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INDEX-p ABELIANIZATION DATA OF

p-CLASS TOWER GROUPS

DANIEL C. MAYER

Abstract. Given a fixed prime number p, the multiplet of abelian type invariants of the p-
class groups of all unramified cyclic degree p extensions of a number field K is called its IPAD
(index-p abelianization data). These invariants have proved to be a valuable information for
determining the Galois group G2

p
of the second Hilbert p-class field and the p-capitulation type

κ of K. For p = 3 and a number field K with elementary p-class group of rank two, all possible
IPADs are given in the complete form of several infinite sequences. Iterated IPADs of second
order are used to identify the group G∞

p
of the maximal unramified pro-p extension of K.

1. Introduction

After a thorough discussion of the terminology used in this article, the logarithmic and power
form of abelian type invariants in § 2, and multilayered transfer target types (TTTs), ordered
and accumulated index-p abelianization data (IPADs) up to the third order in § 3, we state the
main results in § 3.1 on IPADs of exceptional form, and in § 3.2 on IPADs in parametrized infinite
sequences. These main theorems give all possible IPADs of number fields K with 3-class group
Cl3(K) of type (3, 3).

Before we turn to applications in extreme computing, that is, squeezing the computational
algebra systems PARI [33] and MAGMA [6, 7, 23] to their limits in § 5, where we show how
to detect malformed IPADs in § 5.1, and how to complete partial p-capitulation types in § 5.2,
we have to establish a componentwise correspondence between transfer kernel types (TKTs) and
IPADs in § 4 by exploiting details of proofs which were given in [28].

Iterated IPADs of second order are used in § 6 for the indirect calculation of TKTs in § 6.1,
and for determining the exact length ℓp(K) of the p-class tower of a number field K in § 6.2.

This sophisticated technique proves ℓ3(K) = 3 for K = Q(
√
d) with d ∈ {342 664, 957 013} (the

first real quadratic fields) and d = −3 896 (the first tough complex quadratic field after the ‘easy’
d = −9 748 [13]), which resisted all attempts up to now.

Finally, we emphasize that infinite p-class towers admit an unknown wealth of possible fine
structure in § 7 on complex quadratic fields K having a 3-class group Cl3(K) of type (3, 3, 3).

2. Abelian type invariants

Let p be a prime number and A be a finite abelian p-group. According to the main theorem on
finitely generated abelian groups, there exists a non-negative integer r ≥ 0, the rank of A, and a
sequence n1, . . . , nr of positive integers such that n1 ≤ n2 ≤ . . . ≤ nr and

(2.1) A ≃ Z/pn1Z⊕ . . .⊕ Z/pnrZ.

The powers di := pni , 1 ≤ i ≤ r, are known as the elementary divisors of A, since di | di+1 for
each 1 ≤ i ≤ r − 1. It is convenient to collect equal elementary divisors in formal powers with
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2 DANIEL C. MAYER

positive exponents r1, . . . , rs such that r1 + . . .+ rs = r, 0 ≤ s ≤ r, and

n1 = . . . = nr1 < nr1+1 = . . . = nr1+r2 < . . . < nr1+...+rs−1+1 = . . . = nr1+...+rs .

The cumbersome subscripts can be avoided by defining mj := nr1+...+rj for each 1 ≤ j ≤ s. Then

(2.2) A ≃ (Z/pm1Z)
r1 ⊕ . . .⊕ (Z/pmsZ)

rs

and we can define:

Definition 2.1. The abelian type invariants (ATI) of A are given by the sequence

(2.3) (mr1
1 , . . . ,mrs

s )

of strictly increasing positive integers m1 < . . . < ms with multiplicities r1, . . . , rs written as
formal exponents indicating iteration.

Remark 2.1. The integers mj are the p-logarithms of the elementary divisors di.

(1) For abelian type invariants of high complexity, the logarithmic form in Definition 2.1
requires considerably less space (e.g. in tables) than the usual power form

(2.4) (

r1
︷ ︸︸ ︷

pm1 , . . . , pm1 , . . . ,

rs
︷ ︸︸ ︷

pms , . . . , pms).

(2) For brevity, we can even omit the commas separating the entries of the logarithmic form
of abelian type invariants, provided all the mj remain smaller than 10.

(3) A further advantage of the brief logarithmic notation is the independence of the prime p,
in particular when p-groups with distinct p are being compared.

(4) Finally, since our preference is to select generators of finite p-groups with decreasing orders,
we agree to write abelian type invariants from the right to the left, in both forms.

Example 2.1. For instance, if p = 3, then the abelian type invariants (214) in logarithmic form
correspond to the power form (9, 3, 3, 3, 3) and (2212) corresponds to (9, 9, 3, 3).

Now let G be an arbitrary finite p-group or infinite topological pro-p group with derived sub-
group G′ and finite abelianization Gab = G/G′.

Definition 2.2. The abelian type invariants of the commutator quotient group Gab are called
the abelian quotient invariants (AQI) of G.

3. Index-p abelianization data

Let p be a fixed prime number and K be a number field with p-class group Clp(K) of order pv,
where v ≥ 0 denotes a non-negative integer.

According to the Artin reciprocity law of class field theory [1], Clp(K) is isomorphic to the
commutator quotient group G/G′ of the Galois group G = Gal(F∞

p (K) | K) of the maximal
unramified pro-p extension F∞

p (K) of K. G is called the p-tower group of K. The fixed field
of the commutator subgroup G′ in F∞

p (K) is the maximal abelian unramified p-extension of K,

that is the (first) Hilbert p-class field F1
p(K) of K with Galois group Gal(F1

p(K) | K) ≃ G/G′.
The derived subgroup G′ is a closed (and open) subgroup of finite index (G : G′) = pv in the
topological pro-p group G.

Definition 3.1. For each integer 0 ≤ n ≤ v, the system

(3.1) Lyrn(K) = {K ≤ L ≤ F1
p(K) | [L : K] = pn}

of intermediate fields K ≤ L ≤ F1
p(K) with relative degree [L : K] = pn is called the n-th layer

of abelian unramified p-extensions of K. In particular, for n = 0, K forms the bottom layer
Lyr0(K) = {K}, and for n = v, F1

p(K) forms the top layer Lyrv(K) = {F1
p(K)}.
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Now let 0 ≤ n ≤ v be a fixed integer and suppose that K ≤ L ≤ F1
p(K) belongs to the n-th

layer. Then the Galois group H = Gal(F∞
p (K) | L) is of finite index (G : H) = [L : K] = pn in

the p-tower group G of K and the quotient G/H ≃ Gal(L | K) is abelian, since H contains the
commutator subgroup G′ = Gal(F∞

p (K) | F1
p(K)) of G.

Definition 3.2. For each integer 0 ≤ n ≤ v, the system

(3.2) Lyrn(G) = {G′ ≤ H ≤ G | (G : H) = pn}

of intermediate groups G′ ≤ H ≤ G with index (G : H) = pn is called the n-th layer of normal
subgroups of G with abelian quotients G/H . In particular, for n = 0, G forms the top layer
Lyr0(G) = {G}, and for n = v, G′ forms the bottom layer Lyrv(K) = {G′}.

A further application of Artin’s reciprocity law [1] shows that

(3.3) H/H ′ = Gal(F∞
p (K) | L)/Gal(F∞

p (K) | F1
p(L)) ≃ Gal(F1

p(L)) | L) ≃ Clp(L),

for every subgroup H ∈ Lyrn(G) and its corresponding extension field L ∈ Lyrn(K), where
0 ≤ n ≤ v is fixed (but arbitrary).

Since the abelianization Hab = H/H ′ forms the target of the Artin transfer homomorphism
TG,H : G → H/H ′ from G toH , we introduced a preliminary instance of the following terminology
in [27, Dfn.1.1, p.403].

Definition 3.3. For each integer 0 ≤ n ≤ v, the multiplet τn(G) = (H/H ′)H∈Lyrn(G), where each
member H/H ′ is interpreted rather as its abelian type invariants, is called the n-th layer of the
transfer target type (TTT) of the pro-p group G,

(3.4) τ(G) = [τ0(G); . . . ; τv(G)], where τn(G) = (H/H ′)H∈Lyrn(G) for each 0 ≤ n ≤ v.

Similarly, the multiplet τn(K) = (Clp(L))L∈Lyrn(K), where each member Clp(L) is interpreted
rather as its abelian type invariants, is called the n-th layer of the transfer target type (TTT) of
the number field K,

(3.5) τ(K) = [τ0(K); . . . ; τv(K)], where τn(K) = (Clp(L))L∈Lyrn(K) for each 0 ≤ n ≤ v.

Remark 3.1. (1) If it is necessary to specify the underlying prime number p, then the symbol
τ(p,G), resp. τ(p,K), can be used for the TTT.

(2) Suppose that 0 < n < v. If an ordering is defined for the elements of Lyrn(G), resp.
Lyrn(K), then the same ordering is applied to the members of the layer τn(G), resp.
τn(K), and the TTT layer is called ordered. Otherwise, the TTT layer is called unordered
or accumulated, since equal components are collected in powers with formal exponents
denoting iteration.

