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Abstract: We count the number of vertices with given outdegree in plane trees and k-ary
trees, and get the following results: the total number of vertices of outdegree i among all plane
trees with n edges is

(

2n−i−1
n−1

)

; the total number of vertices of degree i among all plane trees
with n edges is twice this number; and the total number of vertices of outdegree i among all
k-ary trees with n edges is

(

k
i

)(

kn
n−i

)

. For all these results we bijective proofs.
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1 Introduction

In this paper we will assume all the trees are (unlabelled) plane trees, i.e., rooted trees whose
vertices are considered to be indistinguishable, but the subtrees at any vertex are linearly
ordered. Let Tn be the set of all n-plane trees, i.e., plane trees with n edges. For each vertex
v, we say that v is of outdegree i if it has i subtrees, and call vertices of outdegree 0 leaves.
Vertices that are not leaves are called internal vertices. An (ordinary) k-ary tree is a plane tree
where each vertex has exactly k ordered subtrees, which could be empty. A complete k-ary
tree is a k-ary tree for which each internal vertex has exactly k nonempty subtrees. In other
words, a complete k-ary tree is a plane tree each of whose internal vertices has outdegree k.

The set of plane trees is one of the most well-known and well-studied combinatorial struc-
tures. Existing results have focused on studying various statistics on plane trees and finding
bijections between plane trees and other structures. The enumeration of plane trees by outde-
gree sequences has been well studied in the literature; see [3, 4, 8].

Counting vertices in plane trees according to the outdegrees was also studied more recently.

∗Corresponding Author. Email: rxdu@math.ecnu.edu.cn.
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In [1] Deutsch and Shapiro proved that the total number of vertices of odd outdegree over all
plane trees with n edges is

2

3

(

2n− 1

n

)

+
1

3
Fn−1,

where Fn is the n-th Fine number (Sequence A000957 in [9]).

In this paper we focus on counting the total number of vertices with given outdegree i

among all plane trees and k-ary trees with n-edges. Our first result is the following.

Theorem 1.1 For integers n ≥ 1 and i ≥ 0, the total number of vertices of outdegree i among
all plane trees with n edges is

(

2n− i− 1

n− 1

)

.

Combining Deutsch and Shapiros result with the above theorem we immediately have the
following formula for the Fine numbers:

Fn = 3
∑

k≥0

(

2n− 2k

n

)

− 2

(

2n+ 1

n

)

. (1.1)

Deutsch and Shapiro also counted the number of vertices of odd degree in [1]. Here the
degree of a vertex v means the total number of vertices adjacent to v. Deutsch and Shapiro
proved that among all plane trees with n edges, the total number of vertices of odd degree
is twice the total number of vertices of odd outdegree. Their proof is based on a generating
function method. Later in [5], Eu, Liu and Yeh gave a combinatorial proof of this result by
defining a two-to-one correspondence.

Although the authors didn’t point out this explicitly in [5], their correspondence showed
that over all plane trees with n edges, the number of vertices of degree i is twice the number
of vertices of outdegree i. Thus combining Eu, Liu and Yehs result with Theorem 1.1 we get
the following result.

Corollary 1.2 For integers n ≥ 1 and i ≥ 1, the total number of vertices of degree i among
all plane trees with n edges is

2

(

2n− i− 1

n− 1

)

.

We make a different approach to this intriguing relation between number of vertices of
degree i and number of vertices of outdegree i among all n-plane trees. Note that for each
vertex v in a plane tree with outdegree i, the degree of v is also i when v is the root, otherwise
the degree of v is i+ 1. We count the number of n-plane trees with specified root degree, and
the number of vertices with given outdegree among all n-plane trees with specified root degree,
and therefore prove Corollary 1.2 directly.

Another main result of this paper is counting vertices with given outdegree among all k-ary
trees with n edges. By applying the bijection we define for n-plane trees to k-ary trees, we
transform this problem to the enumeration of compositions of integers with certain restrictions,
and we get the following result.
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Theorem 1.3 For integers n, k ≥ 1 and i ≥ 0, the total number of vertices of outdegree i

among all k-ary trees with n edges is
(

k

i

)(

kn

n− i

)

.

The rest of the paper is organized as follows. In Section 2 we give a bijective proof for
Theorem 1.1. In Section 3, we first give a bijective proof for Theorem 3.9 and then prove
Corollary 1.2. In Section 4 we give a bijective proof for Theorem 1.3.

Remark 1.4 Gernerating function proofs for Theorem 1.1 and 1.3 can be found in an earlier
version of this paper [2].

