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Abstract

There are only 10 Euclidean three dimensional forms, that is, compact locally

Euclidean 3-manifold without boundary. Six of them, G1, G2, G3, G4, G5, G6,

are orientable and the other four, B1, B2, B3, B4, are non-orientable manifolds.

Following J. H. Conway and J. P. Rossetti, we call them platycosms. In the present

paper, a new algebraic method is given to classify and enumerate n-fold coverings

over platycosms. We decribe all types of n-fold coverings over B1 and over B2,

and calculate the numbers of non-equivalent coverings of each type. Recall that

the manifolds B1 and B2 are uniquely determined among the others non-orientable

forms by their homology groups H1(B1) = Z2 × Z2 and H1(B2) = Z2.
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Introduction

Let N , N ′ and M be connected manifolds. Two coverings ρ : N −→ M and ρ′ : N ′ −→
M are equivalent if there exists a homeomorphism η : N −→ N ′ such that ρ = ρ′ ◦ η.

From general theory of covering spaces, it follows that any n-fold covering over M
corresponds to the unique subgroup of index n in the fundamental group π1(M). Two
coverings are equivalent if and only if the corresponding subgroups are conjugate in
π1(M) (see [2] p. 67). The equivalence classes of n-fold covering of N are in one-to-one
correspondence with the conjugacy classes of subgroups of index n in the fundamental
group π1(N).

The number of subgroups of a given index in the free group Fr was determined by M.
Hall [3]. An explicit formula for the number of conjugacy classes of subgroups of a given
index in Fr was obtained by V. A. Liskovets [4]. Both problems for the fundamental
group Γg of a closed orientable surface of genus g were completely resolved in [7] and [8]
respectively. For the fundamental group Φp of a closed non-orientable surface of genus
p they were resolved in [10]. See paper [11] for a short proof of the above mentioned
results. In the paper [5] the results were extended to some 3-dimensional manifolds
which are circle bundles over a surface.

Following Conway-Rossetti ([1]), we use the term platycosm ("flat universe") for a
compact locally Euclidean 3-manifold without boundary. In the present paper we suggest
a new algebraic method to classify n-fold coverings over amphicosms and enumerate
them. It is important to emphasize that numerical methods to solve these problems was
developed by the Bilbao group [15].

Platycosms are the simplest alternative universes for us to think of living in [6]. (Jeff
Weeks created the program, which allows to "fly" through platycosms and other spaces.)
If you lived in a small enough platycosm, you would appear to be surrounded by images
of yourself which can be arranged in one of ten essentially different ways. (See [1]).

There are six orientable platicosms, denoted in Wolfs notation G1, G2, G3, G4, G5,
G6 and four non-orientable manifolds B1, B2, B3, B4. The aim of this paper is to clas-
sify types of n-fold coverings over B1 and over B2, and calculate the numbers of non-
equivalent coverings of each type. We classify all types of subgroups in the fundamental
groups B1 and B2 respectively, and calculate the numbers of conjugated classes of each
type of subgroups for index n.

Notations

During this paper we will use the following notations: sG(n) is the total number of
subgroups of index n in the group G, sH,G(n) is the number of subgroups of index n
in the group G, isomorphic to the group H . The same way cG(n) is the total number
of conjugancy classes of subgroups of index n in the group G, cH,G(n) is the number
conjugancy classes of subgroups of index n in the group G, isomorphic to the group H .

σ0(n) =
∑

k|n

1 if n is natural, σ0(n) = 0 otherwise,
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σ1(n) =
∑

k|n

k if n is natural, σ1(n) = 0 otherwise,

σ2(n) =
∑

k|n

σ1(k) if n is natural, σ2(n) = 0 otherwise.

The epimorphism φ : π1(B1) → Z2 is determined in ??, the epimorphism ψ : π1(B2) → Z2

is determined in ??.
The invariant of a subgroup ∆ 6 π1(B1), l(∆) is determined in ??, its analog for

∆ 6 π1(B2) is determined in ??.
The invariants ρ(∆) and ε(∆), applied to non-abelian subgroup ∆ 6 π1(B1) only,

are determined after ??, analogous ones for ∆ 6 π1(B2) are determined after ??.

In this paper we widely use the the summing
∑

2k|n

. We consider it equals zero if n is

odd since in this case the sum is taken over the empty set of terms.

One can find the correspondence between Wolf’s and Conway-Rossetti’s notations of
flat 3-manifold and its fundamental groups in Table 1. We use Wolf’s notation.

name
Conway-
Rosetti

other names Wolf
fund.group
(internatl.
no name)

torocosm c1 3-torus G1 1.P1
dicosm c2 half turn space G2 4.P21

tricosm c3 one-third turn space G3
144.P31
145.P32

tetracosm c4 quarter turn space G4
76.P41
78.P43

hexacosm c6 one-sixth turn space G5
169.P61
170.P65

didicosm c22
Hantzsche-Wendt

space
G6 19.P212121

first amphicosm +a1
Klein bottle times

circle
B1 7.Pc

second amphicosm −a1 B2 9.Cc
first amphidicosm +a2 B3 29.Pca21
second amphidicosm −a2 B4 33.Pa21

Table 1

1 The brief overview of achieved results

Since the problem of enumeration of n-fold coverings reduces to the problem of enumera-
tion of conjugacy classes of some subgroups, it is natural to expect that the enumeration
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of subgroups without respect of conjugacy would be helpful. The next theorem provides
the complete solution of this problem. For brevity we use notation Pc for π1(B1) and
Cc for π1(B2), see Table 1.

Theorem 1. Every subgroup ∆ of finite index n in π1(B1) is isomorphic to either Z3,
or π1(B1), or π1(B2), and

(i) sZ3,π1(B1)(n) =
∑

2l|n

σ1(l)l,

(ii) sπ1(B1),π1(B1)(n) =
∑

l|n

σ1(
n

l
)l −

∑

2l|n

σ1(
n

2l
)l,

(iii) sπ1(B2),π1(B1)(n) =
∑

2l|n

2lσ1(
n

2l
)−

∑

4l|n

2lσ1(
n

4l
).

To prove this theorem we need the following propositions. To prove this theorem we
need the following propositions. ?? presents a canonical form of elements in π1(B1) and
introduce an invariant φ(∆). ?? provides a necessary and sufficient condition that the
subgroup ∆ 6 π1(B1) is abelian in terms of φ(∆). This proposition also provides the
fact that all abelian subgroups of finite index in π1(B1) belongs to one largest abelian
subgroup (this is certainly false for abelian subgroups of infinite index). Finally, ?? show
that 4-plet of introduced invariants ((l(∆), φ(∆), ρ(∆), ε(∆)) determine a non-abelian
subgroup uniquely and ?? describes the type of subgroup in terms of ε(∆).