(3) In view of the considerations in Equation (3.3), it is clear that we have the equality

(3.6) τ(G) = τ(K),

in the sense of componentwise isomorphisms.

Since it is increasingly difficult to compute the structure of the p-class groups Clp(L) of extension
fields L ∈ Lyrn(K) in higher layers with n ≥ 2, it is frequently sufficient to make use of information
in the first layer only, that is the layer of subgroups with index p. Therefore, Boston, Bush and
Hajir [8] invented the following first order approximation of the TTT, a concept which had been
used in earlier work already [9, 12, 3, 10, 31], without explicit terminology.

Definition 3.4. The restriction
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(3.7)
τ (1)(G) = [τ0(G); τ1(G)], resp.

τ (1)(K) = [τ0(K); τ1(K)],

of the TTT τ(G), resp. τ(K), to the zeroth and first layer is called the index-p abelianization data
(IPAD) of G, resp. K.

So, the complete TTT is an extension of the IPAD. However, there also exists another ex-
tension of the IPAD which is not covered by the TTT. It has also been used already in pre-
vious investigations by Boston, Bush and Nover [12, 10, 31] and is constructed from the usual
IPAD [τ0(K); τ1(K)] of K, firstly, by observing that τ1(K) = (Clp(L))L∈Lyr

1
(K) can be viewed as

τ1(K) = (τ0(L))L∈Lyr
1
(K) and, secondly, by extending each τ0(L) to the IPAD [τ0(L); τ1(L)] of L.

Definition 3.5. The family

(3.8)
τ (2)(G) = [τ0(G); ([τ0(H); τ1(H)])H∈Lyr

1
(G)], resp.

τ (2)(K) = [τ0(K); ([τ0(L); τ1(L)])L∈Lyr
1
(K)],

is called the iterated IPAD of second order of G, resp. K.

The concept of iterated IPADs as given in Dfn. 3.5 is restricted to the second order and first
layers, and thus is open for further generalization (higher orders and higher layers). Since it
could be useful for 2-power extensions, whose absolute degrees increase moderately and remain
manageable by MAGMA or PARI, we briefly indicate how the iterated IPAD of third order could
be defined:

(3.9)
τ (3)(G) = [τ0(G); ([τ0(H); ([τ0(I); τ1(I)])I∈Lyr

1
(H)])H∈Lyr

1
(G)], resp.

τ (3)(K) = [τ0(K); ([τ0(L); ([τ0(M); τ1(M)])M∈Lyr
1
(L)])L∈Lyr

1
(K)].

3.1. Sporadic IPADs. In the next two central theorems, we present complete specifications of
all possible IPADs of pro-p groups G for p = 3 and the simplest case of an abelianization G/G′ of
type (3, 3). We start with pro-3-groupsG whose metabelianizations G/G′′ are vertices on sporadic
parts of coclass graphs outside of coclass trees.

Since the abelian type invariants of the members of TTT layers will depend on the parity of
the nilpotency class c or coclass r, a more economic notation, avoiding the tedious distinction of
the cases odd or even, is provided by the following definition.

Definition 3.6. For an integer n ≥ 2, the nearly homocyclic abelian 3-group A(3, n) of order 3n

is defined by its type invariants (q + r, q)=̂(3q+r , 3q), where the quotient q ≥ 1 and the remainder
0 ≤ r < 2 are determined uniquely by the Euclidean division n = 2q + r. Two degenerate cases
are included by putting A(3, 1) = (1)=̂(3) the cyclic group C3 of order 3 and A(3, 0) = (0)=̂1 the
trivial group of order 1.

Theorem 3.1. (First Main Theorem on p = 3, G/G′ ≃ (3, 3), and G/G′′ of small class)
Let G be a pro-3 group having a transfer target type τ(G) = [τ0(G); τ1(G); τ2(G)] with top layer
component τ0(G) = 12. Let 0 ≤ k ≤ 1 denote the defect of commutativity [27, § 3.1.1, p.412, and
§ 3.3.2, p.429] of the metabelianization G/G′′ of G. Then the ordered first layer τ1(G) and the
bottom layer τ2(G) are given in the following way.

(1) If G/G′′ is of coclass cc(G/G′′) = 1 and nilpotency class cl(G/G′′) = c ≤ 3, then

(3.10)

τ1(G) = (1)4; τ2(G) = (0), if c = 1, G ≃ 〈9, 2〉,
τ1(G) = (12)4; τ2(G) = (1), if c = 2, G ≃ 〈27, 3〉,
τ1(G) = (12, (2)3); τ2(G) = (1), if c = 2, G ≃ 〈27, 4〉,
τ1(G) = (13, (12)3); τ2(G) = (12), if c = 3, G ≃ 〈81, 7〉,
τ1(G) = (21, (12)3); τ2(G) = (12), if c = 3, G ≃ 〈81, 8|9|10〉,
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where generally G′′ = 1.
(2) If G/G′′ is of coclass cc(G/G′′) = 2 and nilpotency class cl(G/G′′) = c = 3, then

(3.11)

τ1(G) = ((21)2, 13, 21); τ2(G) = (13), if G ≃ 〈243, 5〉 or G/G′′ ≃ 〈243, 6〉,
τ1(G) = ((21)2, (13)2); τ2(G) = (13), if G/G′′ ≃ 〈243, 3〉,
τ1(G) = (13, 21, 13, 21); τ2(G) = (13), if G ≃ 〈243, 7〉,
τ1(G) = ((13)2, 21, 13); τ2(G) = (13), if G/G′′ ≃ 〈243, 4〉,
τ1(G) = (21)4; τ2(G) = (13), if G/G′′ ≃ 〈243, 8|9〉,

where G′′ = 1 can be warranted for G/G′′ ≃ 〈243, 5|7〉 only.
However, if cl(G/G′′) = c = 4 with k = 1, then

(3.12)

τ1(G) = ((21)2, (13)2); τ2(G) = (212), if G/G′′ ≃ 〈729, 37|38|39〉,
τ1(G) = ((21)2, (13)2); τ2(G) = (14), if G/G′′ ≃ 〈729, 34|35|36〉,
τ1(G) = ((13)2, 21, 13); τ2(G) = (212), if G/G′′ ≃ 〈729, 44|45|46|47〉,
τ1(G) = (21)4; τ2(G) = (14), if G/G′′ ≃ 〈729, 56|57〉.

(3) If G/G′′ is of coclass cc(G/G′′) = r ≥ 3 and nilpotency class cl(G/G′′) = c = r + 1, then

(3.13) τ1(G) = (A(3, r + 1)2, (12)3); τ2(G) = A(3, r) ×A(3, r − 1) and k = 0.

However, if c = r + 2, then

(3.14)

τ1(G) = (A(3, r + 2), A(3, r + 1), (12)3); τ2(G) = A(3, r + 1)×A(3, r − 1), if k = 0

τ1(G) = (A(3, r + 1)2, (12)3); τ2(G) = A(3, r + 1)×A(3, r − 1), if k = 1, regular case,

τ1(G) = (A(3, r + 1)2, (12)3); τ2(G) = A(3, r)×A(3, r), if k = 1, irregular case,

where the irregular case can only occur for even class and coclass c = r + 2 ≡ 0 (mod 2),
positive defect of commutativity k = 1, and relational parameter ρ = −1 in [28, Eqn.(3.6),
p.424] or [27, Eqn.(3.3), p.430].

Proof. Since this proof heavily relies on our earlier paper [28], it should be pointed out that, for
a p-group G, the index of nilpotency m = c + 1 is used generally instead of the nilpotency class
cl(G) = c = m − 1 and the invariant e = r + 1 frequently (but not always) replaces the coclass
cc(G) = r = e− 1 in that paper.

(1) Using the association between the identifier of G in the SmallGroups Library [4, 5] and
the transfer kernel type (TKT) [26], which is visualized in [28, Fig.3.1, p.423], this claim
follows from [28, Thm.4.1, p.427, and Tbl.4.1, p.429].

(2) For c = 3, resp. c = 4 with k = 1, the statement is a consequence of [28, Thm.4.2 and
Tbl.4.3, p.434], resp. [28, Thm.4.3 and Tbl.4.5, p.438], when the association between the
identifier of G in the SmallGroups Database and the TKT is taken into consideration, as
visualized in [28, Fig.4.1, p.433].

(3) All the regular cases behave completely similar as the general case in Theorem 3.2, item
(3), Equation (3.18). In the irregular case, only the bottom layer τ2(G), consisting of the
abelian quotient invariants G′/G′′ of the derived subgroup G′, is exceptional and must be
taken from [28, Appendix § 8, Thm.8.8, p.461].

�

3.2. Infinite IPAD sequences. Now we come to the IPADs of pro-p-groupsG whose metabelian-
izations G/G′′ are members of infinite periodic sequences, inclusively mainlines, of coclass trees.
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Theorem 3.2. (Second Main Theorem on p = 3, G/G′ ≃ (3, 3), and G/G′′ of large class)
Let G be a pro-3 group having a transfer target type τ(G) = [τ0(G); τ1(G); τ2(G)] with top layer
component τ0(G) = 12. Let 0 ≤ k ≤ 1 denote the defect of commutativity [27, § 3.1.1, p.412, and
§ 3.3.2, p.429] of the metabelianization G/G′′ of G. Then the ordered first layer τ1(G) and the
bottom layer τ2(G) are given in the following way.

