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Counting toroidal binary arrays, II

S. N. Ethier∗ and Jiyeon Lee†

Abstract

We derive formulas for (i) the number of toroidal n×n binary arrays,
allowing rotation of rows and/or columns as well as matrix transposition,
and (ii) the number of toroidal n × n binary arrays, allowing rotation
and/or reflection of rows and/or columns as well as matrix transposition.
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1 Introduction

A previous paper [1] found the number of (distinct) toroidalm×n binary arrays,
allowing rotation of rows and/or columns, to be

a(m,n) :=
1

mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/ lcm(c,d), (1)

where ϕ is Euler’s phi function and lcm stands for least common multiple. This
is A184271 in the On-Line Encyclopedia of Integer Sequences [2]. The main
diagonal is A179043. It was also shown that, allowing rotation and/or reflection
of rows and/or columns, the number becomes

b(m,n) := b1(m,n) + b2(m,n) + b3(m,n) + b4(m,n), (2)

where

b1(m,n) :=
1

4mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/ lcm(c,d),
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b2(m,n)

:=
1

4n

∑

d |n

ϕ(d) 2mn/d

+

{

(4n)−1
∑′ ϕ(d)(2(m+1)n/(2d) − 2mn/d), if m is odd;

(8n)−1
∑′

ϕ(d)(2mn/(2d) + 2(m+2)n/(2d) − 2 · 2mn/d), if m is even,

with
∑′

:=
∑

d |n: d is odd,

b3(m,n) := b2(n,m),

and

b4(m,n) :=











2(mn−3)/2, if m and n are odd;

3 · 2mn/2−3, if m and n have opposite parity;

7 · 2mn/2−4, if m and n are even.

(The formula for b2(m,n) given in [1] is simplified here.) This is A222188 in the
OEIS [2]. The main diagonal is A209251.

Our aim here is to derive the corresponding formulas when m = n and we
allow matrix transposition as well. More precisely, we show that the number of
(distinct) toroidal n×n binary arrays, allowing rotation of rows and/or columns
as well as matrix transposition, is

α(n) =
1

2
a(n, n) +

1

2n

∑

d |n

ϕ(d) 2n(n+d−2⌊d/2⌋)/(2d), (3)

where a(n, n) is from (1). When we allow rotation and/or reflection of rows
and/or columns as well as matrix transposition, the number becomes

β(n) =
1

2
b(n, n) +

1

4n

∑

d |n

ϕ(d) 2n(n+d−2⌊d/2⌋)/(2d)

+

{

2(n
2−5)/4, if n is odd;

5 · 2n
2/4−3, if n is even,

(4)

where b(n, n) is from (2). At the time of writing, sequences (3) and (4) were
not in the OEIS.

For an alternative description, we could define a group action on the set of
n × n binary arrays, which has 2n

2

elements. If the group is generated by σ
(row rotation) and τ (column rotation), then the number of orbits is given by
a(n, n); see [1]. If the group is generated by σ, τ , and ζ (matrix transposition),
then the number of orbits is given by α(n); see Theorem 1 below. If the group
is generated by σ, τ , ρ (row reflection), and θ (column reflection), then the
number of orbits is given by b(n, n); see [1]. If the group is generated by σ, τ ,
ρ, θ, and ζ, then the number of orbits is given by β(n); see Theorem 2 below.
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Both theorems are proved using Pólya’s enumeration theorem (actually, the
simplified unweighted version; see, e.g., van Lint and Wilson [3, Theorem 37.1,
p. 524]).

To help clarify the distinction between the various group actions, we consider
the case of 3× 3 binary arrays as in [1]. When the group is generated by σ and
τ (allowing rotation of rows and/or columns), there are 64 orbits, which were
listed in [1]. When the group is generated by σ, τ , and ζ (allowing rotation
of rows and/or columns as well as matrix transposition), there are 44 orbits,
which are listed in Table 1 below. When the group is generated by σ, τ , ρ,
and θ (allowing rotation and/or reflection of rows and/or columns), there are
36 orbits, which were listed in [1]. When the group is generated by σ, τ , ρ, θ,
and ζ (allowing rotation and/or reflection of rows and/or columns as well as
matrix transposition), there are 26 orbits, which are listed in Table 2 below.

