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Abstract. This paper is concerned with the distribution in the complex plane of the roots of a

polynomial sequence {Wn(x)}n≥0 given by a recursion Wn(x) = aWn−1(x) + (bx + c)Wn−2(x),
with W0(x) = 1 and W1(x) = t(x − r), where a > 0, b > 0, and c, t, r ∈ R. Our results include

proof of the distinct-real-rootedness of every such polynomial Wn(x), derivation of the best bound

for the zero-set {x | Wn(x) = 0 for some n ≥ 1}, and determination of three precise limit points of
this zero-set. Also, we give several applications from combinatorics and topological graph theory.

1. Introduction

Gian-Carlo Rota [26] has said of the ubiquity of zeros of polynomials in combinatorics

“Disparate problems in combinatorics ... do have at least one common feature:
their solution can be reduced to the problem of finding the roots of some

polynomial or analytic function.”

One such reduction is due to Newton’s inequality, which implies that every real-rooted polynomial is
log-concave. As observed by Brenti [1, 2], polynomials that arise from combinatorial problems often
turn out to be real-rooted.

Given a sequence of polynomials {Wn(x)}n≥0, we refer to the distribution of the set of zeros, taken
over all n, as the root geometry of that sequence. General information for the root geometry of
polynomials, especially the geometry of non-real roots, is given by Marden [19]; see also [21,24].

This research arose during efforts by the present authors to affirm a quarter-century old conjecture
(abbr. the LCGD conjecture) that the genus distribution (or genus polynomial, equivalently) of every
graph is log-concave [8]. Although it was conjectured by Stahl [28] that genus polynomials are real-
rooted, Chen and Liu [4] proved otherwise. Subsequently, various genus polynomials have been shown
to have complex roots. Of course, this separates the problem of determining which graphs have
real-rooted genus polynomials from trying to prove the LCGD conjecture.

After unexpected success [12] in proving the real-rootedness of the genus polynomials of iterated
claws, we attempted the real-rootedness of genus polynomials for iterated 3-wheels [23]. The iterated
3-wheel Wn

3 is the graph obtained from the cartesian product C3�Pn+1, where Pk is a path graph with
k vertices, by contracting a 3-cycle C3 at one end of the product to a single vertex. By a preprocess
of normalization, we transformed the problem equivalently into the following conjecture:

Conjecture 1.1. Let W0(x) = 1/27, W1(x) = 1 + 7x, W2(x) = 1 + 139x+ 1120x2 + 468x3, and

Wn(x) = (1 + 144x)Wn−1(x) + 54x(2− 29x+ 306x2)Wn−2(x)− 5832x3(1− 11x)Wn−3(x),
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for n ≥ 3. Then each of the polynomials Wn(x) is real-rooted.

Real-rootedness of the genus polynomials of iterated 3-wheels Wn
3 was confirmed by brute force

computation for all n ≤ 220. The complications encountered led us to consider the more general
problem for polynomial sequences defined by a general linear recurrence of degree 3, with polynomial
coefficients. As one may imagine, the difficulty did not decrease. This led us to some recurrences of
degree 2. In particular, let Wn(x) be a sequence of polynomials satisfying the recursion

Wn(x) = A(x)Wn−1(x) +B(x)Wn−2(x),(1.1)

for n ≥ 2, where A(x) and B(x) are polynomials, W0(x) is a constant, andW1(x) is a linear polynomial.
When the polynomials A(x) and B(x) have degrees k and `, respectively, we call the sequence {Wn(x)}
defined by (1.1) a recursive polynomial sequence of type (k, `).

Classical bounds on the roots of a polynomial are given in terms of its coefficients. Examples
include the Fujiwara bound [7], the Cauchy bound [3], and the Hirst-Macey bound [15]. More bounds
and also some background are given by Rahman and Schmeisser [25], where the reader may also find,
for instance, Rouché’s theorem, Landau’s inequality, and the Laguerre-Samuelson inequality, subject
to bounding the roots of a polynomial. Conversely, the real-rooted polynomials with all roots in a
prescribed interval have been characterized in terms of positive semi-definiteness of related Hankel
matrices (see Lasserre [17]).

This paper is primarily concerned with the root geometry of a sequence of recursive polynomials
of type (0, 1).

2. Main Results and Examples

As a preliminary, we consider a recursive polynomial sequence of type (0, 0), that is, one in which
the polynomials A(x) and B(x) are constants, A and B. This serves as a bridge to considering a
recursive sequence of polynomials of types in which A(x) and B(x) have other degree combinations.

Lemma 2.1. Let A,B ∈ R with A 6= 0. Let {Wn}n≥0 be a sequence of real numbers satisfying the
initial condition W0 = 1 and the recursion Wn = AWn−1 + BWn−2. Writing ∆ = A2 + 4B and

g± = (2W1 −A±
√

∆)/2, we have

(2.1) Wn =


(

1 +
n(2W1 −A)

A

)(
A

2

)n
, if ∆ = 0;

g+(A+
√

∆ )n − g−(A−
√

∆ )n

2n
√

∆
, if ∆ 6= 0.

In particular, if Reiθ is the polar representation of A+
√

∆, then we have

(2.2) Wn =

(
R

2

)n(
cosnθ +

sinnθ√
−∆

)
, if ∆ < 0.

Proof. The solution (2.1) to Recursion (1.1) can be found in elementary textbooks; for more extensive

discussion, see Kocic and Ladas [16]. Note that when A+
√

∆ = Reiθ, we have A−
√

∆ = Re−iθ, since√
∆ is either purely real or purely imaginary. Then, the expression (2.2) can be obtained from (2.1)

directly. �
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For instance, the Fibonacci sequence {fn}n≥0 is defined by the recursion

fn = fn−1 + fn−2,

with f0 = f1 = 1. With A = B = W1 = 1 (hence, ∆ = 5 and g± = (1 ±
√

5)/2), Lemma 2.1 gives
Binet’s formula, as expected: Wn = 1√

5

(
(g+)n+1 − (g−)n+1

)
. Thus, we see how Lemma 2.1 creates

conditions forrecursive sequences of type (0, 0), under which the root geometry problem becomes easy.

2.1. Main result. The aim of this paper is to describe the root geometry of all polynomial sequences
of type (0, 1). In order to formulate the main results of this paper, we use the following terminology.

Definition 2.2. The zero-set of a polynomial p(x) is defined to be the set of all its roots. It is said
to be distinct-real-rooted if all its roots are distinct and real.

Definition 2.3. Let s be a positive integer, and let t ∈ {s − 1, s}. Let X = {x1, x2, . . . , xs} and
Y = {y1, y2, . . . , yt} be ordered sets of real numbers. We say that the set X interlaces the set Y from
both sides, denoted X ./ Y , if t = s− 1 and

(2.3) x1 < y1 < x2 < y2 < · · · < xs−1 < yt < xs.

Note that the bow-tie symbol ./ consists of a “times” symbol × in the middle and a bar at each side.
The left (resp., right) bar indicates that the smallest (resp., largest) number in the chain (2.3) is from
the set X. We say that the set X interlaces Y from the right, denoted X o Y , if either X ./ Y or

(2.4) t = s and y1 < x1 < y2 < x2 < · · · < xs−1 < yt < xs.

Here the bar to the right of the “times” symbol × within the symbol o means that the largest number
in the chain (2.4) is from X. We observe that any set consisting of a single real number interlaces the
empty set.

For any integers m ≤ n, we denote the set {m, m+ 1, . . . , n} by [m,n]. Moreover, when m = 1, we
may denote the set [1, n] by [n]. Lemma 2.4 presents some essential consequences of the interlacing
property.

Lemma 2.4. Let f(x) and g(x) be polynomials with zero-sets X and Y respectively. Let β ∈ R, and
let

X ′ = X ∩ (−∞, β) = {x1, x2, . . . , xp} and Y ′ = Y ∩ (−∞, β) = {y1, y2, . . . , yq}
be two ordered sets such that X ′ o Y ′. Let x0 = y0 = −∞ and yq+1 = β.

• If f(β) 6= 0, then we have

(2.5) f(yj)f(β)(−1)q−j < 0 for all j ∈ [q + 1− p, q + 1];

• If g(β) 6= 0, then we have

(2.6) g(xi)g(β)(−1)p−i > 0 for all i ∈ [p− q, p].