(1) If G/G′′ is of coclass cc(G/G′′) = 1 and nilpotency class cl(G/G′′) = c ≥ 4, then

(3.15)
τ1(G) = (A(3, c− k), (12)3);

τ2(G) = A(3, c− 1).

(2) If G/G′′ is of coclass cc(G/G′′) = 2 and nilpotency class cl(G/G′′) = c ≥ 5, or c = 4 with
k = 0, then

(3.16)

τ1(G) = (A(3, c− k), 21, (13)2) or

τ1(G) = (A(3, c− k), 21, 13, 21) or

τ1(G) = (A(3, c− k), (21)3),

in dependence on the coclass tree G/G′′ ∈ T 2(〈729, i〉), i ∈ {40, 49, 54}, but uniformly

(3.17) τ2(G) = A(3, c− 1)×A(3, 1).

(3) If G/G′′ is of coclass cc(G/G′′) = r ≥ 3 and nilpotency class cl(G/G′′) = c ≥ r + 3, or
c = r + 2 with k = 0, then

(3.18)
τ1(G) = (A(3, c− k), A(3, r + 1), (12)3);

τ2(G) = A(3, c− 1)×A(3, r − 1).

The first member H1/H
′
1 of the ordered first layer τ1(G) reveals a uni-polarization (dependence

on the nilpotency class c) whereas the other three members Hi/H
′
i, 2 ≤ i ≤ 4, show a stabilization

(independence of c) for fixed coclass r.

Proof. Again, we make use of [28], and we point out that, for a p-group G, the index of nilpotency
m = c + 1 is used generally instead of the nilpotency class cl(G) = c = m − 1 and the invariant
e = r + 1 frequently (but not always) replaces the coclass cc(G) = r = e− 1 in that paper.

(1) All components of τ1(G) are given in [28, § 3.1, Thm.3.1, Eqn.(3.4)–(3.5), p.421] when
their ordering is defined by the special selection of generators [28, § 3.1, Eqn.(3.1)–(3.2),
p.420]. There is only a unique coclass tree with 3-groups of coclass 1.

(2) The first component of τ1(G) is given in [28, § 3.2, Thm.3.2, Eqn.(3.7), p.424], and the
last three components of τ1(G) are given in [28, § 4.5, Thm.4.4, p.440] and [28, § 4.5,
Tbl.4.7, p.441], when their ordering is defined by the special selection of generators [28,
§ 3.2, Eqn.(3.6), p.424]. The invariant ε ∈ {0, 1, 2} [28], which counts IPAD components
of rank 3, decides to which of the mentioned three coclass trees the group G belongs [27,
Fig.3.6–3.7, pp.442–443].

(3) The first two components of τ1(G) are given in [28, § 3.2, Thm.3.2, Eqn.(3.7)–(3.8), p.424],
and the last two components of τ1(G) are given in [28, § 4.6, Thm.4.5, p.444], when their
ordering is defined by the special selection of generators [28, § 3.2, Eqn.(3.6), p.424]. For
coclass bigger than 2, it is irrelevant to which of the four (in the case of odd coclass r)
or six (in the case of even coclass r) coclass trees the group G belongs. The IPAD is
independent of this detailed information, provided that c ≥ r + 3.

Finally, the bottom layer τ2(G), consisting of the abelian quotient invariants G′/G′′ of the
derived subgroup G′, is generally taken from [28, Appendix § 8, Thm.8.8, p.461].

�
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4. Componentwise correspondence of IPAD and TKT

Within this section, where generally p = 3, we employ some special terminology. We say a
class of a base field K remains resistant if it does not capitulate in any unramified cyclic cubic
extension L|K. When the 3-class group of K is of type (3, 3) the next layer of unramified abelian
extensions is already the top layer consisting of the Hilbert 3-class field F1

3(K), where the resistant
class must capitulate, according to the Hilbert/Artin/Furtwängler principal ideal theorem.

Our desire is to show that the components of the ordered IPAD and TKT are in a strict cor-
respondence to each other. For this purpose, we use details of the proofs given in [28], where
generators of metabelian 3-groups G with G/G′ ≃ (3, 3) were selected in a canonical way, par-
ticularly adequate for theoretical aspects. Since we now prefer a more computational aspect, we
translate the results into a form which is given by the computational algebra system MAGMA
[23].

To be specific, we choose the vertices of two important coclass trees for illustrating these peculiar
techniques. The vertices of depth (distance from the mainline) at most 1 of both coclass trees,
with roots 〈243, 6〉 and 〈243, 8〉 [27, Fig.3.6–3.7, pp.442–443], are metabelian 3-groupsG with order
|G| ≥ 35, nilpotency class c = cl(G) ≥ 3, and fixed coclass cc(G) = 2.

4.1. The coclass tree T 2(〈243, 6〉).
Remark 4.1. The first layers of the TTT and TKT of vertices of depth at most 1 of the coclass
tree T 2(〈243, 6〉) [27, Fig.3.6, p.442] consist of four components each, and share the following
common properties with respect to MAGMA’s selection of generators:

(1) polarization (dependence on the class c) at the first component,
(2) stabilization (independence of the class c) at the last three components,
(3) rank 3 at the second TTT component (ε = 1 in [28]).

Using the class c, resp. an asterisk, as wildcard characters, these common properties can be
summarized as follows, now including the details of the stabilization:

(4.1) τ1(G) = [A(3, c), 13, (21)2], and κ1(G) = (∗, 1, 2, 2).
However, to assure the general applicability of the theorems and corollaries in this section, we

aim at independency of the selection of generators (and thus invariance under permutations).

Theorem 4.1. (in field theoretic terminology)

(1) The class associated with the polarization becomes principal in the extension with rank 3.
(2) The class associated with rank 3 becomes principal in both extensions of type (21), in

particular, κ1(G) cannot be a permutation and can have at most one fixed point.

Remark 4.2. Aside from the common properties, there also arise variations due to the polariza-
tion, which we first express with respect to MAGMA’s selection of generators:

(1) The TKT is E.6, κ1(G) = (1, 1, 2, 2), if and only if the polarized extension reveals a fixed
point principalization.

(2) The TKT is E.14, κ1(G) ∈ {(3, 1, 2, 2), (4, 1, 2, 2)}, if and only if one of the classes associ-
ated with type (21) becomes principal in the polarized extension.

(3) The TKT is H.4, κ1(G) = (2, 1, 2, 2), if and only if the class associated with rank 3 becomes
principal in the polarized extension.

(4) The TKT is c.18, κ1(G) = (0, 1, 2, 2), if and only if the polarized extension reveals a total
principalization (indicated by 0).

Corollary 4.1. (in field theoretic terminology)

(1) For the TKTs E.6 and H.4, both classes associated with type (21) remain resistant, for
TKT E.14 only one of them.

(2) All extensions satisfy Taussky’s condition (B) [38], with the single exception of of the
polarized extension in the case of TKT E.6 or c.18, which satisfies condition (A).

(3) TKT E.6 has a single fixed point, E.14 contains a 3-cycle, and H.4 contains a 2-cycle.
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Proof. (of Theorem 4.1 and Corollary 4.1)
Observe that in [28], the index of nilpotency m = c+1 and the invariant e = r+1 are used rather
than the nilpotency class c = m− 1 and the coclass r = e − 1. The claims are a consequence of
[28, § 4.5, Tbl.4.7, p.441], when we perform a permutation from the first layer TKT and TTT

κ1(G) = (∗, 3, 1, 3), τ1(G) = [A(3, c), 21, 13, 21],

with respect to the canonical generators, to the corresponding invariants

κ1(G) = (∗, 1, 2, 2), τ1(G) = [A(3, c), 13, (21)2],

with respect to MAGMA’s generators. �

4.2. The coclass tree T 2(〈243, 8〉).

Remark 4.3. The first layer TTT and TKT of vertices of depth at most 1 of the coclass tree
T 2(〈243, 8〉) [27, Fig.3.7, p.443] consist of four components each, and share the following common
properties with respect to MAGMA’s choice of generators:

(1) polarization (dependence on the class c) at the second component,
(2) stabilization (independence of the class c) at the other three components,
(3) rank 3 does not occur at any TTT component (ε = 0 in [28]).

Using the class c, resp. an asterisk, as wildcard characters, the common properties can be
summarized as follows, now including details of the stabilization:

(4.2) τ1(G) = [21, A(3, c), (21)2], and κ1(G) = (2, ∗, 3, 4).
Again, we have to ensure the general applicability of the following theorem and corollary, which

must be independent of the choice of generators (and thus invariant under permutations).

Theorem 4.2. (in field theoretic terminology)

(1) Two extensions of type (21) reveal fixed point principalization satisfying condition (A) [38].
(2) The remaining extension of type (21) satisfies condition (B), since the class associated

with the polarization becomes principal there.

