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Exact sampling algorithms for Latin squares and

Sudoku matrices via probabilistic divide-and-conquer
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September 9, 2016

Abstract. We provide several algorithms for the exact, uniform random sam-
pling of Latin squares and Sudoku matrices via probabilistic divide-and-conquer
(PDC). Our approach divides the sample space into smaller pieces, samples each
separately, and combines them in a manner which yields an exact sample from
the target distribution. We demonstrate, in particular, a version of PDC in
which one of the pieces is sampled using a brute force approach, which we dub
almost deterministic second half, as it is a generalization to a previous appli-
cation of PDC for which one of the pieces is uniquely determined given the
others.
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1 Introduction

The random sampling of combinatorial structures is an active topic, with many available
techniques. Several general methods have emerged which supply efficient algorithms in many
cases of interest, e.g., rejection sampling [30], Boltzmann sampling [10], Markov chains [17,
20, 21, 24]. Each method presents difficulties: rejection sampling provides exact samples
in finite time, but that finite time is often too large to be useful in practice; Boltzmann
sampling produces an object which does not always satisfy the restrictions; rapidly mixing
Markov chains are often easily fashioned to a problem, along with bounds on the mixing time
(though not always), but they are notably inexact in finite time; and while Markov chain
coupling from the past is an exact sampling method, it requires constructing a coupling over
the complete set of objects, which can be practical when there is some type of monotonicity.

There are many effective approaches to random sampling from the set of 9 × 9 Sudoku
matrices, which is defined as the collection of 9 × 9 integer-valued matrices such that each
row and column is a permutation of the set {1, . . . , 9}, and certain 3×3 sub-blocks (see (1))
are also permutations of {1, . . . , 9}. An efficient backtracking algorithm is utilized in [6],
though no quantitative bounds are given for the bias. Another approach is to fashion a
Markov chain with uniform stationary distribution; this was described in [15], although it
was not proved to be rapidly mixing. Importance sampling delivers a collection of Sudoku
matrices as well as weights which allows one to calculate unbiased estimates of statistical
parameters; this was done in [25].
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We present several algorithms which are an application of probabilistic divide-and-conquer
(PDC) [2]. The central idea is the division of the sample space into two smaller parts, each
of which can be sampled separately, and then appropriately pieced back together to form
an exact sample. The method is versatile enough to be adapted to other types of numerical
tables, and we have chosen the set of Latin squares as a natural complementary structure;
a Latin square of order n is an n× n integer-valued matrix such that each row and column
is a permutation of {1, . . . , n}. There is also a generalization of Sudoku matrices which can
be sampled using PDC, presented in Section 6.1.

There are many ways to implement PDC, and in this paper we implement a version called
almost deterministic second half, which divides the sample space into two pieces, one of which
can be sampled efficiently using a brute force approach. There are other PDC algorithms:
self-similar PDC (see [2, Section 3.5]) often provides an asymptotically efficient algorithm,
but requires detailed information about the sample space; PDC with deterministic second
half (see [2, Section 3.3], [5]) requires almost no information about the sample space, and
is such that given one of the pieces, the second piece is uniquely determined; PDC with
the recursive method (see [7]) is such that given one of the pieces, the second piece can be
efficiently sampled using the recursive method [22, 23]; the advantage of our current approach
is that it can be customized to suit the available knowledge of the sample space. When we
do have detailed knowledge about the sample space, e.g., the number of ways of completing
a partially generated object, as is the case for Sudoku matrices, we show how one can more
optimally design a PDC algorithm.

The random sampling of Latin squares and Sudoku matrices is a notoriously difficult prob-
lem, and we can only claim in the present work to have made modest improvements to
existing algorithms. PDC offers a versatile method for approaching the problem, and al-
lows the fashioner to design an algorithm tailored to the particular computational aspects
of the problem available. In addition, our algorithms do not require extensive auxiliary
constructions or complicated transformations.

The paper is organized as follows. In Section 2 we give the definitions of a Latin Square
of order n and a Sudoku matrix. In Section 3, we introduce PDC and present some simple
rejection sampling algorithms. In Section 4 we present a PDC algorithm for the random
sampling of Sudoku matrices, an analysis of the cost, and some alternative PDC parameter-
izations. We do the same for Latin squares of order n in Section 5. In Section 6 we review
other approaches, and in Section 7 we explain our initial motivation and provide a link to a
code implementation in C++.

2 Definitions

For any n ≥ 1, a Latin square of order n is an n×n matrix which satisfies the following row
and column constraints, heretofore referred to as the Latin square conditions :

• each row, labelled R1, . . . , Rn is a permutation of {1, 2, . . . , n};
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• each column, labelled C1, . . . , Cn is a permutation of {1, 2, . . . , n}.

We let LSn denote the set of all Latin squares of order n.

By a partially completed matrix, e.g., partially completed Latin square, we mean a matrix
that has some subset of entries filled in which do not a priori violate the conditions. No
assumption is implied in general as to whether such a matrix can be completed. We shall
primarily be interested in partially completed matrices whose first k rows are filled in, al-
though there are several possible applications of PDC which could be exploited in more
general circumstances, see Section 5.3. A partially completed Latin square of order n with
the first k rows filled in is called a k × n Latin rectangle, for which much is already known,
see for example [16].

A Sudoku matrix is a Latin square of order 9 which also satisfies the additional block con-
straints: there are nine 3× 3 sub-blocks, labelled B1, B2, . . . , B9, each of which is a permu-
tation of {1, 2, . . . , 9}; these blocks are indicated below.