Proof. See Appendix 6.1. �

Definition 2.5. For any sequence {xn} of real numbers, we write xn ↘ x if xn converges to the
number x decreasingly, and we write xn ↗ x if xn converges to the number x increasingly.
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Our main result, Theorem 2.6, concerns a polynomial sequence {Wn(x)} of type (0, 1) in which
A(x) = a and B(x) = bx+ c, with ab 6= 0 and c ∈ R. The proof of Theorem 2.6 is given in Section 3.

Theorem 2.6. Let {Wn(x)}n≥0 be the polynomial sequence defined by the recursion

Wn(x) = aWn−1(x) + (bx+ c)Wn−2(x)(2.7)

with initial conditions W0(x) = 1 and W1(x) = t(x − r), where a, b, t > 0, c, r ∈ R, and r 6= −c/b.
Also, let Rn = {ξn,1, . . . , ξn,dn} be the ordered zero set of Wn(x). Then the polynomial Wn(x) has
degree dn = b(n+ 1)/2c and is distinct-real-rooted. Moreover, using the notations

x∗ = −4c+ a2

4b
, r∗ = x∗ − a

2t
, and y∗ = r +

(at+ b)−
√

(at+ b)2 + 4t2(br + c)

2t2

we have the following conclusions:

(i) If r ∈ (−∞, r∗], then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any fixed i ≥ 0.
(ii) If r ∈ (r∗,−c/b) then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any fixed i ≥ 1;

and ξn,dn ↗ y∗ with x∗ < y∗.
(iii) If r ∈ (−c/b,+∞) then R′n+1 o R′n and R′n+2 ./ R

′
n for n ≥ 3; ξn,dn−i ↗ x∗ for any fixed

i ≥ 1; ξ2n,d2n ↗ y∗ and ξ2n−1,d2n−1
↘ y∗ with x∗ < −c/b < y∗ < x2,d2 .

The best bounds for the set ∪n≥1Rn are, in these three respective cases, (−∞, x∗), (−∞, y∗) and
(−∞, r). Furthermore, the sequence ξn,i converges to −∞ for any fixed i ≥ 1.

We observe that in the statement of Theorem 2.6, the limit point x∗ does not depend on the initial
polynomial W1(x), as long as the polynomial W1(x) is linear, and furthermore, no root lies in the
interval (x∗, −c/b) for case (iii).

Definition 2.7. Let {Wn(x)} = {Wn(x)}n≥0 be the polynomial sequence defined recursively by

(2.8) Wn(x) = aWn−1(x) + (bx+ c)Wn−2(x),

with W0(x) = 1 and W1(x) = x, where a, b > 0 and c 6= 0. In this context, we say {Wn(x)} is a
(0, 1)-sequence of polynomials.

Theorem 2.8. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Then the polynomial Wn(x) (of
degree dn = b(n+ 1)/2c) is distinct-real-rooted. Let

(2.9) x∗ = −4c+ a2

4b
, r∗ = x∗ − a

2
, and y∗ =

a+ b−
√

(a+ b)2 + 4c

2
.

Let Rn = {ξn,1, . . . , ξn,dn} be the ordered zero-set of Wn(x).

(i) If r∗ ≥ 0, then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any fixed i ≥ 0.
(ii) If 0 ∈ (r∗,−c/b) then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any fixed i ≥ 1;

and ξn,dn ↗ y∗ with x∗ < y∗.
(iii) If c > 0 then R′n+1 o R′n and R′n+2 ./ R′n for n ≥ 3; ξn,dn−i ↗ x∗ for any fixed i ≥ 1;

ξ2n,d2n ↗ y∗ and ξ2n−1,d2n−1 ↘ y∗ with x∗ < −c/b < y∗ < x2,d2 .

For these three cases, the respective best bounds for the set ∪n≥1Rn are (−∞, x∗), (−∞, y∗), and
(−∞, r). Moreover, the sequence ξn,i converges to −∞ for any fixed i ≥ 1.
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Now we explain how Theorem 2.6 can be obtained as a corollary of Theorem 2.8. When considering
the root geometry problem of general recursive polynomial sequences of type (0, 1), it is acceptable
to assume that degW0(x) ≤ degW1(x) and that the polynomial W0(x) is monic, which implies that
W0(x) = 1. Note that if a < 0, then when considering the polynomial sequence

(2.10) W̃n(x) = (−1)nWn(−x).

it is routine to verify that W̃0(x) = 1, W̃1(x) = x, and W̃n(x) = −aW̃n−1(x) + (−bx + c)W̃n−2(x).
Consequently, supposing that a > 0 is without loss of generality in regard to the root geometry.

We now explain why it is enough to prove Theorem 2.8 for only the case in which

(2.11) (i)W1(x) = x, (ii) c 6= 0, (iii) b > 0.

(i) Here the linear polynomial W1(x) can be supposed to have the form t(x− r). We can always
normalize the polynomials by the linear transformation

(2.12) W̃n(x) = Wn(x/t+ r),

whose root geometry differs from that of the sequence Wn(x) only by magnification and
translation.

(ii) If c = 0, then the number 0 is a root of every polynomial Wn(x). In this circumstance, one

may consider the polynomials W̃n(x) defined by the rule

W̃n(x) =
Wn+2(x)

W2(x)
.

It is clear that {W̃n(x)}n≥0 satisfies the recursion W̃n(x) = aW̃n−1(x) + (bx + c)W̃n−2(x).
Therefore, the condition c 6= 0 is not really restrictive.

(iii) The case in which b < 0 is unexplored. In fact, when b < 0, both the degrees and the
leading coefficients of the polynomials Wn(x) may vary irregularly. We also note that dropping
Condition (iii) may yield non-real-rooted polynomials Wn(x). For example, when a = 1,
b = −1, c = −1, we have W3(x) = −x2 − x− 1, which has no real roots.

We remark that in a general setting, beyond the genus polynomials of graphs, the polynomials
Wn(x) might have negative coefficients. In summary, this study of the root geometry of recursive
polynomials of type (0, 1) has only two restrictions. One is that the polynomial W0(x) is a constant.
The other is the assumption that the number b is positive.

2.2. Some examples. We now present several examples to illustrate our results.

Example 2.9. One kind of sequence of Fibonacci polynomials Wn(x) is defined by the recursion

(2.13) Wn(x) = Wn−1(x) + xWn−2(x),

where W0(x) = 1 and W1(x) = x + 1; see [20, Table 3] and [27, A011973]. Accordingly, a = b = 1,
c = 0, and r = −1, and we compute from Equation (2.9) that

x∗ = −4c+ a2

4b
= −1

4
and r∗ = x∗ − a

2
= −1

4
− 1

2
= −3

4
> −1 = r.

By Theorem 2.6(i), we know that each polynomial Wn(x) is distinct-real-rooted and that all roots
are less than −1/4. Also, for any ε > 0, there exists a number M ′ > 0 such that every polynomial
Wn(x) with n > M ′ has a root in the interval (−1/4− ε, −1/4). Moreover, by the final conclusion of
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Theorem 2.6, we know that for any N > 0, there exists a number M > 0 such that every polynomial
Wn(x) with n > M has a root less than −N .

In the next two examples, we examine how the set of convergent points is affected when we change
the coefficient of Wn−2(x) in Recursion (2.13) first to 2x/5 and then to x+ 2.

Example 2.10. Let Wn(x) be the polynomial sequence defined by the recursion

Wn(x) = Wn−1(x) +
2x

5
Wn−2(x),

with initial values W0(x) = 1 and W1(x) = x+ 1. We see that a = 1, b = 2/5, c = 0, and r = −1. We
calculate from Equation (2.9) that

x∗ = −4c+ a2

4b
= −5

8
< −3

5
= y∗ and r = −1 ∈

(
−9

8
, 0

)
=
(
r∗, −c

b

)
.

By Theorem 2.6, the polynomial Wn(x) is distinct-real-rooted, and the largest root converges to
−3/5 increasingly. Moreover, for any positive integer i, the root sequence xn, dn−i converges to −5/8
increasingly, and the root sequence xn, i converges to −∞ decreasingly.

Example 2.11. Let Wn(x) be the polynomial sequence defined by the recursion

Wn(x) = Wn−1(x) + (x+ 2)Wn−2(x),

with initial values W0(x) = 1 and W1(x) = x+ 1. Thus, a = b = 1, c = 2, and r = −1. We compute
that W2(x) = 2x+ 3, and that

x∗ = −9

4
, r = −1 > −2 = −c

b
, and y∗ = −

√
2.