2 Counting vertices with given outdegree in plane trees

Let Tn,i denote the set of ordered pairs (T, v) such that T ∈ Tn, and v is a vertex of T

of outdegree i. We will associate with each pair (T, v) ∈ Tn,i a composition of nonnegative
integers n. Here a composition of n can be thought of as an expression of n as an ordered sum
of nonnegative integers. More precisely, a sequence α = (a1, . . . , ak) of nonnegative integers
satisfying

∑k
j=1 aj = n is called a k-composition of n. We use An,k to denote the set of all

k-compositions of n.

For each α ∈ An,k we define f(α) =
∑k

j=1(aj − 1). If a k-composition α = (a1, . . . , ak)
satisfies f(a1, . . . , aj) ≥ 0 for each j, 1 ≤ j ≤ k − 1 and f(α) = −1, then we call α a unit
composition. If α = (a1, . . . , ak) satisfies f(a1, . . . , aj) ≥ 0 for each j, 1 ≤ j ≤ k, then we call α
a positive composition. We use B to denote the set of all unit compositions and Bn,k to denote
the set of all unit k-compositions of integer n.

For each n-plane tree T , we label the n + 1 vertices of T with numbers 1 to n + 1 in the
depth-first order, or preorder. (The definition of the depth-first order can be found in [7, p.336]
or [10, p.33].) Now we associate with T a composition δ(T ) by δ(T ) = (d1, d2, . . . , dn+1), where
dj is the outdegree of the vertex in T with label j.

Lemma 2.5 The map T 7→ δ(T ) is a bijection between Tn and Bn,n+1.

Example 2.6 Let n = 14. Figure 1 shows a plane tree T with 14 edges, whose vertices are la-
beled in depth-first order from 1 to 15, and we have δ(T ) = (3, 2, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0) ∈
B14,15.

Lemma 2.5 has a fairly straightforward proof by induction and will be omitted here. There
is a more general result that plane forests are in bijection with a sequence of unit compositions.
More details can be found in [10, p.34], in which the author use the terminology of  Lukasiewicz
words instead of compositions. In the remainder of this section we concentrate on plane trees
with a specified vertex of given outdegree. Now we are ready to establish our bijection.

Theorem 2.7 There is a bijection between Tn,i and An−i,n.
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Figure 1: A plane tree with 14 edges, with one of its vertices of outdegree 2 circled.

Proof. Given an ordered pair (T, v) ∈ Tn,i, we label the vertices of T in depth-first order.
Suppose v is labeled j, 1 ≤ j ≤ n+ 1. We define

δ̄(T, v) = α = (dj+1, . . . , dn+1, d1, . . . , dj−1).

For example, let T be the plane tree shown in Figure 1, and the circled vertex with label 4 is the
specified vertex v, which has outdegree 2. Then we have δ̄(T, v) = (0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 3, 2, 0).
Since there are n edges of T , and v has outdegree i, it is obvious that

∑n+1
t=1,t6=j dt = n− i, thus

δ̄(T, v) ∈ An−i,n.

On the other hand, given α ∈ An−i,n, we can uniquely decompose α into the form

α = α1α2 · · ·αsα0

for some nonnegative integer s such that α1, α2, . . . , αs are unit compositions, and α0 is a posi-
tive composition with f(α0) = s− i. We call such a decomposition the fundamental decomposi-
tion of α. For example, the fundamental decomposition of α = (0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 3, 2, 0)
is the following:

(0) (2, 0, 0) (0) (3, 0, 0, 2, 0, 0) (3, 2, 0).

Now we set α′ = α0 i α1α2 · · ·αs. One can easily verify that α′ is a unit composition. We set
T = δ−1(α′). Suppose α0 is of length l. Let v be the (l + 1)-th vertex of T in the depth-first
order. Then we have (T, v) = δ̄−1(α). Hence we proved that the map δ̄ is a bijection.

Proof of Theorem 1.1: It is a basic result in enumerative combinatorics with an easy bijective
proof that the number of k compositions of n, or equivalently, the number of nonnegative
integer solutions of the equation x1+x2 + · · ·+xk = n is

(

n+k−1
n

)

, so our result then follows.

Given a sequence of nonnegative integers (r0, r1, . . . , rn) with
∑n

j=0 rj = n+1 and
∑n

j=0 jrj =
n. The number of plane trees with n+ 1 vertices such that exactly rj vertices have outdegree
j is given by

1

n+ 1

(

n+ 1

r0, r1, . . . , rn

)

. (2.1)
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A more general version of the above result concerning the enumeration of plane forests (graphs
such that every connected component is a plane tree) by outdegree sequence is given in [10,
Theorem 5.3.10].

Combining Theorem 1.1 and formula (2.1) we have the following identity:

∑ ri

n+ 1

(

n+ 1

r0, r1, . . . , rn

)

=

(

2n− i− 1

n− 1

)

, (2.2)

where the sum is over all sequences of nonnegative integers (r0, r1, . . . , rn) such that
∑n

j=0 rj =
n+ 1 and

∑n
j=0 jrj = n.