B1 B2 B3

B4 B5 B6

B7 B8 B9

(1)

We refer to these three constraints – row, column and block – as the Sudoku conditions, and
we let S denote the set of all Sudoku matrices.

In the calculations that follow, a ≈ b is simply the elementary meaning where a and/or b
have been rounded to some nearest value. For a finite set A, the notation |A| will denote
its cardinality, i.e., the number of elements in the set A. In addition, we introduce notation
for asymptotic analysis: suppose f(n) and g(n) are positive functions of a positive integer
n, then

• we say f(n) = O(g(n)) if there exists a C > 0 such that f(n)
g(n)

< C for all n larger than
some n0;

• we say f(n) = o(g(n)) if f(n)
g(n)

→ 0 as n tends to infinity;

• we say f(n) ∼ g(n) if limn→∞
f(n)
g(n)

= 1.

For real-valued x, let

• [x] denote the integer closest to x; i.e., x rounded to the nearest integer;

• ⌊x⌋ denote the largest integer smaller or equal to x, also known as the floor of x.
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3 Probabilistic divide-and-conquer

We begin by highlighting various simple algorithms for obtaining an element of S, a Sudoku
matrix, uniformly at random (u.a.r.) over all possibilities. Each of the approaches can be
adapted to sampling an element of LSn in a straightforward manner, and so we specialize to
S for concreteness.

1. Sample each entry independent, and identically distributed (i.i.d.) uniform over the set
{1, 2, . . . , 9}; restart if any of the Sudoku conditions are not satisfied.

2. Sample each row (or column or block) as i.i.d. uniform over the set of all permutations
of {1, 2, . . . , 9}; restart if any of the Sudoku conditions are not satisfied.

3. Let the first row be (1, 2, . . . , 9). Sample rows 2 through 8 as i.i.d. uniform over the set
of all fixed–point free permutations of {1, 2, . . . , 9}; if row 9 can be completed, with all
Sudoku conditions satisfied, then complete it, and finally apply a random permutation
of {1, . . . , 9} to all entries and return the matrix; otherwise, restart.

These algorithms are generally known as rejection algorithms, since the target set of objects
S, also referred to as the target region, lies within the complete sample space Ω. Since the
algorithm generates a sample uniformly over all elements of Ω, any Sudoku matrix generated
by such a hard rejection algorithm is also uniform over S (see, e.g., [32] for a more detailed
analysis in a more general setting).

The expected number of times one must sample elements of Ω before obtaining a sample
from S is simply the quotient |Ω|/|S|. It was shown in [11] that the number of Sudoku
matrices is exactly

|S| = 6670903752021072936960 ≈ 6.67× 1021.

This number is too large to simply list all of the elements and select one at random.

There are 981 ≈ 2.0 × 1077 matrices in Ω1 := {1, . . . , 9}9×9, so for the first, most näıve
approach of i.i.d. entry sampling, the expected number of times one must sample from Ω1

is |Ω1|/|S| ≈ 3.3 × 1056. There are |Ω2| :=
(

9!
9

)

≈ 3.0 × 1044 different ways of selecting 9
distinct permutations of {1, 2, . . . , 9}, whence, |Ω2|/|S| ≈ 4.5× 1022.

The third algorithm is the most respectable of the three, as it eliminates two of the rows
and reduces the number of possible permutations from 9! to [9!/e]. However, since we are
fixing the first row, we can only sample from those elements of S which also have the same
first row; thus, we must normalize by |S|/9! instead of |S|. We have Ω3 := {the set of all
collections of seven fixed–point free permutations of {1, 2, . . . , 9}}, hence,

|Ω3|
|S|/9! ≈

(9!/e)7

1.8× 1016
≈ 4.2× 1019.

None of these rejection rates is practical.
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At this stage, there are many different ways to proceed. One approach is to relax the demand
that the distribution on elements of S is exactly uniform, and instead adopt algorithms which
are faster but not guaranteed to be uniform. Another approach is to take advantage of more
detailed properties of the elements in S, which we now explore using PDC.

Rejection sampling algorithms can very often be improved, with very little extra information
known about the target region, using PDC [2]. We assume a decomposition of the sample
space Ω of the form Ω = A × B, where elements in Ω can be sampled using a distribution
on A, and a distribution on B, such that random variables A ∈ A and B ∈ B are mutually
independent; we denote their distributions by L(A) and L(B), respectively. In addition, we
assume the target distribution on S ⊂ Ω, denoted by L(S), is of the form

L(S) = L((A,B)|h(A,B) = 1),

where h : A×B → {0, 1} is some (measurable) functional which determines whether or not
the pair (A,B) lies in the target set. The PDC Lemma [2, Lemma 2.1] states that, assuming
P(h(A,B) = 1) > 0, we have L(S) = L(X, Y ), where

L(X) = L(A|h(A,B) = 1), L(Y |X = x) = L(B|h(x,B) = 1).

An algorithm to sample from L(S) is then as follows (see [2, Algorithm 2]):

1. Generate sample from L(A | h(A,B) = 1), call it x.

2. Generate sample from L(B | h(x,B) = 1), call it y.

3. Return (x, y).

Often, however, the conditional distributions are not known, and so the more practical PDC
algorithm utilizes von Neumann’s rejection sampling approach [30], which allows us to sample
from the conditional distribution L(A|h(A,B) = 1) using L(A) and a biased coin.

Algorithm 1 [2] Probabilistic Divide-and-Conquer via von Neumann

1: Fix any α such that max
a∈A

P(h(a, B) = 0) ≤ α ≤ 1.