Remark 4.4. Next, we come to variations caused by the polarization, which we now express with
respect to MAGMA’s choice of generators:

(1) The TKT is E.8, κ1(G) = (2, 2, 3, 4), if and only if the polarized extension reveals a fixed
point principalization.

(2) The TKT is E.9, κ1(G) ∈ {(2, 3, 3, 4), (2, 4, 3, 4)}, if and only if one of the classes associated
with fixed points becomes principal in the polarized extension.

(3) The TKT is G.16, κ1(G) = (2, 1, 3, 4), if and only if the class associated with type (21),
satisfying condition (B), becomes principal in the polarized extension.

(4) The TKT is c.21, κ1(G) = (2, 0, 3, 4), if and only if the polarized extension reveals a total
principalization (indicated by 0).

Corollary 4.2. (in field theoretic terminology)

(1) For the TKTs E.8 and E.9, the class associated with the polarization remains resistant,
(2) The polarized extension satisfies condition (B) [38] in the case of TKT E.9 or G.16, and

it satisfies condition (A) in the case of TKT E.8 or c.21.
(3) TKT G.16 is a permutation containing a 2-cycle, and TKT E.8 is the unique TKT pos-

sessing three fixed points.

Proof. (of Theorem 4.2 and Corollary 4.2)
In our paper [28], the index of nilpotency m = c + 1 and the invariant e = r + 1 are used rather
than the nilpotency class c = m− 1 and the coclass r = e− 1. All claims are a consequence of [28,
§ 4.5, Tbl.4.7, p.441], provided we perform a transformation from the first layer TKT and TTT

κ1(G) = (∗, 2, 3, 1), τ1(G) = [A(3, c), (21)3],
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with respect to the canonical generators, to the corresponding invariants

κ1(G) = (2, ∗, 3, 4), τ1(G) = [21, A(3, c), (21)2],

with respect to MAGMA’s generators. �

5. Applications in extreme computing

5.1. Application 1: Sifting malformed IPADs.

Definition 5.1. An IPAD with bottom layer component τ0(K) = (3, 3) is called malformed if it
is not covered by Theorems 3.1 and 3.2.

To verify predicted asymptotic densities of maximal unramified pro-3 extensions in the article
[8] numerically, the IPADs of all complex quadratic fields K = Q(

√
d) with discriminants −108 <

d < 0 and 3-class rank r3(K) = 2 were computed with the aid of PARI/GP [33]. In particular,
there occurred 276 375, resp. 122 444, such fields with 3-class group Cl3(K) of type (3, 3), resp.
(9, 3).

Example 5.1. A check of all 276 375 IPADs for complex quadratic fields with type (3, 3) in the
range −108 < d < 0 of discriminants, for which Theorem 3.2 states that the 3-class groups of the
4 unramified cyclic cubic extensions can only have 3-rank 2, except for the unique type (3, 3, 3),
revealed that the following 5 IPADs were computed erroneously by the used version of PARI/GP
[33] in [8]. The successful recomputation was done with MAGMA [23].

(1) For d = −96 174 803, the erroneous IPAD τ (1)(K) = [(3, 3); (3, 3, 3), (9, 3, 3, 3), (27, 9)2]
contained the malformed component (9, 3, 3, 3) instead of the correct (3, 3, 3). The transfer
kernel type (TKT) [26, 27] turned out to be F.12.

(2) For d = −77 254 244, the erroneous IPAD τ (1)(K) = [(3, 3); (3, 3, 3)2, (3, 3, 3, 3), (9, 3)]
contained the malformed component (3, 3, 3, 3) instead of the correct (3, 3, 3). Its TKT is
H.4.

(3) For d = −73 847 683, the erroneous IPAD τ (1)(K) = [(3, 3); (3, 3, 3), (9, 3, 3), (9, 3)2] con-
tained the malformed component (9, 3, 3) instead of the correct (9, 3). The TKT is D.10.

(4) For d = −81 412 223, the erroneous IPAD τ (1)(K) = [(3, 3); (9, 3, 3), (9, 3)2, (27, 9)] con-
tained the malformed component (9, 3, 3) instead of the correct (9, 3). This could be a
TKT E.8 or E.9 or G.16.

(5) For d = −82 300 871, the erroneous IPAD τ (1)(K) = [(3, 3); (3, 3, 3), (9, 3), (9, 9, 3), (27, 9)]
contained the malformed component (9, 9, 3) instead of the correct (9, 3). This could be a
TKT E.6 or E.14 or H.4.

For the last two cases, Magma failed to determine the TKT. Nevertheless, none of the discrim-
inants

d ∈ {−73 847 683,−77 254 244,−81 412 223,−82 300 871,−96 174 803}
is particularly spectacular.

Example 5.2. We also checked all 122 444 IPADs for complex quadratic fields with type (9, 3)
in the range −108 < d < 0 of discriminants, Again, we found exactly 5 errors among these IPADs
which had been computed by PARI/GP [33] in [8]. For the recomputation we used MAGMA [23].
The study of this extensive material was very helpful for the deeper understanding of 3-groups
having abelianization of type (9, 3). Systematic results in the style of Theorems 3.1 and 3.2 will
be given in a forthcoming paper. The abbreviation pTKT means the punctured TKT.

(1) For d = −94 304 231, the erroneous IPAD τ (1)(K) = [(9, 3); (9, 3, 3), (27, 3), (9, 9, 9), (27, 9)]
contained the malformed component (27, 9) instead of the correct (27, 3). This could be a
homocyclic pTKT B.2 or C.4 or D.5.

(2) For d = −79 749 087, the erroneous IPAD τ (1)(K) = [(9, 3); (9, 3, 3)2, (27, 3, 3), (27, 3)]
contained the malformed component (27, 3, 3) instead of the correct (27, 3). It is a pTKT
D.11.
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(3) For d = −74 771 240, the erroneous IPAD τ (1)(K) = [(9, 3); (9, 3, 3), (27, 3, 3), (27, 3), (9, 9, 9)]
contained the malformed component (27, 3, 3) instead of the correct (27, 3). It could be a
homocyclic pTKT B.2 or C.4 or D.5.

(4) For d = −70 204 919, the erroneous IPAD τ (1)(K) = [(9, 3); (9, 3, 3), (27, 3)2, (81, 27, 27)]
contained the malformed component (81, 27, 27) instead of the correct (81, 27, 3). This
could be a pTKT B.2 or C.4 or D.5 in the first excited state.

(5) For d = −86 139 199, the erroneous IPAD τ (1)(K) = [(9, 3); (81, 3, 3, 3), (9, 3, 3), (27, 3)2]
contained the malformed component (81, 3, 3, 3) instead of the correct (9, 3, 3). This is
clearly a pTKT D.11.

Again, none of the corresponding discriminants

d ∈ {−70 204 919,−74 771 240,−79 749 087,−86 139 199,−94 304 231}
is particularly spectacular.

We emphasize that, in both Examples 5.1 and 5.2, the errors of PARI/GP [33] occured in the
upper limit range of absolute discriminants above 70 millions. This seems to be a critical region
of extreme computing where current computational algebra systems become unstable. MAGMA
[23] also often fails to compute the TKT in that range.

Fortunately, there appeared a single discriminant only for each of the 5 erroneous IPADs, in
both examples. This indicates that the errors are not systematic but rather stochastic.

5.2. Application 2: Completing partial capitulation types.

Example 5.3. For the discriminant d = −3 849 267 of the complex quadratic field K = Q(
√
d)

with 3-class group of type (3, 3), we constructed the four unramified cyclic cubic extensions Li|K,
1 ≤ i ≤ 4, and computed the IPAD τ (1)(K) = [12; (54, 21, 13, 21)] with the aid of MAGMA [23].

According to Theorem 3.2, the second 3-class group G of K must be of coclass cc(G) = 2, and
the polarized component 54 of the IPAD shows that c − k = 5 + 4 = 9 and thus the nilpotency
class c = cl(G) and the defect of commutativity k are given by either c = 9, k = 0, or c = 10,
k = 1. Further, in view of the rank-3 component 13 of the IPAD, G must be a vertex of the coclass
tree T 2(〈729, 49〉).

When we tried to determine the 3-principalization type κ := κ1(3,K), MAGMA succeeded in
calculating κ(1) = 3 and κ(2) = 3 but unfortunately failed to give κ(3) and κ(4). With respect
to the complete IPAD, Theorem 4.1 enforces κ(3) = 1 (item (1)) and κ(4) = 3 (item (2)), and
therefore the partial result κ = (3, 3, ∗, ∗) is completed to κ = (3, 3, 1, 3). According to item (3)
of Remark 4.2 or item (3) of Corollary 4.1, K is of TKT H.4. Our experience suggests that this
TKT compels the arrangement c = 10, k = 1, expressed by the weak leaf conjecture [27, Cnj.3.1,
p.423].

Example 5.4. For the discriminant d = −4 928 155 of the complex quadratic field K = Q(
√
d)

with 3-class group of type (3, 3), we constructed the four unramified cyclic cubic extensions Li|K,
1 ≤ i ≤ 4, and computed the IPAD τ (1)(K) = [12; (21, 54, (21)2)] with the aid of MAGMA [23].