Theorem 2 provides the total number of conjugacy classes of subgroups of index n
in π1(B1), thus the total number of non-equivalent n-fold coverings of B1.

Theorem 2. The total number of non-equivalent n-fold coverings over B1 is

cπ1(B1)(n) =
1

n

∑

l|n
lm=n

(ϕ3(l)
∑

2k|m

σ1(k)k +
∑

d|l

µ

(

l

d

)

(2, d)d2
∑

k|m

(σ1(
m

k
)− σ1(

m

2k
))k+

+ϕ2(l)
∑

2k|m

(σ1(
m

2k
)− σ1(

m

4k
))2k) ,

where µ(k) is the Möbius function, ϕ3(l) and ϕ2(l) are Jordan totient functions,(2, d) is
a greater common divisor of numbers 2 and d.

The next theorem provides the number of conjugacy classes of subgroups of index n
in π1(B1) with respect of the isomorphism type of a subgroup, thus the number of n-fold
coverings of B1 with respect of the isomorphism type of a cover.
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Theorem 3. Let N → B1 be an n-fold covering over B1. If n is odd then N is home-
omorphic to B1. If n is even then N is homeomorphic to G1 or B1 or B2. The corre-
sponding numbers of nonequivalent coverings are given by the following formulas:

(i) cZ3,π1(B1)(n) =
∑

2l|n

∑

m| n
2l

(

l2 +
5

2
+

3

2
(−1)l

)

m,

(ii) cπ1(B1),π1(B1)(n) =
∑

l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

l
)−

∑

2l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

2l
),

(iii) cπ1(B2),π1(B1)(n) = 2
(

∑

2l|n

σ1(
n

2l
)−

∑

4l|n

σ1(
n

4l
)
)

.

Despite ?? covers ?? we present both, since the proof of ?? can be also obtained
from other considerations, see ??.

The results towards the manifold B2 follows much the same way. ??, ?? and ?? are
similar to ??, ?? and ?? respectively.

Theorem 4. Every subgroup ∆ of finite index n in π1(B2) is isomorphic to either Z3,
or π1(B2), or π1(B1), and

(i) sZ3,π1(B2)(n) =
∑

2l|n

σ1(l)l,

(ii) sπ1(B2),π1(B2) =



















∑

4k|n

2k
(

σ1(
n

2k
)− σ1(

n

4k
)
)

if n is even

∑

k|n

σ1(
n

k
)k if n is odd

(iii) sπ1(B1),π1(B2) =
∑

2k|n

2kσ1(
n

2k
)−

∑

4k|n

2kσ1(
n

4k
).

Theorem 5. The total number of non-equivalent n-fold coverings over B2 is

cπ1(B2) =
1

n

∑

l|n
lm=n

(ϕ3(l)
∑

2k|m

σ1(k)k+sπ1(B1),π1(B2)(m)
∑

d|l

µ

(

l

d

)

(2, d)d2+ϕ2(l)sπ1(B2),π1(B2)(m)) ,

where µ(t) is the Möbius function, ϕ3(l) and ϕ2(l) are Jordan totient functions,(2, d) is
a greater common divisor of numbers 2 and d.
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Theorem 6. Let N → B2 be an n-fold covering over B2. If n is odd then N is home-
omorphic to B2. If n is even then N is homeomorphic to G1 or B1 or B2. The corre-
sponding numbers of nonequivalent coverings are given by the following formulas:

(i) cZ3,π1(B2)(n) =
1

2

∑

2l|n

∑

m| n
2l

(

l2 +
3

2
+

1

2
(−1)l + (−1)

n

2lm + (−1)l+
n

2lm

)

m,

(ii) cπ1(B2),π1(B2)(n) =



















∑

4k|n

(σ1(
n

2k
)− σ1(

n

4k
)) if n is even

∑

l|n

σ1(
n

l
) if n is odd

(iii) cπ1(B1),π1(B2)(n) = 2
(

∑

2k|n

σ1(
n

2k
)−

∑

4k|n

σ1(
n

4k
)
)

.

2 Preliminaries

Consider manifold, referred as B1 and B2 in [17], also as +a1 and −a1 in [1].
Let us remark that B1 can be considered as a Seifert fiber space. B1 is the trivial

S1-bundle over Klein bottle K, so B1 = K × S1. Its fundamental group π1(B1) is

π1(B1) = π1(K)× π1(S
1) = Λ× Z, (2.1)

where Λ is a fundamental group of Klein bottle.
From [1] the fundamental group π1(B1), can be represented in the form

π1(B1) = 〈W,X,Z : X−1ZX = W−1ZW = Z−1,W−1Z−1WZ = 1〉. (2.2)

It is also a crystallographic group Pc.
The fundamental group π1(B2), can be represented in the form

π1(B2) = 〈W ′, X ′, Z ′ : X ′−1Z ′X ′ =W ′−1Z ′W ′ = Z ′−1,W ′−1Z ′−1W ′Z ′ = Z ′〉. (2.3)

It is also a crystallographic group Cc.
For our convenience we replace X = a, W = ca, Z = b and obtain

π1(B1) = 〈a, b, c : cac−1a−1 = cbc−1b−1 = 1, aba−1b = 1〉. (2.4)

Substituting X ′ = α, Z ′ = β−1 and W ′ = αγ, we get

π1(B2) = 〈α, β, γ : γβγ−1 = αγα−1γ−1 = β, αβα−1 = β−1〉. (2.5)

A 3-torus is denoted by G1 in our paper. Note that the fundamental group π1(G1) is
represented in the form

π1(G1) = Z3 (2.6)

It is also a crystallographic group P1.
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3 On the coverings of B1

3.1 The structure of the group π1(B1)

The following proposition provides the canonical form of an element in π1(B1).

Proposition 1. (i) Each element of π1(B1) can be represented in the canonical form
axbycz for some integer x, y, z.

(ii) The product of two canonical forms is given by the formula

axbycz · ax
′

by
′

cz
′

= ax+x′

b(−1)x
′

y+y′cz+z′. (3.7)

(iii) The canonical epimorphism φ : π1(B1) → π1(B1)/〈b〉 ∼= Z2, given by the formula
axbycz → (x, z) is well-defined.

(iv) The representation in the canonical form axbycz for each element is unique.