2: For each a ∈ A, define t(a) :=
P(h(a, B) = 1)

α
.

3: Generate sample from L(A), call it a.
4: Reject a with probability 1− t(a); otherwise, restart from Line 3.
5: Generate sample from L(B | h(a, B) = 1), call it y.
6: Return (a, y).

Presently, in order to sample directly from the conditional distribution L(B | h(a, B) = 1),
we choose A such that L(B | h(a, B) = 1) can be sampled effectively using a brute force
approach; we call this PDC with almost deterministic second half. Also, since the rejection
probability t(a) must satisfy, for some 0 < α ≤ 1,

t(a) =
P(h(a, B) = 1)

α
≤ 1, for all a ∈ A,
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the optimal choice of α is maxa P(h(a, B) = 1), but the algorithm is still valid and unbiased
for any α larger than this value. Thus, there are many ways to apply PDC, starting with an
appropriate selection of sets A and B, and it suffices to choose any universal upper bound
of P(h(a, B) = 1), where greater efficiency is achieved by selecting the optimal value of α.

4 Sudoku matrices

4.1 A PDC algorithm

We now describe an algorithm for Sudoku matrices which takes advantage of Algorithm 1.
Given the first three rows R1, R2, R3 of a partially completed Sudoku matrix, let P ′

9 ≡
P ′
9(R1, R2, R3) ≡ P ′

9(B1, B2, B3) denote the set of all possible permutations of {1, 2, . . . , 9}
which would not violate the Sudoku conditions if placed in row four. Also, we denote by
U a random variable with the uniform distribution over the interval (0, 1), independent of
all other random variables, and each occurrence of u in an algorithm means to generate a
random variate from the distribution of U .

Algorithm 2 PDC Sudoku algorithm.

1: Let B1 = (1, 2, . . . , 9).
2: Select B2, B3 in proportion to the number of completable Sudoku matrices.
3: Generate (R4, R5, R6, R7), each an i.i.d. uniformly random element from P ′

9.
4: Let d denote the number of possible completions given (R1, R2, R3, R4, R5, R6, R7).
5: if u < d

16
, then

6: Select a completion uniformly at random from the d possible completions.
7: else

8: Goto 3.
9: end if

10: Apply a random permutation to (C4, C5, C6).
11: Apply a random permutation to (C7, C8, C9).
12: Apply a random permutation to ((C4, C5, C6), (C7, C8, C9)).
13: Apply a random permutation of {1, 2, . . . , 9} to the entries and return.

Line 2 demands some further explanation. By considering various symmetries in the per-
mutations of columns, it was shown in [11] that there are only 36288 essentially unique
completions to blocks B2 and B3;

2 and, for each configuration of blocks B1, B2, B3, there
is a certain number of completable Sudoku matrices, which was calculated via brute force.
A downloadable file containing these enumerations is available online, see [19]; the first few
lines look like the following:

[456789,789123,123456] => 108374976

2This number can be simplified to 71 after taking more symmetries into account [19].
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[456789,789123,123465] => 102543168

[456789,789123,123546] => 102543168

[456789,789123,123564] => 100231616

[456789,789123,123645] => 100231616

...

The list of three 6–tuples represent columns 3 through 9 of the first three rows, and the
integer value at the end of the arrow counts the number of completable Sudoku matrices
given these first three rows. For example, the text file says that the matrix with top three
rows given by

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 6 4 5

has precisely 100231616 completions of the bottom 6 rows which are valid Sudoku matrices.
Line 2 is thus a straightforward sampling of the entries in B2 and B3, in proportion to
the number of completable Sudoku matrices. There are two reasonable ways to perform this
sampling. Denote by xi the number of possible completions given outcome i, i = 1, . . . , 36288.
One can normalize by the sum of all the completions and generate a value using the discrete
probability distribution {xi/

∑

j xj}i=1,...,36288; this is not so ideal in general due to floating
point considerations. Instead, we apply PDC in our implementation by sampling uniformly
from among the 36288 possibilities first, say we select outcome i, and we accept this sample
with probability xi/maxj xj .

Line 6 is then the last task of the algorithm, and for this we have implemented a brute force
approach which enumerates through all possibilities and picks one uniformly at random.
Specifically, each column has a set of two elements {ai, bi}, i = 1, . . . , 9, which must be used
in that column in the final two rows, in some order, and we are able to greatly reduce the
enumeration of all a priori 29 = 512 possibilities by taking various symmetries into account;
see for example the proof of Lemma 4.1.

4.2 Cost of Algorithm 2

Lemma 4.1. Assume the first seven rows of a Sudoku matrix have been filled in, and none
of the Sudoku conditions are violated based on these first seven rows. Then the total number
of possible completions of this matrix which also do not violate the Sudoku conditions is at
most 16. This bound cannot be improved.

Proof. WLOG, assume the last two rows of column j can be completed by {2j − 1, 2j} for
j = 1, 2, 3. We shall denote this by the following table

1 3 5
2 4 6

By interchanging 2j − 1 and 2j for j = 1, 2, 3, we obtain 23 possible combinations. For the
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elements 7, 8, 9, there are two possibilities: either 7 and 8 share the same column, or they
do not.

• In the case where they share the same column, we have WLOG

1 3 5 7 9
2 4 6 8 a

which implies another factor of 2 by exchanging the role of 7 and 8; however, whichever
element is paired with the 9, say a = 5, determines which row the 9 lies in, and so
there are at most 16 possible completions.

