 1|234 12|34 1|2|34 1|2|3|4
2|13 2|134 13|24 1|3|24
3|12 3|124 14|23 1|4|23

4|123 2|3|14
2|4|13
3|4|12

Certainly, renaming vj → uj−1 does not change the combinatorics. The differentiation

amounts to appending the new element to all blocks in turn, however, now we do not

add it as a new block. Therefore, the partitions under consideration are constructed as

in theorem 1, but we do not apply the operation M at the last step. As a result, all

partitions Πn are mapped onto some subset of partitions Πn+1, namely, those partitions

where the element n + 1 does not appear as a singleton. We arrive to the following

combinatorial interpretation of equations (4).
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Table 3. Burgers hierarchy (weight w(uj) = j + 1).

ut1 = u1

ut2 = u2 + 2uu1

ut3 = u3 + (3uu2 + 3u2

1
) + 3u2u1

ut4 = u4 + (4uu3 + 10u1u2) + (6u2u2 + 12uu2

1
) + 4u3u1

ut5 = u5 + (5uu4 + 15u1u3 + 10u2

2
) + (10u2u3 + 50uu1u2 + 15u3

1
)

+(10u3u2 + 30u2u2

1) + 5u4u1

Theorem 2. In the Burgers hierarchy, the coefficient of the monomial uk0uk11 . . . ukrr
is equal to the number of partitions of the set with one distinguished element into k0
blocks with 1 element, . . . , kr blocks with (r+1) element and such that the distinguished

element does not constitute 1-block.

As before, one can consider more rough statistics. For instance, setting u = 1 gives

us the total number of partitions under consideration of the set [n+ 1]:

D(Yn(u, . . . , un−1))|uj=1 = B′
n(1) =

n
∑

k=1

k
{

n

k

}

, n ≥ 1.

The sequence of these numbers (2-Bell numbers) starts

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, . . .

According to [15, A005493], it can be characterized also in many other ways, in

particular, as the number of partitions of [n] with distinguished block or as the total

number of blocks in all set partitions of [n]. These interpretations are obvious as

well, since the distinguished blocks can be identified with the blocks enlarged by the

operations dj, and these operations are applied exactly as many times as there are blocks

in all partitions.

4. Ibragimov–Shabat hierarchy

4.1. Recurrent relations

The table 4 displays the sequence of point changes and substitutions between equation

ψt3 = ψ3 and the Ibragimov–Shabat equation [10]

ut3 = u3 + 3u2u2 + 9uu21 + 3u4u1.

Although this transformation looks quite harmless, it partially destroys the symmetry

algebra: in the variables ψ, it consists of equations (1) of arbitrary order, while only

odd order equations survive in the variables u. Indeed, the change ψ2 = s brings to

equation stn = . . . where the right hand side is a full derivative only if n is odd:

stn = 2ψψn = D(2ψψn−1 − 2ψ1ψn−2 + 2ψ2ψn−3 + . . .± ψ2
(n−1)/2). (5)
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Table 4. Linearization of the Ibragimov–Shabat equation.

ψt3 = ψ3 ut3 = u3 + 3u2u2 + 9uu21 + 3u4u1

l ψ2 = s l u2 = v

st3 = D
(

s2 − 3s2
1

4s

)

vt3 = D
(

v2 − 3v2
1

4v
+ 3vv1 + v3

)

↑ s = q1 ↑ v = w1

qt3 = q3 − 3q22
4q1

q=e2w

←−−→ wt3 = w3 − 3w2
2

4w1
+ 3w1w2 + w3

1

In the analogous equation for even n the term ψ2
n/2 remains outside the parentheses,

that is, stn 6∈ ImD, and therefore the further substitution s = q1 leads out of the class

of evolutionary equations. The structure of odd flows is described by the following

statement.

Statement 3. Let us denote Dt = ∂t1 + z2∂t3 + z4∂t5 + . . ., A = A(z) = a0 + a1z +

a2z
2 + . . ., Ā = A(−z), then the Ibragimov–Shabat hierarchy is equivalent to equations

Dt(u) =
1

2u
D(AĀ) =

1

2z
(A− Ā)− uAĀ, (6)

z(D + u2)(A) = A− u. (7)

Proof. Let us consider the generating function

Ψ = ψ + ψ1z + ψ2z
2 + . . .

and set Ψ =
√
2ewA. Equation (7) follows from the relations

zD(Ψ) = Ψ− ψ, ψ =
√
q1 =

√

2e2ww1 =
√
2ewu.