Table 1: A list of the 44 orbits of the group action in which the group generated
by σ, τ , and ζ acts on the set of 3 × 3 binary arrays. (Rows and/or columns
can be rotated and matrices can be transposed.) Each orbit is represented by
its minimal element in 9-bit binary form. Subscripts indicate orbit size. Bars
separate different numbers of 1s.





0 0 0
0 0 0
0 0 0





1

∣

∣

∣

∣





0 0 0
0 0 0
0 0 1





9

∣

∣

∣

∣





0 0 0
0 0 0
0 1 1





18





0 0 0
0 0 1
0 1 0





9





0 0 0
0 0 1
1 0 0





9

∣

∣

∣

∣





0 0 0
0 0 0
1 1 1





6





0 0 0
0 0 1
0 1 1





9





0 0 0
0 0 1
1 0 1





18





0 0 0
0 0 1
1 1 0





18





0 0 0
0 1 1
0 1 0





9





0 0 0
0 1 1
1 0 0





18





0 0 1
0 1 0
1 0 0





3





0 0 1
1 0 0
0 1 0





3

∣

∣

∣

∣





0 0 0
0 0 1
1 1 1





18





0 0 0
0 1 1
0 1 1





9





0 0 0
0 1 1
1 0 1





18





0 0 0
0 1 1
1 1 0





18





0 0 0
1 1 1
0 0 1





18





0 0 1
0 0 1
1 1 0





9




0 0 1
0 1 0
1 0 1





9





0 0 1
0 1 0
1 1 0





9





0 0 1
1 0 0
0 1 1





18

∣

∣

∣

∣





0 0 0
0 1 1
1 1 1





18





0 0 0
1 1 1
0 1 1





18





0 0 1
0 0 1
1 1 1





9




0 0 1
0 1 0
1 1 1





18





0 0 1
0 1 1
1 1 0





9





0 0 1
1 0 0
1 1 1





18





0 0 1
1 0 1
1 1 0





18





0 0 1
1 1 0
1 0 1





9





0 0 1
1 1 0
1 1 0





9

∣

∣

∣

∣





0 0 0
1 1 1
1 1 1





6





0 0 1
0 1 1
1 1 1





9





0 0 1
1 0 1
1 1 1





18





0 0 1
1 1 0
1 1 1





18





0 0 1
1 1 1
1 0 1





9





0 0 1
1 1 1
1 1 0





18





0 1 1
1 0 1
1 1 0





3





0 1 1
1 1 0
1 0 1





3

∣

∣

∣

∣





0 0 1
1 1 1
1 1 1





18





0 1 1
1 0 1
1 1 1





9





0 1 1
1 1 0
1 1 1





9

∣

∣

∣

∣





0 1 1
1 1 1
1 1 1





9

∣

∣

∣

∣





1 1 1
1 1 1
1 1 1





1
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Table 2: A list of the 26 orbits of the group action in which the group generated
by σ, τ , ρ, θ, and ζ acts on the set of 3×3 binary arrays. (Rows and/or columns
can be rotated and/or reflected and matrices can be transposed.) Each orbit
is represented by its minimal element in 9-bit binary form. Subscripts indicate
orbit size. Bars separate different numbers of 1s.