Therefore, we have x∗ < −c/b < x2, d2 . By Theorem 2.6, each of the polynomials Wn(x) is distinct-
real-rooted, and has exactly one root larger than −9/4. The sequence of largest roots converges to

−
√

2 oscillatingly. Moreover, for any positive integer i, the root sequence xn, dn−i converges to −9/4
increasingly, and the root sequence xn, i converges to −∞ decreasingly.

Example 2.12. This example illustrates how our results can be used to prove the real-rootedness of a
sequence of partial genus polynomials. Let Dn(x) be the polynomial sequence defined by the recursion
Dn(x) = 2Dn−1(x) + 8xDn−2(x), with D0(x) = 1 and D1(x) = 2x, which may be recognized by those
familiar with enumerative research in topological graph theory (for example, see [8,10,13]) as a partial
genus distribution for the closed-end ladder Ln, which is shown in Figure 2.1.

v

Figure 2.1. The closed-end ladder L4 with a 2-valent root-vertex v.

The polynomial Dn(x) is the generating function for the number of cellular imbeddings of the ladder
Ln such that two different faces are incident on the root-vertex. By Theorem 2.6, each Dn(x) is a
distinct-real-rooted polynomial, and the root sequence ξn, dn−i converges to−1/8 for every nonnegative
integer i. In particular, none of the polynomials Dn(x) has a root larger than −1/8. Unfortunately,
we do not yet know what topological information is implied by this convergent point.
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3. Distinct Real-Rootedness

The proof of Theorem 2.8 begins here with an investigation of the real-rootedness of a (0, 1)-sequence
of polynomials. The remainder of the proof will be given in Section 4 and Section 5.

For any polynomial f(x), we follow the usual definition that f(±∞) = limx→±∞ f(x). We start our
analysis of (0, 1)-sequences {Wn(x)}n≥0 by finding a formula for the degree and the leading coefficient
of each of the polynomials.

Lemma 3.1. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with the constant b as in Defini-
tion 2.7, and with tn the leading coefficient of Wn(x). Then

dn = deg(Wn(x)) =

⌊
n+ 1

2

⌋
, t2n+1 = bn, and t2n = bn−1(na+ b).

Moreover, for all n ≥ 1, we have

Wn(−∞)(−1)dn > 0 and Wn(+∞) > 0

Proof. The formulas for the degree dn and the leading coefficients tn can be verified by induction on
the integer n. For any polynomial f(x) with positive leading coefficient, it is clear that

f(−∞)(−1)deg f(x) = +∞ and f(+∞) = +∞.

Since tn > 0, we infer that Wn(−∞)(−1)dn = Wn(+∞) = +∞. The sign relations follow immediately.
�

Using the intermediate value theorem for a (0, 1)-sequence of polynomials, we derive the following
criterion for their distinct-real-rootedness.

Theorem 3.2. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Let dn = deg(Wn(x)), and let
β ≤ −c/b. We denote the ordered zero-set of the polynomial Wn(x) by Rn. Suppose that for some
numbers m, k ∈ N, we define

(3.1) Tm = Rm ∩ (−∞, β) and Tm+1 = Rm+1 ∩ (−∞, β),

and suppose, further, that

Wm(β)(−1)k > 0,(3.2)

|Tm| = dm − k,(3.3)

|Tm+1| = dm+1 − k, and(3.4)

Tm+1 o Tm.(3.5)

Then there exists a set Tm+2 ⊆ Rm+2 ∩ (−∞, β) such that |Tm+2| = dm+2−k and, furthermore, such
that Tm+2 o Tm+1. Moreover, if

Tm+2 = Rm+2 ∩ (−∞, β),(3.6)

then we have Tm+2 ./ Tm.

Proof. By Conditions (3.3) and (3.4) of the premises, we can suppose that

Tm+1 = {x1, x2, . . . , xp} and Tm = {y1, y2, . . . , yq}
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are ordered sets, where p = dm+1 − k and q = dm − k. Definition (3.1) implies that xp < β. In view
of Condition (3.5), together with the premise β ≤ −c/b, we have the following ordering:

(3.7) · · · < yq−2 < xp−2 < yq−1 < xp−1 < yq < xp < β ≤ −c/b.

Note that Condition (3.5) also implies that p ≥ 1 and q ∈ {p− 1, p}. For convenience, let

x0 = y0 = −∞ and xp+1 = yq+1 = β.

By applying Lemma 2.4 with f(x) = Wm+1(x) and g(x) = Wm(x), we obtain that the zero-sets X
and Y become Rm+1 and Rm respectively. Consequently, by Definition (3.1), we have

X ′ = Rm+1 ∩ (−∞, β) = Tm+1 and Y ′ = Rm ∩ (−∞, β) = Tm.

From Inequality (3.2) in the premises, we infer that

(3.8) Wm(β) 6= 0.

Therefore, we can use Inequality (2.6), which gives that

(3.9) Wm(xi)Wm(β)(−1)p−i > 0 for all i ∈ [p− q, p].

Let i ∈ [p]. Since xi ∈ Tm+1 ⊆ Rm+1, we have Wm+1(xi) = 0. Taking n = m + 2 and x = xi
in Recursion (2.7), we see that Wm+2(xi) = (bxi + c)Wm(xi). From (3.7), we see that xi < −c/b.
Since b > 0, we deduce that bxi + c < 0. Thus, we can substitute Wm(xi) = Wm+2(xi)/(bxi + c) into
Inequality (3.9), which gives that

Wm+2(xi)

bxi + c
Wm(β)(−1)p−i > 0.

Since bxi + c < 0, the above inequality can be reduced to

(3.10) Wm+2(xi)Wm(β)(−1)p−i < 0.

Note that Inequality (3.10) holds also for i = p + 1. Replacing i by i + 1 in Inequality (3.10) gives
that Wm+2(xi+1)Wm(β)(−1)p−i > 0. Multiplying it by Inequality (3.10), we obtain that

Wm+2(xi)Wm+2(xi+1) < 0.

By the intermediate value theorem, the polynomial Wm+2(x) has a root in the interval (xi, xi+1).
Let zi be such a root.

When i = 1, Inequality (3.10) is Wm+2(x1)Wm(β)(−1)p−1 < 0. Multiplying it by Inequality (3.2)
gives that Wm+2(x1)(−1)p−1+k < 0. Since p = dm+1−k, the above inequality is Wm+2(x1)(−1)dm+1 >
0. On the other hand, Lemma 3.1 gives that Wm+2(−∞)(−1)dm+2 > 0. Since dm+1 + dm+2 = m+ 2,
we obtain that

Wm+2(−∞)Wm+2(x1)(−1)m+2 > 0.

Therefore, by the intermediate value theorem, the polynomial Wm+2(x) has a root in the interval
(−∞, x1) when m is odd. Let z0 be such a root.

Define

(3.11) Tm+2 =

{
{z1, z2, . . . , zp}, if m is even;

{z1, z2, . . . , zp} ∪ {z0}, if m is odd.

We shall now show that this set Tm+2 has the desired properties.
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• For each j ∈ [0, p], the number zj is chosen to be a zero of the polynomial Wm+2(x). Therefore,
Tm+2 ⊆ Rm+2.

• For each j ∈ [0, p], the number zj is chosen from the interval (xj , xj+1), which is contained
in the interval (−∞, β). Therefore, Tm+2 ⊂ (−∞, β).

• From Definition (3.11), we see that

– if m is even, then |Tm+2| = p = dm+1 − k = (m+ 2)/2− k = dm+2 − k;

– if m is odd, then |Tm+2| = p+ 1 = dm+1 − k + 1 = (m+ 3)/2− k = dm+2 − k.
Hence, in any case, we have that |Tm+2| = dm+2 − k.

• Since zj ∈ (xj , xj+1) for all j ∈ [0, p], we have Tm+2 o Tm+1 according to Definition 2.3.

It remains to show that Tm+2 ./ Tm. By applying Lemma 2.4 with f(x) = Wm+2(x) and with
g(x) = Wm(x), we obtain that the zero-sets X and Y become Rm+2 and Rm respectively. Conse-
quently, by Conditions (3.6) and (3.3) of the premises, we have

X ′ = Rm+2 ∩ (−∞, β) = Tm+2 and Y ′ = Rm ∩ (−∞, β) = Tm.

Since dm+2 = dm + 1, the result |Tm+2| = dm+2 − k and Condition (3.3) imply that

|X ′| = |Tm+2| = dm+2 − k = dm + 1− k = q + 1 = |Tm|+ 1 = |Y ′|+ 1.

Therefore, the lower bound |Y ′| − |X ′| + 1 of the range of the index j in Inequality (2.5) is 0. With
the aid of Inequality (3.8), we can use Inequality (2.5), which gives that

Wm+2(yj)Wm+2(β)(−1)q−j < 0 for all j ∈ [0, q + 1].