Next, let Ψ̄ = Ψ(−z), then (cf (5))

D(ΨΨ̄) = z−1(Ψ− ψ)Ψ̄− z−1Ψ(Ψ̄− ψ)
= z−1ψ(Ψ− Ψ̄) = 2ψ(ψ1 + ψ3z

2 + . . .) = 2ψDt(ψ) = Dt(s).

Applying D−1 yields ΨΨ̄ = Dt(q) = 2e2wDt(w), wherefrom

2uDt(u) = Dt(v) = DDt(w) =
1

2
D(e−2wΨΨ̄) = D(AĀ).

Second equality in (6) follows after elimination of derivatives by use of (7).

Equation (7) is equivalent to recurrent relations

a0 = u, an = an(u, . . . , un) = (D + u2)(an−1), n = 1, 2, . . . (8)

which are our object of study. Let us try to find a combinatorial interpretation for this

recursion.

Several first polynomials an are presented in the table 5. Given these data as

a prescribed statistics, our goal is to figure out a definition of the corresponding
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Table 5. Polynomials an (weight w(uj) = 2j + 1).

a0 = u

a1 = u1 + u3

a2 = u2 + 4u2u1 + u5

a3 = u3 + (5u2u2 + 8uu2

1
) + 9u4u1 + u7

a4 = u4 + (6u2u3 + 26uu1u2 + 8u3

1
) + (14u4u2 + 44u3u2

1
) + 16u6u1 + u9

a5 = u5 + (7u2u4 + 38uu1u3 + 26uu2

2 + 50u2

1u2) + (20u4u3 + 170u3u1u2 + 140u2u3

1)

+(30u6u2 + 140u5u2

1) + 25u8u1 + u11

combinatorial objects, that is, to solve a kind of inverse problem of the enumerative

combinatorics. In contrast to the Burgers hierarchy case, here we do not know an

explicit formula for the coefficients, but this is not too important, the main problem

is to guess what are the objects which we are counting. An invaluable aid in such an

ill-posed problem may be obtained by comparison with the known data collected in the

Encyclopedia of integer sequences [15]. Let us pass to the less detailed statistics by

gluing together terms of the same degree. Polynomials of one variable an(u, . . . , u) =

(u∂u+u
2)n(u) contain only odd powers of u and their coefficients constitute the triangle

1 1

1 1 2

1 4 1 6

1 13 9 1 24

1 40 58 16 1 116

1 121 330 170 25 1 648

1 364 1771 1520 395 36 1 4088

1 1093 9219 12411 5075 791 49 1 28640

which turns out to be known: according to [15, A039755] this is the triangle of analogs

of Stirling numbers of the second kind for the so-called B type set partitions. The

sums of numbers in rows, that is, the total sums of the coefficients an(1, . . . , 1) form

the sequence [15, A007405] of the Dowling numbers, or B-analogs of the Bell numbers.

This gives us a broad hint at a possible connection between polynomials (8) and B type

partitions. This guess is proved in the next section.

4.2. Generating operations for type B set partitions

Special classes of set partitions appear when one takes into account some additional

structure of the set. Set partitions of B type (or signed set partitions, Z2-partitions)

[6], see also e.g. [2, 17] make use of the reflection j → −j.
Definition 1. A partition π of the set {−n, . . . , n} is called the Bn type partition if:

1) π = −π, that is for each block β ∈ π also −β ∈ π;
2) π contains only one block π0 ∈ π such that π0 = −π0.
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We will denote ΠB
n the set of all such partitions and ΠB

n,k those partitions which

contain k block pairs.

In a brief notation for B type partitions, the negative elements of the 0-block are

omitted, and only that block of each pair is displayed for which the element with minimal

absolute value is positive; the minus signs are denoted by over bars. For instance, in

this notation the partition −5,−4|−3, 0, 3|−2, 1|−1, 2|4, 5 is represented as 03|12̄|45. A
graphical representation is clear from the diagram

t❞ t❞

t❞t❞

t❞ t❞

t❞t❞
t❞ t❞ t❞ →

t❞t❞
t❞ t❞

t❞ t❞

Now let us define the map p from ΠB
n into the set of monomials on the variables

uj. Let |β| denote the number of positive elements in the block β:

|β| = #{i ∈ β : i > 0}.
It is clear that the number of negative elements in the block is |β̄|. Let a set partition

π ∈ ΠB
n,k consists of 0-block π0 and block pairs π1, π̄1, . . . , πk, π̄k, such that the element

of πj with minimal absolute value is positive. For such a partition, let

p(π) = u|π0| · u|π1|−1u|π̄1| · · ·u|πk|−1u|π̄k|.