0 0 0
0 0 0
0 0 0





1

∣

∣

∣

∣





0 0 0
0 0 0
0 0 1





9

∣

∣

∣

∣





0 0 0
0 0 0
0 1 1





18





0 0 0
0 0 1
0 1 0





18

∣

∣

∣

∣





0 0 0
0 0 0
1 1 1





6





0 0 0
0 0 1
0 1 1





36




0 0 0
0 0 1
1 1 0





36





0 0 1
0 1 0
1 0 0





6

∣

∣

∣

∣





0 0 0
0 0 1
1 1 1





36





0 0 0
0 1 1
0 1 1





9





0 0 0
0 1 1
1 0 1





36





0 0 1
0 0 1
1 1 0





9





0 0 1
0 1 0
1 0 1





36

∣

∣

∣

∣





0 0 0
0 1 1
1 1 1





36





0 0 1
0 0 1
1 1 1





9





0 0 1
0 1 0
1 1 1





36





0 0 1
0 1 1
1 1 0





36





0 0 1
1 1 0
1 1 0





9

∣

∣

∣

∣





0 0 0
1 1 1
1 1 1





6





0 0 1
0 1 1
1 1 1





36




0 0 1
1 1 0
1 1 1





36





0 1 1
1 0 1
1 1 0





6

∣

∣

∣

∣





0 0 1
1 1 1
1 1 1





18





0 1 1
1 0 1
1 1 1





18

∣

∣

∣

∣





0 1 1
1 1 1
1 1 1





9

∣

∣

∣

∣





1 1 1
1 1 1
1 1 1





1

Table 3 provides numerical values for α(n) and β(n) for small n.

Table 3: The values of α(n) and β(n) for n = 1, 2, . . . , 12.

n α(n) β(n)

1 2 2
2 6 6
3 44 26
4 2209 805
5 674384 172112
6 954623404 239123150
7 5744406453840 1436120190288
8 144115192471496836 36028817512382026
9 14925010120653819583840 3731252531904348833632

10 6338253001142965335834871200 1584563250300891724601560272
11 10985355337065423791175013899922368 2746338834266358751489231123956672
12 77433143050453552587418968170813573149024 19358285762613388352671214587818634041520

We take this opportunity to correct a small gap in the proof of Theorem 2
in [1]. The proof assumed implicitly that m,n ≥ 3. The theorem is correct as
stated for m,n ≥ 1, so the proof is incomplete if m or n is 1 or 2. Following the
proof of Theorem 2 below, we supply the missing steps.
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2 Rotation of rows and columns, and matrix

transposition

Let Xn := {0, 1}{0,1,...,n−1}2

be the set of n×n matrices of 0s and 1s, which has

2n
2

elements. Let α(n) denote the number of orbits of the group action on Xn

by the group of order 2n2 generated by σ (row rotation), τ (column rotation),
and ζ (matrix transposition). (Exception: If n = 1, the group is of order 1.)

Informally, α(n) is the number of (distinct) toroidal n × n binary arrays,
allowing rotation of rows and/or columns as well as matrix transposition.

Theorem 1. With a(n, n) defined using (1), α(n) is given by (3).

Proof. Let us assume that n ≥ 2. By Pólya’s enumeration theorem,

α(n) =
1

2n2

n−1
∑

i=0

n−1
∑

j=0

(2Aij + 2Eij ), (5)

where Aij (resp., Eij) is the number of cycles in the permutation σiτ j (resp.,
σiτ jζ); here σ rotates the rows (row 0 becomes row 1, row 1 becomes row 2, . . . ,
row n− 1 becomes row 0), τ rotates the columns, and ζ transposes the matrix.
We know from [1] that

a(n, n) =
1

n2

n−1
∑

i=0

n−1
∑

j=0

2Aij , (6)

so it remains to find Eij . The permutation ζ has n fixed points and
(

n
2

)

trans-
positions, so E00 = n(n+ 1)/2.

Notice that σ and τ commute, whereas σζ = ζτ and τζ = ζσ. Let (i, j) ∈
{0, 1, . . . , n− 1}2 − {(0, 0)} be arbitrary. Then

(σiτ jζ)2 = (σiτ jζ)(ζτ iσj) = σi+jτ i+j ,

hence

(σiτ jζ)2d = σ(i+j)dτ (i+j)d = ((στ)i+j)d,

(σiτ jζ)2d+1 = σ(i+j)d+iτ (i+j)d+jζ.