Let j ∈ [q + 1]. Replacing j by j − 1 in the above inequality, we obtain that

Wm+2(yj−1)Wm+2(β)(−1)q−j > 0.

Multiplying the above two inequalities gives that

Wm+2(yj−1)Wm+2(yj) < 0 for all j ∈ [q + 1].(3.12)

By the intermediate value theorem, we infer that the polynomial Wm+2(x) has a root, say, wj , in the
interval (yj−1, yj), that is,

−∞ < w1 < y1 < w2 < y2 < · · · < wq < yq < wq+1 < yq+1 = β.

Define T = {w1, w2, . . . , wq+1}. Then the above chain of inequalities implies that T ./ Tm. By the
choice of the numbers wj , we see that wj ∈ Rm+2 and wj < β. It follows that T ⊆ Rm+2∩ (−∞, β) =
Tm+2. Since |T | = q+ 1 = |Tm+2|, we conclude that T = Tm+2. Hence, the above interlacing relation
T ./ Tm becomes Tm+2 ./ Tm, which completes the proof. �

The usage of this method of interlacing dates back at least to Harper [14], who established the
real-rootedness of the Bell polynomials in this way. We should mention that Liu and Wang [18]
have further applied this method to establish several easy-to-verify criteria for the real-rootedness of
polynomials in which all the coefficients are non-negative.

We make two small preparations and a lemma before the further exploration of the root geometry,
which will be used in several proofs below. The polynomial W1(x) = x has the unique root y1 = 0.
From Recursion (2.7), it is direct to compute that the polynomial W2(x) = (a + b)x + c, which has
the unique root y2 = −c/(a+ b). Therefore, the polynomials W1(x) and W2(x) are real-rooted, and

(3.13) R1 = {0} and R2 = {−c/(a+ b)}.
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In the remainder of this section, we will use Theorem 3.2 frequently. We will always set the constant k
to be either 0 or 1. The following corollary is for the particular case k = 0.

Lemma 3.3. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Denote the ordered zero-set of
Wn(x) by Rn. Let c < 0, and

(3.14) − c/(a+ b) < β ≤ −c/b.

Let N be a positive integer. If Wm(β) > 0 for all m ∈ [N ], then we have

Rm ⊂ (−∞, β) for all m ∈ [N + 2],

Rm+1 oRm for all m ∈ [N + 1],

and Rm+2 ./ Rm for all m ∈ [N ].

In particular, if Wm(β) > 0 for all m ≥ 1, then the above three relations hold for all m ≥ 1.

Proof. First, we show the following relations by induction on the integer m:

(3.15) Rm ⊂ (−∞, β), Rm+1 ⊂ (−∞, β), and Rm+1 oRm for all m ∈ [N + 1].

Recall from Formula (3.13) that R1 = {0} and R2 = {−c/(a + b)}. When m = 1, the relations
in (3.15) become

R1 ⊂ (−∞, β), R2 ⊂ (−∞, β), and R2 oR1,

that is,

0 < β, −c/(a+ b) < β, and 0 < −c/(a+ b).

Since a, b > 0, the above relations hold by the negativity of the number c and Inequality (3.14) in the
premises. Suppose that the relations in (3.15) hold for m ∈ [N ], and we need to show them for m+ 1.

Let k = 0. The upper bound −c/b of the parameter β is as same as that in Theorem 3.2. We
are going to verify Conditions (3.2)–(3.5). Since k = 0, the inequality Wm(β) > 0 in the premises
is exactly Conditions (3.2). From Definition (3.1) and the induction hypothesis Rm ⊂ (−∞, β), we
infer that Tm = Rm ∩ (−∞, β) = Rm. It follows that |Tm| = |Rm| = dm, i.e., Condition (3.3) holds.
Similarly, we have Tm+1 = Rm+1, i.e., Condition (3.4) holds. Thus, by the induction hypothesis we
have that Rm+1 oRm, which is equivalent to Condition (3.5).

Therefore, we can apply Theorem 3.2 and obtain the existence of a set Tm+2 ⊆ Rm+2∩(−∞, β) such
that Tm+2oTm+1 and |Tm+2| = dm+2. Since the sets Tm+2 and Rm+2 have the same cardinality dm+2,
we obtain that

(3.16) Tm+2 = Rm+2.

Consequently, the result Tm+2 ⊂ (−∞, β) becomes the desired relation

(3.17) Rm+2 ⊂ (−∞, β);

and the result Tm+2oTm+1 becomes the desired relation Rm+2oRm+1. This completes the induction
proof for the relations in (3.15).

By Equation (3.16) and Relation (3.17), we infer that Tm+2 = Rm+2 ∩ (−∞, β), which is exactly
Condition (3.6). Hence, by Theorem 3.2, we derive that Tm+2 ./ Tm, i.e., Rm+2 ./ Rm, which
completes the proof. �
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In order to continue with our discussions, we fix more parameters of (0, 1)-sequences of polynomials.
Inspired by Lemma 2.1, we introduce the following notations.

Definition 3.4. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. We define

∆(x) = a2 + 4(bx+ c) = 4bx+ a2 + 4c,

g±(x) =
(
2x− a±

√
∆(x)

)
/2 =

(
2x− a±

√
4bx+ a2 + 4c

)
/2,

g(x) = g−(x)g+(x) = x2 − (a+ b)x− c.

We denote the zeros of the functions B(x) = bx+ c, ∆(x) and g+(x) by

(3.18) xB = −c
b
, x∆ = −a

2 + 4c

4b
, and xg =

(a+ b)−
√

(a+ b)2 + 4c

2
,

respectively. We also define

n0 =
2ab

a2 + 2ab+ 4c
.

We observe that Lemma 2.1 implies the following:

Wn(xB) = an−1W1(xB),(3.19)

Wn(x∆) =

(
1 +

n(2x∆ − a)

a

)(
a

2

)n
, and(3.20)

Wn(xg) = xng .(3.21)

The following technical lemma provides the ordering among the numbers x∆, xg, xB , and 0, for the
sake of determining the sign of the value Wn(x) for specific numbers x in the proofs of Theorem 3.8.

Lemma 3.5. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials with parameters specified as in
Definition 3.4.

(i) If 4c
a2+2ab ≤ −1, then Wn(x∆) > 0 for all n ≥ 1.

(ii) If 4c
a2+2ab > −1,then xg ∈ R, x∆ < xg, and

(3.22) Wn(x∆) ≥ 0 ⇐⇒ n ≤ n0 =
2ab

a2 + 2ab+ 4c
,

where the equality on the left hand side holds if and only if the equality on the right hand
side holds. Moreover, if c > 0, then Wn(x∆) < 0 and xB < xg < 0; otherwise, we have
0 < xg < xB.

Proof. See Appendix 6.2. �

Below is an example illustrating the cases −(a2 + 2ab)/4 < c < 0 and c > 0, respectively.

Example 3.6. Let {Wn(x)}n≥1 be a (0, 1)-sequence of polynomials with parameters specified as in
Definition 3.4, and with a = b = 1 and c = −1/2; thus, we are in Case (ii), and we have

Wn(x) = Wn−1(x) + (x− 1/2)Wn−2(x),
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with initial conditions W0(x) = 1 and W1(x) = x. We observe that −(a2 + 2ab)/4 < c < 0. By
Definition 3.4, we have

x∆ = −a
2 + 4c

4b
= −1− 2

4
= 1/4,

xg = 1 −
√

2/2, xB = 1/2, and n0 = 2. Thus, we may confirm the inequalities x∆ < xg and
0 < xg < xB . To illustrate that the sign of the value Wn(x∆) satisfies the left side of the equivalence
relation (3.22), we calculate that W1(x∆) = 1/4 > 0, W2(x∆) = 0, and W3(x∆) = −1/16 < 0.
Continuing recursively, we see that Wn(1/4) < 0 for n ≥ 3.

Example 3.7. Let {Wn(x)}n≥1 be a (0, 1)-sequence of polynomials with parameters specified as in
Definition 3.4, and with a = b = 1 and c = 1, which puts us in Case (i); here we have

Wn(x) = Wn−1(x) + (x+ 1)Wn−2(x),

with W0(x) = 1 and W1(x) = x. This time, we have c > 0. By Definition 3.4, we have x∆ = −5/4,

xg = 1 −
√

2, xB = −1, and n0 = 2/7. These data correspond to the inequalities xB < xg and
x∆ < xg in the conclusion of Lemma 3.5. In fact, when c > 0, we always have n0 < 1, which implies
that Wn(x∆) < 0.