Proof. The part (i) follows from the part (ii), part (ii) can be verified directly. The part
(iii) is equivalent the fact that the subgroup 〈b〉 is a normal subgroup of π1(B1), which
fact immediately follows from the representation ?? of π1(B1) . For the proof of the
part (iv) consider arbitrary element π1(B1) and its an arbitrary representation of this
element in the canonical form. The values of x and z are uniquely defined by (iii). Thus
y is also uniquely defined, since b is an element of finite order in Pc otherwise.

Lemma 1. Let ∆ be a subgroup of index n in π1(B1). By l(∆) denote the minimal
positive integer, such that bl(∆) ∈ ∆. Such an l(∆) exists, and satisfy the relation
l(∆) · [π1(B1) : φ(∆)] = n.

Proof. If l(∆) does not exists then all elements b, b2, b3, . . . belong to mutually different
cosets of ∆ in π1(B1), thus the index of ∆ is infinite, which is a contradiction.

Let g1, . . . gk be such elements of π1(B1), that φ(g1), . . . φ(gk) is a complete system
of right coset representatives of φ(∆) in Z2. Then {gibj | 1 ≤ i ≤ k, 0 ≤ j ≤ l(∆) − 1}
is a complete system of right coset representatives of ∆ in π1(B1). Thus l(∆) · [π1(B1) :
φ(∆)] = [π1(B1) : ∆] = n.

The next proposition shows that the introduced above invariant φ(∆) is sufficient to
determine whether ∆ is abelian or not.

Proposition 2. Let ∆ be a subgroup of finite index in π1(B1). Then ∆ is abelian if and
only if φ(∆) 6 {(2x, z)| x, z ∈ Z}. 1

Proof. Since

a2xbycz · a2x
′

by
′

cz
′

= a2x+2x′

by+y′cz+z′ = a2x
′

by
′

cz
′

· a2xbycz,

1In other words, ∆ is abelian iff ∆ 6 〈a2, b, c〉
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the if part is obvious. The inequality a2x+1bycz · bl(∆) 6= bl(∆) ·a2x+1bycz proves the only if
part. Indeed, by ?? a2x+1bycz ·bl(∆) = a2x+1by+l(∆)cz and bl(∆) ·a2x+1bycz = a2x+1by−l(∆)cz,
this expressions are not equal since the order of b is infinite.

As a corollary of ?? we obtain the value of sZ3,π1(B1)(n).

Corollary 1. The number of subgroups of index n in π1(B1), which are isomorphic to
Z3, is given by the formula:

sZ3,π1(B1)(n) =
∑

2l|n

σ1(l)l.

Proof. Let ∆ be a subgroup of index n in π1(B1) isomorphic to Z3, then by ?? φ(∆) 6
{(2x, z)| x, z ∈ Z}. Thus from the definition of φ it follows that ∆ 6< a2, b, c >∼= Z3.
Since [π1(B1) :< a2, b, c >] = 2, we have [< a2, b, c >: ∆] = n/2. The number of
subgroups in Z3 of index n/2 is well known (see, for instance, [5] Corollary 4.4) and

equals to
∑

k|n
2

σ1(k)k.

The following lemmas are technical statements, needed to introduce the important
invariant ν.

Lemma 2. Let ∆ be a subgroup of a finite index in π1(B1). Then φ(∆) ∼= Z2.

Proof. The index [φ(π1(B1)) : φ(∆)] divides [π1(B1) : ∆], thus it is finite. Any subgroup
of finite index in Z2 is necessarily isomorphic to Z2.

Notation. By v = (xv, zv) and u = (xu, zu) denote a pair of generators of φ(∆),
where φ(∆) is considered as a subgroup of {(x, z) | x ∈ Z, z ∈ Z}.

Lemma 3. Any subgroup of finite index in 〈a2, b, c〉 is isomorphic to Z3.

Proof. The subgroup of finite index in Z3 is isomorphic to Z3.

Lemma 4. Let (x, z) ∈ φ(∆). Then there exist an integer number µ(x, z), 0 ≤ µ(x, z) ≤
l(∆)− 1, such that for all axbycz ∈ ∆ we have y ≡ µ(x, z) mod l(∆).

Proof. Assume the converse is true. This means that there exist g = axbycz ∈ ∆ and
h = axby

′

cz ∈ ∆, such that y 6≡ y′ mod l(∆). Since h−1g ∈ ∆, by−y′ ∈ ∆, that
contradicts the minimality of l(∆).

Lemma 5. Assume φ(∆) 
 {(2x, z)| x, z ∈ Z}, then one can choose the generators
v = (xv, zv) and u = (xu, zu) in such a way that xv is odd and xu is even.

Proof. At least one xv and xu is odd, otherwise the group ∆, generated by v = (xv, zv)
and u = (xu, zu) is a subgroup of {(2x, z)| x, z ∈ Z}. Without loss of generality suppose
xv is odd. If xu is odd replace u with u+ v.

From now on we fix some v and u, chosen in this way.

Notation. Let p, q ∈ Z, put (x, z) = pv + qu. Denote ν(p, q) = µ(x, z).
Remark. Consider an arbitrary element of φ(∆), w = (x, z) = pv + qu. Let

apxv+qxubycpzv+qzu ∈ ∆ be an arbitrary preiamge of w under φ . Then by definition
ν(p, q) ≡ y mod l(∆).

8



Lemma 6 (almost additivity). ν(s+ 2p, t+ q) ≡ ν(s, t) + ν(2p; q) mod l(∆).

Proof. Let g, h ∈ ∆ be a preimages of elements sv + tu and 2pv + qu respectively
under the homomorphism φ. In other words, g = asxv+txubν(s,t)+klcszv+tzu and h =
a2pxv+qxubk

′lc2pzv+qzu. Then gh = a(s+2p)xv+(t+s)xubν(s,t)+ν(2p,q)+(k+k′)l(∆)c(s+2p)zv+(t+s)zu by
the formula ??. Thus ν(s+ 2p, t+ q) ≡ ν(s, t) + ν(2p; q) mod l(∆) by the definition of
ν(s + 2p, t+ q).

Lemma 7. ν(2p, 2q) = 0.

Proof. Let g ∈ ∆ be a preimage of element v under the homomorphism φ. In other
words, g = axvbyczv . Then

g2 = a2xvb(−1)xv y+yc2zv = a2xvc2zv .

The last equality holds since xv is odd. Thus ν(2, 0) = 0.
Analogously, consider h ∈ ∆ a preimage of v + u under φ to conclude ν(2, 2) = 0.

Use ?? to finish the proof.
In other words to define the function ν(s, t) it is sufficient to determine ν(0, 0), ν(0, 1),

ν(1, 0) and ν(1, 1), also ?? gives ν(0, 0) = 0.