• In the case where 7 and 8 do not share the same column, whichever element the 7, 8,
and 9 are paired with uniquely determine their row, and so there are at most 8 possible
completions in this case.

Thus, there are at most 24 = 16 possible completions given the first seven rows of a partially
completed Sudoku matrix.

The following matrix (in reduced form) was generated by Algorithm 2. The first seven rows
of this matrix allow for 16 potential completions, thus, 16 is a tight upper bound.

1 2 3 4 5 9 6 7 8
4 5 6 7 8 2 3 1 9
7 8 9 1 6 3 2 5 4
9 4 8 2 1 7 5 6 3
5 7 2 3 4 6 8 9 1
6 3 1 5 9 8 4 2 7
3 6 7 9 2 4 1 8 5
8 9 5 6 3 1 7 4 2
2 1 4 8 7 5 9 3 6

We now justify Line 2 of Algorithm 2. In [11], the total number of Sudoku matrices is found
by first reducing by symmetry the total number of possible completed first three rows; the
number given is 36288. For each of these 36288 configurations of the first three rows, a brute
force enumeration is performed for the number of possible Sudoku matrices that could be
completed.

Lemma 4.2 ([11]). The table of 36288 possible configurations of B2 and B3 contains, for
each configuration, the number of possible Sudoku matrices that can be completed given the
first three rows. These numbers all lie between 94888576 and 108374976.

The fact that these values are relatively constant has a number of quantitative and qualita-
tive interpretations. From a rejection sampling perspective, it means that we could sample
a configuration uniformly at random and then reject each generated configuration in pro-
portion to the number of completions, normalized by the maximum possible, i.e., 108374976.
Thus, the probability of rejecting a sample is at worst 1 − 94888576/108374976 ≈ 0.12444.
Practically, this means that sampling of the first three rows uniformly from among the 36288
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possible choices and applying a rejection is efficient. Also, it says that each configuration
is approximately as completable as any other configuration; i.e., accepting any completable
configuration of the first three rows introduces a small bias.

Thus, the main cost of the algorithm is the rejection sampling of rows 4 through 7. Through
a complete enumeration of all 36288 cases, the number of permutations in P ′

9 is always
between 12000 and 12096. There are thus at most 120964 ≈ 2× 1016 different combinations
of permutations that can be placed in rows 4 through 7, but only about 108 valid completions
to a Sudoku matrix are possible. This means that on average we must sample about 2× 108

4–tuples before we get lucky and obtain a quadruplet that yields a completable Sudoku
matrix. Even after we obtain a completable quadruplet, however, we must still survive the
final rejection in Line 5, which comes from the fact that different quadruplets yield a different
number of completable Sudoku matrices.

Lemma 4.3 ([8]). In a rejection sampling algorithm, let f denote the target distribution,
and g denote the sampling distribution; then the rejection probability, see for example Line 3
in Algorithm 1, for exact sampling from distribution f is given by

t(a) = C
f(a)

g(a)
, a ∈ A,

where the optimal value for C is given by

C∗ :=

(

max
a

f(a)

g(a)

)−1

.

The algorithm is unbiased for any C ≤ C∗. Algorithms which utilize rejection sampling have
a geometrically distributed number of generations before acceptance, with expected value given
by 1

C
.

Theorem 4.4. Algorithm 2 samples uniformly over the set of all Sudoku matrices. The
number of times to sample blocks B2 and B3 by choosing one of the 36288 possible choices
u.a.r. and using rejection sampling is geometrically distributed with expected value

36288 · 108374976
3546146300288

≈ 1.1. (2)

The number of times to sample rows R4, R5, R6, R7 is geometrically distributed with expected
value at least 3.0× 109 and at most 3.6× 109.

Proof. The uniformity of the algorithm follows by two applications of probabilistic divide-
and-conquer given by Algorithm 1. We now calculate the precise rejection probabilities.

The first application of PDC is given by the division

A = (B1, B2, B3), B = (R4, R5, R6, R7, R8, R9).

The rejection probabilities t(a) are given by the number of possible completions normalized
by the maximum number of possible completions; these values are from Lemma 4.2. We
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index each of the possible configurations of B2 and B3 by i = 1, 2, . . . , 36288. Then we select
one uniformly at random, hence g(i) = 1/36288, but the distribution desired is the one that
weights each configuration in proportion to the number of possible completions, denoted by
xi previously, which is contained in the table of values computed in [11]. That is,

f(i) =
xi

3546146300288
, i = 1, . . . , 36288,

where 3546146300288 =
∑

j xj is the total number of possible completions by all elements
in the table, which makes f(i) a probability distribution. The expected number of times to
sample from blocks B2 and B3 is thus

1

C
=

(

max
i

f(i)

g(i)

)

=
36288 · (maxi xi)

3546146300288
,

where
max

i
xi = 108374976

was computed by brute force over the set of all possibilities. We have just proved (2).

The second application of PDC is the division

A = (R4, R5, R6, R7), B = (R8, R9).

The rejection probability t(a) is given by the number of possible completions (calculated via
brute force) given a = (r4, . . . , r7), normalized by 16, the optimal upper bound provided by
Lemma 4.1. Rather than sample from the set of all permutations of {1, . . . , 9}, since we
have already accepted the first three rows of the matrix, we can automatically discard any
permutations which would violate the Sudoku conditions. Thus, we sample these four rows
from the set P ′

9, which depends on the particular configuration of B2 and B3 accepted in the
first part. By brute force calculation over all 36288 possible first three rows, we have found
that 12000 ≤ |P ′

9| ≤ 12096. Thus,

1

120964
≤ g(j) =

1

|P ′
9|4

≤ 1

120004
, for all j.