We are now ready to establish the real-rootedness of every polynomial Wn(x).

Theorem 3.8. Let {Wn(x)}n≥1 be a (0, 1)-sequence of polynomials with parameters specified as in
Definition 3.4. Then every polynomial Wn(x) is distinct-real-rooted. Moreover, let us denote the
ordered zero-set of Wn(x) by Rn, and let yn = maxRn be the largest real root of the polynomial Wn(x).
For all n ≥ 1, we may conclude the following:

(i) if c < 0, then yn < xB, Rn+1 oRn, and Rn+2 ./ Rn.

(ii) if c > 0, then yn > xB, R′n+1 ⊂ (−∞, x∆), R′n+2 o R′n+1, and R′n+2 ./ R
′
n, where R′n =

Rn \ {yn}.

Proof. From Equation (3.19), we see that

(3.23) cWn(xB) < 0.

Below we will show (i) and (ii) individually.

(i) Let c < 0. Then Inequality (3.23) reduces to Wn(xB) > 0 for all n ≥ 1. Take β = −c/b. Then
Condition (3.14) holds trivially. By Lemma 3.3, we deduce that Rn ⊂ (−∞, xB), Rn+1 o Rn and
Rn+2 ./ Rn for all n ≥ 1.

(ii) Let c > 0. Then Inequality (3.23) implies thatWn(xB) < 0. By Lemma 3.1, we haveWn(+∞) > 0.
Therefore, by the intermediate value theorem, the polynomial Wn(x) has a real root in this interval
(xB ,+∞). In particular, the largest root yn is larger than xB . Note that x∆ = −(a2 + 4c)/(4b) <
−c/b = xB . Thus, we have

(3.24) x∆ < xB < yn for all n ≥ 1.

For the remaining desired relations, it suffices to show the following:

(3.25) R′n ⊂ (−∞, x∆), R′n+1 ⊂ (−∞, x∆), R′n+1 oR′n, R′n+1 ./ R
′
n−1, for all n ≥ 2.
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We proceed by induction on n. Consider n = 2. Since d1 = d2 = 1, we have R′1 = R′2 = ∅. Since
a, b, c > 0, from Definition (3.18), we have

x∆ = −(a2 + 4c)/(4b) < 0.

In view of Formula (3.20), we deduce that

(3.26) Wn(x∆) =

(
1 +

n(2x∆ − a)

a

)(
a

2

)n
< 0, for all n ≥ 1.

In particular, we have W3(x∆) < 0. On the other hand, Lemma 3.1 gives that W3(−∞)(−1)d3 > 0.
Since d3 = 2, it reduces to W3(−∞) > 0. Therefore, by the intermediate value theorem, we infer that
the polynomial W3(x) has a root, say, r3, in the interval (−∞, x∆). From Inequality (3.24), we see
that y3 > x∆, and thus, r3 < x∆ < y3. It follows that R3 = {r3, y3}, and thus, R′3 = {r3}. Therefore,
the relations in (3.25) for n = 2 are respectively

∅ ⊂ (−∞, x∆), {r3} ⊂ (−∞, x∆), {r3}o ∅, {r3} ./ ∅,
all of which hold trivially, except the second one holds since r3 < x∆.

Suppose that the 4 relations in (3.25) hold for some n ≥ 2, by induction, it suffices to show that

(3.27) R′n+2 ⊂ (−∞, x∆), R′n+2 oR′n+1, and R′n+2 ./ R
′
n.

In applying Theorem 3.2, we set k = 1, β = x∆ and m = n. We shall verify Conditions (3.2)–(3.5).

• Inequality (3.26) checks the truth for Condition (3.2).

• From Definition (3.1), we have Tn = Rn∩ (−∞, x∆). Note that in the zero-set Rn, except the
largest root yn, which is not in the interval (−∞, x∆) by (3.24), all the other roots (whose
union is the set R′n) are in the interval (−∞, x∆) by Hypothesis (3.25). Therefore, we infer
that Rn ∩ (−∞, x∆) = R′n, and thus, Tn = R′n. It follows that |Tn| = |R′n| = dn − 1, which
verifies Condition (3.3).

• Similarly, we have Tn+1 = R′n+1, and Condition (3.4) holds true.
• Consequently, the hypothesis Tn+1oTn in (3.25) can be rewritten as R′n+1oR′n, which verifies

Condition (3.5).

By Theorem 3.2, there exists a set Tn+2 ⊆ Rn+2 ∩ (−∞, x∆) such that |Tn+2| = dn+2 − 1 and
Tn+2 o Tn+1. From Inequality (3.24), we see that yn+2 > x∆. It follows that

(3.28) Rn+2 ∩ (−∞, x∆) = (R′n+2 ∪ {yn+2}) ∩ (−∞, x∆) ⊆ R′n+2.

Thus, we have Tn+2 ⊆ R′n+2. Since the sets Tn+2 and R′n+2 have the same cardinality dn+2 − 1, we
infer that Tn+2 = R′n+2. Now, the result Tn+2 ⊂ (−∞, x∆) is one of the desired relations:

(3.29) R′n+2 ⊂ (−∞, x∆);

the result Tn+2 o Tn+1 is another one of the desired relations:

R′n+2 oR′n+1.

In view of our goal (3.27), it suffices to show that R′n+2 ./ R
′
n, i.e., Tn+2 ./ Tn. By Theorem 3.2, it

suffices to verify Condition (3.6), i.e.,

R′n+2 = Rn+2 ∩ (−∞, x∆).

In view of Relation (3.29), we deduce that R′n+2 ⊆ Rn+2 ∩ (−∞, x∆). Together with Relation (3.28),
we find the above equation, which completes the proof. �
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Continuing Example 3.6 and Example 3.7, we present the approximate values of zeros in the ordered
set Rn = {ξn,1, . . . , ξn,dn}.

Example 3.9. This example continues Example 3.6. Table 3.1 illustrates that for n ≤ 8, we have

yn = maxRn < xB = 1/2, Rn+1 o Rn and Rn+2 ./ Rn.

A more careful observation suggests that the second largest root ξn, dn−1 is bounded by the number

Table 3.1. The approximate zeros of Wn(x) (1 ≤ n ≤ 8) in Example 3.6.

ξn, dn−3 ξn, dn−2 ξn, dn−1 ξn, dn = yn
n = 1 0
n = 2 0.2500
n = 3 −1.7807 0.2807
n = 4 −0.2886 0.2886
n = 5 −4.2912 0 0.2912
n = 6 −1.0218 0.1046 0.2922
n = 7 −7.5833 −0.3639 0.1547 0.2926
n = 8 −1.9561 −0.1194 0.1827 0.2927

x∆ = 1/4. In fact, this is true in general; it motivates Theorem 4.1 below.

Example 3.10. This example continues Example 3.7. Table 3.2 illustrates that for n ≤ 8,

ξn, dn−1 < x∆ = −5/4 and yn > xB = −1.

A more careful observation suggests that the largest root yn converges to the point xg in an oscillating

Table 3.2. The approximate zeros of Wn(x) (1 ≤ n ≤ 8) in Example 3.7.

ξn, dn−3 ξn, dn−2 ξn, dn−1 ξn, dn
n = 1 0
n = 2 −0.5000
n = 3 −2.6180 −0.3819
n = 4 −1.5773 −0.4226
n = 5 −5.1819 −1.4064 −0.4116
n = 6 −2.2405 −1.3444 −0.4149
n = 7 −8.5525 −1.7194 −1.3140 −0.4139
n = 8 −3.1548 −1.5342 −1.2966 −0.4142

manner, which is approximately −0.4142. In fact, this convergence is true in general; see Theorem 4.1
and Theorem 5.5.
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4. Bound on the Zero-Set Rn

As consequence of the real-rootedness of the (0, 1)-sequence polynomials {Wn(x)}n≥0, we improve
the bound of the zero-set Rn of Wn(x).

Theorem 4.1. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Let us denote the ordered zero-
set of Wn(x) by Rn, and we let R′n = Rn \ {yn}, where yn = maxRn is the largest real root of the
polynomial Wn(x).

(i) If c ≤ −(a2 + 2ab)/4, then Rn ⊂ (−∞, x∆) for all n ≥ 1.