Lemma 8. The following holds:

(i) ν(1, 1) ≡ ν(0, 1) + ν(1, 0) mod l(∆)

(ii) 2ν(0, 1) ≡ 0 mod l(∆).

Proof. Immediate corollary of lemmas 6 and 7.
Notation. Put ρ(∆) = ν(1, 0) and ε(∆) = ν(0, 1).

Definition. A 4-plet (l(∆), φ(∆), ρ(∆), ε(∆)) is called n-essential if the following
conditions holds:

(i) l(∆) is a positive divisor of n,

(ii) φ(∆) is a subgroup of index n/l(∆) in Z2, but not a subgroup of {(2p, q | p ∈
Z, q ∈ Z)},

(iii) ρ(∆), ε(∆) ∈ {0, 1, . . . , l(∆)− 1}, and 2ε(∆) ≡ 0 mod l(∆).

Proposition 3. There is a bijection between the set of n-essential 4-plets (l(∆), φ(∆), ρ(∆), ε(∆))
and non-abelian subgroups ∆ of index n in π1(B1).

Proof. Let ∆ be a non-abelian subgroup of index n in π1(B1). Since (l(∆), φ(∆), ρ(∆)
and ε(∆)) are well-defined there is an injection from the set of considered subgroups to
the set of 4-plets. This 4-plets are n-essential in virtue of ?? and ??. Thus we have to
show that every 4-plet is achieved in this way.

9



Consider an n-essential 4-plet (l(∆), φ(∆), ρ(∆), ε(∆)). Choose two generating vec-
tors v and u for the group φ(∆) as described in ??. Direct verification shows that the
set

∆ = {a2pxv+2qxubkl(∆c2pzv+2qzu | p, q, k ∈ Z}
⋃

{a(2p+1)xv+2qxubρ(∆+kl(∆c(2p+1)zv+2qzu | p, q, k ∈ Z}
⋃

⋃

{a2pxv+(2q+1)xubε(∆+kl(∆c2pzv+(2q+1)zu | p, q, k ∈ Z}
⋃

⋃

{a(2p+1)xv+(2q+1)xubρ(∆+ε(∆+kl(∆c(2p+1)zv+(2q+1)zu | p, q, k ∈ Z}

is a subgroup in π1(B1), again ∆ have the index n in π1(B1) in virtue of ??.

Proposition 4. The type of nonabelian subgroup ∆ of π1(B1) is uniquely determined
by the value of ε(∆). More precisely, if ε(∆) = 0 then ∆ ∼= Pc, if l(∆) is even and
ε(∆) = l(∆)/2 then ∆ ∼= Cc.

Proof. In the case ε(∆) = 0 denote a′ = axvbρ(∆)czv , b′ = bl(∆) and c′ = axuczu . Direct
verification shows that the relations c′a′(c′)−1(a′)−1 = c′b′(c′)−1b′−1 = e and a′b′(a′)−1b′ =
e holds. Further we call this relations the proper relations of the subgroup ∆. Thus the
map a→ a′, b→ b′, c→ c′ can be extended to an epimorphism π1(B1) → ∆. To prove
that this epimorphism is really an isomorphism we need to show that each relation in
∆ is a corollary of proper relations. We call a relation, that is not a corollary of proper
relations an improper relation.

Assume the contrary. Since in ∆ the proper relations holds, each element can be
represented in the canonical form, given by ?? in terms of a′, b′, c′, by using just the
proper relations. I.e. each element g can be represented as

g = a′xb′yc′z.

If there is an improper relation then there is an equality

a′pb′qc′r = a′p
′

b′q
′

c′r
′

(3.8)

where at least one of the inequalities p 6= p′, q 6= q′, r 6= r′ holds. Substitute a′ =
axvbρ(∆)czv , b′ = bl(∆) and c′ = axuczu to ?? and apply the homomorphism φ to both
left and right parts. We get

{

pxv + rxu = p′xv + r′xu

pzv + rzu = p′zv + r′zu
(3.9)

Since the vectors v = (xv, zv) and u = (xu, zu) generate a subgroup of finite index in Z2,

the matrix

(

xv zv
xu zu

)

is nonsingular. Thus ?? implies p = p′ and r = r′. That means

q 6= q′.
So ?? can be simplified to bl(∆)(q−q′) = e, which is a contradiction since π1(B1) have

no elements of finite order.
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In the second case denote α′ = axvbρczv , β ′ = bl and γ′ = axub−εczu . Direct verifica-
tion shows that the relations α′β ′(α′)−1 = (β ′)−1, γ′β ′(γ′)−1 = β ′ and α′γ′(α′)−1(γ′)−1 =
β ′ holds. Thus the map α → α′, β → β ′, γ → γ′ can be extended to an isomorphism
π1(B1) → ∆. The proof is analogous to the previous case.

Remark. The groups Pc and Cc are not isomorphic since they have different ho-
mologies: H1(Pc) = Z2 × Z2 and H1(Cc) = Z2, see [17] or [1].

3.2 The proof of Theorem 1

Proceed to the proof of ??. First of all we show that there exist only 3 types of subgroups
in π1(B1). Consider a subgroup ∆ of index n in π1(B1). Then either φ(∆) 6 {(2p, q |
p ∈ Z, q ∈ Z)} or φ(∆) 
 {(2p, q | p ∈ Z, q ∈ Z)}. In the first case the ?? states that ∆
is abelian and ∆ 6 〈a2, b, c〉, thus the group ∆ ∼= Z3 as a subgroup of finite index in Z3.

If φ(∆) 
 {(2p, q | p ∈ Z, q ∈ Z)} then ∆ is bijectively determined by an n-essential
4-plet (l(∆), φ(∆), ρ(∆), ε(∆)) in virtue of ??. Recall that 2ε(∆) ≡ 0 mod l(∆). Thus
there are only two cases: ε(∆) = 0 and ε(∆) = l(∆)/2 (the latter one is possible only if
l(∆) is even).

In case ε(∆) = 0 ?? claims that ∆ ∼= Pc. In case ε(∆) = l(∆)/2 ?? yields ∆ ∼= Cc.
Thus we proved that ∆ is isimorphic to one of the groups Pc, Z3 and Cc, and the latter
two cases are possible only if n is even. Consider all three cases separately.

Case (i). The number sZ3,π1(B1)(n) is calculated in ??.
Case (ii). To find the number of subgroups, isomorphic to π1(B1) by Propositions 3

and 4 we need to calculate the cardinality of the set of n-essential 4-plets with ε(∆) = 0,
i.e.