According to Theorem 3.2, the second 3-class group G of K must be of coclass cc(G) = 2, and
the polarized component 54 of the IPAD shows that c − k = 5 + 4 = 9 and thus the nilpotency
class c = cl(G) and the defect of commutativity k are given by either c = 9, k = 0, or c = 10,
k = 1. Further, due to the lack of a rank-3 component 13 in the IPAD, G must be a vertex of the
coclass tree T 2(〈729, 54〉).

Next, we tried to determine the 3-principalization type κ := κ1(3,K). MAGMA succeeded in
calculating two fixed points κ(1) = 1 and κ(2) = 2 but unfortunately failed to give κ(3) and κ(4).
With respect to the complete IPAD, Theorem 4.2 enforces κ(3) = 3 or κ(4) = 4 (item (1)), and
κ(4) = 2 or κ(3) = 2 (item (2)), and therefore the partial result κ = (1, 2, ∗, ∗) is completed to
κ = (1, 2, 3, 2) or κ = (1, 2, 2, 4). According to item (1) of Remark 4.4 or item (3) of Corollary 4.2,
K is of TKT E.8, and this TKT enforces the arrangement c = 9, k = 0, since k = 1 is impossible.

Example 5.5. For the discriminant d = −65 433 643 of the complex quadratic field K = Q(
√
d)

with 3-class group of type (3, 3), we constructed the four unramified cyclic cubic extensions Li|K,
1 ≤ i ≤ 4, and computed the IPAD τ (1)(K) = [12; (65, 13, (21)2)] with the aid of MAGMA [23].
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According to Theorem 3.2, the second 3-class group G of K must be of coclass cc(G) = 2, and
the polarized component 65 of the IPAD shows that c− k = 6 + 5 = 11 and thus the nilpotency
class c = cl(G) and the defect of commutativity k are given by either c = 11, k = 0, or c = 12,
k = 1. Further, in view of the rank-3 component 13 of the IPAD, G must be a vertex of the coclass
tree T 2(〈729, 49〉).

Then we tried to determine the 3-principalization type κ := κ1(3,K). MAGMA succeeded in
calculating κ(1) = 4 and κ(2) = 1 but unfortunately failed to give κ(3) and κ(4). With respect
to the complete IPAD, Theorem 4.1 enforces κ(3) = 2 and κ(4) = 2 (item (2)), whereas the
claim in item (1) is confirmed, and therefore the partial result κ = (4, 1, ∗, ∗) is completed to
κ = (4, 1, 2, 2). According to item (2) of Remark 4.2 or item (3) of Corollary 4.1, K is of TKT
E.14, and this TKT enforces the arrangement c = 11, k = 0, since k = 1 is impossible.

6. Iterated IPADs of second order

6.1. p-capitulation type. By means of the following theorem, the exact 3-principalization type
κ of real quadratic fields K = Q(

√
d), d > 0, can be determined indirectly with the aid of

information on the structure of 3-class groups of number fields of absolute degree 6 · 3 = 18.

Theorem 6.1. (Indirect computation of the p-capitulation type)
Suppose that p = 3 and let K be a number field with 3-class group Cl3(K) of type (3, 3) and 3-tower
group G.

(1) If the IPAD of K is given by

τ (1)(K) = [12; (21; (12)3)],

then

G′′ = 1, G ≃ G/G′′, cc(G) = 1, and G ∈ {〈81, 8〉, 〈81, 9〉, 〈81, 10〉},

in particular, the length of the 3-class tower of K is given by ℓ3(K) = 2.
(2) If the first layer Lyr1(K) of abelian unramified extensions of K consists of L1, . . . , L4,

then the iterated IPAD of second order

τ (2)(K) = [τ0(K); (τ0(Li); τ1(Li))1≤i≤4], with τ0(K) = 12,

admits a sharp decision about the group G and the first layer of the transfer kernel type

κ(K) = [κ0(K);κ1(K);κ2(K); ] where trivially κ0(K) = 1, κ2(K) = 0.

(6.1)
[τ0(L1); τ1(L1)] = [21; (12, (2)3)],

[τ0(Li); τ1(Li)] = [12; (12, (2)3)], for 2 ≤ i ≤ 4,

implies G ≃ 〈81, 10〉 and thus κ1(K) = (1, 0, 0, 0),

(6.2)

[τ0(L1); τ1(L1)] = [21; (12, (2)3)],

[τ0(L2); τ1(L2)] = [12; (12)4],

[τ0(Li); τ1(Li)] = [12; (12, (2)3)], for 3 ≤ i ≤ 4,

implies G ≃ 〈81, 8〉 and thus κ1(K) = (2, 0, 0, 0), and

(6.3)
[τ0(L1); τ1(L1)] = [21; (12, (2)3)],

[τ0(Li); τ1(Li)] = [12; (12)4], for 2 ≤ i ≤ 4,

implies G ≃ 〈81, 9〉 and thus κ1(K) = (0, 0, 0, 0).
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Example 6.1. A possible future application of Theorem 6.1 could, for instance, be the separation
of the capitulation types a.2, κ1(K) = (1, 0, 0, 0), and a.3, κ1(K) = (2, 0, 0, 0), among the 1 386

real quadratic fields K = Q(
√
d), 0 < d < 107, with 3-class group Cl3(K) of type (3, 3) and

IPAD τ (1)(K) = [12; (21; (12)3)], which was outside of our reach in all investigations of [25, Tbl.2,
p.496], [28, Tbl.6.1, p.451] and [27, Fig.3.2, p.422]. The reason why we expect this enterprise
to be promising is that our experience with Magma [23] shows that computing class groups can
become slow but remains sound and stable for huge discriminants d, whereas the calculation of
capitulation kernels frequently fails.

6.2. Length of the p-class tower. In this section, we use the iterated IPAD of second order
τ (2)(K) = [τ0(K); (τ0(L); τ1(L))L∈Lyr

1
(K)] for the indirect computation of the length ℓp(K) of the

p-class tower of a number field K, where p denotes a fixed prime.

Theorem 6.2. (Length ℓ3(K) of the 3-class tower for G/G′′ ∈ T 2(〈243, 6〉))
Suppose that p = 3 and let K be a number field with 3-class group Cl3(K) of type (3, 3) and 3-tower
group G.

(1) If the IPAD of K is given by

τ (1)(K) = [12; (32; 13, (21)2)],

and the first layer TKT κ1(K) neither contains a total principalization nor a 2-cycle, then
there are two possibilities ℓ3(K) ∈ {2, 3} for the length of the 3-class tower of K.

(2) If the first layer Lyr1(K) of abelian unramified extensions of K consists of L1, . . . , L4,
then the iterated IPAD of second order

τ (2)(K) = [τ0(K); (τ0(Li); τ1(Li))1≤i≤4], with τ0(K) = 12,

admits a sharp decision about the length ℓ3(K):

(6.4)

[τ0(L1); τ1(L1)] = [32; (221, (312)3)],

[τ0(L2); τ1(L2)] = [13; (221, (13)3, (12)9)],

[τ0(Li); τ1(Li)] = [21; (221, (21)3)], for 3 ≤ i ≤ 4,

if and only if ℓ3(K) = 2, and

(6.5)

[τ0(L1); τ1(L1)] = [32; (221, (312)3)],

[τ0(L2); τ1(L2)] = [13; (221, (212)3, (12)9)],

[τ0(Li); τ1(Li)] = [21; (221, (31)3)], for 3 ≤ i ≤ 4,

if and only if ℓ3(K) = 3.

Proof. According to Theorem 3.2, an IPAD of the form τ (1)(K) = [12; (32; 13, (21)2)] indicates
that the metabelianization of the group G belongs to the coclass tree T 2(〈243, 6〉) [27, Fig.3.6,
p.442] and has nilpotency class 3 + 2 = 5, due to the polarization.

According to § 4.1, the lack of a total principalization excludes the TKT c.18 and the absence
of a 2-cycle discourages the TKT H.4, whence the group G must be of TKT E.6 or E.14.

By means of the techniques described in [13], a search in the complete descendant tree T (〈243, 6〉),
not restricted to groups of coclass 2, yields exactly six candidates for the groupG: three metabelian
groups 〈2187, i〉 with i ∈ {288, 289, 290}, and three groups of derived length 3 and order 38 with
generalized identifiers 〈729, 49〉−#2; i, i ∈ {4, 5, 6}. There cannot exist adequate groups of bigger
orders. The former three groups are charcterized by Equations (6.4) the latter three groups (see
[29, § 20.2, Fig.8]) by Equations (6.5).

Finally, we have ℓ3(K) = dl(G). �

Theorem 6.3. (Length ℓp(K) of the 3-class tower for G/G′′ ∈ T 2(〈243, 8〉))
Suppose that p = 3 and let K be a number field with 3-class group Cl3(K) of type (3, 3) and 3-tower
group G.
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(1) If the IPAD of K is given by

τ (1)(K) = [12; (32; (21)3)],

and the first layer TKT κ1(K) neither contains a total principalization nor a 2-cycle, then
there are two possibilities ℓ3(K) ∈ {2, 3} for the length of the 3-class tower of K.