(ii) If −(a2 + 2ab)/4 < c < 0, then we have

– Rn ⊂ (−∞, x∆), for n < n0;

– R′n ⊂ (−∞, x∆) and yn = x∆, for n = n0;

– R′n ⊂ (−∞, x∆) and yn ∈ (x∆, xg), for n > n0;

(iii) If c > 0, then we have R′n ⊂ (−∞, x∆), and

(4.1) xB < y2 < y4 < y6 < · · · < y2n < · · · < xg < · · · < y2n−1 < · · · < y5 < y3 < y1 = 0.

Proof. We treat the three cases individually.

(i) Let c ≤ −(a2 + 2ab)/4. Since a, b > 0, it is routine to check that

−c/(a+ b) < −(a2 + 4c)/(4b) < −c/b,
which verifies Condition (3.14) for β = x∆. By Lemma 3.5, we have

(4.2) Wn(x∆) > 0 for all n ≥ 1.

Now, by Lemma 3.3, we deduce that Rn ⊂ (−∞, x∆) for all n ≥ 1.

(ii) Let −(a2 + 2ab)/4 < c < 0.

Case n < n0. Recall from Formula (3.13) that R1 = {0} and R2 = {−c/(a+ b)}. If n0 ≤ 1, then
nothing needs to be shown in this case. Next suppose that n0 > 1, i.e., a2 + 4c < 0. Together with
b > 0, this implies that 0 < −(a2 + 4c)/(4b) = x∆, i.e., R1 ⊂ (−∞, x∆). If n0 ≤ 2, then nothing else
needs to be shown. And then suppose that n0 > 2, i.e., a2 + ab+ 4c < 0. Together with a, b > 0, it is
routine to check that

(4.3) − c/(a+ b) < −(a2 + 4c)/(4b),

i.e., R2 ⊂ (−∞, x∆). If n0 ≤ 3, nothing else needs to be shown. So we may suppose that n0 > 3.

Let N = dn0e−3. Since n0 > 3, the integer N is positive. Take β = x∆. From x∆ < −c/b, together
with Inequality (4.3), we see that Condition (3.14) holds true. By Lemma 3.5, we have Wn(x∆) > 0
for all n ∈ [N ]. By Lemma 3.3, we have Rn ⊂ (−∞, x∆) for all n ∈ [N + 2] = [dn0e − 1], i.e., for all
n < n0.

Case n = n0. It follows that the number n0 is an integer. By Lemma 3.5, we have Wn0(x∆) = 0.
It suffices to show that the polynomial Wn0(x) has no roots larger than the number x∆. If n0 = 1,
then the polynomial Wn0

(x) = W1(x) = x has only one root. So we are done. Suppose that n0 ≥ 2.
By the interlacing property Rn0

oRn0−1 obtained in Theorem 3.8, we see that the second largest root
of the polynomial Wn0

(x) is less than the largest root of the polynomial Wn0−1(x), which is less than
the number x∆, in view of the case n < n0. This completes the proof for the case n = n0.
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Case n > n0. First, we show that yn < xg, i.e., Rn ⊂ (−∞, xg). We do this by applying

Lemma 2.4 for β = xg. Recall from Definition (3.18) that xg = (a + b −
√

(a+ b)2 + 4c)/2. Since
a, b > 0 and −(a2 + 2ab)/4 < c < 0, it is routine to check that

(4.4) − c/(a+ b) < (a+ b−
√

(a+ b)2 + 4c)/2.

By Lemma 3.5 (ii), we have

(4.5) max(0, x∆) < xg < xB .

The particular inequality xg < xB , together with Inequality (4.4), verifies Condition (3.14). On the
other hand, since xg > 0, Formula (3.21) implies that

(4.6) Wn(xg) > 0, for all n ≥ 1.

From Lemma 3.3, we deduce that Rn ⊂ (−∞, xg) for all n ≥ 1.

By Lemma 3.5, we have Wn(x∆) < 0. In view of Inequality (4.6), the polynomial Wn(x) has
different signs at the ends of the interval (x∆, xg). Therefore, the polynomial Wn(x) has an odd
number, say pn, of roots in the interval (x∆, xg). In particular, we have

(4.7) pn ≥ 1 for all n > n0.

It suffices to show that pn = 1, for all n > n0. We proceed the proof by induction on n. Note that the
largest root of the polynomial Wbn0c(x) is less than or equal to the number x∆. By the interlacing
property Rbn0c+1 o Rbn0c, the polynomial Wbn0c+1(x) has at most one root larger than the number
x∆, i.e., pbn0c+1 ≤ 1. In view of Inequality (4.7), we deduce that pbn0c+1 = 1. Thus, we can suppose
that pn = 1 for some n > n0. If n ≤ 2, then the degree dn ≤ 1. It follows immediately that pn = 1.
Suppose that n ≥ 3. By the interlacing property Rn+1 oRn, the third largest root of the polynomial
Wn+1(x) is less than the second largest root of the polynomial Wn(x), which is at most x∆ since
pn = 1. Therefore, the polynomial Wn+1(x) has at most two roots larger than the number x∆, i.e.,
pn ≤ 2. Since the integer pn is odd, in view of Inequality (4.7), we infer that pn = 1. This completes
and the induction and hence the proof of (ii).

(iii) Let c > 0. The bound for the set R′n has been confirmed in Theorem 3.8. It suffices to show
Inequality (4.1). By Theorem 3.8, we have yn > xB for all n ≥ 1. It suffices to show that

y2n < y2n+2 < xg and(4.8)

xg < y2n+1 < y2n−1(4.9)

for all n ≥ 0, where y0 = xB and y−1 = +∞. We proceed by induction on the integer n. When n = 0,
the desired inequalities (4.8) and (4.9) become y2 < xg < y1, i.e.,

−c/(a+ b) < (a+ b−
√

(a+ b)2 + 4c)/2 < 0.

Since a, b, c > 0, it is routine to check the truth of the above inequalities. Now, based on the induction
hypothesis that

(4.10) y2n < xg < y2n−1,

we are going to show the inequalities (4.8) and (4.9).

Since the number y2n is largest real root of the polynomial W2n(x), and y2n−1 > y2n by the
hypothesis (4.10), we infer that the value W2n(y2n−1) has the same sign as the limit W2n(+∞),
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which is positive by Lemma 3.1. Therefore, we find W2n(y2n−1) > 0. Replacing n by 2n − 1 in
Recursion (2.8), and taking x = y2n−1, we obtain that

(4.11) W2n+1(y2n−1) = aW2n(y2n−1) > 0.

On the other hand, by Lemma 3.5, we have xg < 0. Thus from Equation (3.21), we infer that

(4.12) Wn(xg)(−1)n > 0, for all n ≥ 1.

In particular, we have W2n+1(xg) < 0. Together with (4.11), we see that the polynomial W2n+1(x)
attains different signs at the ends of the interval (xg, y2n−1). By the intermediate value theorem,
the polynomial W2n+1(x) has a root in the interval (xg, y2n−1). By Theorem 3.8, only the largest
root y2n+1 of the polynomial W2n+1(x) is larger than the number xB . Since xB < xg, we conclude
that y2n+1 ∈ (xg, x2n−1). This proves Inequality (4.9).

Denote by z2n+1 the second largest root of the polynomial W2n+1(x). From the interlacing property
R2n+1 oR2n, we infer that

W2n+1(x)W2n+1(+∞) < 0 for all x ∈ (z2n+1, y2n+1).

By Lemma 3.1, we see that the limit W2n+1(+∞) = +∞. It follows that

(4.13) W2n+1(x) < 0 for all x ∈ (z2n+1, y2n+1).

Now, from Inequality (4.9) and the hypothesis (4.10), we see that y2n < xg < y2n+1. From Theo-
rem 3.8, we see that z2n+1 < xB < y2n. By Inequality (4.13), we infer that W2n+1(y2n) < 0.

Replacing n by 2n+ 2 in Recursion (2.8), and taking x = y2n, we obtain that

(4.14) W2n+2(y2n) = aW2n+1(y2n) < 0.

By Inequality (4.12), we have W2n+2(xg) > 0. By the intermediate value theorem, the polynomial
W2n+2(x) has a root in the interval (y2n, xg). Since only its largest root is larger than the number xB ,
and since y2n > xB , we conclude that y2n+2 ∈ (y2n, xg). This proves Inequality (4.8), which completed
the induction. �

In summary, we see that “almost all” zeros lie in the open interval (−∞, x∆). Precisely speaking,
when c ≤ −(a2 + 2ab)/4, all roots lie in (−∞, x∆); when c > −(a2 + 2ab)/4, only the largest root of
the polynomial Wn(x) is possibly but “eventually” larger than x∆, with maximum value max(xg, 0).

