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GENERAL SOLUTIONS OF SUMS OF CONSECUTIVE CUBED

INTEGERS EQUAL TO SQUARED INTEGERS

VLADIMIR PLETSER

Abstract. All integer solutions (M,a, c) to the problem of the sums of M

consecutive cubed integers (a+ i)3 (a > 1, 0 ≤ i ≤ M − 1) equaling squared
integers c2 are found by decomposing the product of the difference and sum
of the triangular numbers of (a+M − 1) and (a− 1) in the product of their
greatest common divisor g and remaining square factors δ2 and σ2, yielding
c = gδσ. Further, the condition that g must be integer for several particular
and general cases yield generalized Pell equations whose solutions allow to find
all integer solutions (M,a, c) showing that these solutions appear recurrently.
In particular, it is found that there always exist at least one solution for the
cases of all odd values of M , of all odd integer square values of a, and of all
even values of M equal to twice an integer square.
Keywords: Sums of consecutive cubed integers equal to square integers ;
Quadratic Diophantine equation ; Generalized Pell equation ; Fundamental
solutions ; Chebyshev polynomials

MSC2010 : 11E25 ; 11D09 ; 33D45

1. Introduction

It is known since long that the sum of M consecutive cubed positive integers starting
from 1 equals the square of the sum of the M consecutive integers, which itself equals
the triangular number △M of the number of terms M ,

(1.1)
M
∑

i=1

i3 =

(

M
∑

i=1

i

)2

=

(

M (M + 1)

2

)2

= △2
M

for ∀M ∈ Z+. The question whether this remarkable result can be extended to
other integer values of the starting point, i.e. whether the sum of consecutive
cubed positive integers starting from a 6= 1 is also a perfect square

(1.2)

M−1
∑

i=0

(a+ i)
3
= c2

has been addressed by several authors but has received so far only partial answers.
With the notation of this paper, Lucas stated [15] that the only solutions for M = 5
are a = 0, 1, 96 and 118 (missing the solution a = 25, see further Table 1), and that
there are no other solutions for M = 2 than a = 1. Aubry showed [1] that a
solution for M = 3 is a = 23, c = 204, correcting Lucas’ statement that there
are no other solution for M = 3 than a = 1. Other historical accounts can be
found in [7]. Cassels proved [3] by using the method of finding all integral points
on a given curve of genus 1 y2 = 3x

(

x2 + 2
)

(with x = a + 1, y = c in this paper
notations), that the only solutions for M = 3 are a = −1, 0, 1 and 23. Stroeker
obtained [37] complete solutions for 2 ≤ M ≤ 50 and M = 98, using estimates of
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lower bound of linear forms in elliptic logarithms to solve elliptic curve equations
of the form Y 2 = X3 + dX where d = n2

(

n2 − 1
)

/4, X = nx + n (n− 1) /2,
Y = ny (with n = M , x = a, y = c in this paper notations). The method
reported, although powerful, appears long and difficult and caused some problems
for the cases M = 41 and 44. Stroeker remarked also that M = a = 33 with
c = 2079 = 33 × 63. This is not the single occurrence of M = a, as it occurs also
for M = a = 2017, 124993, 7747521, ... (see [24, 25]).
One of the reasons that these previous attempts to find all solutions (M,a, c) to
(1.2) were only partially successful was most likely due to the approach taken to
start the search for solutions for single values of M , one by one and in an increasing
order of M values. The method proposed in this paper is to tackle the problem in
a different way and instead of looking at each individual values of M one by one,
to consider the problem in a more global approach by comparing different sets of
known solutions, and instead of listing solutions in increasing order of M values,
to look at two other parameters, δ and σ, defined further. This new beginning
then leads to a more classical approach using general solutions of Pell equations,
that allows to find all solutions in (M,a, c) of (1.2) for all possible cases. Note
that Pell equations were already used previously by various authors (e.g. Catalan
[4, 5], Cantor [2], Richaud [34]) in the 19th century in attempts to solve the present
problem, albeit without reaching a complete resolution of the problem.
The approach proposed in this paper includes three steps.
Step 1 in Section 2 is based on the decomposition of the product of the difference ∆
and the sum Σ of the two triangular numbers of (a+M − 1) and (a− 1) in simple
factors, g, δ, σ where g = gcd (∆,Σ), allowing to find general expressions of a and c
in function of M, δ and σ that are always solutions of (1.2).
In step 2 in Section 3, some conditions on δ and σ are explored to obtain three
particular cases of solutions yielding specific expressions of M in function of k,
∀k ∈ Z+, including the case of M taking all odd positive integer values. Section 4
recalls some basics on Pell equation solutions to introduce the third step.
In step 3 in Section 5, a general solution in (M,a, c) is found for all values of δ and
σ, based on solutions of simple and generalized Pell equations involving Chebyshev
polynomials, allowing to find all the solutions in (M,a, c) to (1.2). As an alternative
to step 3, recurrence relations are deduced in Section 6. Section 7 summarizes all
findings.
Trivial solutions are not considered here. For instance, M ≤ 0 is meaningless; for
M = 1, the only solution is obviously a = α2, yielding (M,a, c) =

(

1, α2, α3
)

;
therefore, we consider only M > 1. If a < 0, there are no solutions if M < (1− 2a);
if M = (1− 2a), the only solution is (M,a, c) = ((1− 2a) , a, 0); if M > 1 − 2a,

the solutions are (M,a, c) =
(

M, (1− a) ,
(

△2
M+a−1 −△2

(−a)

))

, i.e. a shift of the

first term from a negative value a to a positive value (1− a) with a reduction of
the number of terms (M + 2a− 1). If a = 0 or 1, the classical solutions (1.1)
are (M,a, c) =

(

M, 0,△2
M−1

)

or
(

M, 1,△2
M

)

. Therefore, we limit our search to
solutions for M > 1 and a > 1.
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2. Step 1: A General theorem

Theorem 1. For ∀δ ∈ Z+, ∃σ, a,M, c ∈ Z+, κ ∈ Q+, such as δ < σ, gcd (δ, σ) = 1,
κ = (σ/δ) > 1,

(2.1)

M−1
∑

i=0

(a+ i)
3
= c2

holds if

a =
M
(

κ2 − 1
)

+ 1 +
√

M2 (κ4 − 1) + 1

2
(2.2)

c =
κM

2

(

κ2M +
√

M2 (κ4 − 1) + 1
)

(2.3)

Proof. For a,M, c,∆, Σ, g,∆′, Σ′, δ, σ, C ∈ Z+, i, k ∈ Z∗, κ ∈ Q+, with M > 1,
0 ≤ i ≤ M − 1, κ = (σ/δ) > 1, the sum of cubes of M consecutive integers (a+ i)
for i = 0 to M − 1 can be written successively as

M−1
∑

i=0

(a+ i)3 =
a+M−1
∑

i=0

i3 −
a−1
∑

i=0

i3(2.4)

= △2
a+M−1 −△2

a−1(2.5)

= (△a+M−1 −△a−1) (△a+M−1 +△a−1)(2.6)

= (∆) (Σ)(2.7)

where ∆ = △a+M−1 −△a−1 and Σ = △a+M−1 +△a−1, i.e. the difference and the
sum of the triangular numbers of (a+M − 1) and (a− 1), with obviously ∆ < Σ,
that can also be written

∆ = M

(

a+
M − 1

2

)