As an example, let us write down ΠB
3 partitions, collecting together all partitions

corresponding to the same monomial:

u3 5u2u2 8uu21 9u4u1 u7

0123 0|123 0|123̄ 0|12|3 1|2|3|4
0|12̄3̄ 0|12̄3 0|12̄|3
012|3 01|23 0|13|2
013|2 01|23̄ 0|13̄|2
023|1 02|13 0|23|1

02|13̄ 0|23̄|1
03|12 01|2|3
03|12̄ 02|1|3

03|1|2

The resulting polynomial is exactly a3. The following theorem demonstrates that this

is not just a coincidence and the polynomials an are, indeed, the Z2-analogs of the full

exponential Bell polynomials Yn.

Theorem 4. The polynomials (8) are equal to

an =
∑

π∈ΠB
n

p(π).
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Proof. Let us denote the sum in the right hand side pn. Obviously, p0 = u = a0,

so we only have to prove that pn satisfy the same recurrent relations as an, that is,

pn = (D + u2)(pn−1).

Notice, that deleting of elements ±n from any Bn type set partition gives us a Bn−1

type set partition. Therefore, ΠB
n is constructed from ΠB

n−1 by adding ±n in all possible

ways. It is easy to see that this is done by the following operations:

d0 : Π
B
n−1,k → ΠB

n,k, insertion of both elements ±n into 0-block;

dj : Π
B
n−1,k → ΠB

n,k, j = 1, . . . , k, insertion of ±n into blocks ±πj ;
d̄j : Π

B
n−1,k → ΠB

n,k, j = 1, . . . , k, insertion of ±n into blocks ∓πj ;
M : ΠB

n−1,k → ΠB
n,k+1, adding of the new block pair {−n}, {n}.

Starting from the trivial partition of the set {0} and applying these operations, one can

obtain, in a unique way, any B type set partition. Let us keep track of the monomial

p(π), π ∈ ΠB
n−1,k under these operations:

d0 : the factor u|π0| is replaced with u|π0|+1;

dj : the factor u|πj|−1 is replaced with u|πj|;

d̄j : the factor u|π̄j| is replaced with u|π̄j|+1;

M : two new factors u are added.

Therefore, application of all possible operations maps the monomial p(π) to the sum of

monomials (D + u2)(p(π)).

5. Korteweg–de Vries hierarchy

5.1. Recurrent relations

Let us recall (for a proof, see e.g. [8]) a computation method of the KdV conservation

laws and flows, based on solving of the Riccati equation

D(f) + f 2 = λ− u, λ = z2/4 (9)

by the formal power series

f(z) = −z
2
+
f1(u)

z
+
f2(u, u1)

z2
+ . . .+

fn(u, . . . , un−1)

zn
+ · · ·

Equation (9) is equivalent to the recurrent relations

f1 = u, fn+1 = D(fn) +

n−1
∑

s=1

fsfn−s, n = 1, 2, . . . (10)

which will be the main object of our study. Several polynomials fn are written down in

the table 6. The flows are computed from the polynomials with odd subscripts: let

g(z) = − 1

2z
− g1
z3
− g3
z5
− . . .− g2m−1

z2m+1
− · · · = 1

2(f(z)− f(−z))
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Table 6. Polynomials fn (weight w(uj) = j + 2).

f1 = u

f2 = u1

f3 = u2 + u2

f4 = u3 + 4uu1

f5 = u4 + (6uu2 + 5u2

1
) + 2u3

f6 = u5 + (8uu3 + 18u1u2) + 16u2u1

f7 = u6 + (10uu4 + 28u1u3 + 19u2

2) + (30u2u2 + 50uu2

1) + 5u4

which is equivalent to recurrent relations

g1 = u, g2m+1 = f2m+1 + 2

m
∑

s=1

g2s−1f2m−2s+1, m = 1, 2, . . .

then the KdV hierarchy reads

ut2m+1
= D(g2m+1) = u2m+1 + . . . , m = 0, 1, 2, . . .

Moreover, polynomials (10) with odd subscripts serve as common conserved densities

for all these flows.

One interpretation of the polynomials fn can be seen intermediately from the

recurrent relations (10). Let us consider expressions ϕ builded from the variable u

and operations M(a, b), dj(a), 1 ≤ j ≤ deg a where deg a is equal to the number of

instances of u in a. Such expressions can be called ‘unexpanded monomials’. For any

expression ϕ its value expand(ϕ) is computed according to the following rules:

— independently on the order of operations, all dj are applied before M ;

— the action of dj(a) amounts to replacing of j-th instance of ui in a with ui+1 (u is

identified with u0, as usual);

— M(a, b) is replaced by the product ab.