{(l(∆), φ(∆), ρ(∆), 0) | (l(∆), φ(∆), ρ(∆), 0) is an n-essential 4-plet}.

Keeping in mind the definition of an n-essential 4-plet we see that l(∆) is an arbitrary
factor of n. The amount of possible φ(∆) depending of l(∆) may be calculated the
following way. By definition of n-essential 4-plet φ(∆) 6 Z2, φ(∆) 
 {(2p, q | p ∈ Z, q ∈
Z)} and

[

Z2 : φ(∆)
]

= n/l(∆). The total amount of φ(∆), such that
[

Z2 : φ(∆)
]

=
n/l(∆) is σ1(

n
l(∆)

), (see [5] Corollary 4.4). Analogously the amount of φ(∆), such that

φ(∆) 6 {(2p, q | p ∈ Z, q ∈ Z)} and
[

Z2 : φ(∆)
]

= n/l(∆) is σ1(
n

2l(∆)
). Thus amount

of required φ(∆) is σ1(
n

l(∆)
)− σ1(

n
2l(∆)

). The amount of possible ρ(∆) does not depends

on a choice of φ(∆) and equals l(∆). Thus for every fixed value of l(∆) the amount of
n-essential 4-plets with this l(∆) and ε(∆) = 0 is

(

σ1(
n

l(∆)
)− σ1(

n
2l(∆)

)
)

l(∆). Summing

this amount over all possible values of l(∆) we get

∑

l|n

(σ1(
n

l
)− σ1(

n

2l
))l =

∑

l|n

σ1(
n

l
)l −

∑

2l|n

σ1(
n

2l
)l.

Case (iii). Arguing similarly we get that the amount of subgroups, isomorphic to
Cc is

∑

2l|n

2lσ1(
n

2l
)−

∑

4l|n

2lσ1(
n

4l
).
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3.3 The total number of subgroups of index n in π1(B1)

As an immediate consequence of ?? we get

sπ1(B1)(n) = sZ3,π1(B1)(n) + sπ1(B1),π1(B1)(n) + sπ1(B2),π1(B1)(n).

By the way there are at least two different considerations leading to this result, we
present them here.

Proposition 5.

sπ1(B1)(n) =
∑

m |n

mcπ1(K)(m), (3.10)

where

cπ1(K)(m) =

{

σ0(m), if mis odd,
3
2
σ0(m) + 1

2

∑

d | m

2

(d− 1), if m is even.
(3.11)

Proof. In [14] p. 112, in Equation 5.125, Stanley proves that if G is a finitely generated
group then 2

sG×Z(n) =
∑

m |n

mcG(m). (3.12)

The formula ?? is proven in [9] (see Theorem 2). Since π1(B1) = π1(K) × Z, to finish
the proof substitute ?? to ??.

Some simple calculations, omitted here, show that the expressions for sπ1(B1)(n),
obtained by ?? and by ?? are equal.

A sequence sπ1(B1)(n) coincides with the sequence A027844 in the ’On-Line Encyclo-
pedia of Integer Sequences’ ([12]).

Remark 1. Note that the other formula for sπ1(B1)(n) was obtained by different method
by M.N.Shmatkov in PhD thesis [13] (see p. 150–151).

3.4 The proof Theorem 2

To obtain the total number of n-coverings over B1 we use following theorem from [11]:

Theorem (Mednykh). Let Γ be a finitely generated group. Then the number of conju-
gated classes of subgroups of index n in the group Γ, is given by the formula

cΓ(n) =
1

n

∑

l|n
lm=n

∑

K<mΓ

|Epi(K,Zl)|,

where the sum
∑

K<mΓ is taken over all subgroups K of index m in the group Γ and
Epi(K,Zl) is the set of epimorphisms of the group K onto the cyclic group Zl of order l.

2In Stanley notations: jG(n) = cG(n) and uG(n) = sG(n).
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Since ?? classifies all subgroups of finite index in π1(B1), we just have to calculate
|Epi(Z3,Zl)|, |Epi(Pc,Zl)| and |Epi(Cc,Zl)|.

Lemma 9. (i) H1(Z3,Z) = Z3,

(ii) H1(Pc,Z) = Z2 ⊕ Z2,

(iii) H1(Cc,Z) = Z2,
where H1(∆,Z) is a first homology group.

Proof. See [1] section 7.
The previous lemma and Lemma 4 of [11] yield the following result.

Lemma 10. We have

(i) |Epi(Z3,Zl)| =
∑

d|l µ
(

l
d

)

d3 := ϕ3(l),

(ii) |Epi(Pc,Zl)| =
∑

d|l µ
(

l
d

)

(2, d)d2,

(iii) |Epi(Cc,Zl)| =
∑

d|l µ
(

l
d

)

d2 := ϕ2(l),

where µ(n) is the Möbius function, ϕ3(l) and ϕ2(l) are Jordan totient functions,(2, d) is
a greater common divisor of numbers 2 and d .

Substituting the formulas from ?? to Mednykh’s Theorem we get the statement of
??.

3.5 The proof Theorem 3

The isomorphism types of subgroups are already provided by ??. Thus we have to
calculate the number of conjugacy classes for each type separately.

Lemma 11.

cZ3,π1(B1)(n) =
1

2

∑

2l|n

∑

m| n
2l

(

l2 +
5

2
+

3

2
(−1)l

)

m.

Proof. Let ∆ be a subgroup of index n in π1(B1), isomorphic to Z3. Then ∆ 6 〈a2, b, c〉
by ??. Thus ∆a2 = ∆b = ∆c = ∆, so the conjugacy class of ∆ in π1(B1) contains at
most two subgroups: ∆ and ∆a. Thus we have to find out whether ∆ = ∆a.

The arguments, analogous to ?? shows that there is a bijection between the set of
isomorphic to Z3 subgroups ∆ 6 π1(B1) and the setb 4-plets (l(∆), φ(∆), yv(∆), yu(∆)),
such that

(i) l(∆) is a positive divisor of n,

(ii) φ(∆) 6 〈a2, b, c〉 and [〈a2, b, c〉 : φ(∆)] = n
2l(∆)

,

(iii) yv(∆) and yu(∆) are arbitrary residues modulo l(∆).
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Obviously, l(∆) = l(∆a), φ(∆) = φ(∆a), yv(∆) = −yv(∆a), yu(∆) = −yu(∆a). Thus
we have to find the number of pairs (yv, yu) of residues modulo l(∆), such that yv = −yv
and yu = −yu. If l(∆) is odd there is 1 pair (0, 0), if l(∆) is even there are 4 pairs: (0, 0),
(0, l(∆)/2), (l(∆)/2, 0) and (l(∆)/2, l(∆)/2).