3 Counting vertices with given degree in plane trees

In this section we count vertices among all n-plane trees with given degree. Note that for each
vertex v in a plane tree with outdegree i, the degree of v is also i when v is the root, otherwise
the degree of v is i+1. Thus it is sufficient to count the number of n-plane trees with specified
root degree, and the number of vertices with given outdegree among all n-plane trees with
specified root degree.

Lemma 3.8 For positive integers n and m with m ≤ n, the total number of n-plane trees with
root degree m is

m

n

(

2n−m− 1

n− 1

)

. (3.1)

Proof. Let T be an n-plane tree with root degree m. We have δ(T ) = (m,d2, d3, . . . , dn+1).
The total number of nonegative integer solutions of the equations d2+d3+ · · ·+dn+1 = n−m is
(2n−m−1

n−1

)

. On the other hand, from the discussion in the previous section we know that among
the n cyclic permutations of d2, d3, . . . , dn+1, exactly m of them are valid outdegree sequences,
therefore (3.1) holds.

Theorem 3.9 For integers n,m ≥ 1 and i ≥ 0, the total number of vertices of outdegree i

among all n-plane trees with root degree m is















m

(

2n−m− i− 2

n− 2

)

,when i 6= m, (3.2)

m

(

2n− 2m− 2

n− 2

)

+
m

n

(

2n −m− 1

n− 1

)

,when i = m. (3.3)

Proof. We first consider the case when i 6= m. Let T be an n-plane tree with root degree m,
and v be a specified vertex in T with outdegree i. We have that m appears at least once in
δ̄(T, v). The total number of nonegative integer solutions of the equations

x1 + x2 + · · ·+ xn−1 = n−m− i (3.4)

is
(

2n−m−i−2
n−2

)

. For any nonnegative integer sequence x1, x2, . . . , xn−1 satisfying equation (3.4),
it can be uniquely decomposed into a1a2 · · · asb0 such that a1, a2, . . . , as are unit compositions
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and b0 is a positive composition such that f(b0) = s −m− i + 1. There are m ways to insert
m and i to form a sequence α such that δ̄−1(α) = (T, v), where T is an n-plane tree with root
degree m and v s a specified vertex of T with outdegree i:

b0 i a1 · · · as−m+1 as−m+2 · · · as−1 as

as b0 i a1 · · · as−m+1 as−m+2 · · · as−1

· · ·

as−m+2 · · · as−1 as b0 i a1 · · · as−m+1

Therefore (3.2) holds. For the case i = m, the roots should be also counted. Combining (3.2)
and (3.1) we get (3.3).

Combining the above result with Theorem 1.1 we get Corollary 1.2.

Proof of Corollary 1.2: Among all n-plane trees, the total number of vertices of degree i equals
the total number of vertices of outdegree i − 1 minus the number of n-plane trees with root
degree i− 1 plus the number of n-plane trees with root degree i. Corollary 1.2 then follows by
simple calculation.

Note that more recently Eu, Seo and Shin [6] enumerated vertices among all plane trees
with levels and degrees, and obtained various interesting results. Theorem 1.1 and Corollary
1.2 can also be obtained from their results by a telescoping summation.

4 Counting vertices with given outdegree in k-ary trees

Let T k
n denote the set of k-ary trees with n edges, and T k

n,i denote the set of ordered pairs

(T, v) such that T ∈ T k
n , and v is a vertex of T of outdegree i. Given (T, v) ∈ T k

n,i, let T ′

denote the complete k-ary tree that corresponds to T . Note that v becomes an internal vertex
in T ′ (and has outdegree k), which we denote as v′. Let α = δ̄(T ′, v′). Since there are n + 1
internal vertices and k(n + 1) edges in T ′, and each internal vertices of T ′ has outdegree k,
from Theorem 2.7 we have the following corollary.

Corollary 4.10 The map δ̄ is a bijection between T k
n,i and compositions α that satisfy the

following:

(i) α ∈ Akn,k(n+1), and α consists of exactly n k’s and (kn+ k − n) 0’s;

(ii) In the fundamental decomposition α = α1α2 · · ·αsα0, we have s ≥ k, and among the first
k unit compositions α1, α2, . . . , αk, exactly i of them begin with k.

Example 4.11 Let k = 3, n = 8 and i = 2. Figure 2 shows a ternary tree T with 8 edges and
the corresponding complete ternary tree T ′ with k(n + 1) + 1 = 28 vertices. A specified vertex
v of outdegree 2 is circled in T , and which corresponds to an internal vertex v′ in T ′. We have

α = δ̄(T ′, v′) = (3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0, 3, 3, 0, 0).