(2) If the first layer Lyr1(K) of abelian unramified extensions of K consists of L1, . . . , L4,
then the iterated IPAD of second order

τ (2)(K) = [τ0(K); (τ0(Li); τ1(Li))1≤i≤4], with τ0(K) = 12,

admits a sharp decision about the length ℓ3(K):

(6.6)
[τ0(L1); τ1(L1)] = [32; (221, (312)3)],

[τ0(Li); τ1(Li)] = [21; (221, (21)3)], for 2 ≤ i ≤ 4,

if and only if ℓ3(K) = 2, and

(6.7)
[τ0(L1); τ1(L1)] = [32; (221, (312)3)],

[τ0(Li); τ1(Li)] = [21; (221, (31)3)], for 2 ≤ i ≤ 4,

if and only if ℓ3(K) = 3.

Proof. According to Theorem 3.2, an IPAD of the form τ (1)(K) = [12; (32; (21)3)] indicates that
the metabelianization of the group G belongs to the coclass tree T 2(〈243, 8〉) [27, Fig.3.7, p.443]
and has nilpotency class 3 + 2 = 5, due to the polarization.

According to § 4.2, the lack of a total principalization excludes the TKT c.21 and the absence
of a 2-cycle discourages the TKT G.16, whence the group G must be of TKT E.8 or E.9.

As we have shown in detail in [13], a search in the complete descendant tree T (〈243, 8〉), not
restricted to groups of coclass 2, yields exactly six candidates for the group G: three metabelian
groups 〈2187, i〉 with i ∈ {302, 304, 306}, and three groups of derived length 3 and order 38 with
generalized identifiers 〈729, 54〉−#2; i, i ∈ {2, 4, 6}. There cannot exist adequate groups of bigger
orders. The former three groups are characterized by Equations (6.6) the latter three groups (see
[29, § 20.2, Fig.9]) by Equations (6.7).

Eventually, the 3-tower length of K, ℓ3(K) = dl(G), coincides with the derived length of G. �

Example 6.2. In June 2006, we discovered the smallest discriminant d = 342 664 of a real
quadratic field K = Q(

√
d) with 3-class group of type (3, 3) whose 3-tower group G possesses the

transfer kernel type E.9, κ = (2, 3, 3, 4).
The complex quadratic analogue k = Q(

√
−9 748) was known since 1934 by the famous paper of

Scholz and Taussky [34]. However, it required almost 80 years until M.R. Bush and ourselves [13]
succeeded in providing the first faultless proof that k has a 3-class tower of exact length ℓ3(k) = 3
with 3-tower group G one of the two Schur σ-groups 〈729, 54〉 −#2; i, i ∈ {2, 6}, of order 38.

For K = Q(
√
342 664), the methods in [13] do not admit a final decision about the length

ℓ3(K). They only yield four possible 3-tower groups of K, namely either the two unbalanced
groups 〈2187, i〉 with i ∈ {302, 306} and relation rank r = 3 bigger than the generator rank d = 2
or the two Schur σ-groups 〈729, 54〉 −#2; i with i ∈ {2, 6} and r = 2 equal to d = 2.

In October 2014, we succeeded in proving that three of the unramified cyclic cubic extensions
Li|K reveal the critical IPAD component τ1(Li) = (221, (31)3) in Equation (6.7) of Theorem 6.3,
item (2), whence ℓ3(K) = 3. This was done by computing 3-class groups of number fields of
absolute degree 6 · 3 = 18 with the aid of MAGMA [23].

L. Bartholdi and M.R. Bush [3] have shown that the unbalanced metabelian 3-group G =
〈729, 45〉 possesses an infinite balanced cover cov∗(G) [29, Dfn.21.2], which implies that the length
ℓ3(K) of the 3-class tower of a complex quadratic field K with IPAD τ(K) = [12; ((13)3, 21)]
can take any value bigger than 2 or even ∞. The group theoretic reason for this remarkable
extravagance is that G is not coclass-settled and gives rise to a descendant tree T (G) which
contains infinitely many periodic bifurcations [29, § 21].
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As a final coronation of this section, we show that our new IPAD strategies are powerful enough
to enable the determination of the length ℓ3(K) with the aid of information on the structure of
3-class groups of number fields of absolute degree 6 · 9 = 54.

For this purpose, we extend the concept of iterated IPADs of second order

τ (1)(K) = [τ0(K); (τ (1)(L))L∈Lyr
1
(K)] = [τ0(K); (τ0(L); τ1(L))L∈Lyr

1
(K)]

once more by adding the second layers τ2(L) of all IPADs τ (1)(L) of unramified degree-p extensions
L|K. The resulting iterated multi-layered IPAD of second order is indicated by an asterisk

τ
(1)
∗ (K) = [τ0(K); (τ0(L); τ1(L); τ2(L))L∈Lyr

1
(K)].

Theorem 6.4. (Length ℓp(K) of the 3-class tower for G/G′′ ∈ T (〈243, 4〉))
Suppose that p = 3 and let K be a number field with 3-class group Cl3(K) of type (3, 3) and 3-tower
group G.

(1) If the IPAD of K is given by

τ (1)(K) = [12; ((13)3, 21)],

then the first layer TKT is κ1(K) = (4, 1, 1, 1) and there exist infinitely many possibilities
ℓ3(K) ≥ 2 for the length of the 3-class tower of K.

(2) If the first layer Lyr1(K) of abelian unramified extensions of K consists of L1, . . . , L4,
then the iterated multi-layered IPAD of second order

τ
(2)
∗ (K) = [τ0(K); (τ0(Li); τ1(Li); τ2(Li))1≤i≤4], with τ0(K) = 12,

admits certain partial decisions about the length ℓ3(K):

(6.8)

[τ0(L1); τ1(L1); τ2(L1)] = [13; ((13)4, (12)9); (12)13)],

[τ0(Li); τ1(Li); τ2(Li)] = [13; (13, (21)3, (12)9); ((12)4, (2)9)], for 2 ≤ i ≤ 3,

[τ0(L4); τ1(L4); τ2(L4)] = [21; (13, (21)3); (12)4]

implies G ≃ 〈243, 4〉 and ℓ3(K) = 2.

(6.9)

[τ0(L1); τ1(L1); τ2(L1)] = [13; (212, (13)3, (12)9); (13, (21)3, (12)9)],

[τ0(Li); τ1(Li); τ2(Li)] = [13; (212, (21)12); (13, (21)12)], for 2 ≤ i ≤ 3,

[τ0(L4); τ1(L4); τ2(L4)] = [21; (212, (21)3); (13, (21)3)]

implies G ≃ 〈729, 45〉 and ℓ3(K) = 2.

(6.10)

[τ0(L1); τ1(L1); τ2(L1)] = [13; (212, (13)3, (12)9); (212, (21)3, (12)9)],

[τ0(L2); τ1(L2); τ2(L2)] = [13; (212, (21)12); (212, (21)12)],

[τ0(L3); τ1(L3); τ2(L3)] = [13; ((212)4, (22)9); (212)13],

[τ0(L4); τ1(L4); τ2(L4)] = [21; (212, (21)3); (212, (21)3)]

implies G ≃ 〈2187, 273〉 and ℓ3(K) = 3.

(6.11)

[τ0(L1); τ1(L1); τ2(L1)] = [13; ((212)4, (12)9); (221, (13)3, (22)3, (21)6)],

[τ0(Li); τ1(Li); τ2(Li)] = [13; ((212)4, (22)9); (221, (212)12)], for 2 ≤ i ≤ 3,

[τ0(L4); τ1(L4); τ2(L4)] = [21; (212, (31)3); (221, (22)3)]

implies G ≃ 〈729, 45〉 −#2; 2 of order 38 and ℓ3(K) = 3.
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(6.12)

[τ0(L1); τ1(L1); τ2(L1)] = [13; ((212)4, (12)9); (221, (13)3, (32)3, (21)6)],

[τ0(Li); τ1(Li); τ2(Li)] = [13; ((212)4, (22)9); ((221)4, (312)9)], for 2 ≤ i ≤ 3,

[τ0(L4); τ1(L4); τ2(L4)] = [21; (212, (31)3); (221, (32)3)]

implies either
G ≃ 〈729, 45〉(−#2; 1−#1; 2)j −#2; 2, 1 ≤ j ≤ 2, of order 38+3j and ℓ3(K) = 3
or G ≃ 〈729, 45〉(−#2; 1−#1; 2)3 −#2; 2 of order 317 and ℓ3(K) = 4.

Example 6.3. In December 2009, we discovered the smallest discriminant d = 957 013 of a real
quadratic field K = Q(

√
d) with 3-class group of type (3, 3) whose 3-tower group G possesses the

transfer kernel type H.4, κ = (4, 1, 1, 1). The complex quadratic analogue K = Q(
√
−3 896) was

known since 1982 by the paper of Heider and Schmithals [20]. Both fields share the same IPAD
τ (1)(K) = [12; ((13)3, 21)].