Lemma 12.

cπ1(B1),π1(B1)(n) =
∑

l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

l
)−

∑

2l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

2l
).

Proof. Let ∆ be a subgroup of index n in π1(B1) isomorphic to π1(B1). Recall that by
?? there is a bijection between the set of isomorphic to π1(B1) subgroups ∆ 6 π1(B1)
and the set of n-essential 4-plets (l(∆), φ(∆), ρ(∆), ε(∆)).

Obviously, l(∆) = l(∆d) and φ(∆) = φ(∆d) for any d ∈ π1(+a1). Also ρ(∆) =
−ρ(∆a), ρ(∆) = ρ(∆b) + 2 and ρ(∆) = ρ(∆c). Thus the parity of ρ(∆) is the only
invariant for a conjugacy class with fixed l(∆) and φ(∆).

Summarizing the above considerations. l(∆) can be any positive divisor of n, thus
we get the sum over all divisors the amount of corresponding pairs (φ(∆), ρ(∆) mod 2).
The amount of all φ(∆), such that [Z2 : φ(∆)] = n/l(∆) is σ1(

n
l(∆)

) the amount of φ(∆),

such that φ(∆) is a subgroup of index n
2l(∆)

in {(2p, q | p ∈ Z, q ∈ Z)} is σ1(
n

2l(∆)
) (again,

we consider σ1(
n

2l(∆)
) = 0 if n

2l(∆)
is not integer). Thus the amount φ(∆), satisfying the

condition of n-essential 4-plet is σ1(
n

l(∆)
) − σ1(

n
2l(∆)

). We multiply it by the amoumt

of possible parities of ρ(∆), i.e. 2 for even l(∆) and 1 for odd, in other words by
(

3
2
+ 1

2
(−1)l(∆)

)

. Thus we get

cπ1(B1),π1(B1)(n) =
∑

l|n

(3

2
+

1

2
(−1)l

)(

σ1(
n

l
)− σ1(

n

2l
)
)

=

=
∑

l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

l
)−

∑

2l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

2l
)

Lemma 13.
cπ1(B2),π1(B1)(n) = 2

(

∑

2k|n

σ1(
n

2k
)−

∑

4k|n

σ1(
n

4k
)
)

.

Proof. The proof is analogous to ??.

4 On the coverings of B2

Most of the statements and proofs in this section are similar to corresponding parts of
section 3. The proofs are given only in case of significant difference.
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4.1 The structure of the group π1(B2)

The following proposition provides the canonical form of an element in π1(B2).

Proposition 6. (i) Each element of π1(B2) can be represented in the canonical form
αxβyγz for some integer x, y, z.

(ii) The product of two canonical forms is given by the formula

αxβyγz · αx′

βy′γz
′

=

{

αx+x′

βy+y′γz+z′if x′is even

αx+x′

β−y−z+y′γz+z′if x′is odd
(4.13)

(iii) The canonical epimorphism ψ : π1(B2) → π1(B2)/〈β〉 ∼= Z2, given by the formula
αxβyγz → (x, z) is well-defined.

(iv) The representation in the canonical form αxβyγz for each element is unique.

Lemma 14. Let ∆ be a subgroup of index n in π1(B2). By l(∆) denote the minimal
positive integer, such that βl(∆) ∈ ∆. Such an l(∆) exists, and satisfy the relation
l(∆) · [π1(B2) : ψ(∆)] = n.

The next proposition shows that the introduced above invariant ψ(∆) is sufficient to
determine whether ∆ is abelian or not.

Proposition 7. Let ∆ be a subgroup of finite index in π1(B2). Then ∆ is abelian if and
only if ψ(∆) 6 {(2x, z)| x, z ∈ Z}. 3

As a corollary of ?? we obtain the value of sZ3,π1(B2)(n).

Corollary 2. The number of subgroups of index n in π1(B2), which are isomorphic to
Z3, is given by the formula:

sZ3,π1(B1)(n) =
∑

2l|n

σ1(l)l.

The following lemmas are technical statements, needed to introduce the important
invariant ν.

Lemma 15. Let ∆ be a subgroup of a finite index in π1(B2). Then ψ(∆) ∼= Z2.

Notation. By v = (xv, zv) and u = (xu, zu) denote a pair of generators of ψ(∆),
where ψ(∆) is considered as a subgroup of {(x, z) | x ∈ Z, z ∈ Z}.

Lemma 16. Any subgroup of finite index in 〈α2, β, γ〉 is isomorphic to Z3.

Lemma 17. Let (x, z) ∈ ψ(∆). Then there exist an integer number µ(x, z), 0 ≤
µ(x, z) ≤ l(∆)− 1, such that for all αxβyγz ∈ ∆ we have y ≡ µ(x, z) mod l(∆).

3In other words, ∆ is abelian iff ∆ 6 〈α2, β, γ〉
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Lemma 18. Assume ψ(∆) 
 {(2x, z)| x, z ∈ Z}, then one can choose the generators
v = (xv, zv) and u = (xu, zu) in such a way that xv is odd and xu is even.

From now on we fix some v and u, chosen in this way.

Lemma 19. zu ≡ [Z2 : ψ(∆)] mod 2.

Proof. Follows from [Z2 : ψ(∆)] = |xvzu − xuzv|, xv is odd and xu is even.

Lemma 20 (almost additivity). ν(s+ 2p, t+ q) ≡ ν(s, t) + ν(2p; q) mod l(∆).

Lemma 21. ν(2p, 2q) = −pzv − qzu.

Proof. Consider g ∈ ∆, ψ(g) = v, i.e. g = αxvβν(1,0)+klγzv . Since xv is odd,

g2 = α2xvβ−ν(1,0)−kl−zv+ν(1,0)+klγ2zv = α2xvβ−zvγ2zv .

Thus ν(2, 0) = −zv. Use ?? to finish the proof. Also note that in terms of µ the
statement of ?? is much shorter: µ(2x, 2z) = −z if determined.

Lemma 22. The following holds:

• ν(1, 1) ≡ ν(0, 1) + ν(1, 0) mod l(∆)

• 2ν(0, 1) ≡ ν(0, 2) mod l(∆).

Notation. Denote ρ(∆) = ν(1, 0) and ε(∆) = ν(0, 1).
Summing up Lemmas 20–22 we state the following.



