(2.8)

Σ = a2 + a (M − 1) +
M (M − 1)

2
(2.9)

Let g = gcd (∆,Σ), yielding ∆ = g∆′ and Σ = gΣ′. For (2.1) to hold, c2 = g2∆′Σ′

and as ∆′ and Σ′ are coprimes and their product must be square, both must be
integer squares, i.e. ∆′ = δ2 and Σ′ = σ2, with gcd (δ, σ) = 1 and δ < σ, yielding

(2.10) c = gδσ

From (2.8) and (2.9), one has then respectively

2a+M − 1 =
2gδ2

M
(2.11)

=
√

4gσ2 − (M2 − 1)(2.12)

where the + sign is taken in front of the square root in (2.12) as 2a + M > 1.
Solving for g yields then

(2.13) g =
M

2δ2

(

κ2M +
√

M2 (κ4 − 1) + 1
)

Replacing in (2.11) or (2.12) yields then directly (2.2) and in (2.10) yields directly
(2.3). �
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3. Step 2: Three Particular Solutions and a Generalization

For which values of M does (2.1) hold ? Answers can be found for at least three
particular cases. Other general approaches are developed further.
Table 1 gives for 1 < M ≤ 45 and 1 < a < 105, the first values of M,a and
associated ∆,Σ, g, δ, σ and c values. For M and a < 105, there are 892 solutions
(M,a, c), given in [26, ?], such that (4.1) holds. One observes very easily that:
(i) all odd values of M have at least one entry (in bold in Table 1) with g =
2△(M−1)/2 =

(

M2 − 1
)

/4, δ = 2M and σ =
(

2M2 − 1
)

, yielding c = M
(

M2 − 1
) (

2M2 − 1
)

/2

with a = M3 − (3M − 1) /2;
(ii) those odd values of a equal to odd integer squares have at least one entry (e.g.
for M = 17 in Table 1) with g = (a− 1) /8, δ = (2a− 1) and σ = (2a+ 1), yielding
c = (a− 1)

(

4a2 − 1
)

/8 with M = (
√
a− 1) (2a− 1) /2

(iii) those even values of M equal to twice an integer square have at least one

entry (in italics in Table 1) with g = M
(

M2 − 1
)

/2, δ = 1, σ =
√

M/2, yielding

c = M
(

M2 − 1
)√

M/2/2 with a = △M−1.
These three cases can be generalized respectively to all odd values of M , to all odd

integer square values of a = (2k + 1)
2
, and to all even values of M equal to twice

integer squares in the following

Theorem 2. ∀k ∈ Z+, ∃δ, σ,M, a, c ∈ Z+ such that (2.1) holds :
(i) if σ =

(

δ2 − 2
)

/2, with

M = (2k + 1)(3.1)

a = (2k + 1)
3 − (3k + 1)(3.2)

= M3 − (3M − 1)

2
(3.3)

c = 2k (k + 1) (2k + 1) (8k (k + 1) + 1)(3.4)

=
M
(

M2 − 1
) (

2M2 − 1
)

2
(3.5)

(ii) if σ = δ + 2, with

a = (2k + 1)
2

(3.6)

M = k (8k (k + 1) + 1)(3.7)

=
(
√
a− 1) (2a− 1)

2
(3.8)

c =
k (k + 1)

2

(

4 (2k + 1)
4 − 1

)

(3.9)

=
(a− 1)

(

4a2 − 1
)

8
(3.10)
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Table 1. First values of M,a,∆,Σ, g, δ, σ and c for 1 < M ≤ 45
and 1 < a < 105

M a ∆ Σ g δ σ c

3 23 72 578 2 6 17 204

5 25 135 735 15 3 7 315

5 96 490 9610 10 7 31 2170

5 118 600 14406 6 10 49 2940

7 333 2352 112908 12 14 97 16296

8 28 252 1008 252 1 2 504

9 716 6480 518420 20 18 161 57960

11 1315 14520 1742430 30 22 241 159060

12 14 234 416 26 3 4 312

13 144 1950 22542 78 5 17 6630

13 2178 28392 4769898 42 26 337 368004

15 25 480 1080 120 2 3 720

15 3353 50400 11289656 56 30 449 754320

15 57960 869505 3360173145 105 91 5657 54052635

17 9 289 361 1 17 19 323

17 120 2176 16456 136 4 11 5984

17 4888 83232 23970888 72 34 577 1412496

18 153 2907 26163 2907 1 3 8721

18 680 12393 474113 17 27 167 76653

19 6831 129960 46785690 90 38 721 2465820

21 14 504 686 14 6 7 588

21 144 3234 23826 66 7 19 8778

21 9230 194040 85377710 110 42 881 4070220

23 12133 279312 147476868 132 46 1057 6418104

25 15588 390000 243360156 156 50 1249 9742200

27 19643 530712 386358518 182 54 1457 14319396

28 81 2646 9126 54 7 13 4914

29 24346 706440 593409810 210 58 1681 20474580

31 29745 922560 885657840 240 62 1921 28584480

32 69 2704 7396 4 26 43 4472

32 133 4752 22308 132 6 13 10296

32 496 16368 261888 16368 1 4 65472

33 33 1617 2673 33 7 9 2079

33 35888 1184832 1289097488 272 66 2177 39081504

35 225 8470 58870 70 11 29 22330

35 42823 1499400 1835265906 306 70 2449 52457580

37 50598 1872792 2561979798 342 74 2737 69267996

39 111 5070 17280 30 13 24 9360

39 59261 2311920 3514118780 380 78 3041 90135240

40 3276 131820 10860720 780 13 118 1196520

41 68860 2824080 4744454820 420 82 3361 115752840

42 64 3549 7581 21 13 19 5187

43 79443 3416952 6314527758 462 86 3697 146889204

45 176 8910 39710 110 9 19 18810

45 91058 4098600 8295566906 506 90 4049 184391460
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(iii) if δ = 1 and σ = k with k > 1 and

M = 2k2(3.11)

a = k2
(

2k2 − 1
)

(3.12)

=
M (M − 1)

2
(3.13)

c = k3
(

4k4 − 1
)

(3.14)

=
M
(

M2 − 1
)

2

√

M

2
(3.15)

Proof. For k, δ, σ, g, a,M > 1, c ∈ Z+, q ∈ Q+, for (2.1) to hold:
(i) let σ =

(

δ2 − 2
)

/2. Replacing in (2.13) yields

(3.16) g =
M2

8δ4

(

δ4 − 4δ2 + 4 +

√

δ8 − 8δ6 + 8δ4 + 16δ2
(

δ2

M2
− 2

)

+ 16

)

For the polynomial in δ under the square root sign to be a square, let (δ/M)
2−2 =

2, i.e. δ = 2M , yielding δ8 − 8δ6 + 8δ4 + 32δ2 + 16 =
(

δ4 − 4δ2 − 4
)2

, giving

g = M2
(

δ2 − 4
)

/4δ2 =
(

M2 − 1
)

/4 where δ was replaced by 2M . As g ∈ Z+, M

cannot be even and must be odd, i.e. M = 2k + 1 ∀k ∈ Z+, yielding g = k (k + 1),
δ = 2M = 2 (2k + 1), σ = 2M2 − 1 = 8k (k + 1) + 1. Replacing in (2.2) and (2.3)
yields directly (3.2) to (3.5).
(ii) Let σ = δ + 2. Replacing in (2.13) yields