Similarly, we have

8

108374976
≤ f(j) =

# completions given first seven rows

# completions given first three rows
≤ 16

94888576
.

Whence,

3.0× 109 ≈ 120004 × 16

108374976
≤ 1

C
=

(

max
j

f(j)

g(j)

)

≤ 120964 × 16

94888576
≈ 3.6× 109.

10



4.3 Alternative PDC parameterizations for Sudoku matrices

There are two simple alternative approaches to Algorithm 2 that require minimal modifi-
cation of the original algorithm; we indicate the replacement for lines 3–5 below in each
case.

The first approach is to randomly sample R4 through R8.

3: Generate (R4, R5, R6, R7, R8), each an i.i.d. uniformly random element of P ′
9.

4: Let d denote the number of possible completions given (R1, R2, R3, R4, R5, R6, R7, R8).
5: if d = 1, then

That is, conditional on the existence of a completion to R9, we may simply accept the
sample R4 through R8 and fill in the unique completion to R9; this variation is called PDC
deterministic second half [2], see also [5]. (In general, PDC deterministic second half also
requires a rejection step, but in the case when L(B | h(a, B) = 1) is a uniform distribution
over a singleton set for each a ∈ A which can be used to complete a sample, all samples are
rejected with probability 0.) This approach increases the probability of rejection in Line 5
considerably, see Proposition 4.5 below, but eliminates the task in Line 6.

Proposition 4.5. Suppose Line 3 in Algorithm 2 instead samples rows R4 through R8. Then
the expected number of rejections until the first eight rows are a partially completed Sudoku
matrix is within the interval

[

120005

108374976
,

120965

94888576

]

≈ [2.3, 2.73]× 1012.

Then, once these first eight rows are a partially completed Sudoku matrix, the probability of
rejection is 0, and the last row is uniquely determined.

The proof of Proposition 4.5 is straightforward, with upper bounds on the number of pos-
sible completions provided by Lemma 5.1, and the rejection probability provided by [5,
Theorem 7.1].

Alternatively, we can instead randomly sample R4 through R6, and reject these three rows
in proportion to the number of possible completions of the last three rows, indicated below:

3: Generate (R4, R5, R6), each an i.i.d. uniformly random element from P ′
9.

4: Let d denote the number of possible completions given (R1, R2, R3, R4, R5, R6).
5: if u < d

⌊24.563⌋
, then

From a theoretical point of view, this approach is more ideal, since the probability of rejection
in Line 5 is smaller (since d is much less likely to be 0). However, completing the sample as in
Line 6 can also be a bottleneck, since now there are a priori 39 ≈ 2×104 possible completions
that must be checked, even though we can greatly reduce this number by considering various
symmetries.

Proposition 4.6. Suppose Line 3 in Algorithm 2 instead samples rows R4 through R6. Then
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the expected number of rejections is within the interval

[⌊24.5 63⌋ 120003
108374976

,
⌊24.5 63⌋ 120963

94888576

]

≈ [7.8, 9.1]× 107.

Then, once these first six rows are determined, the last three rows can be completed in at
most ⌊24.563⌋ ways.

The upper bound on the number of possible completions in Proposition 4.6 is borrowed from
the theory of Latin squares, see Section 5.2, specifically Lemma 5.1 using the values n = 9
and k = 6.

Despite the much smaller expected number of rejections in Proposition 4.6, the reason why
we champion Algorithm 2 presently is due to our brute force implementation of sampling
from L(B | h(a, B) = 1), which is optimized to enumerate between all potential completions
using fast bit–wise operations in C++, whereas in the more general case we do not have this
option encoded. We emphasize that while we have not yet efficiently coded this algorithm
for more general cases, should such a module be coded efficiently it could very easily be
faster in practice than Algorithm 2.

In addition, it may be possible to improve upon the upper bound of ⌊24.563⌋ in this special
case. To help facilitate such an endeavor, we give a motivating example. The upper bound in
Lemma 5.1 for the number of completable (n−3)×n Latin rectangles is 2n/2 6n/3. With n = 9,
we have ⌊2n/2 6n/3⌋ = 4887. However, the largest observed value for partially completed
Sudoku matrices in a sample of size 1000 was 288. If, in fact, 288 is the smallest upper
bound, and was used instead of 4887, then the run–time of the algorithm which samples all
but the final three rows would be reduced by a factor of about 17.

4.4 Further reduction by symmetries

When various symmetries are taken into account, one can reduce the total number of Sudoku
matrices to 5472730538 ≈ 5.4 × 109 essentially different Sudoku matrices, see [26]. This
number is certainly more practical, and a comprehensive list of such matrices could be stored
for random access if the memory was available, thus offering an algorithm which is O(1) in
terms of our costing of random generation; of course, one would also have to implement
the various transformations, but this cost is certainly not prohibitive. The advantage with
our approach is that its memory requirements are entirely practical, even for a computer of
modest means, and can be generalized in a straightforward manner. Nevertheless, should
Algorithm 2 be deemed not efficient enough, a more efficient random sampling algorithm
may be achievable by taking these symmetries into account.
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5 Latin squares

5.1 A PDC algorithm

The upper bound in Lemma 4.1 is specialized to the set of Sudoku matrices, and in general
such tight bounds are not available. Nevertheless, we present a similar PDC algorithm in
this section for Latin squares of order n for any n ≥ 5.