ν(2p, 2q) ≡ −pzv − qzu mod l(∆),

ν(2p, 2q + 1) ≡ ν(0, 1)− pzv − qzu mod l(∆),

ν(2p + 1, 2q) ≡ ν(1, 0)− pzv − qzu mod l(∆),

ν(2p+ 1, 2q + 1) ≡ ν(1, 0) + ν(0, 1)− pzv − qzu mod l(∆).

Definition. A 4-plet (l(∆), φ(∆), ρ(∆), ε(∆)) is called n-essential if the following
conditions holds:

(i) l(∆) is a positive divisor of n,

(ii) ψ(∆) is a subgroup of index n/l(∆) in Z2, but not a subgroup of {(2p, q | p ∈
Z, q ∈ Z)},

(iii) ρ(∆), ε(∆) ∈ {0, 1, . . . , l(∆)− 1}, and 2ε(∆) ≡ −zu mod l(∆).

Proposition 8. There is a bijection between the set of n-essential 4-plets (l(∆), φ(∆), ρ(∆), ε(∆))
and the set of non-abelian subgroups ∆ of index n in π1(B2).

Proposition 9. The type of nonabelian subgroup ∆ of π1(B2) is uniquely determined
by the value of ε(∆). More precisely, if 2ε(∆) ≡ −zu mod 2l(∆) then ∆ ∼= π1(B1), if
2ε(∆) ≡ −zu + l(∆) mod 2l(∆) then ∆ ∼= π1(B2).
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4.2 The proof of Theorem 4

Proceed to the proof of ??. First of all we show that there exist only 3 types of subgroups
in π1(B2). This proof follows the lines of the proof of ??. Consider a subgroup ∆ of
index n in π1(B2). Then either ψ(∆) 6 {(2p, q | p ∈ Z, q ∈ Z)} or φ(∆) 
 {(2p, q | p ∈
Z, q ∈ Z)}. In the first case the ?? states that ∆ is abelian and ∆ 6 〈a2, b, c〉, thus the
group ∆ ∼= Z3 as a subgroup of finite index in Z3.

If ψ(∆) 
 {(2p, q | p ∈ Z, q ∈ Z)} then ∆ is bijectively determined by an n-essential
4-plet (l(∆), φ(∆), ρ(∆), ε(∆)) in virtue of ??. Recall that 2ε(∆) ≡ −zu mod l(∆).
Thus there are only two cases: 2ε(∆) ≡ −zu + l(∆) mod 2l(∆) and 2ε(∆) ≡ −zu
mod 2l(∆) (the latter one is possible only if l(∆) is even).

In case 2ε(∆) ≡ −zu+l(∆) mod 2l(∆) ?? claims that ∆ ∼= Cc. In case 2ε(∆) ≡ −zu
mod 2l(∆) ?? yields ∆ ∼= Pc. Thus we proved that ∆ is isomorphic to one of the groups
Cc, Z3 and Pc, and the latter two cases are possible only if n is even. Consider all three
cases separately.

Case (i). The number sZ3,π1(B2)(n) is calculated in ??.
Case (ii). To find the number of subgroups, isomorphic to π1(B2) by Propositions 8

and 9 we need to calculate the cardinality of the set of n-essential 4-plets with 2ε(∆) ≡
−zu + l(∆) mod 2l(∆), i.e.

{(l(∆), φ(∆), ρ(∆), 0) | (l(∆), φ(∆), ρ(∆),
−zu + l(∆)

2
) is an n-essential 4-plet}.

Keeping in mind the definition of an n-essential 4-plet we see that l(∆) is an arbitrary
factor of n. The amount of possible ψ(∆) depending of l(∆) may be calculated the
following way. By definition of n-essential 4-plet ψ(∆) 6 Z2, ψ(∆) 
 {(2p, q | p ∈ Z, q ∈
Z)} and

[

Z2 : ψ(∆)
]

= n/l(∆). The total amount of ψ(∆), such that
[

Z2 : ψ(∆)
]

=
n/l(∆) is σ1(

n
l(∆)

), (see [5] Corollary 4.4). Analogously the amount of ψ(∆), such that

ψ(∆) 6 {(2p, q | p ∈ Z, q ∈ Z)} and
[

Z2 : ψ(∆)
]

= n/l(∆) is σ1(
n

2l(∆)
) (we consider

σ1(
n

2l(∆)
) = 0 if n

2l(∆)
is not integer). Thus amount of required ψ(∆) is σ1(

n
l(∆)

)−σ1(
n

2l(∆)
).

The amount of possible ρ(∆) does not depends on a choice of ψ(∆) and equals l(∆).
For every fixed 3-plet l(∆), ψ(∆), ρ(∆) either exists a unique ε(∆), or none.

Unique ε(∆) exists if both l(∆) and zu are odd, or both are even, by ?? this means
l(∆) and n

l(∆)
are both odd or both even. First case is equivalent the statement that n

is odd, second case means l(∆) = 2k and 4k | n for some integer k. Thus we get the
formula.

sπ1(B2),π1(B2) =



















∑

4k|n

2k
(

σ1(
n

2k
)− σ1(

n

4k
)
)

if n is even

∑

k|n

σ1(
n

k
)k if n is odd

Case (iii). Arguing similarly we get that the amount of subgroups, isomorphic to
Cc is

∑

2l|n

2lσ1(
n

2l
)−

∑

4l|n

2lσ1(
n

4l
).
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Thus the proof of ?? is completed.

Remark 2. Notice that sπ1(B2) was obtained by different method by M.N.Shmatkov in
PhD thesis [13] (see p. 156–157) and can be calculated by the following formula

sπ1(B2) =



















∑

k|n

σ1(
n

k
)k if n is odd

∑

k|n, (2,n
k
)=(2,n)

((2, k)(σ1(
n

k
)− σ1(

n

2k
)) + kσ1(

n

2k
))k if n is even

(4.14)

4.3 The proof Theorem 5

The proof of ?? follows the same way as the proof of ??.
Substituting the formulas from ?? and ?? to Mednykh’s Theorem we get the state-

ment of ??.

4.4 The proof Theorem 6

The isomorphism types of subgroups are already provided by ??. Thus we have to
calculate the number of conjugacy classes for each type separately.

Lemma 23.

cZ3,π1(B2)(n) =
1

2

∑

2l|n

∑

m| n
2l

(

l2 +
3

2
+

1

2
(−1)l + (−1)

n

2lm + (−1)l+
n

2lm

)

m.

Proof. Let ∆ be a subgroup of index n in π1(B2), isomorphic to Z3. Then ∆ 6 〈α2, β, γ〉
by ??. Thus ∆α2

= ∆β = ∆γ = ∆, so the conjugacy class of ∆ in π1(B2) contains at
most two subgroups: ∆ and ∆α. Thus we have to find out whether ∆ = ∆α.