(3.17) g =
M

2δ4

(

M (δ + 2)2 +

√

M2
(

(δ + 2)4 − δ4
)

+ δ4

)

For the polynomial in δ under the square root sign to be a square, let M = qδ

and δ = 8q(q + 1) + 1 with q ∈ Q+. It yields then

√

q2
(

(δ + 2)4 − δ4
)

+ δ2 =

δ2 − 4q (δ + 1), giving g = q (q + 1) /2. As g ∈ Z+, q ∈ Z+ and let q = k, yielding
g = △k, δ = 16△k + 1, σ = 16△k + 3, M = kδ = k (16△k + 1) =(3.7). Replacing
in (2.11) and (2.10) yields (3.6) and (3.9). Replacing k in function of a from (3.6)
yields also (3.8) and (3.10).
(iii) Let δ = 1 and σ = k with k > 1. Then (2.13) reads

(3.18) g =
M
(

k2M +
√

M2 (k4 − 1) + 1
)

2

which takes integer values if M = 2k2, yielding g = k2
(

4k4 − 1
)

= M
(

M2 − 1
)

/2.
Replacing in (2.11) and (2.10) yields directly (3.12) to (3.15). �

The case (i) of Theorem 2 confirms the statement of Stroeker ([37], p. 297) about
all odd values of M (in bold in Table 1) having a solution to (2.1). The first 50 000
values of (M,a, c) for this case (i) are given in [28, 29]
For the case (ii) of Theorem 2, Table 2 gives the first five values of M,a, g, δ, σ and
c. The first 50 000 values of (M,a, c) for this case (ii) are given in [30, 31].
As there exist other triplets of values of (M,a, c) such that (2.1) holds with M = kδ
for the same value of g = ∆k, the case (ii) of Theorem 2 can be generalized to other
values of a as follows. Table 3 shows some of these values for 1 ≤ k ≤ 2 and
1 < Mn, an < 105 and indexed by n for increasing values of Mn.
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Table 2. Values of M,a, g, δ, σ, c for 1 ≤ k ≤ 5 for case (ii) of
Theorem 2

k M a g δ σ c

1 17 9 1 17 19 323
2 98 25 3 49 51 7497
3 291 49 6 97 99 57618
4 644 81 10 161 163 262430
5 1205 121 15 241 241 878445

Table 3. Values of Mn, an, g, δn, σn, cn for 1 ≤ k ≤ 2 and 1 <
Mn, an < 105

k n Mn an g δn σn cn

1 1 17 9 1 17 19 323
1 2 305 153 1 305 341 104005
1 3 5473 2737 1 5473 6119 33489287
1 4 98209 49105 1 98209 109801 10783446409

2 1 98 25 3 49 51 7497
2 2 4898 1225 3 2449 2549 18727503

It is easily seen from Table 3 that, for each value of k,

σn − δn = σn−1 + δn−1(3.19)

σn + δn =
(

2 (2k + 1)
2 − 1

)

σn−1 +
(

2 (2k + 1)
2
+ 1
)

δn−1(3.20)

with σ0 = δ0 = 1, yielding the recurrence relations

δn = 2 (2k + 1)
2
δn−1 − δn−2(3.21)

σn = 2 (2k + 1)
2
σn−1 − σn−2(3.22)

i.e. δn and σn fulfill the Diophantine equation (2k (k + 1) + 1) δ2n − 2k (k + 1)σ2
n =

1. The general solutions of this Diophantine equation can be expressed in function

of Chebyshev polynomials of the second kind Un

(

(2k + 1)2
)

as

δn = Un

(

(2k + 1)2
)

− Un−1

(

(2k + 1)2
)

(3.23)

σn = Un

(

(2k + 1)
2
)

+ Un−1

(

(2k + 1)
2
)

(3.24)

These results are generalized for all k and n ∈ Z+ in the next
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Theorem 3. ∀k, n ∈ Z+, ∃δn, σn,Mn, an, cn ∈ Z+, Mn > 1, such that (2.1) holds

if σn =
√

δ2n + (δ2n − 1) /2k (k + 1), with

Mn = kδn(3.25)

= k
[

Un

(

(2k + 1)
2
)

− Un−1

(

(2k + 1)
2
)]

(3.26)

an =
δn + 1

2
(3.27)

=
Un

(

(2k + 1)
2
)

− Un−1

(

(2k + 1)
2
)

+ 1

2
(3.28)

cn = δn

√

k (k + 1) ((2k (k + 1) + 1) δ2n − 1)

8
(3.29)

=
k (k + 1)U2n

(

(2k + 1)2
)

2
(3.30)

Proof. For k, n, δn, σn, g,Mn, an, cn ∈ Z+, Mn > 1, let
σn =

√

δ2n + (δ2n − 1) /2k (k + 1). Replacing in (2.13) yields

g =
Mn

2δ4n

((

(2k (k + 1) + 1) δ2n − 1

2k (k + 1)

)

Mn+

√

√

√

√M2
n

(

(

(2k (k + 1) + 1) δ2n − 1

2k (k + 1)

)2

− δ4n

)

+ δ4n



(3.31)

For the polynomial in δn under the square root sign to be a square, let Mn = kδn,
yielding after simplification g = k (k + 1) /2 = △k. Replacing further in (2.2)
and (2.10) yields (3.27) and (3.29). Replacing further δn by (3.23) yields (3.26)
and (3.28). Replacing δn and σn in (2.10) yields (3.30), noting that δnσn =

U2
n

(

(2k + 1)2
)

− U2
n−1

(

(2k + 1)2
)

= U2n

(

(2k + 1)2
)

as can be shown by replac-

ing U2
n (x) and U2

n−1 (x) in function of Chebyshev polynomials of the first kind,
respectively T2n+2 (x) and T2n (x) (see e.g. [36]) and simplifying appropriately. �

For the case (iii) of Theorem 2, the first 50 000 values of (M,a, c) are given in [32].
There exist also other triplets of values of (M,a, c) such that (2.1) holds with δ = 1
and σ = k. Table 4 shows some of these values for 1 < k ≤ 5 and 1 < Mn, an < 105

and indexed by n for increasing values of Mn. The generalization of the case (iii)
of Theorem 2 to other values of M is included in a following more general theorem.
This theorem will use the solutions of simple and generalized Pell equations, that
are recalled in the next section.