Clearly, (σiτ jζ)2d+1 cannot be the identity permutation, so σiτ jζ is of even
order. Using the fact that, in the cyclic group {a, a2, . . . , an−1, an = e} of order
n, ak is of order n/ gcd(k, n), we find that the permutation σiτ jζ is of order
2d, where d := n/ gcd(i+ j, n). Therefore, every cycle of this permutation must
have length that divides 2d.

We claim that all cycles have length d or 2d. Accepting that for now, let
us determine how many cycles have length d. A cycle that includes entry (k, l)
has length d if (k, l) is a fixed point of (σiτ jζ)d. For this to hold we must have

5



d odd (otherwise there would be no fixed points because we have excluded the
case i = j = 0 and (i+ j)d/2 = lcm(i+ j, n)/2 is not a multiple of n). Since

(σiτ jζ)d = σ(i+j)(d−1)/2+iτ (i+j)(d−1)/2+jζ,

we must also have

(k, l) = ([l + (i+ j)(d− 1)/2 + j], [k + (i+ j)(d− 1)/2 + i]), (7)

where d := n/ gcd(i + j, n) and, for simplicity, [r] := (r mod n) ∈ {0, 1, . . . , n−
1}. For each k ∈ {0, 1, . . . , n − 1}, there is a unique l (namely, l := [k + (i +
j)(d− 1)/2 + i]) such that (7) holds; indeed,

[l + (i + j)(d− 1)/2 + j]

= [[k + (i+ j)(d − 1)/2 + i] + (i+ j)(d − 1)/2 + j]

= [k + (i+ j)(d − 1)/2 + i+ (i+ j)(d− 1)/2 + j]

= [k + (i+ j)d]

= [k + (i+ j)(n/ gcd(i+ j, n))]

= [k + lcm(i+ j, n)]

= k.

This shows that there are n fixed points of (σiτ jζ)d. Each cycle of length d of
σiτ jζ will account for d such fixed points, hence there are n/d such cycles. All
remaining cycles will have length 2d, and so there are n(n − 1)/(2d) of these.
The total number of cycles is therefore n(n+ 1)/(2d).

The other possibility is that d is even and all cycles have the same length, 2d,
so there are n2/(2d) of them. Notice that d is a divisor of n, so the contribution
to

n−1
∑

i=0

n−1
∑

j=0

2Eij

from odd d is
∑

d |n: d is odd

nϕ(d)2n(n+1)/(2d) (8)

and from even d is
∑

d |n: d is even

nϕ(d)2n
2/(2d). (9)

The reason for the coefficient nϕ(d) is that, if d |n, then the number of elements
of the cyclic group {e, στ, (στ)2, . . . , (στ)n−1} that are of order d is ϕ(d). And
for a given (i, j) ∈ {0, 1, . . . , n− 1}2, there are n pairs (k, l) ∈ {0, 1, . . . , n− 1}2

such that [k + l] = [i + j]. Putting (8) and (9) together, we obtain

n−1
∑

i=0

n−1
∑

j=0

2Eij =
∑

d |n

nϕ(d)2n(n+d−2⌊d/2⌋)/(2d), (10)

which, together with (5) and (6), yields (3).

6



.
It remains to prove our claim that, for (i, j) ∈ {0, 1, . . . , n − 1}2 − {(0, 0)},

the permutation σiτ jζ cannot have any cycles whose length is a proper divisor
of d := n/ gcd(i + j, n). Let c | d with 1 ≤ c < d. We must show that (σiτ jζ)c

has no fixed points. We can argue as above with c in place of d. For (k, l)
to be a fixed point of (σiτ jζ)c we must have (i + j)c a multiple of n. But
d := n/ gcd(i + j, n) is the smallest integer c such that (i + j)c is a multiple of
n because (i + j)n/ gcd(i+ j, n) = lcm(i + j, n).

Finally, we excluded the case n = 1 at the beginning of the proof, but we
notice that the formula (3) gives α(1) = 2, which is correct.