The fundamental decomposition of α is

(3, 0, 0, 0) (0) (3, 0, 0, 0) (0) (3, 0, 0, 3, 3, 0, 0, 0, 3, 0, 0, 0, 0) (3, 3, 0, 0).
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Figure 2: A ternary tree T and the corresponding complete ternary tree T ′.

It is easy to check that α satisfies conditions (i) and (ii).

Let A∗
kn,k(n+1) denote the set of compositions in Akn,k(n+1) that satisfy (i) and (ii). From

Corollary 4.10 we know that to prove Theorem 1.3, we need to show the following.

Theorem 4.12 For integers n, k ≥ 1 and i ≥ 0, there is a bijection between A∗
kn,k(n+1) and

the set of of ordered pairs (X,Y ), where X is an i-element subset of [k] := {1, 2, . . . , k}, and
Y is an (n − i)-element subset of [kn].

Proof. Given α ∈ A∗
kn,k(n+1). Suppose the fundamental decomposition of α is α = α1α2 · · ·αsα0.

Let αj1 , αj2 , . . . , αji be the i unit compositions among α1, α2, . . . , αk that begin with k. Set
X = {j1, j2, . . . , ji}. Let β = (b1, b2, . . . , bkn) be the composition obtained from α by delet-
ing the first number in each of the first k unit compositions αi, 1 ≤ i ≤ k. Then ex-
actly n − i members among b1, b2, . . . , bkn equals k. Suppose they are bl1 , bl2 , . . . , bln−i

, with
l1, l2, · · · , ln−i ∈ [kn]. Now we set Y = {l1, l2, . . . , ln−i} and φ(α) = (X,Y ).

For example, for the composition α in Example 4.11, we have φ(α) = (X,Y ) where X =
{1, 3}, and Y = {8, 11, 12, 16, 21, 22}.

Now we prove that φ is a bijection by defining its inverse. Given (X,Y ) with X =
{j1, j2, . . . , ji} ⊆ [k] and Y = {l1, l2, . . . , ln−i} ⊆ [kn]. we define a sequence β = (b1, b2, . . . , bkn)
such that bj = k if j ∈ Y , and bj = 0 otherwise. Similarly we define γ = (c1, c2, . . . , ck) to
be a sequence of integers such that cj = k if j ∈ X, and cj = 0 otherwise. Now we insert
c1, c2, . . . , ck into β one-by-one to get a sequence α = (a1, a2, . . . , ak(n+1)) such that in the
fundamental decomposition of α, the first k unit compositions begin with c1, c2, . . . , ck, respec-
tively. Note that when inserting a 0, it forms a unit composition by itself; when inserting a
k, it will “use” k 0’s from β, since there are i k’s among c1, c2, . . . , ck and kn − k(n − i) = ki

“remaining” 0’s (each of the n − i k’s in β will “use” k 0’s too), such an insertion is always
possible. Thus we proved that φ is a bijection.

Theorem 1.3 follows immediately from Theorem 4.12.
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X Y α (T ′,v′) (T ,v) X Y α (T ′,v′) (T ,v)

{1} {1} (22000)(0) �
�

q❝
q

q
❅♣

❅♣
�♣ ❅♣

�
�

q❝
q

q {2} {1} (0)(22000) ❅
�

q❝
q

q
�♣

❅♣
�♣ ❅♣

❅
�

q❝
q

q

{1} {2} (20200)(0) �
❅

q❝
q
q
❅♣

�♣
�♣ ❅♣

�
❅

q❝
q
q {2} {2} (0)(20200) ❅

❅

q❝
q
q

�♣
�♣
�♣ ❅♣

❅
❅

q❝
q
q

{1} {3} (200)(0)(20) ❅
�

q
q❝

q
�♣

❅♣
�♣ ❅♣

❅
�

q
q❝

q {2} {3} (0)(20020) ❅
❅

q
q❝
q

�♣
�♣
�♣ ❅♣

❅
❅

q
q❝
q

{1} {4} (200)(0)(0)(2) �
�

q
q❝

q
❅♣

❅♣
�♣ ❅♣

�
�

q
q❝

q {2} {4} (0)(2)00(0)(2) �
❅

q
q❝
q
❅♣

�♣
�♣ ❅♣

�
❅

q
q❝
q

Table 1: The bijection for 8 pairs (T, v) when n = 2, k = 2 and i = 1.

Example 4.13 Let n = 2, k = 2 and i = 1. There are eight pairs (X,Y ), where X is a
one-element subset of {1, 2}, and Y is a one-element subset of {1, 2, 3, 4}. Table 1 shows the
corresponding α, (T ′, v′) and (T, v) for each pair (X,Y ).
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