The arguments, analogous to ?? shows that there is a bijection between an isomorphic
to Z3 subgroups ∆ 6 π1(B2) and 4-plets l(∆), ψ(∆), yv(∆), yu(∆), such that

• l(∆) is a positive divisor of n

• φ(∆) 6 〈a2, b, c〉 and [〈a2, b, c〉 : φ(∆)] = n
2l(∆)

,

• Choose two residues modulo l(∆), yv(∆) and yu(∆). Here α2l1βyv ∈ ∆ and
α2xuβyuγzu ∈ ∆ are preimages of v and u for the homomorphism ψ.

Obviously, l(∆) = l(∆α), ψ(∆) = ψ(∆α), yv(∆) = −yv(∆α), yu(∆) = −yu(∆α).
Thus we have to find the number of pairs (yv, yu) of residues modulo l(∆), such that
yv ≡ −yv and yu ≡ zu − yu mod l(∆). If l(∆) is odd there is 1 pair (0, zu

2
), if l(∆)

is even and n
2l1(∆)l(∆)

odd then there no such pairs, if both l(∆) and n
2l1(∆)l(∆)

are even

then there are 4 pairs: (0, zu
2
), (0, zu+l(∆)

2
), ( l(∆)

2
, zu

2
) and ( l(∆)

2
, zu+l(∆)

2
). So the amount

of this pairs as a function of the parities of l(∆) and n
2l1(∆)l(∆)

is given by the formula
3
2
+ 1

2
(−1)l + (−1)

n

2lm + (−1)l+
n

2lm .
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Lemma 24.

(ii) cπ1(B2),π1(B2)(n) =



















∑

4k|n

(σ1(
n

2k
)− σ1(

n

4k
)) if n is even

∑

l|n

σ1(
n

l
) if n is odd

Proof. Let ∆ be a subgroup of index n in π1(B2) isomorphic to π1(B2). Recall that by ??
and ?? there is a bijection between an isomorphic to π1(B2) subgroups ∆ 6 π1(B2) and
n-essential 4-plets (l(∆), φ(∆), ρ(∆), ε(∆)), such that 2ε(∆) ≡ −zu + l(∆) mod 2l(∆).

Obviously, l(∆) = l(∆d) and φ(∆) = φ(∆d) for any d ∈ π1(B2). Also ρ(∆α) =
−ρ(∆) + zv, ρ(∆

β) = ρ(∆) + 2 and ρ(∆γ) = ρ(∆) + 1. Thus subgroups that differ only
in the parameter ρ corresponds to one class of conjugancy. Also the required ε(∆) exists
iff l(∆) is odd and zv is odd or l(∆) is even and zv is even. By ?? the zu ≡ n

l(∆)
mod 2,

thus ε(∆) exists if n is odd or l(∆) | n
2

and l(∆) is even. So, we get the amount



















∑

l|n

σ1(
n

l
) if n is odd

∑

l|n
2
, 2|l

(σ1(
n

l
)− σ1(

n

2l
)) if n is even

Summarizing the above considerations. l(∆) can be any positive divisor of n, thus
we get the sum over all divisors the amount of corresponding pairs (φ(∆), ρ(∆) mod 2).
The amount of all φ(∆), such that [Z2 : φ(∆)] = n/l(∆) is σ1(

n
l(∆)

) the amount of φ(∆),

such that φ(∆) is a subgroup of index n
2l(∆)

in {(2p, q | p ∈ Z, q ∈ Z)} is σ1(
n

2l(∆)
) (again,

we consider σ1(
n

2l(∆)
) = 0 if n

2l(∆)
is not integer). Thus the amount φ(∆), satisfying the

condition of n-essential 4-plet is σ1(
n

l(∆)
) − σ1(

n
2l(∆)

). We multiply it by the amoumt

of possible parities of ρ(∆), i.e. 2 for even l(∆) and 1 for odd, in other words by
(

3
2
+ 1

2
(−1)l(∆)

)

. Thus we get

cπ1(B1),π1(B1)(n) =
∑

l|n

(3

2
+

1

2
(−1)l

)(

σ1(
n

l
)− σ1(

n

2l
)
)

=

=
∑

l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

l
)−

∑

2l|n

(3

2
+

1

2
(−1)l

)

σ1(
n

2l
)

Lemma 25.
cπ1(B2),π1(B1)(n) = 2

(

∑

2k|n

σ1(
n

2k
)−

∑

4k|n

σ1(
n

4k
)
)

.

Proof. The proof is analogous to ??.
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6 Appendix

Here we put some tables which illustrated our formulas. Note that numerical results for
n from 1 to 9 were previously obtained in [15].

6.1 Total number cπ1(B1)(n) of n-coverings over the first amph-

icosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cπ1(B1)(n) 1 7 5 23 7 39 9 65 18 61 13 143 15 87 35 183

Table 2

6.2 The number cZ3,π1(B1)(2n) of 3-torus 2n-coverings over the first

amphicosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cZ3,π1(B1)(2n) 1 7 9 29 19 63 33 107 74 133 73 285 99 231 219 393

Table 3

6.3 The number cCc,π1(B1)(2n) of the second amphicosm 2n-coverings

over the first amphicosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cCc,π1(B1)(2n) 2 6 10 14 14 30 18 30 36 42 26 70 30 54 70 62

Table 4

6.4 The number cPc,π1(B1)(n) of the first amphicosm n-coverings

over the first amphicosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cPc,π1(B1)(n) 1 4 5 10 7 20 9 22 18 28 13 50 15 36 35 46

Table 5
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6.5 Total number cπ1(B2)(n) of n-coverings over the second amph-

icosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cπ1(B2)(n) 1 3 5 13 7 19 9 43 18 33 13 93 15 51 35 137

Table 6

6.6 The number cZ3,π1(B2)(2n) of 3-torus 2n-coverings over the sec-

ond amphicosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cZ3,π1(B2)(2n) 1 5 9 23 19 53 33 93 74 119 73 255 99 213 219 363

Table 7

6.7 The number cPc,π1(B2)(2n) of the first amphicosm 2n-coverings

over the second amphicosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cPc,π1(B2)(2n) 2 6 10 14 14 30 18 30 36 42 26 70 30 54 70 62

Table 8

6.8 The number cCc,π1(B2)(n) of the second amphicosm n-coverings

over the second amphicosm

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cCc,π1(B2)(n) 1 0 5 2 7 0 9 6 18 0 13 10 15 0 35 14

Table 8
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