4. Pell equations: A Reminder

Pell equations of the general form

(4.1) X2 −DY 2 = N

with X,Y,N ∈ Z and square free D ∈ Z+, i.e.
√
D /∈ Z+, have been investigated in

various forms since long (see historical accounts in [7, 14, 38, 13]) and are treated
in several classical text books (see e.g. [20, 21, 39, 11] and references therein). A
simple reminder is given here and further details can be found in the references.
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Table 4. Values of Mn, an, gn, cn with δ = 1 and σ = k
for 1 < k ≤ 5 and 1 < Mn, an < 105

k n Mn an gn cn

2 1 8 28 252 504
2 2 63 217 15624 31248
2 3 496 1705 968440 1936880
2 4 3905 13420 60027660 120055320

3 1 18 153 2907 8721
3 2 323 2737 936054 2808162
3 3 5796 49105 301406490 904219470

4 1 32 496 16368 65472
4 2 1023 15841 16728096 66912384

5 1 50 1225 62475 312375
5 2 2499 61201 156062550 780312750

For N = 1, the simple Pell equation reads classically

(4.2) X2 −DY 2 = 1

which has, beside the trivial solution (X0, Y0) = (1, 0), a whole infinite branch of
solutions ∀n ∈ Z+ given by

Xn =

(

X1 +
√
DY1

)n

+
(

X1 −
√
DY1

)n

2
(4.3)

Yn =

(

X1 +
√
DY1

)n

−
(

X1 −
√
DY1

)n

2
√
D

(4.4)

where (X1, Y1) is the fundamental solution to (4.2), i.e. the smallest integer solution
different from the trivial solution (X1 > 1, Y1 > 0,∈ Z+). Among the five methods
listed by Robertson [35] to find the fundamental solution (X1, Y1), the classical

method based on the continued fraction expansion of the quadratic irrational
√
D

introduced by Lagrange [12] is at the core of several other methods. It can be
summarized as follows. One computes the rth convergent (pr/qr) of the continued

fraction [α0;α1, ..., αr, αr+1, ...] of
√
D which becomes periodic after the following

term αr+1 = 2α0 if
√
D is a quadratic surd or quadratic irrational (i.e.

√
D /∈ Z+)

and with α0 =
⌊√

D
⌋

i.e. the greatest integer ≤
√
D . The terms pi and qi can be

found by the recurrence relations

(4.5) pi = αipi−1 + pi−2 , qi = αiqi−1 + qi−2

with p−2 = 0, p−1 = 1, q−2 = 1, q−1 = 0. The fundamental solution is then
(X1, Y1) = (pr, qr) if r ≡ 1 (mod 2) or (X1, Y1) = (p2r+1, q2r+1) if r ≡ 0 (mod 2).
For the general case of N 6= 1, the generalized Pell equation (4.1) can have either
no solution at all, or one or several fundamental solutions (X1, Y1), and all integer
solutions, if they exist, come on double infinite branches that can be expressed in
function of the fundamental solution(s) (X1, Y1) and (X1,−Y1). Several authors
(see e.g. [12, 6, 20, 19, 35, 16, 17, 11] and references therein) discussed how to find
the fundamental solution(s) of the generalized Pell equation, based on Lagrange’s
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method of continued fractions with various modifications (see e.g. [22]), and further
how to find additional solutions from the fundamental solution(s). The method
indicated by Matthews [17] based on an algorithm by Frattini [8, 9, 10] using
Nagell’s bounds [20, 18], will be used further.
Noting now (xf , yf ) the fundamental solutions of the related simple Pell equation
(4.3), the other solutions (Xn, Yn) can be found from the fundamental solution(s)
by

(4.6) Xn +
√
DYn = ±

(

X1 +
√
DY1

)(

xf +
√
Dyf

)n

for a proper choice of sign ± [35], or by the recurrence relations

Xn = xfXn−1 +DyfYn−1(4.7)

Yn = xfYn−1 + yfXm−1(4.8)

that can also be written as

Xn = 2xfXn−1 −Xn−2(4.9)

Yn = 2xfYn−1 − Yn−2(4.10)

or in function of Chebyshev’s polynomials of the first kind Tn−1 (xf ) and of the
second kind Un−2 (xf ) evaluated at xf (see [23])

Xn = X1Tn−1 (xf ) +DY1yfUn−2 (xf )(4.11)

Yn = X1yfUn−2 (xf ) + Y1Tn−1 (xf )(4.12)

For N = η2 an integer square, the generalized Pell equation (4.1) admits always
integer solutions. The variable change (X ′, Y ′) = ((X/η) , (Y/η)) transforms the
generalized Pell equation in a simple Pell equation X ′2−DY ′2 = 1 which has integer
solutions (X ′

n, Y
′

n). The integer solutions to the generalized Pell equation can then
be found as (Xn, Yn) = (ηX ′

n, ηY
′

n), or from ((4.9),(4.10)) with (X0, Y0) = (1, 0)
and (X1, Y1) = (ηxf , ηyf), yielding simply

Xn = ηTn (xf )(4.13)

Yn = ηyfUn−1 (xf )(4.14)

(which is also valid for the simple Pell equation (4.2) with η = 1). Note however that
not all solutions in (X,Y ) may be found in this way (see e.g.[39]) and, depending
on the value of D, other fundamental solutions may exist.

5. Step 3: A More General Approach

The three cases of Theorem 2 can now be generalized as shown in the next theorem,
that includes also the general method to find all solutions (M,a, c) such that (2.1)
holds.
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Theorem 4. For ∀δ, n ∈ Z+, ∃σ, a,M,Mn, c, xf , yf , X1, Y1, D,N ∈ Z+, κ ∈ Q+,
with gcd (δ, σ) = 1,κ = (σ/δ) > 1, such as (2.1) holds with

Mn = X1yfUn−1 (xf ) + Y1Tn (xf )(5.1)

an =
1

2δ2
[(

σ2 − δ2
) (

X1 +
(

σ2 + δ2
)

Y1

)

yfUn−1 (xf )+(5.2)
(

X1 +
(

σ2 − δ2
)

Y1

)

Tn (xf ) + δ2
]

cn =
σ

2δ3
(X1yfUn−1 (xf ) + Y1Tn (xf ))(5.3)

[(

σ2X1 +
(

σ4 − δ4
)

Y1

)

yfUn−1 (xf ) +
(

X1 + σ2Y1

)

Tn (xf )
]

where (xf , yf) and (X1, Y1) are the fundamental solutions of respectively the simple
(4.2) and generalized Pell equations (4.1) with D =

(

σ4 − δ4
)

and N = δ4, and
Tn (xf ) and Un (xf ) Chebyshev’s Polynomials of the first and second kind evaluated
at xf .

Proof. Let n,M,Mn, a, an, c, cn, σ, δ, xf , yf , X1, Y1 ∈ Z+, k ∈ Z∗, κ,C,Cn ∈ Q+,
with M > 1, gcd (δ, σ) = 1, κ = (σ/δ) > 1. As g (2.13), a (2.2) and c (2.3) in
Theorem 1 must be integers, the condition for the polynomial

(

M2
(

κ4 − 1
)

+ 1
)

under the square root sign in (2.13), (2.2) and (2.3) to be a squared integer or a
squared rational allows to find for which values of M (2.1) holds. Let

(5.4) M2
(

κ4 − 1
)

+ 1 = C2

which can be rewritten as a Pell equation as

(5.5) C2 −
(

κ4 − 1
)

M2 = 1

or as1

(5.6)
(

δ2C
)2 −

(

σ4 − δ4
)

M2 = δ4

which is a generalized Pell equation that always admits at least one fundamental so-
lution as the right hand term is a squared integer. Noting (xf , yf) the fundamental
solutions of the simple Pell equation (4.2) and (X1, Y1) the fundamental solution(s)
of the generalized Pell equation (4.1) with X =

(

δ2C
)

, Y = M , D =
(

σ4 − δ4
)

and

N = δ4, all solutions can be found by (4.6) or ((4.11),(4.12)) ∀n ∈ Z+ yielding

(5.7) Cn =

((

σ4 − δ4
)

Y1yfUn−1 (xf ) +X1Tn (xf )
)

δ2

and (5.1). Then replacing M by Mn (5.1) in (2.2) and (2.3) yields directly (5.2)
and (5.3). �

Note that, although (5.1) yields all integer solutions in M to (5.6), some of them
do not yield integer solutions to an (5.2) and cn (5.3) and must be rejected.
For δ = 1, (5.6) is a simple Pell equation similar to (4.2). It is easy to see that
its fundamental solution is (xf , yf) =

(

σ2, 1
)

(see e.g. [22]). (5.6) admits then an
infinitude of solutions ∀n ∈ Z+ for each integer value of σ, that can be written as

1Note that (5.5) could also be written as C2 −
(

σ4 − δ4
) (

M/δ2
)

2
= 1, but not all solutions

may be obtained in this way.
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((4.3), (4.4)) or ((4.13), (4.14)), yielding Cn = Tn

(

σ2
)

and

Mn = Un−1

(

σ2
)

(5.8)

an =
Un

(

σ2
)

− Un−1

(

σ2
)

+ 1

2
(5.9)

cn =
σUn

(

σ2
)

Un−1

(

σ2
)

2
(5.10)

where the relation Un

(

σ2
)

= Tn

(

σ2
)

+ σ2Un−1

(

σ2
)

(see e.g. [36]) was used in

(5.9) and (5.10). Note as well that gn = Un

(

σ2
)

Un−1

(

σ2
)

/2 as can be found from
(2.10) or (2.11).
This generalizes the case (iii) of Theorem 2 and gives an infinitude of solutions
(Mn, an, cn) ∀n ∈ Z+ for δ = 1 and for each value of σ, ∀σ ∈ Z+.
For δ > 1, three of the fundamental solutions are always (X1, Y1) =

(

δ2, 0
)

and
(

σ2,±1
)

, corresponding to respectively (C,M) = (1, 0) and
((

σ2/δ2
)

,±1
)

. De-

pending on the value of D =
(

σ4 − δ4
)

, other fundamental solutions may exist.

All solutions in M can then be found by (5.1) ∀n ∈ Z+ for (X1, Y1) =
(

δ2, 0
)

or
(

σ2,±1
)

, and ∀n ∈ Z∗ for other fundamental solutions. Furthermore, solutions

found for (X1, Y1) =
(

σ2,−1
)

and
(

δ2, 0
)

yield integer values for Mn, an and cn,

while the solutions found for (X1, Y1) =
(

σ2, 1
)

, although yielding integer values of
Mn, do not yield integer values for an and cn, as can be seen easily from (5.2) and
(5.3), and must be rejected, although these non-integer values satisfy (2.1).
Relations (5.7) and (5.1) to (5.3) read
- for (X1, Y1) =

(

σ2,−1
)

, Cn = κ2Tn (xf )− δ2
(

κ4 − 1
)

yfUn−1 (xf ) and

Mn = σ2yfUn−1 (xf )− Tn (xf )(5.11)

an =
Tn (xf )−

(

σ2 − δ2
)

yfUn−1 (xf ) + 1

2
(5.12)

cn =
σδyfUn−1 (xf )

(

σ2yfUn−1 (xf )− Tn (xf )
)

2
(5.13)

- for (X1, Y1) =
(

δ2, 0
)

, Cn = Tn (xf ) and

Mn = δ2yfUn−1 (xf )(5.14)

an =
Tn (xf ) +

(

σ2 − δ2
)

yfUn−1 (xf ) + 1

2
(5.15)

cn =
σδyfUn−1 (xf )

(

σ2yfUn−1 (xf ) + Tn (xf )
)

2
(5.16)

Note that the solutions (5.11) to (5.13) found for (X1, Y1) =
(

σ2,−1
)

are smaller

than those (5.14) to (5.16) found for (X1, Y1) =
(

δ2, 0
)

for a same value of n ≥ 1.
Furthermore, if 2g is a multiple of M, 2g = µM , µ ∈ Z+, (like for M = 33, 35, 42...),
the fundamental solutions of the simple Pell equation are (xf , yf ) =

((

µσ2 −M
)

, µ
)

,
as can be easily verified.
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If g = △M (like for M = 5, 15, ...) or △M−1 (like for M = 5, 13, 15, 17, 40, ...), then

(xf , yf ) =
((

(M ± 1)σ2 −M
)

, (M ± 1)
)

(5.17)

=

((

2
∣

∣δ4 − 2σ2 + 1
∣

∣

(

σ2 − 1

|δ4 − 2σ2 + 1|

)2

− 1

)

,

(

2
(

σ2 − 1
)

|δ4 − 2σ2 + 1|

))

(5.18)

with M =
(

δ4 − 1
)

/
(∣

∣2σ2 − δ4 − 1
∣

∣

)

(see [33]) with the + (respectively −) sign in
(5.17) for g = △M (resp. △M−1) and vertical bars denote the absolute value.
Values of (xf , yf ) and (X1, Y1) from [17] yielding solutions (Mn, an, cn) for the first
values of M , 1 < M ≤ 45 and 1 < a < 105 of Table 1 can be found in [33].
For the case (i) of Theorem 2 with M = (2k + 1), g =

(

M2 − 1
)

/4, δ = 2M and

σ =
(

2M2 − 1
)

, one of the other fundamental solutions is always

(X1, Y1) =

((

δ
(

σ2 − 2
)

2

)

,
δ

2

)

(5.19)

=
(

M
(

(

2M2 − 1
)2 − 2

)

,M
)

(5.20)

as can be easily verified. More generally, all solutions for this case can be found by
(3.1) to (3.5).

For the case (ii) of Theorem 2 with a = (2k + 1)
2
, g = △k, δ = 16△k +1 = 2a− 1,

σ = 16△k + 3 = 2a + 1, M = kδ = k (16△k + 1), one of the other fundamental
solutions is always known and can be expressed in function of δ, k or a as

(X1, Y1) =







4δ

(
√

δ + 1

2

)3(√

δ + 1

2
− 1

)



 , 2δ



(5.21)

=
((

4 (16△k + 1)
(

8k (2k + 1)3 + 1
))

, 2 (16△k + 1)
)

(5.22)

=
(

(2a− 1)a2
(

1− a−1/2
)

, 2 (2a− 1)
)

(5.23)

6. Recurrent Relations

The sets of solutions (Mn, an, cn) are obviously not independent. As (5.1) to (5.3)
are linear combinations of Chebyshev polynomials, one has also the general recur-
rence relations

Mn = 2xfMn−1 −Mn−2(6.1)

an = 2xfan−1 − an−2 − (xf − 1)(6.2)

cn = 2
(

2x2
f − 1

)

cn−1 − cn−2 + δσ3y2f(6.3)

among values of Mn, an, cn calculated for the same fundamental solutions (X1, Y1).
These relations are immediate from (5.1) to (5.3) and the recurrence and other
formulas for Chebyshev polynomials (see e.g [36]). For the sake of the recurrence,
initial values of (Mn, an, cn) for n = 0, 1 are shown in Table 5 for the cases (i)
Mn = kδn of Theorem 3, (ii) δ = 1 and (xf , yf ) =

(

σ2, 1
)

, (iii) δ > 1 and (X1, Y1) =
(

σ2,−1
)

, (iv) δ > 1 and (X1, Y1) =
(

δ2, 0
)

, and (v) the general case for δ > 1 and
with other fundamental solutions (X∗

1 , Y
∗

1 ) of the generalized Pell equation.
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Table 5. Initial values of (Mn, an, cn) for n = 0, 1 for recurrence relations