Let Φn denote the set of all expressions with the total number of symbols u, d,M equal

to n. For instance:

unexpanded monomials expanded monomials

n = 1 u u

n = 2 d1(u) u1
n = 3 d1(d1(u)), M(u, u) u2, u2

n = 4 d1(d1(d1(u))), u3,

d1(M(u, u)), d2(M(u, u)) uu1, uu1
M(d1(u), u), M(u, d1(u)) uu1, uu1



On the combinatorics of several integrable hierarchies 12

Theorem 5. The number of different expressions builded from symbolsM, dj, u with the

same monomial as their value is equal to the coefficient of this monomial in polynomials

fn. In other words,

fn =
∑

ϕ∈Φn

expand(ϕ). (11)

Proof. Any expression from Φn+1, n > 0 is either of the form dj(a) where a ∈ Φn,

1 ≤ j ≤ deg a or of the from M(a, b) where a ∈ Φs, b ∈ Φn−s. Taking into account the

obvious properties

deg a
∑

j=1

expand(dj(a)) = D(expand(a)),

expand(M(a, b)) = expand(a) expand(b),

this implies that polynomials (11) satisfy the recurrent relation (10).

This interpretation is fairly intuitive, but it is desirable to compare it with

something more standard. As before, let us pass to polynomials of one variable by

collecting together terms of the same degrees. This brings us to a number triangle

which apparently is not in the OEIS:

1 1

1 1

1 1 2

1 4 5

1 11 2 14

1 26 16 43

1 57 80 5 143

1 120 324 64 509

1 247 1170 490 14 1922

1 502 3948 2944 256 7651

1 1013 12776 15403 2730 42 31965

(12)

Nevertheless, the sequence of coefficients sum totals turns out to be known: fn+1[1] is

equal to the number of non-overlapping partitions of the set [n], or the Bessel number

B∗
n [15, A006789]. Notice, that identifying of all uj results in the Riccati equation

u∂u(f) + f 2 = λ − u which is, indeed, equivalent to the Bessel equation. Moreover,

one can see in the triangle the Euler numbers [15, A000295], the Catalan numbers [15,

A000108] and powers of 4.

5.2. Generating operations for non-overlapping partitions

This class of set partitions was introduced in [7], see also [3, 11]. Its definition engages

the order relation on the partitioned set [n] = {1, . . . , n}.
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Definition 2. Blocks α and β of a set partition π overlap if

minα < min β < maxα < max β.

The set partition is called non-overlapping (NOP) if any two blocks in it do not overlap.

All NOPs of the set [n] will be denoted Π∗
n.

The interval [minα,maxα] is called the support of the block α. The above definition

of NOP is equivalent to the property that supports of any two blocks either do not

intersect or lie one in another. The left diagram below shows overlapping blocks and

the right diagram shows non-overlapping ones:

t❞ t❞ t❞ t❞
t❞ t❞ t❞

t❞ t❞ t❞
t❞ t❞ t❞

t❞ t❞

Remark 1. A neighbour class of non-crossing partitions is characterized by a more

restrictive condition which forbids the pattern α1 < β1 < α2 < β2 for any elements of

any two blocks. It is under active study in combinatorics as well, moreover, it makes

sense to combine such types of restrictions with symmetries like the reflection for the B

type partitions, see e.g. [14]. It is an open question, whether some integrable hierarchies

may be associated with such kind of objects.

Some simple properties of NOPs are the following.

— At n = 0, 1, 2, 3 we have Π∗
n = Πn and there is only one overlapping partition

13|24 in Π4,.

— Singletons do not overlap with any block.

— NOPs containing only doublets can be easily identified with the balanced sets

of parentheses:

t❞ t❞
t❞ t❞

t❞ t❞
t❞ t❞

→ ( ( ) ( ) ) ( )

The last property explains where from the Catalan numbers appear in the triangle

(12). The deletion of differentiation in equation (10) brings to the recursion for the

‘dispersionless terms’:

f1 = u, fn+1 =
n−1
∑

s=1

fsfn−s → u, 0, u2, 0, 2u3, 0, 5u4, 0, . . .

In order to establish a correspondence with the general polynomials fn, let us

identify the variable u with the set partition {∅} and define the action of the operations

M and dj on the NOPs, in such a way that expressions Φn+1 be in a one-to-one

correspondence with Π∗
n.