In February 2015, we succeeded in proving that the unramified cyclic cubic extensions Li|K,
for d = −3 896, resp. d = 957 013, reveal the critical (first and) second layer IPAD components
τ2(L1) = (221, (13)3, (22)3, (21)6),
τ2(Li) = (221, (212)12), for 2 ≤ i ≤ 3, and
τ2(L4) = (221, (22)3)
in Equation (6.11), resp.
[τ1(L1); τ2(L1)] = [(212, (13)3, (12)9); (212, (21)3, (12)9)],
[τ1(L2); τ2(L2)] = [(212, (21)12); (212, (21)12)],
[τ1(L3); τ2(L3)] = [((212)4, (22)9); (212)13],
[τ1(L4); τ2(L4)] = [(212, (21)3); (212, (21)3)]
in Equation (6.10), of Theorem 6.4, item (2), whence ℓ3(K) = 3, for both fields.

However, the 3-class tower groups are different:
K = Q(

√
−3 896) has the Schur σ-group G ≃ 〈729, 45〉 −#2; 2 of order 38, and

K = Q(
√
957 013) has the unbalanced group G ≃ 〈2187, 273〉.

This was done by computing 3-class groups of number fields of absolute degree 6 · 9 = 54 with
the aid of MAGMA [23].

7. Complex quadratic fields of 3-rank three

In this concluding section we present another impressive application of IPADs.
Due to Koch and Venkov [22], it is known that a complex quadratic field K with 3-class

rank r3(K) ≥ 3 has an infinite 3-class field tower K < F1
3(K) < F2

3(K) < . . . < F∞
3 (K) of length

ℓ3(K) = ∞. In the time between 1973 and 1978, Diaz y Diaz [14, 15] and Buell [11] have determined
the smallest absolute discriminants |d| of such fields. Recently, we have launched a computational
project which aims at verifying these classical results and adding sophisticated arithmetical details.
Below the bound 107 there exist 25 discriminants d of this kind, and 14 of the corresponding fields
K have a 3-class group Cl3(K) of elementary abelian type (3, 3, 3). For each of these 14 fields,
we determine the type of 3-principalization κ := κ1(3,K) in the thirteen unramified cyclic cubic
extensions L1, . . . , L13 of K, and the structure of the 3-class groups Cl3(Li) of these extensions,
i.e., the IPAD of K. We characterize the metabelian Galois group G = G2

3(K) = Gal(F2
3(K)|K)

of the second Hilbert 3-class field F2
3(K) by means of kernels and targets of its Artin transfer

homomorphisms [2] to maximal subgroups. We provide evidence of a wealth of structure in the
set of infinite topological 3-class field tower groups G∞

3 (K) = Gal(F∞
3 (K)|K) by showing that the

14 groups G are pairwise non-isomorphic.
We summarize our results and their obvious conclusion in the following theorem.

Theorem 7.1. There exist exactly 14 complex quadratic number fields K = Q(
√
d) with 3-class

groups Cl3(K) of type (3, 3, 3) and discriminants in the range −107 < d < 0. They have pairwise
non-isomorphic

(1) second and higher 3-class groups Gal(Fn
3 (K)|K), n ≥ 2,

(2) infinite topological 3-class field tower groups Gal(F∞
3 (K)|K).
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Table 1. Data collection for Cl3(K) ≃ (3, 3, 3) and −107 < d

No. discriminant d Cl3(K) Cl(K)

1 −3 321 607 (9, 3, 3) (63, 3, 3)

2 −3 640 387 (9, 3, 3) (18, 3, 3)

3 −4 019 207 (9, 3, 3) (207, 3, 3)

4 −4 447 704 (3, 3, 3) (24, 6, 6)

5 −4 472 360 (3, 3, 3) (30, 6, 6)

6 −4 818 916 (3, 3, 3) (48, 3, 3)

7 −4 897 363 (3, 3, 3) (33, 3, 3)

8 −5 048 347 (9, 3, 3) (18, 6, 3)

9 −5 067 967 (3, 3, 3) (69, 3, 3)

10 −5 153 431 (27, 3, 3) (216, 3, 3)

11 −5 288 968 (9, 3, 3) (72, 3, 3)

12 −5 769 988 (3, 3, 3) (12, 6, 6)

13 −6 562 327 (9, 3, 3) (126, 3, 3)

14 −7 016 747 (9, 3, 3) (99, 3, 3)

15 −7 060 148 (3, 3, 3) (60, 6, 3)

16 −7 503 391 (9, 3, 3) (90, 6, 3)

17 −7 546 164 (9, 3, 3) (18, 6, 6, 2)

18 −8 124 503 (9, 3, 3) (261, 3, 3)

19 −8 180 671 (3, 3, 3) (159, 3, 3)

20 −8 721 735 (3, 3, 3) (60, 6, 6)

21 −8 819 519 (3, 3, 3) (276, 3, 3)

22 −8 992 363 (3, 3, 3) (48, 3, 3)

23 −9 379 703 (3, 3, 3) (210, 3, 3)

24 −9 487 991 (3, 3, 3) (381, 3, 3)

25 −9 778 603 (3, 3, 3) (48, 3, 3)

Before we come to the proof of Theorem 7.1 in § 7.3, we collect basic numerical data concerning
fields with r3(K) = 3 in § 7.1, and we completely determine sophisticated arithmetical invariants
in § 7.2 for all fields with Cl3(K) of type (3, 3, 3). The first attempt to do so for the smallest
absolute discriminant |d| = 3 321 607 with r3(K) = 3 is due to Heider and Schmithals in [20, § 4,
Tbl.2, p.18], but it resulted in partial success only.

7.1. Discriminants −107 < d < 0 of fields K = Q(
√
d) with rank r3(K) = 3. Since one of

our aims is to investigate tendencies for the coclass of second and higher p-class groups Gn
p (K) =

Gal(Fn
p (K)|K), n ≥ 2, [25, 27] of a series of algebraic number fields K with infinite p-class field

tower, for an odd prime p ≥ 3, the most obvious choice which suggests itself is to take the smallest
possible prime p = 3 and to select complex quadratic fields K = Q(

√
d), d < 0, having the simplest

possible 3-class group Cl3(K) of rank 3, that is, of elementary abelian type (3, 3, 3).
The reason is that Koch and Venkov [22] have improved the lower bound of Golod, Shafarevich

[35, 19] and Vinberg [39] for the p-class rank rp(K), which ensures an infinite p-class tower of a
complex quadratic field K, from 4 to 3.

However, quadratic fields with 3-rank r3(K) = 3 are sparse. Diaz y Diaz and Buell [14, 36, 11,
15] have determined the minimal absolute discriminant of such fields to be |d| = 3 321 607.

To provide an independent verification, we used the computational algebra system Magma
[6, 7, 23] for compiling a list of all quadratic fundamental discriminants −107 < d < 0 of fields

K = Q(
√
d) with 3-class rank r3(K) = 3. In 16 hours of CPU time we obtained the 25 desired

discriminants and the abelian type invariants (here written in 3-power form) of the corresponding
3-class groups Cl3(K), and also of the complete class groups Cl(K), as given in Table 1. There
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appeared only one discriminant d = −7 503 391 (No. 16) which is not contained in [15, Appendix
1, p.68] already.

There are 14 discriminants, starting with d = −4 447 704, such that Cl3(K) is elementary
abelian of type (3, 3, 3), and 10 discriminants, starting with −3 321 607, such that Cl3(K) is of
non-elementary type (9, 3, 3). For the single discriminant d = −5 153 431, we have a 3-class group
of type (27, 3, 3). We have published this information in the Online Encyclopedia of Integer
Sequences (OEIS) [37], sequences A244574 and A244575.

Table 2. Pattern recognition via ordered IPADs

No. discriminant

i 1 2 3 4 5 6 7 8 9 10 11 12 13

1 d = −4 447 704

κ 8 1 8 8 10 8 6 13 8 2 10 8 9

o(κ) 1 1 0 0 0 1 0 6 1 2 0 0 1

τ 2212 214 2212 3221 2212 214 2212 2212 214 214 214 2212 2212

τ0 12 12 12 21 12 12 12 12 12 12 12 12 12

2 d = −4 472 360

κ 1 12 6 13 6 10 4 13 10 10 1 8 4

o(κ) 2 0 0 2 0 2 0 1 0 3 0 1 2

τ 2212 2212 2212 214 2212 214 214 2212 2212 2212 3221 2212 214

τ0 12 12 12 12 12 12 12 12 12 12 21 12 12

3 d = −4 818 916

κ 6 9 13 1 5 6 9 4 11 7 1 3 4

o(κ) 2 0 1 2 1 2 1 0 2 0 1 0 1

τ 2212 2212 2212 214 214 2212 2212 2212 4313 2212 214 3221 2212

τ0 12 12 12 12 12 12 12 12 31 12 12 21 12

4 d = −4 897 363

κ 3 8 11 2 6 6 12 7 2 2 9 13 6

o(κ) 0 3 1 0 0 3 1 1 1 0 1 1 1

τ 2212 3213 4313 2212 214 2212 3221 214 2212 2212 2212 2212 2212

τ0 12 21 31 12 12 12 21 12 12 12 12 12 12

5 d = −5 067 967

κ 8 6 9 2 3 7 12 7 1 4 3 9 4

o(κ) 1 1 2 2 0 1 2 1 2 0 0 1 0

τ 214 214 2212 214 2212 2212 2212 3221 2212 214 214 2212 2212

τ0 12 12 12 12 12 12 12 21 12 12 12 12 12

6 d = −5 769 988

κ 12 11 7 6 1 1 10 10 9 6 4 3 13

o(κ) 2 0 1 1 0 2 1 0 1 2 1 1 1

τ 3213 2212 214 3213 2212 214 214 2212 2212 2212 2212 214 3221

τ0 21 12 12 21 12 12 12 12 12 12 12 12 21

7.2. Arithmetic invariants of fields K = Q(
√
d) with Cl3(K) ≃ (3, 3, 3). After the prelimi-

nary data collection in section § 7.1, we restrict ourselves to the 14 cases with elementary abelian
3-class group of type (3, 3, 3). The complex quadratic field K = Q(