X1, Y1 n (Mn, an, cn) for Mn = kδn,
(

xf , yf
)

=
(

(2k + 1)2 , 0
)

[1, 0] 0 (1, 1, 1)

1
(

k (8k (k + 1) + 1) , (2k + 1)2 , (k (k + 1) /2)
(

4 (2k + 1)4 − 1
))

X1, Y1 n (Mn, an, cn) for δ = 1,
(

xf , yf
)

=
(

σ2, 1
)

[1, 0] 0 (0, 1, 0)

1
(

1, σ2, σ3
)

X1, Y1 n (Mn, an, cn) for δ > 1

σ2,−1 0 (−1, 1, 0)

1
((

σ2yf − xf

)

,
(

xf −
(

σ2 − δ2
)

yf + 1
)

/2, δσyf
(

σ2yf − xf

)

/2
)

δ2, 0 0 (0, 1, 0)

1
(

δ2yf ,
(

xf +
(

σ2 − δ2
)

yf + 1
)

/2, δσyf
(

σ2yf + xf

)

/2
)

X∗

1
, Y ∗

1
0

(

Y ∗

1
,
(

X∗

1
+

(

σ2 − δ2
)

Y ∗

1
+ δ2

)

/2δ2, σY ∗

1

(

X∗

1
+ σ2Y ∗

1

)

/2δ3
)

1
(

X∗

1
yf + Y ∗

1
xf ,

((

xf +
(

σ2 − δ2
)

yf
)

X∗

1
+

(

σ2 − δ2
) (

xf +
(

σ2 + δ2
)

yf
)

Y ∗

1
+ δ2

)

/2δ2,

σ
(

yfX
∗

1
+ xfY

∗

1

) ((

xf + σ2yf
)

X∗

1
+

(

σ2xf +
(

σ4 − δ4
)

yf
)

Y ∗

1

)

/2δ3
)

For δ = 1, one has also the remarkable recurrence relation

(6.4) Mn = Mn−1 + 2an−1 − 1

among all values of Mn ∀n ∈ Z+ (see Table 7 further in section 7). One has also a
similar relation among values of Mn and an for δ > 1 if only those solutions (5.11),
(5.12) and (5.14), (5.15) calculated respectively for (X1, Y1) =

(

σ2,−1
)

and
(

δ2, 0
)

are considered.
If all solutions(Mn, an, cn) are ordered in increasing value order and indexed by
a new index j ∈ Z+, one obtains simply j = n for solutions for δ = 1, and for
δ > 1, if there are no fundamental solutions other than (X1, Y1) =

(

δ2, 0
)

and
(

σ2,±1
)

, one obtains j = 2n− 1 for the solutions (5.11) to (5.13) and j = 2n for

the solutions (5.14) to (5.16). If fundamental solutions other than (X1, Y1) =
(

δ2, 0
)

and
(

σ2,±1
)

exist, the solutions (Mn, an, cn) (5.1) to (5.3) calculated with these
other fundamental solutions (including for n = 0) have to be inserted accordingly
(see example further in Section 7).
For δ > 1, if only those value of (Mj , aj , cj) (5.11) and 5.13) and (Mj+1, aj+1, cj+1)
(5.14 to 5.16) calculated respectively with (X1, Y1) =

(

σ2,−1
)

and
(

δ2, 0
)

are
considered, two such sets of solutions are called a “recurrent pair” and obviously,
for δ = 1, all sets of (Mj , aj, cj) solutions form “recurrent pairs”. The following
theorem give other remarkable recurrent relations.

Theorem 5. For ∀δ ∈ Z+, ∃σ, κ, j, aj ,Mj , cj ∈ Z+ with gcd (δ, σ) = 1, κ =
(σ/δ) > 1, and such as (2.1) holds, if (Mj, aj , cj) and (Mj+1, aj+1, cj+1) form a
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“recurrent pair”, then

Mj+1 = Mj + 2aj − 1(6.5)

= κ2Mj +
√

M2
j (κ

4 − 1) + 1 = κ2Mj + Cj(6.6)

Mj =
(

2κ2 − 1
)

Mj+1 − 2aj+1 + 1(6.7)

aj+1 + aj = κ2Mj+1 −Mj + 1(6.8)

aj+1 − aj =
(

κ2 − 1
)

Mj+1(6.9)

cj =
κMjMj+1

2
(6.10)

cj+1 + cj = κ3M2
j+1(6.11)

Proof. Let σ, δ, j, n, k, a,M, c ∈ Z+ with gcd (δ, σ) = 1, κ = (σ/δ) > 1, and
(Mn, an, cn) solutions of (2.1), yielding (Mj, aj , cj) and (Mj+1, aj+1, cj+1) to be
a “recurrent pair” with n = j for δ = 1, and, for δ > 1, n = j or n = j + 1 respec-
tively for (Mn, an, cn) (5.11) to (5.13) for (X1, Y1) =

(

σ2,−1
)

or (5.14) to (5.16)

for (X1, Y1) =
(

δ2, 0
)

. Then,
(i) (6.5) is immediate from (5.8) and (5.9) for δ = 1, and from (5.11), (5.12) and
(5.14) for δ > 1.
(ii) (6.6) is immediate from (2.11), (2.13) and (5.4).
(iii) For δ = 1, replacing Mj+2 by the recurrence relation (6.1) in (6.5) written for
Mj+2 yields directly (6.7). For δ > 1, in

(

2κ2 − 1
)

Mj+1 − 2aj+1 + 1, replacing
Mj+1 and aj+1 by (5.14) and (5.15) yields

(

2κ2 − 1
)

Mj+1 − 2aj+1 + 1 =
(

2σ2 − δ2
)

yfUn−1 (xf )−
(

Tn (xf ) +
(

σ2 − δ2
)

yfUn−1 (xf )
)

(6.12)

= σ2yfUn−1 (xf )− Tn (xf )(6.13)

which is Mn (5.11). Therefore (6.7) holds for δ ≥ 1.
(iv) Summing and subtracting aj+1 and aj extracted respectively from (6.7) and
(6.5) yield directly (6.8) and (6.9).
(v) (2.3) and (6.6) yield directly (6.10).
(vi) Replacing Mj from (6.7) in (6.10) and replacing with cj+1 from (6.10) yield
directly (6.11). �

This theorem means that once a solution (Mn, an, cn) has been found for δ > 1
from (5.11) to (5.13) with (X1, Y1) =

(

σ2,−1
)

, the other solution (Mn, an, cn) of
the "recurrent pair" can be found directly from (6.5) to (6.11) without having to
be calculated from (5.14) to (5.16) for (X1, Y1) =

(

δ2, 0
)

.