Algorithm 3 PDC Uniform sampling from LSn

1: Let R1 = (1, . . . , n).
2: for i = 2, . . . , n− 3 do

3: Generate Ri uniformly from the set of fixed–point free permutations of {1, . . . , n}.
4: end for

5: Let d denote the number of possible completions given (R1, . . . , Rn−3).
6: if U < d

⌊6
n

3 2
n

2 ⌋
then

7: Select a completion uniformly at random from the d possible completions.
8: else

9: Goto 2.
10: end if

11: Apply a random permutation to the rows of the matrix.
12: Apply a random permutation of {1, . . . , n} to the entries and return.

As in Algorithm 2, the selection of a completion in Line 7 once the first set of rows has been
accepted can be performed using brute force enumeration, or any alternative method which
uniformly samples from the set of possible completions.

5.2 Cost of Algorithm 3

We now discuss the parameterized algorithm for Latin squares of order n. There are two
competing styles of analysis: one champions an analysis for a particular, finite value of n
chosen in advance, e.g., n = 9 as in the previous section; the other is an asymptotic analysis
of how the algorithm scales as n tends to infinity. Whereas our previous analysis for Sudoku
matrices was specific to a fixed size 9, we shall now be primarily interested in how Algorithm 3
scales as n tends to infinity.

For a partially completed Latin square of order n with the first k rows filled in, a more
general bound for all n and k can be obtained using upper bounds on the permanent of an
n×n matrix taking values in the set {0, 1}, as was done in [29]. We now adapt the argument
in our setting.

Lemma 5.1. Suppose the first k rows of any Latin square of order n have been filled in,
k < n, without violating any of the Latin square conditions.

13



1. There always exists at least one completion to a full Latin square of order n, and when
k = n− 1 there is exactly one completion.

2. Let Cn,k denote the maximum possible number of completions to a full Latin square of
order n given these first k rows. Then we have

Cn,k ≤
n−k
∏

ℓ=1

(ℓ!)n/ℓ. (3)

Proof. First, the existence of at least one completion of a partially completed Latin square
is given by [29, Theorem 17.1], and the uniqueness of the completion when k = n−1 follows
by taking k = n− 1 in inequality (3).

The remaining argument is the same as [29, Proof of Theorem 17.3]. That is, we let B
denote the n×n matrix where the (i, j)th entry is 1 if element i does not appear in the first
k rows of column j, and 0 otherwise. Thus, the row sums of B are all n− k, and so by [29,
Theorem 11.5], we have

per B ≤ (n− k)!n/(n−k),

where per B denotes the permanent of the matrix B, which is also the number of ways
of completing the next row. Thus, by applying the above inequality n − k − 1 times, for
completing rows k + 1, k + 2, . . . n− 1, we obtain

Cn,k ≤
n−1
∏

ℓ=k

(n− ℓ)!n/(n−ℓ).

We shall also need for our analysis of asymptotic runtimes to estimate the magnitude of
|LSn|, which is still not precisely known asymptotically as n tends to infinity, although the
following asymptotic result is contained in [29, Theorem 17.3].

Theorem 5.2 ([29]). We have

|LSn|1/n
2 ∼ e−2 n.

There are, however, well-known upper and lower bounds which shall at least give us the abil-
ity to estimate the efficiency of our algorithms, which we give below. See [29, Theorem 17.2]
for the lower bound and see [29, the proof of Theorem 17.3] for the upper bound.

Theorem 5.3 ([29]). We have

(n!)2n

nn2
≤ |LSn| ≤

n
∏

k=1

(k!)n/k.

Theorem 5.4. Algorithm 3 samples uniformly over the set of all Latin squares of order n.
The number of times to sample rows R2, . . . , Rn−3 is geometrically distributed with expected
value

En :=
⌊6n/32n/2⌋ ([n!/e])n−4

|LSn|/n!
, n ≥ 5.
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Proof. We note that |LSn| is normalized by n! since we are taking the first row to be the
permutation (1, . . . , n). Each of the rows Ri, i = 2, . . . , n− 3, is sampled from the set of all
fixed-point-free permutations, of which there are [n!/e] such permutations, and our sample
space is the set of all (n−4)–tuples of fixed-point-free permutations. The proof then proceeds
in the same fashion as the proof of Theorem 4.4.

A table of values is below, calculated from the exact quantities and rounded to a few sig-
nificant digits; the values for |LSn| can be found in the recent survey [28]. In addition, we

calculate the asymptotic rate of increase of E
1/n2

n in Proposition 5.5.

n |LSn| En

5 1.61× 105 8.15
6 8.13× 108 1.32× 102

7 6.15× 1013 1.10× 104

8 1.09× 1020 4.26× 106

9 5.52× 1027 8.41× 109

10 9.98× 1036 8.79× 1013

11 7.77× 1047 5.03× 1018

Proposition 5.5. We have
E1/n2

n ∼ e.

Proof. Recall Stirling’s formula, which states that as n tends to infinity, we have

n! ∼ nn

en

√
2π n ,

so
n!1/n ∼ n

e
.

We then have

E1/n2

n =

(

⌊6n/32n/2⌋ ([n!/e])n−3

|LSn|

)1/n2

∼ 61/(3n)21/(2n) (n!/e)1/n−3/n2

|LSn|1/n2
∼ n/e

n/e2
∼ e.

These values indicate that the rejection probability is the dominating aspect of the compu-
tation. See Section 5.3 for other ways to improve upon this rejection cost.