3 Rotation and reflection of rows and columns,

and matrix transposition

Let Xn := {0, 1}{0,1,...,n−1}2

be the set of n × n matrices of 0s and 1s, which

has 2n
2

elements. Let β(n) denote the number of orbits of the group action
on Xn by the group of order 8n2 generated by σ (row rotation), τ (column
rotation), ρ (row reflection), θ (column reflection), and ζ (matrix transposition).
(Exceptions: If n = 2, the group is of order 8; if n = 1, the group is of order 1.)

Informally, β(n) is the number of (distinct) toroidal n × n binary arrays,
allowing rotation and/or reflection of rows and/or columns as well as matrix
transposition.

Theorem 2. With b(n, n) defined using (2), β(n) is given by (4).

Proof. Let us assume that n ≥ 3. (We will treat the cases n = 1 and n = 2
later.) By Pólya’s enumeration theorem,

β(n) =
1

8n2

n−1
∑

i=0

n−1
∑

j=0

(2Aij + 2Bij + 2Cij + 2Dij + 2Eij + 2Fij + 2Gij + 2Hij ),

where Aij (resp., Bij , Cij , Dij , Eij , Fij , Gij , Hij) is the number of cycles in the
permutation σiτ j (resp., σiτ jρ, σiτ jθ, σiτ jρθ, σiτ jζ, σiτ jρζ, σiτ jθζ, σiτ jρθζ);
here σ rotates the rows (row 0 becomes row 1, row 1 becomes row 2, . . . , row
n − 1 becomes row 0), τ rotates the columns, ρ reflects the rows (rows 0 and
n− 1 are interchanged, rows 1 and n− 2 are interchanged, . . . , rows ⌊n/2⌋ − 1
and n − ⌊n/2⌋ are interchanged), θ reflects the columns, and ζ transposes the
matrix. The order of the group generated by σ, τ , ρ, θ, and ζ is 8n2, using the
assumption that n ≥ 3.

We have already evaluated

a(n, n) =
1

n2

n−1
∑

i=0

n−1
∑

j=0

2Aij ,

α(n) =
1

2n2

n−1
∑

i=0

n−1
∑

j=0

(2Aij + 2Eij ),

7



and

b(n, n) =
1

4n2

n−1
∑

i=0

n−1
∑

j=0

(2Aij + 2Bij + 2Cij + 2Dij ),

so

β(n) =
1

2
b(n, n)+

1

4

(

α(n)−
1

2
a(n, n)

)

+
1

8n2

n−1
∑

i=0

n−1
∑

j=0

(2Fij+2Gij+2Hij ). (11)

Let us begin with
n−1
∑

i=0

n−1
∑

j=0

2Hij .

Here we are concerned with the permutations σiτ jρθζ for (i, j) ∈ {0, 1, . . . , n−
1}2. We will need some multiplication rules for the permutations σ, τ , ρ, θ, and
ζ, specifically

στ = τσ, σθ = θσ, τρ = ρτ, ρθ = θρ, σρ = ρσ−1, τθ = θτ−1,

and
σζ = ζτ, τζ = ζσ, ρζ = ζθ, θζ = ζρ.

It follows that (with τ−i := (τ−1)i)

σiτ jρθζ = σiτ jζθρ = ζτ iσjθρ = ζθτ−iσjρ = ζθρτ−iσ−j ,

and hence

(σiτ jρθζ)2 = (σiτ jρθζ)(ζθρτ−iσ−j) = σi−jτ−i+j = (στ−1)i−j = (σ−1τ)−i+j .
(12)

In particular, if i ∈ {0, 1, . . . , n−1}, then the permutation σiτ iρθζ is of order
2. Furthermore, under this permutation, the entry in position (k, l) moves to
position (n − 1 − [l + i], n − 1 − [k + i]), where, as before, [r] := (r mod n) ∈
{0, 1, . . . , n− 1}. Thus, (k, l) is a fixed point if and only if

(k, l) = (n− 1− [l + i], n− 1− [k + i]). (13)

For each k ∈ {0, 1, . . . , n − 1} there is a unique l ∈ {0, 1, . . . , n − 1} (namely
l := n− 1− [k + i]) such that (13) holds; indeed,

n− 1− [l + i] = n− 1− [n− 1− [k + i] + i] = n− 1− [n− 1− (k + i) + i]

= n− 1− [n− 1− k] = n− 1− (n− 1− k) = k.