√
d) possesses 13 unramified

cyclic cubic extensions L1, . . . , L13 with dihedral absolute Galois group Gal(Li|Q) of order six
[25]. Based on Fieker’s technique [16], we use the computational algebra system Magma [7, 23] to
construct these extensions and to calculate their arithmetical invariants. In Table 2, which is con-
tinued in Table 3 on the following page, we present the kernel κi of the 3-principalization of K in



18 DANIEL C. MAYER

Table 3. Pattern recognition (continued)

No. discriminant

i 1 2 3 4 5 6 7 8 9 10 11 12 13

7 d = −7 060 148

κ 2 4 4 9 4 10 8 10 10 1 6 8 3

o(κ) 1 1 1 3 0 1 0 2 1 3 0 0 0

τ 214 214 3221 2212 3221 214 2212 3213 214 214 2212 2212 3213

τ0 12 12 21 12 21 12 12 21 12 12 12 12 21

8 d = −8 180 671

κ 12 9 2 6 10 6 8 2 10 10 9 11 4

o(κ) 0 2 0 1 0 2 0 1 2 3 1 1 0

τ 3213 2212 214 2212 2212 2212 2212 214 2212 2212 2212 214 2212

τ0 21 12 12 12 12 12 12 12 12 12 12 12 12

9 d = −8 721 735

κ 5 2 5 1 10 13 4 7 11 3 9 8 8

o(κ) 1 1 1 1 2 0 1 2 1 1 1 0 1

τ 2212 214 214 214 3213 2212 214 2212 3221 3221 214 3221 2212

τ0 12 12 12 12 21 12 12 12 21 21 12 21 12

10 d = −8 819 519

κ 2 7 8 12 4 12 9 5 5 3 10 6 10

o(κ) 0 1 1 1 2 1 1 1 1 2 0 2 0

τ 2212 214 3221 2212 2212 2212 2212 2212 214 2212 2212 2212 16

τ0 12 12 21 12 12 12 12 12 12 12 12 12 12

11 d = −8 992 363

κ 12 10 2 12 9 5 10 10 2 12 6 9 7

o(κ) 0 2 0 0 1 1 1 0 2 3 0 3 0

τ 2212 214 2212 2212 3221 2212 214 214 214 2212 2212 214 2212

τ0 12 12 12 12 21 12 12 12 12 12 12 12 12

12 d = −9 379 703

κ 8 11 8 13 9 5 6 1 2 13 4 12 3

o(κ) 1 1 1 1 1 1 0 2 1 0 1 1 2

τ 214 2212 3213 2212 214 214 2212 214 214 2212 2212 2212 2212

τ0 12 12 21 12 12 12 12 12 12 12 12 12 12

13 d = −9 487 991

κ 4 2 2 11 13 9 12 9 8 1 1 12 3

o(κ) 2 2 1 1 0 0 0 1 2 0 1 2 1

τ 2212 2212 2212 2212 3213 2212 2212 214 2212 214 2212 2212 2212

τ0 12 12 12 12 21 12 12 12 12 12 12 12 12

14 d = −9 778 603

κ 10 6 6 9 9 10 8 10 13 5 12 6 10

o(κ) 0 0 0 0 1 3 0 1 2 4 0 1 1

τ 2212 3213 214 3221 3221 2212 2212 2212 214 214 2212 2212 2212

τ0 12 21 12 21 21 12 12 12 12 12 12 12 12

Li [24, 25], the occupation numbers o(κ)i of the principalization kernels [26], and the abelian type
invariants τi, resp. τ0i , of the 3-class group Cl3(Li), resp. Cl3(Ki), for each 1 ≤ i ≤ 13 [28, 27].
Here, we denote by Ki the unique real non-Galois absolutely cubic subfield of Li. For brevity, we
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give 3-logarithms of abelian type invariants and we denote iteration by formal exponents. Note
that the multiplets κ and τ are ordered and in componentwise mutual correspondence, in the
sense of § 4.

Table 4. Accumulative (unordered) form of IPADs

No. discriminant d 2212 214 16 3221 3213 4313 polarization state

1 −4 447 704 7 5 0 1 0 0 uni ground

2 −4 472 360 8 4 0 1 0 0 uni ground

3 −4 818 916 8 3 0 1 0 1 bi excited

4 −4 897 363 8 2 0 1 1 1 tri excited

5 −5 067 967 7 5 0 1 0 0 uni ground

6 −5 769 988 6 4 0 1 2 0 tri ground

7 −7 060 148 4 5 0 2 2 0 tetra ground

8 −8 180 671 9 3 0 0 1 0 uni ground

9 −8 721 735 4 5 0 3 1 0 tetra ground

10 −8 819 519 9 2 1 1 0 0 uni ground

11 −8 992 363 7 5 0 1 0 0 uni ground

12 −9 379 703 7 5 0 0 1 0 uni ground

13 −9 487 991 10 2 0 0 1 0 uni ground

14 −9 778 603 7 3 0 2 1 0 tri ground

In Table 4, we classify each of the 14 complex quadratic fields K = Q(
√
d) of type (3, 3, 3)

according to the occupation numbers of the abelian type invariants of the 3-class groups Cl3(Li)
of the 13 unramified cyclic cubic extensions Li, that is the accumulated (unordered) form of the
IPAD of K. Whereas the dominant part of these groups is of order 36 = 729, there always
exist(s) at least one and at most four distinguished groups of bigger order, usually 38 = 6 561 and
occasionally even 310 = 59 049, According to the number of distinguished groups, we speak about
uni-, bi-, tri- or tetra-polarization. If the maximal value of the order is 38, then we have a ground
state, otherwise an excited state.

7.3. Proof of Theorem 7.1.

Proof. According to [27, Thm.1.1 and Dfn.1.1, pp.402–403], the information given in Table 4
consists of isomorphism invariants of the metabelian Galois group G = Gal(F2

3(K)|K) of the
second Hilbert 3-class field of K [25]. Consequently, with respect to the 13 abelian type invariants
of the 3-class groups Cl3(Li) alone, only the groups G for d ∈ {−4 447 704,−5 067 967,−8 992 363}
could be isomorphic. However, Tables 2 and 3 show that these three groups differ with respect
to another isomorphism invariant, the 3-principalization type κ [24, 26], since the corresponding
maximal occupation numbers of the multiplet o(κ) are 6, 2, 3, respectively. �

7.4. Final remark. We would like to emphasize that Theorem 7.1 provides evidence for a wealth
of structure in the set of infinite 3-class field towers, which was unknown up to now, since the
common practice is to consider a 3-class field tower as “done” when some criterion in the style
of Golod-Shafarevich-Vinberg [35, 19, 39] or Koch-Venkov [22] ensures just its infinity. However,
this perspective is very coarse and our result proves that it can be refined considerably.

It would be interesting to extend the range of discriminants −107 < d < 0 and to find the first
examples of isomorphic infinite 3-class field towers.

Another very difficult remaining open problem is the actual identification of the metabelianiza-
tions of the 3-tower groups G of the 14 fields. The complexity of this task is due to unmanageable
descendant numbers of certain vertices, e.g. 〈243, 37〉 and 〈729, 122〉, in the tree with root 〈27, 5〉.
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[22] H. Koch und B. B. Venkov, Über den p-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers,
Astérisque 24–25 (1975), 57–67.

[23] The MAGMA Group, MAGMA Computational Algebra System, Version 2.21-1, Sydney, 2014,
(\protect\vrule width0pt\protect\href{http://magma.maths.usyd.edu.au}{http://magma.maths.usyd.edu.au}).

[24] D. C. Mayer, Principalization in complex S3-fields, Congressus Numerantium 80 (1991), 73–87. (Proceed-
ings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Univ. of Manitoba,
Winnipeg, Canada, 1990.)

[25] D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory 8 (2012), no. 2, 471–505,
DOI 10.1142/S179304211250025X.

[26] D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math. 166 (2012), no. 3–4, 467–495, DOI
10.1007/s00605-010-0277-x.

[27] D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25
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