5.3 Alternative PDC parameterizations for Latin squares

Let Un,k :=
∏n−k

ℓ=1 (ℓ!)
n/ℓ denote the right-hand side of inequality (3), i.e., an upper bound for

the number of completions of a k × n Latin rectangle.
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Algorithm 3 can be generalized with a parameter k ≥ 2 so that rows R2, . . . , Rk are sampled
in Line 5 for the first step in PDC. In this case, the rejection probability in Line 6 may be
replaced with d/Un,k, and the number of times to resample has expected value

En,k :=
Un,k [n!/e]

n−k−1

Ln/n!
, n ≥ 5, 1 ≤ k ≤ n− 4.

We estimate the log of this rejection cost asymptotically as n tends to infinity.

Proposition 5.6. For

• k = o(n), we have
logEn,k ∼ n2 log(n);

• k ∼ (1− t)n, for any 0 < t < 1, we have

logEn,k ∼ (2t− 1)n2 log(n);

• k = n− r nα, for any 0 < r < 1, and 0 < α < 1, we have

logEn,k ∼ r(1 + α)n1+α log(n)− n2 log(n).

Proof. To estimate logEn,k, we note that the proof of [29, Theorem 17.3] contains an ap-
proach to estimate both log |LSn| and log |Un,k|; that is, we have

log |LSn| ∼ n2 log(n),

and in a similar fashion we obtain

logUn,k ∼ n(n− k) log(n− k).

Thus, asymptotically as n and n− k tend to infinity, we have

logEn,k = logUn,k + (n− k) log(n!)− (n− k − 1)− log |LSn|
∼ n (n− k) log(n− k) + (n− k)(n log(n))− n2 log(n).

The proposition now follows by a straightforward calculation.

There are several noteworthy aspects of the asymptotic analysis in Proposition 5.6. First,
when k = o(n), there is asymptotically as much uncertainty in the first k rows as there
are in the entire ensemble of Latin squares of order n. Next, taking k = n/2, i.e., t = 2,
is a natural cutoff for when the uncertainty is no longer on the same exponential order
as the entire ensemble, and indeed it is plausible that a self-similar PDC algorithm using
this division may achieve an asymptotically optimal rejection rate. Finally, the final item
in Proposition 5.6 is an example of a low-rank parameterization (see for example [1]), and
yields the greatest immediate potential for generalizing the presented algorithms in a way
which is still analytically tractable.
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Of course, even with these divisions, one still has to sample from the remaining set of rows
Rk+1, . . . , Rn, which for k moderately large is still a daunting task.

One can also apply PDC more generally, not just to k× n Latin rectangles, by filling in any
amount of partial information. There are many enticing partial results in this area, see [29,
Theorem 17.4] for an example which fills in an upper left rectangle, and [29, Theorem 17.5]
for an example which fills in an upper triangular section of entries. There are also many
cautionary theoretical results as well, see [29, Figure 17.4] and [3].

As a final note for this section, it is typical to reduce a Latin square by assuming the first
row and the first column are the identity permutation. The number of such reduced Latin
squares is then |LSn|/(n!(n− 1)!), and it is often easier to work with this reduced set. This
reduction could also be exploited for PDC. It is valid to replace Lines 1–3 in Algorithm 3
with the following:

1: Let R1 = (1, . . . , n).
2: for i = 2, . . . , n− 3
3: Generate Ri uniformly from the set of fixed–point free permutations starting with i.

This restriction forces the first n − 3 entries of column 1 to be the identity permutation
(1, 2, . . . , n− 3) (and one could easily force the remaining entries in the column to be (n −
2, n − 1, n) ). However, for 2 ≤ i ≤ n − 3, the set of all fixed–point free permutations of n
starting with an i is given by the OEIS sequence A000255 [27]. In [12, Page 373], it is shown
that the cardinality of this set is asymptotically n!/e, which is asymptotically the same as
the number of fixed–point free permutations of n that we have used in our current analysis.

6 Other sampling algorithms

6.1 The R× C generalization of a Sudoku matrix

There is a generalization to a Sudoku matrix where the block constraint is modified to be a
block with dimensions R× C. The set of (R,C)-Sudoku matrices is then defined as the set
of RC×RC matrices tiled with the R×C blocks, where each row, column, and R×C block
is a permutation of {1, 2, . . . , RC}. Sudoku matrices are the special case with R = C = 3.

In fact, Algorithm 3 is worded so that it can be applied to (R,C)-Sudoku matrices varbatim
using n = RC: one simply interprets Line 5 and Line 7 analogously. Even the denominator
of the rejection probability, i.e., ⌊6n/32n/2⌋, can be used as an upper bound on the number of
completable (R,C)-Sudoku matrices. Of course, there is some efficiency lost in the algorithm
by using this generic upper bound, however, as was pointed out earlier, it does not affect
the unbiased nature of the algorithm, only the efficiency, and should more efficient bounds
become available, one could (and should!) substitute in those bounds instead.
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6.2 S-permutation matrices

A recent approach to random sampling of Latin squares and Sudoku matrices is via permu-
tation matrices, see [4]; see also [13, 14, 31]. A permutation matrix of order N is an N ×N
matrix with a exactly one 1 appearing in each row and column, and the rest of the entries
are 0. An S-permutation matrix of order N = n2 is an N ×N permutation matrix with the
additional constraint that only one 1 appears in each of the n × n sub-blocks indicated by
the generalization in Section 6.1 for (n, n)-Sudoku matrices. Central to this idea is the fact
that each (n, n)-Sudoku matrices A can be written uniquely as

A = 1 · P1 + 2 · P2 + · · ·+N · PN , (4)

where P1, . . . , PN are each permutation matrices of order N , with the additional property
of being disjoint, i.e., the supports of each matrix are pairwise disjoint. It was shown in [4,
Proposition 1] that the number of S-permutation matrices is precisely n!2n. In [31, Theorem 1
and Theorem 2], an exact formula is given using inclusion-exclusion for the number of pairs
of disjoint S-permutation matrices.