Thus, σiτ iρθζ with i ∈ {0, 1, . . . , n − 1} is of order 2 and has exactly n fixed
points, hence

(

n
2

)

transpositions. This implies that Hii = n(n+1)/2 for such i.
Now we let (i, j) ∈ {0, 1, . . . , n − 1}2 be arbitrary but with i 6= j. Let us

generalize (12) to

(σiτ jρθζ)2d = σ(i−j)dτ (−i+j)d = ((στ−1)i−j)d = ((σ−1τ)−i+j)d,
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(σiτ jρθζ)2d+1 = σ(i−j)d+iτ (−i+j)d+jρθζ.

The proof proceeds much like the proof of Theorem 1. Specifically, σiτ jρθζ is
of order 2d, where d := n/ gcd(|i − j|, n). All cycles have length d or 2d. In
fact, if d is odd, there are n/d cycles of length d and n(n − 1)/(2d) cycles of
length 2d. If d is even, there are n2/(2d) cycles, all of length 2d. And for a
given (i, j) ∈ {0, 1, . . . , n− 1}2, there are n pairs (k, l) ∈ {0, 1, . . . , n− 1}2 such
that [k − l] = [|i− j|]. We arrive at the conclusion that

n−1
∑

i=0

n−1
∑

j=0

2Hij =
n−1
∑

i=0

n−1
∑

j=0

2Eij . (14)

Next we evaluate
n−1
∑

i=0

n−1
∑

j=0

2Fij =
n−1
∑

i=0

n−1
∑

j=0

2Gij , (15)

where the equality holds by symmetry. We consider the permutations σiτ jρζ
for (i, j) ∈ {0, 1, . . . , n− 1}2. From the multiplication rules, it follows that

σiτ jρζ = ζθτ−iσj

and hence

(σiτ jρζ)2 = (σiτ jρζ)(ζθτ−iσj) = σiτ jρθτ−iσj = σi−jτ i+jρθ = θρτ−i−jσ−i+j ,
(16)

which implies

(σiτ jρζ)4 = (σi−jτ i+jρθ)(θρτ−i−jσ−i+j) = e.

So the permutation σiτ jρζ is of order 4. The entry in position (k, l) moves
to position ([l + j], n − 1 − [k + i]) under this permutation. Thus, (k, l) ∈
{0, 1, . . . , n− 1}2 is a fixed point of σiτ jρζ if and only if

(k, l) = ([l + j], n− 1− [k + i]).

There is a solution (k, l) if and only if there exists l ∈ {0, 1, . . . , n−1} such that,
with k := [l + j], we have n− 1− [k + i] = l or, equivalently,

[l + i+ j] = n− 1− l. (17)

When i+ j ≤ n− 1, (17) is equivalent to

l + i+ j = n− 1− l or l + i+ j − n = n− 1− l

or to
l = (n− 1− i− j)/2 or l = (2n− 1− i− j)/2.

If n is odd and i+ j is odd, then there is one fixed point, (k, l) = ([(2n− 1− i+
j)/2], [(2n− 1− i− j)/2]). If n is odd and i+ j is even, then there is one fixed
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point, (k, l) = ([(n − 1 − i + j)/2], [(n− 1 − i − j)/2]). If n is even and i+ j is
odd, then there are two fixed points, namely

(k, l) = ([(n− 1− i+ j)/2], [(n− 1− i− j)/2]),

(k, l) = ([(2n− 1− i+ j)/2], [(2n− 1− i− j)/2]).

Finally, if n is even and i+ j is even, then there is no fixed point.
When i+ j ≥ n, (17) is equivalent to

l + i+ j − n = n− 1− l or l + i+ j − 2n = n− 1− l

or to
l = (2n− 1− i− j)/2 or l = (3n− 1− i− j)/2.