7. Summary and Examples

In summary, to find all solutions (M,a, c) such that the sum of M consecutive cubed
integers starting from a > 1 equal a squared integer c2, the following approach is
proposed.
1) Calculate first all solutions for odd integer values of M = (2k + 1) ∀k ∈ Z+ by
(3.1) to (3.5). Table 6 shows the first ten values of an infinitude of solutions.
2) Second, calculate all solutions for the cases Mn = kδn given by Theorem 3
∀k, n ∈ Z+ either by (3.26), (3.28), (3.30) in function of Chebyshev polynomials,
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Table 6. Values of (M,a, c) for M = (2k + 1) , 1 ≤ k ≤ 10

(3, 23, 204), (5, 118, 2940), (7, 333, 16296), (9, 716, 57960), (11, 1315, 159060),

(13, 2178, 368004), (15, 3353, 754320), (17, 4888, 1412496), (19, 6831, 2465820),

(21, 9230, 4070220)

Table 7. Values of (Mn, an, cn) for δ = 1, 2 ≤ σ ≤ 5 and 2 ≤ n ≤ 6

σ = 2 σ = 3
(8, 28, 504) (18, 153, 8721)

(63, 217, 31248) (323, 2737, 2808162)

(496, 1705, 1936880) (5796, 49105, 904219470)

(3905, 13420, 120055320) (104005, 881145, 291155861205)

(30744, 105652, 7441492968) (1866294, 15811497, 93751283088567)

σ = 4 σ = 5
(32, 496, 65472) (50, 1225, 312375)

(1023, 15841, 66912384) (2499, 61201, 780312750)

(32704, 506401, 68384391040) (124900, 3058801, 1949220937250)

(1045505, 16188976, 69888780730560) (6242501, 152878825, 4869153120937875)

(33423456, 517540816, 71426265522241344) (312000150, 7640882425, 12163142546881874625)

or by the recurrence relations (6.1) to (6.3) with (xf , yf ) =
(

(2k + 1)2 , 0
)

and the

initial values of Table 5 (see Table 3).
3) Third, calculate all solutions for the case δ = 1 ∀σ ∈ Z+ either by (5.8) to (5.10),
or by the recurrence relations (6.1) to (6.3) with (xf , yf ) =

(

σ2, 1
)

and the initial
values of Table 5. Table 7 shows the first five values of the infinitude of solutions
for 2 ≤ σ ≤ 5.
4) Fourth, for all other cases with δ > 1, find the fundamental solutions of the
simple and generalized Pell equations with D =

(

σ4 − δ4
)

and N = δ4 for all
values of σ ∈ Z+ and of δ ∈ Z+ such that 1 < δ < σ and gcd (δ, σ) = 1.
4.1) If there are no other fundamental solutions than (X1, Y1) =

(

δ2, 0
)

and
(

σ2,±1
)

,

then g = µM/2 (µ ∈ Z+) and (xf , yf ) =
((

µσ2 −M
)

, µ
)

; if g = △M or △M−1,

then M1 =
(

δ4 − 1
)

/
(∣

∣δ4 − 2σ2 + 1
∣

∣

)

and (5.18) gives (xf , yf ). Then (5.11) to
(5.16) yield an infinitude of integer solutions (Mn, an, cn) ∀n ∈ Z+ with (X1, Y1) =
(

σ2,−1
)

,
(

δ2, 0
)

. Alternatively, the recurrence relations (6.1) to (6.3) with the ini-
tial values of Table 5 or the recurrence relations of Theorem 5 can be used. Solutions
have to be ordered then in increasing order of Mj .
For σ = 3 and δ = 2, g = 120 = △15, D = 65 and N = 16 yielding (xf , yf ) =
(129, 16) and only three fundamental solutions (X1, Y1) = (4, 0) and (9,±1) (see
[17]). The first ten solutions are shown in Table 8 for (X1, Y1) = (9,−1) and (4, 0),
arranged by Mj increasing values and with respectively j = 2n− 1 and j = 2n.
4.2) If there are fundamental solutions (X1, Y1) = (X∗

1 ,±Y ∗

1 ) other than
(

δ2, 0
)

and
(

σ2,±1
)

, then (xf , yf ) has to be calculated separately (see [17]). All integer
solutions (Mn, an, cn) are found by (5.1) to (5.3) for (X1, Y1) = (X∗

1 , Y
∗

1 ) ∀n ∈ Z∗

and by (5.11) to (5.16) for (X1, Y1) =
(

σ2,−1
)

,
(

δ2, 0
)

∀n ∈ Z+. Alternatively, the
recurrence relations (6.1) to (6.3) can be used with the initial values of Table 5.
Solutions have to be ordered then in increasing order of Mj .
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Table 8. Values of (Mj , aj , cj) for δ = 2, σ = 3 with (xf , yf ) =
(129, 16) and 1 ≤ n ≤ 5 with j = 2n− 1 and j = 2n respectively
for (X1, Y1) = (9,−1) and (4, 0)

X1, Y1 n j (Mj , aj , cj)

9, -1 1 1 (15, 25, 720)

4, 0 1 2 (64, 105, 13104)

9, -1 2 3 (3871, 6321, 47938464)

4, 0 2 4 (16512, 26961, 872242272)

9, -1 3 5 (998703, 1630665, 3190880053872)

4, 0 3 6 (4260032, 6955705, 58058190109584)

9, -1 4 7 (257661503, 420705121, 212391358097903424)

4, 0 4 8 (1099071744, 1794544801, 3864469249201901760)

9, -1 5 9 (66475669071, 108540290425, 14137193574521767668240)

4, 0 5 10 (283556249920, 462985602825, 257226802107318794853360)

Table 9. Values of (Mj , aj , cj) for δ = 3, σ = 4 with (xf , yf ) =
(2024, 153) and 0 ≤ n ≤ 3 with j = 3n+ 1, j = 3n− 1 and j = 3n
respectively for (X1, Y1) = (159, 12) , (16,−1) and (9, 0)

X1, Y1 n j (Mj , aj , cj)

159,12 0 1 (12, 14, 312)

16,-1 1 2 (424, 477, 389232)

9,0 1 3 (1377, 1548, 4105296)

159,12 1 4 (48615, 54635, 5117020440)

16,-1 2 5 (1716353, 1928872, 6378077594592)

9,0 2 6 (5574096, 6264280, 67270624549920)

159,12 2 7 (196793508, 221160443, 83849042274507096)

16,-1 3 8 (6947796520, 7808071356, 104513105644422184080)

9,0 3 9 (22563939231, 25357801869, 1102316769603603585072)

159,12 3 10 (796620071769, 895257416606, 1373975729120835063673080)

For σ = 4 and δ = 3, D = 175 and N = 81 yielding (xf , yf ) = (2024, 153) and
five fundamental solutions (X1, Y1) = (9, 0) , (16,±1) and (159,±12) (see [17]). The
first ten solutions are shown in Table 9 for (X1, Y1) = (159, 12) , (16,−1) and (9, 0),
arranged by Mj increasing values and with respectively j = 3n+1, j = 3n− 1 and
j = 3n.

8. Conclusions

The approach proposed in this paper to find all solutions (M,a, c) to (1.2) by
investigating two other parameters, δ and σ, instead of investigating each individual
values of M one by one in an increasing order of M values allows to find quite simple
and elegant general solutions (M,a, c) based on solutions of simple and generalized
Pell equations involving Chebyshev polynomials. Alternatively, recurrence relations
can be used in order to simplify the computational part. This approach allows to
find all possible solutions (M,a, c) to (1.2) but with the drawback that solutions
are not ordered by increasing M values.
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However, it is found that there are always at least one solution for every cases of
all odd values of M , of all odd integer square values of a, and of all even values of
M equal to twice an integer square.