Permutation matrices were exploited in [14] for the random sampling of Latin squares of
order N , using the same decomposition in (4) but using just permutation matrices of order N
without the additional block constraint. The sampling algorithm in [14, Section 3] generates
a certain undirected graph whose largest cliques correspond to permutation matrices in (4)
used to construct a Latin square. It is the creation of this undirected graph along with the
finding of all cliques which currently dominates the computation. For Latin squares of order
n, the procedure was shown to be an effective method of uniform sampling for n ≤ 7.

6.3 Importance sampling

In [6], a backtracking algorithm for Sudoku matrices is presented as follows:

• Generate the first row as a random permutation of {1, . . . , 9}.

• Simulate each subsequent row one at a time, and left to right each entry at a time,
with Ri,j denoting the set of elements in row i and column j which can be placed
without violating the Sudoku conditions, by selecting an element from Ri,j uniformly
at random at each stage.

• If for any 2 ≤ i ≤ 9 and 1 ≤ j ≤ 9 we have Ri,j = ∅, then delete the current row and
the preceding row, and continue.

This algorithm was used to generate a sample size of 108 in [6]. While no quantitative bounds
on the bias were proved, the algorithm completed quickly, always producing a valid Sudoku
matrix.

In [25], a similar algorithm is championed, except if the algorithm encounters Ri,j = ∅ for any
i and j, the algorithm halts. The advantage this algorithm has is that one can more easily
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keep track of the importance sampling weight, and hence establish an approximation for the
number of Sudoku matrices as follows. If we assume that each row is a uniform permutation
of the set {1, . . . , 9}, then each entry in column j of a Sudoku matrix can be one of 10 − j
possible values, depending on which of the first j elements were placed first. Whereas in the
algorithm we select an element uniformly from the set Ri,j of size |Ri,j| ≤ 10− j, we correct
for this via the likelihood ratio

ℓi,j =
|Ri,j|
10− j

, Ri,j 6= 0,

with ℓi,j = 0 if Ri,j = ∅. The importance sampling weight is then the product of these ratios,
i.e.,

9
∏

i=2

9
∏

j=1

ℓi,j.

This was used to estimate the approximate number of Sudoku matrices, obtaining 6.662 ·1021
as a point estimate. This algorithm can also be adapted to larger numerical tables, e.g.,
(n, n)-Sudoku matrices, but as the author points out, the probability of generating a feasible
matrix, i.e., the probability that the algorithm does not halt before completion, becomes
increasingly small.

6.4 Markov chain approaches

In [18], two Markov chains on the set of Latin squares of order n are presented which involve
rather intricate sets of transformations to transition from one state to the next, always
yielding a valid Latin square of order n. It is proved in [18, Theorem 7] that the stationary
distribution is indeed the uniform distribution, and that transitioning from one state to
another requires O(n) arithmetic operations. However, as indicated in [18, Section 6], there
is no proof that the chain is rapidly mixing.

A Markov chain for (n, n)-Sudoku matrices was recently introduced in [15], via a connection
with the set of binary contingency tables (the set of matrices with entries in {0, 1} with
row sums and column sums specified), and then by finding a Markov basis, see [9]. The
Markov basis ensures that all states are reachable, however, the technique is admittedly
not feasible for the standard (3, 3)-Sudoku matrices, and instead it is explored using (2, 2)-
Sudoku matrices. While an intriguing and unique approach to random sampling, there is
also no proof that the chain is rapidly mixing.

7 Final Remarks

Our motivation for these algorithms is to verify a claim from [6], in which the authors
calculated and compared the Shannon entropy of a random sample of Sudoku matrices and
Latin squares of order 9 using a backtracking algorithm, see Section 6.3. This algorithm
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is fast, though not necessarily unbiased, and allowed the authors to generate a sample of
size 108 that was used in the estimation of Shannon’s entropy. For Sudoku matrices, the
entropy was estimated as 1.73312 ± 0.000173, and for Latin squares of order 9 the entropy
was estimated as 1.73544± 0.0001735. Assuming the bias in the backtracking algorithm is
relatively small, this calculation suggests that a statistical error of at most 10−3 is required in
order to definitively distinguish a difference in entropies between the set of Sudoku matrices
and the set of Latin squares of order 9, and so we anticipate needing an unbiased sample of
size at least 106 to effectively distinguish between the entropies of these two sets of matrices.

While Algorithm 2 and Algorithm 3 are provably unbiased, they each took approximately 24
hours to generate a sample of size 1000 on a personal computer3 (using n = 9 in Algorithm 3).
Using this i.i.d. sample of size 1000, an unbiased estimate for the entropy of Sudoku matrices
is 1.73356 ± 0.0383708, and for Latin squares of order 9 our estimate for the entropy is
1.73335± 0.0389771, which is consistent with the backtracking algorithm.

We have supplied C++ source code used to generate the samples and posted it at
https://github.com/stephendesalvo, along with the files containing the random samples
of size 1000, and scripts to load in the matrices into an n× n× 1000 array in Matlab and a
1000× n× n array in Mathematica.
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