If n is odd and i+ j is odd, then there is one fixed point, (k, l) = ([(2n− 1− i+
j)/2], [(2n−1−i−j)/2]). If n is odd and i+j is even, then there is one fixed point,
(k, l) = ([(n−1−i+j)/2], [(3n−1−i−j)/2]) = ([(n−1−i+j)/2], [(n−1−i−j)/2]).
If n is even and i+ j is odd, then there are two fixed points, namely

(k, l) = ([(2n− 1− i+ j)/2], [(2n− 1− i− j)/2]),

(k, l) = ([(n− 1− i+ j)/2], [(n− 1− i− j)/2]).

Finally, if n is even and i + j is even, then there is no fixed point. Notice that
the results are the same for i+ j ≥ n as for i+ j ≤ n− 1.

Using (16), under the permutation (σiτ jρζ)2, the entry in position (k, l)
moves to position (n − 1 − [k + i − j], n − 1 − [l + i + j]). Thus, (k, l) ∈
{0, 1, . . . , n− 1}2 is a fixed point of (σiτ jρζ)2 if and only if

(k, l) = (n− 1− [k + i− j], n− 1− [l + i+ j]).

A necessary and sufficient condition on (k, l) is (17) together with [k + i− j] =
n− 1− k. Solutions have l as before. On the other hand, k must satisfy

k+ i− j−n = n− 1− k, k+ i− j = n− 1− k, or k+ i− j+n = n− 1− k,

or equivalently,

k = [(n− 1− i+ j)/2] or k = [(2n− 1− i+ j)/2].

If n is odd, the only fixed points of (σiτ jρζ)2 are those already shown to be
fixed points of σiτ jρζ. If n is even and i + j is odd, there are two fixed points
of (σiτ jρζ)2 that are not fixed points of σiτ jρζ, namely

(k, l) = ([(n− 1− i+ j)/2], [(2n− 1− i− j)/2]),

(k, l) = ([(2n− 1− i+ j)/2], [(n− 1− i− j)/2]).

Finally, there are no fixed points when n is even and i+ j is even.
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Consequently, if n is odd, then the permutation σiτ jρζ, which is of order 4,
has only one fixed point. Therefore, it has one cycle of length 1 and (n2 − 1)/4
cycles of length 4. Thus,

n−1
∑

i=0

n−1
∑

j=0

2Fij = n22(n
2+3)/4.

For even n, if i+ j is odd, then the permutation σiτ jρζ has two cycles of length
1 and one cycle of length 2, and the remaining cycles are of length 4. If i+ j is
even, then all cycles of the permutation σiτ jρζ are of length 4, hence there are
n2/4 of them. Thus,

n−1
∑

i=0

n−1
∑

j=0

2Fij =
1

2
n22(n

2−4)/4+3 +
1

2
n22n

2/4 = 5n22n
2/4−1.

These results, together with (3), (10), (11), (14), and (15), yield (4).
Finally, recall that we have assumed that n ≥ 3. We notice that the formula

(4) gives β(1) = 2 and β(2) = 6, which are correct, as we can see by direct
enumeration.

In the derivation of (2) in [1], the proof requires m,n ≥ 3 because the group
Dm × Dn used in the application of Pólya’s enumeration theorem (Dm being
the dihedral group of order 2m), is incorrect if m or n is 1 or 2. If m = 2, row
rotation and row reflection are the same, so the latter is redundant. Thus, D2

should be replaced by C2, the cyclic group of order 2. The reason (2) is still
valid is that b1(2, n) = b2(2, n) and b3(2, n) = b4(2, n), as is easily verified. If
m = 1, again row reflection is redundant, so D1 should be replaced by C1. Here
(2) remains valid because b1(1, n) = b2(1, n) and b3(1, n) = b4(1, n). A similar
remark applies to n = 2 and n = 1, except that here b1(m, 2) = b3(m, 2),
b2(m, 2) = b4(m, 2), b1(m, 1) = b3(m, 1), and b2(m, 1) = b4(m, 1).
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