Degree. Let deg π = k if π contains k − 1 multiplets (blocks with more than one

element).
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Operation M . Let ρ ∈ Π∗
r , σ ∈ Π∗

s. Denote by (σ)r+1 the partition of the set

{r + 2, r + s+ 1} obtained from σ by adding r + 1 to each element, and define

M(ρ, σ) = ρ ∪ {{r + 1, r + s+ 2}} ∪ (σ)r+1 ∈ Π∗
r+s+2.

This can be illustrated by the diagram

t❞ t❞
t❞
× t❞ t❞ t❞

t❞
= t❞ t❞

t❞
t❞ t❞

t❞ t❞ t❞
t❞

In particular, if ρ = {∅} then (σ)1 is bounded by the doublet {1, s+2}, and if σ = {∅}
then the doublet {r+1, r+2} is appended to ρ. Notice that degM(ρ, σ) = deg ρ deg σ.

Operation dj. It consists of adding one element n + 1 to π ∈ Π∗
n. If j = 1 then

the element is added just as a singleton. For 1 < j ≤ k = deg π, the operation

requires a detailed description. Let us denote µ2, . . . , µk all multiplets in π, ordered by

increase of their minimal elements. Assume that all blocks with support containing µj

are enumerated by a sequence j1 < . . . < js = j. Let us divide each of these blocks into

the left and right parts with respect to m = maxµj:

µ−
jr = {i ∈ µjr : i < m}, µ+

jr = {i ∈ µjr : i ≥ m}
and form the new blocks

µ̃j1 = µ−
j1
∪ {m,n+ 1}, µ̃jr = µ−

jr
∪ µ+

jr−1
, r = 2, . . . , s

as shown on the following diagram. The rest blocks of the partition do not change under

this operation.

t❞ t❞ t❞ t❞ t❞
t❞ t❞ t❞ t❞

t❞ t❞ t❞ t❞
m n + 1

j1
j2

j = js

↑
↑





y

dj↓

t❞ t❞ t❞ t❞ t❞
t❞ t❞ t❞ t❞

t❞ t❞ t❞ t❞

Theorem 6. The operations M , dj generate any non-overlapping partition, in a unique

way.

Proof. The last operation bringing to a given partition is uniquely defined by

consideration of the block β containing the maximal element of the partition. If it

is a singleton, then the last operation was d1; if it is a doublet, then it was M ; if it is

a multiplet, then the operation was dj where j is the maximal number such that the

support of multiplet µj contains the last to the end element of β. In each case, applying

of inverse operation brings to NOPs with lesser numbers of elements.
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Taking the theorem 5 into account, the established bijection allows to associate a

certain monomial with each NOP, although not in a quite effective way, because we first

have to build an exression ϕ ∈ Φn corresponding to π ∈ Π∗
n−1 and then to compute

expand(ϕ):

Φn ↔ Π∗
n−1

expand ↓ ւ
fn

Nevertheless, it is easy to trace at the degree of monomial under this correspondence; it

is one more than the number of multiplets in the partition. This gives us the following

interpretation of the number triangle (12).

Corollary 7. The number of NOPs of n elements containing k multiplets is equal to

the number in the n-th row and k-th column of the number triangle (12), starting their

enumeration from 0. This number is equal to the coefficient of uk+1 in the polynomial

Fn+1(u) = fn+1(u, . . . , u) defined by the recurrent relations

F1 = u, Fn+1 = u∂u(Fn) +

n−1
∑

s=1

FsFn−s, n = 1, 2, . . .

6. Conclusion

We have established a relation between several classes of set partitions and generating

functions for integrable hierarchies. Hopefully, this observation may turn useful for

both theories. Of course, we have too few examples at the moment to make far-

reaching conclusions. A conjecture is that each integrable hierarchy has an underlying

generating function which may be interpreted as statistics for some kind of combinatorial

objects (possibly unknown). As further steps, it would be interesting to reveal the

combinatorics associated with the mKdV equation, KdV-like equations of 5-th order,

nonlinear Schrödinger equation and so on.

On the other hand, the objects studied in the combinatorics are so plentiful and

diverse that it seems doubtful that any one can be associated with an integrable

hierarchy. In all likelihood, this is a very special property, so it would be interesting

to understand what is the integrability intermediately in combinatorial terms (rather

than of the level of generating functions). In particular, one can try to obtain a proof of

commutativity of the flows of a hierarchy based on their combinatorial interpretation.
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