Before ending this section, we mention that the recurrence system defined by Recursion (2.7) can be
solved always by transforming the polynomials Wn(x) into Chebyshev polynomials. More precisely,
by induction and by the fact that Chebyshev polynomials of the second kind satisfy the recursion
Un(t) = 2tUn−1(t)− Un−2(t) with initial conditions U0(t) = 1 and U1(t) = t, we obtain that

Wn(x) =
√
−bx− c

n
(

x√
−bx− c

Un−1

(
a

2
√
−bx− c

)
− Un−2

(
a

2
√
−bx− c

))
.

By this, it is now clear that all roots of Wn(x) are real and bounded, as described in Theorems 3.8
and 4.1.
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5. Limit Points of the Zero-Set Rn

In this section, we show that one of the intervals (−∞, x∆), (−∞, xg), and (−∞, y2) is the best
bound of all zeros, depending on the range of the constant term c of the linear polynomial coeffi-
cient B(x) = bx+ c. More precisely, we will demonstrate the aforementioned three limit points of the
zero-set ∪n≥1Rn over the course of several subsections. We say that a proposition holds for large n,
if there exists a number N such that the proposition holds whenever n > N .

5.1. The number xg can be a limit point. The following lemma will help determine all limit
points of the zero-set ∪n≥1Rn, which are larger than the number x∆.

Lemma 5.1. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Let x0 6= xg and ∆(x0) > 0. Then
(x0 − xg)Wn(x0) > 0, for large n.

Proof. See Appendix 6.3. �

Using Lemma 5.1, we can confirm that the roots outside the interval (−∞, x∆) converges to the
number xg when n→∞ as follows.

Theorem 5.2. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Let us denote the ordered zero-set
of Wn(x) by Rn, and we let yn = maxRn be the largest real root of the polynomial Wn(x).

(i) If −(a2 + 2ab)/4 < c < 0, then we have yn ↗ xg.

(ii) If c > 0, then we have y2n ↗ xg and y2n+1 ↘ xg.

Proof. We treat the two cases individually.

(i) Suppose that −(a2 + 2ab)/4 < c < 0. Since Rn+1 o Rn, the sequence yn increases. In virtue of
Theorem 4.1, we have yn < xg for all n ≥ 1. Therefore, the sequence yn converges to a finite number
y∗ as n → ∞. If y∗ < xg, then there exists x0 ∈ (x∆, xg) such that the values Wn(x0) and Wn(xg)
have the same sign for large n, i.e., Wn(x0) > 0 for large n; see Inequality (4.6). This contradicts
Theorem 5.1. Hence, we have that yn ↗ xg.

(ii) Suppose that c > 0. From Theorem 4.1, we see that the sequence y2n converges to a finite number
y∗. Then we have xB < y∗ ≤ xg. Suppose to the contrary that y∗ < xg, so there exists x0 ∈ (`e, xg)
such that the numbers W2n(x0) and W2n(xg) have the same sign for large n, i.e., W2n(x0) > 0 for
large n; see Inequality (4.12). This contradicts Theorem 5.1. Along the same line, we can show the
convergence y2n+1 ↘ xg, which completes the proof. �

An illustration for the convergences above can be found in Tables 3.1 and 3.2.

5.2. The number x∆ is a limit point. In an analog with Lemma 5.1, we give a characterization
of the sign of the value Wn(x0) for the case ∆(x0) < 0. This time the criterion for the sign is for all

positive integers n. We define lx0
to be the straight line

√
−∆(x0)x+ (2x0− a)y = 0, and the radian

θ(x0) to be arctan

√
−∆(x0)

a .
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Lemma 5.3. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, and let ∆(x0) < 0.

• If the radian nθ(x0) lies to the left of the line lx0 , then Wn(x0) < 0;
• If the radian nθ(x0) lies on the line lx0

, then Wn(x0) = 0;
• If the radian nθ(x0) lies to the right of the line lx0

, then Wn(x0) > 0.

Proof. See Appendix 6.4. �

Let us get some illustration of this characterization from the example below.

Example 5.4. This example continues Example 3.6. Take x0 = −1, we have ∆(x0) = −5 < 0 and

θ(x0) = arctan(
√

5). The line lx0 becomes
√

5x− 3y = 0. Thus a radian φ lies to the left of the line
lx0

if and only if

(5.1) φ ∈
(
arctan(

√
5/3) + 2`π, arctan(

√
5/3) + (2`+ 1)π

)
for some integer `.

By approximating arctan(
√

5/3) ≈ 0.6405, we have that θ(x0) ≈ 1.1502, 2θ(x0) ≈ 2.3005 and 3θ(x0) ≈
3.4507. By Relation (5.1), we deduce that θx0 , 2θx0 and 3θx0 lie to the left of the line lx0 . In the same
way we can deduce that the radians 4θ(x0) ≈ 4.6010, 5θ(x0) ≈ 5.7513 and 6θ(x0) ≈ 6.9015 lie to the
right of the line lx0

. The truth is, as one may compute directly, that

W1(−1) = −1, W2(−1) = −5/2, W3(−1) = −1,

W4(−1) = 11/4, W5(−1) = 17/4, W6(−1) = 1/8.

The above data verifies the fact that Wn(x0) < 0 for n ∈ {1, 2, 3}, and that Wn(x0) > 0 for n ∈
{4, 5, 6}, coinciding with the characterization.

Now we are ready to justify that the number x∆ is a limit point.

Theorem 5.5. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, and let us denote the ordered
zero-set of Wn(x) by Rn = {ξn,1, . . . , ξn,dn}. Then

(5.2) lim
n→∞

ξn, dn−i = x∆

for all i ≥ 0 if c ≤ −(a2 + 2ab)/4; and for all i ≥ 1 otherwise.

Proof. Let c ≤ −(a2 + 2ab)/4. We will show the limit (5.2) for all i ≥ 0. As will be seen, the other
case can be done in the same vein.

From the interlacing property obtained in Theorem 3.8, we see that the sequence {ξn, dn−i}n≥1

increases and all its members are less than the number x∆, which implies that it converges to a
number which is at most x∆. Suppose, by way of contradiction, that the limit point of the se-
quence {ξn, dn−i}n≥1 is not the point x∆.

When i = 0, there exists a point x0 < x∆ such that the numbers Wn(x0) and Wn(x∆) have the
same sign, i.e., we have Wn(x0) > 0 for large n. Therefore, by Lemma 5.3, the radian nθ(x0) resides
in certain one side of the line lx0

forever for large n. This is impossible because θ(x0) < π/2. Hence
we deduce that limn→∞ ξn,dn = x∆.

Now for i = 1, the sequence {ξn, dn−1}n≥1 converges to some point less than x∆. Thus, there exists
a number x1 < x∆ such that the numbers Wn(x1) and Wn(x∆) have distinct signs, i.e., we have
Wn(x1) < 0 for large n. Here again, the radian θ(x1) resides in certain one side of the line lx1 for
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large n, a contradiction. This confirms the truth of the limit (5.2) for i = 1. Continuing in this way,
we can deduce that for a general i ≥ 2, there exists a number xi < x∆, such that

Wn(xi)(−1)i > 0 for large n,

which contradicts Lemma 5.3. Hence, we conclude that the limit (5.2) holds true for all i ≥ 0.

Now we consider the other possibility that c > −(a2 + 2ab)/4. In fact, the above contradiction
idea still works. This is because that, whatever sign does the value Wn(x∆) have, it is a fixed sign.
However, the sign of the value Wn(x0) for any point x0 < x∆ can not be invariant for large n. This
completes the proof. �

5.3. Negative infinity is a limit point. Now we are ready to study the negative infinity as a limit
point.

Theorem 5.6. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, and let us denote the ordered
zero-set of Wn(x) by Rn = {ξn,1, . . . , ξn,dn}. Then limn→∞ ξn,i = −∞, for all positive integers i.

Proof. From the interlacing property Rn+2 ./ Rn obtained in Theorem 3.8, we see that the se-
quences {ξ2n, i}n≥1 decreases, and so does the sequence {ξ2n−1, i}n≥1. Therefore, these two sequences
converge respectively. We shall show that both of these sequences converge to the negative infinity.