References

[1] L. Aubry, Sphinx-Oedipe, 8, 28-9, 1913.
[2] M. Cantor, Nouvelles Annales de Mathématiques, 2, 6, 276-278, 1867.
[3] J.W.S. Cassels, A Diophantine equation, Glasgow Mathematical Journal, 27, 11-18, 1985.
[4] E. Catalan, Bulletin Académie Royale de Belgique, 2, 22, 339-340, 1866.
[5] E. Catalan, Nouvelles Annales de Mathématiques, 2, 6, 63-67, 1867.
[6] G. Chrystal, Algebra - An Elementary Text-Book, Part II, 1st ed. Adam and Charles Black,

1900; 2nd ed., New York, Chelsea, 478-488, 1961.
[7] L.E. Dickson, Sum of cubes of numbers in arithmetical progression a square, Ch. XXI in

History of the Theory of Numbers, Vol. 2: Diophantine Analysis, Dover, New York, 585-588,
2005.

[8] G. Frattini, Dell’analisi indeterminata di secondo grado, Periodico di Mat. VI, 169–180, 1891.
[9] G. Frattini, A complemento di alcuni teore mi del sig. Tchebicheff, Rom. Acc. L. Rend. 5, I

No. 2, 85-91, 1892.
[10] G. Frattini, Dell’analisi indeterminata di secondo grado, Periodico di Mat. VII, 172–177,

1892.
[11] M. Jacobson, H. Williams, Solving the Pell Equation, Springer-Verlag New York, 2009.
[12] J.L. Lagrange, Solution d’un Problème d’Arithmétique, in Oeuvres de La-

grange, J.-A. Serret (ed.), Vol. 1, Gauthier-Villars, Paris, 671–731, 1867 (see
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=PPN308899644&DMDID=
DMDLOG_0024&LOGID=LOG_0024&PHYSID=PHYS_0726, last accessed 10 August
2014).

[13] F. Lemmermeyer, Pell equation bibliography, 1658-1943,
http://www.fen.bilkent.edu.tr/~franz/publ/pell.html, last accessed 2 November 2013.

[14] H. W. Lenstra Jr., Solving the Pell Equation, Notices of The AMS, Vol. 49, Nr 2, 182-192,
2002.

[15] E. Lucas, Recherches sur l’analyse indéterminée, Moulins, 92, 1873. Extract from Bull. Soc
d’Emulation du Département de l’Allier, 12, 532, 1873.

[16] K.R. Matthews, The Diophantine Equation x2 −Dy2 = N , D > 0, in integers, Expositiones
Mathematicae, 18, 323-331, 2000.

[17] K. Matthews, Quadratic Diophantine equations BCMATH programs,
http://www.numbertheory.org/php/main_pell.html, last accessed 3 January 2015.

[18] K. Matthews, J. Robertson, On the converse of a theorem of Nagell and
Tchebicheff, Preprint submitted to Expositiones Mathematicae, 6 April 2014 (see
http://www.numbertheory.org/pdfs/nagell2.pdf, last accessed 27 July 2014).

[19] R.A. Mollin, Fundamental Number Theory with Applications, CRC Press, New York, 294-
307, 1998.

[20] T. Nagell, Introduction to Number Theory, Wiley, New York, 195-212, 1951.
[21] J.J. O’Connor and E.F. Robertson, Pell’s equation, JOC/EFR February 2002 http://www-

history.mcs.st-andrews.ac.uk/HistTopics/Pell.html, last accessed 26 July 2014.
[22] V. Pletser, On continued fraction development of quadratic irrationals having all periodic

terms but last equal and associated general solutions of the Pell equation, Journal of Number
Theory, Vol. 136, 339–353, 2013.

[23] V. Pletser, Finding all squared integers expressible as the sum of consecutive squared
integers using generalized Pell equation solutions with Chebyshev polynomials, ArXiv,
http://arxiv.org/abs/1409.7972, 29 September 2014.

[24] V. Pletser, Numbers whose square equals sums of cubes of consecutive integers, Sequence
A180921 in The On-line Encyclopedia of Integer Sequences, published electronically at
http://oeis.org, 24 September 2010, last accessed 3 January 2015.

[25] V. Pletser, Numbers of terms in sums of cubes of consecutive integers equal to squared
integers, Sequence A180920 in The On-line Encyclopedia of Integer Sequences, published
electronically at http://oeis.org, 24 September 2010, last accessed 3 January 2015.



GENERAL SOLUTIONS OF SUMS OF CONSECUTIVE CUBED INTEGERS EQUAL TO SQUARED INTEGERS19

[26] V. Pletser, Number of terms, first term and square root of sums
of consecutive cubed integers equal to integer squares, ResearchGate,
https://www.researchgate.net/publication/271272786_Number_of_terms
_first_term_and_square_root_of_sums_of_consecutive_cubed_integers
_equal_to_integer_squares, 24 January 2015.

[27] V. Pletser, Triplets (n, x, y) with n,x less than 10^5,
https://oeis.org/A218979/a218979_1.txt, 10 January 2015, in M. Markus, Numbers n
such that the sum of the n consecutive positive cubes is a square, Sequence A218979 in The
On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last
accessed 24 January 2015.

[28] V. Pletser, Numbers a(n) that are the starting terms in the sum of an odd
number of consecutive cubes equal to a square, Sequence A253679 in The On-
line Encyclopedia of Integer Sequences, published electronically at http://oeis.org and
https://oeis.org/A253679/a253679.txt, 8 January 2015.

[29] V. Pletser, Numbers c(n) whose square are equal to the sum of an odd number M of consec-
utive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A253679).,
Sequence A253680 in The On-line Encyclopedia of Integer Sequences, published electronically
at http://oeis.org, submitted 8 January 2015.

[30] V. Pletser, Numbers M(n) which are the number of terms in the sums of consecutive cubed
integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term
b(n) being an odd squared integer (A016754)., Sequence A253707 in The On-line Encyclo-
pedia of Integer Sequences, published electronically at http://oeis.org, submitted 9 January
2015.

[31] V. Pletser, Numbers c(n) whose squares are equal to the sums of consecutive cubed integers
b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer
(A016754)., Sequence A253708 in The On-line Encyclopedia of Integer Sequences, published
electronically at http://oeis.org, submitted 9 January 2015.

[32] V. Pletser, Numbers c(n) whose squares are equal to the sums of a number M(n) of consecutive
cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n)
being twice a squared integer (A001105)., Sequence A253724 in The On-line Encyclopedia of
Integer Sequences, published electronically at http://oeis.org, submitted 10 January 2015.

[33] V. Pletser, Fundamental solutions of the Pell equation X2 −
(

σ4 − δ4
)

Y 2 = δ4 for the
first 45 solutions of the sums of consecutive cubed integers equalling integer squares, ArXiv,
http://arxiv.org/abs/1167238, submitted 24 January 2015.

[34] C. Richaud, Zeitschrift für Mathematik und Physik, 12, 170-172, 1867.
[35] J.P. Robertson, Solving the generalized Pell equation X2 − DY 2 = N , 31 July 2004 (see

http://www.jpr2718.org/pell.pdf, last accessed 26 July 2014).
[36] J. Spanier and K.B. Oldham, An Atlas of Functions, Springer-Verlag, 193-207, 1987.
[37] R.J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathe-

matica, 97, 295-307, 1995.
[38] A. Weil, Number Theory, an Approach through History, Birkhäuser, Boston, 1984.
[39] E.W. Weisstein, Pell Equation, from MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/PellEquation.html, last accessed 10 August 2014.

European Space Research and Technology Centre, ESA-ESTEC P.O. Box 299,

NL-2200 AG Noordwijk, The Netherlands E-mail: Vladimir.Pletser@esa.int