Suppose, by way of contradiction, that the sequence {ξ2n, 1}n≥1 converges to some real number x∗.
Then for any number x0 < x∗, the number Wn(x0) has the sign of Wn(−∞). It follows that the sign
of the number Wn(x0) would not change for large n, which contradicts Theorem 5.3. This proves that
limn→∞ ξ2n,i = −∞ for i = 1. Its truth for general i, in fact, along the same lines, if it does not
hold for some i ≥ 2, then we can deduce the existence of a number xi such that xi < x∆ and that the
sign of the number Wn(xi) keeps invariant for large n, which leads to a contradiction.

Along the same lines, we can prove that limn→∞ ξ2n−1, i = −∞, for all i ≥ 1.

Now, for any fixed i ≥ 1, the subsequences {ξ2n, i}n≥1 and {ξ2n−1, i}n≥1 converge to the same point
−∞. Hence, the joint sequence {ξn,i}n≥1 converges to the negative infinity as well, which completes
the proof. �

For an illustration for the convergences in Theorem 5.5 and Theorem 5.6, the reader can refer to
Tables 3.1 and 3.2.
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6. Appendix: Technical proofs

6.1. Proof of Lemma 2.4. Let x0 = y0 = −∞ and yq+1 = β. The interlacing property X ′ o Y ′

in the premises implies that p ≥ 1 and q ∈ {p − 1, p}. Since X ′ ⊂ (−∞, β), we infer that xp < β.
Therefore, we have that

· · · < yq−2 < xp−2 < yq−1 < xp−1 < yq < xp < β.

We shall show Inequality (2.5) and Inequality (2.6) respectively.

Let i ∈ [p]. From the definition X ′ = X ∩ (−∞, β) and the interlacing property X ′ o Y ′ in
the premises, we see that the number xp+1−i is the unique root of the polynomial f(x) in the in-
terval (yq+1−i, yq+2−i). Suppose that f(β) 6= 0. By the intermediate value theorem, we infer that

http://oeis.org
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f(yq+1−i)f(yq+2−i) < 0, that is,

f(yq)f(β) < 0 (i = 1),

f(yq−1)f(yq) < 0 (i = 2),

...

f(yq−p+1)f(yq−p+2) < 0 (i = p).

Multiplying the first i inequalities in the above list results in that

f(yq+1−i)f(β)(−1)i−1 < 0.

Replacing i by q + 1 − j in it yields Inequality (2.5) for j ∈ [q + 1 − p, q]. When j = q + 1, since
yq+1 = β stands as a premise, Inequality (2.5) holds true trivially.

From the definition Y ′ = Y ∩ (−∞, β), we deduce that the polynomial g(x) has no roots in the
interval (yq, β). Suppose that g(β) 6= 0. By the intermediate value theorem, we infer that g(x)g(β) > 0
for all x ∈ (yq, β). In particular, we have

(6.1) g(xp)g(β) > 0,

which is Inequality (2.6) for j = p. Below we can suppose that p ≥ 2, and thus, q ≥ 1.

Let j ∈ [q]. Similar to the previous proof, we have g(xp−j)g(xp+1−j) < 0, that is,

g(xp−1)g(xp) < 0 (j = 1),

g(xp−2)g(xp−1) < 0 (j = 2),

...

g(xp−q)g(xp−q+1) < 0 (j = q).

Multiplying the first j inequalities in the above list, we find that

g(xp−j)g(xp)(−1)j−1 < 0.

Multiplying it by Inequality (6.1) results in that g(xp−j)g(β)(−1)j−1 < 0. Replacing j by p− i in it
yields that

g(xi)g(β)(−1)p−i > 0.

Together with Inequality (6.1), we obtain Inequality (2.6). This completes the proof. �

6.2. Proof of Lemma 3.5. From Equation (3.20), we have that

(6.2) the numbers Wn(x∆) and a+ n(2x∆ − a) have the same sign.

(i) If c ≤ −(a2 + 2ab)/4, then we have

(6.3) x∆ = −a
2 + 4c

4b
≥ −a

2 − (a2 + 2ab)

4b
=
a

2
,

that is, 2x∆ − a ≥ 0. It follows that a + n(2x∆ − a ≥ 0) > 0 for all n ≥ 1. By Relation (6.2), we
obtain that Wn(x∆) > 0.

(ii) Below we suppose that c > −(a2 + 2ab)/4. From the deduction (6.3), we see that 2x∆− a < 0. If

n < n0, then we have a+ n(2x∆ − a) > a+ 2ab
a2+2ab+4c ·

(
2(−a

2+4c
4b )− a

)
= 0, which, by (6.2), implies

that Wn(x∆) > 0. Similarly, if n = n0 then we have that a+ n(2x∆ − a) = 0, and thus Wn(x∆) = 0
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by the relation (6.2); and if n > n0 then we have that a+ n(2x∆ − a) < 0, and thus Wn(x∆) < 0 by
the relation (6.2).

When c > 0, we have that n0 = 2ab
a2+2ab+4c < 1. Therefore, the case n > n0 happens for all n ≥ 1,

that is, Wn(x∆) < 0. Thus, by Definition 3.4 we obtain that xg < 0. Moreover, we have

xg − xB =
(a+ b)−

√
(a+ b)2 + 4c

2
+
c

b
=
ab+ b2 + 2c− b

√
a2 + 2ab+ b2 + 4c

2b
.

Thus, to show that xg > xB , it suffices to show that (ab+ b2 + 2c)2 > b2(a2 + 2ab+ b2 + 4c). By direct
calculation, this inequality is equivalent to 4c(ab+ c) > 0, which is true since a, b, c > 0.

When c < 0, we have xg > 0 from Definition (3.4) straightforwardly. Suppose to the contrary

that xg ≥ xB . It follows that 2c + b(a + b) ≥ b
√

(a+ b)2 + 4c > 0. Solving (2c + b(a + b))2 ≥
(b
√

(a+ b)2 + 4c)2 with c < 0, we see that c ≤ −ab. On the one hand, by solving 2c+ b(a+ b) > 0, we
get −b(a + b)/2 < c ≤ −ab, which implies that a < b. On the other hand, we have −(a2 + 2ab)/4 <
c ≤ −ab, which implies that a > 2b. Hence, 2b < a < b, a contradiction. This proves xg < xB when
−(a2 + 2ab)/4 < c < 0. �

6.3. Proof of Lemma 5.1. By Lemma 2.1, the value Wn(x0) can be recast as the following form

Wn(x0) =

(
A(x0) +

√
∆(x0)

)n
2n
√

∆(x0)

[
g+(x0)− g−(x0)

(
A(x0)−

√
∆(x0)

A(x0) +
√

∆(x0)

)n]
.

Since A(x0) = a > 0 and
√

∆(x0) > 0, we deduce that∣∣∣∣∣A(x0)−
√

∆(x0)

A(x0) +
√

∆(x0)

∣∣∣∣∣ < 1.

Thus we obtain that

(6.4) Wn(x0)g+(x0) > 0 for large n.

Note that the function 2g+(x) = 2x− a+
√

4(bx+ c) + a2 is increasing. Since g+(xg) = 0, we infer
that (x0 − xg)g+(x0) > 0. In view of (6.4), we conclude that (x0 − xg)Wn(x0) > 0 for large n, which
completes the proof. �

6.4. Proof of Lemma 5.3. By Lemma 2.1, the sign of the value Wn(x0) is equal to the sign of the

value F = cos θ + ` sin θ, where θ = nθ(x0), and ` = (2x0 − a)/
√
−∆(x0).

If x0 = a/2, then the line lx0
becomes the imagine axis x = 0. In this case, the sign of the value

Wn(x0) is determined by the sign of the value cos θ. In other words, we have Wn(x0) > 0 if and only
if the radian nθ0 lies in the right open half-plane, and Wn(x0) < 0 if and only if the radian nθ0 lies in
the left open half-plane.

Below we can suppose that x0 6= a/2. It follows that ` 6= 0.

• Assume that ` > 0. It is elementary to find the following equivalence relation

F > 0 ⇐⇒


tan θ > −1/`, if cos θ > 0;

sin θ > 0, if cos θ = 0;

tan θ < −1/`, if cos θ < 0.
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In this case, we have F > 0 if and only if the radian θ lies to the right of the line y = −x/`,
that is, of the line lx0 . By symmetry, we have F < 0 if and only if the radian θ lies to the
left of the line lx0 . It follows immediately that F = 0 if and only if the radian θ lies on the
line lx0

.
• Now suppose that ` < 0. Then we have the following equivalence relation in the same vein:

F > 0 ⇐⇒


tan θ < −1/`, if cos θ > 0;

sin θ < 0, if cos θ = 0;

tan θ > −1/`, if cos θ < 0.

In this case, we have the same desired characterization.

This completes the proof. �
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