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Abstract

The maximum number of non-crossing straight-line perfect matchings that a set of n
points in the plane can have is known to be O(10.0438n) and Ω∗(3n). The lower bound,
due to Garćıa, Noy, and Tejel (2000) is attained by the double chain, which has Θ(3nnO(1))
such matchings. We reprove this bound in a simplified way that uses the novel notion of
down-free matching, and apply this approach on several other constructions. As a result, we
improve the lower bound. First we show that double zigzag chain with n points has Θ∗(λn)
such matchings with λ ≈ 3.0532. Next we analyze further generalizations of double zigzag
chains – double r-chains. The best choice of parameters leads to a construction with Θ∗(νn)
matchings, with ν ≈ 3.0930. The derivation of this bound requires an analysis of a coupled
dynamic-programming recursion between two infinite vectors.
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1 Introduction

Background. A non-crossing straight-line matching of a finite planar point set is a graph
whose vertices are the given points, whose edges are realized by pairwise non-crossing straight
segments, and where every vertex has degree at most 1. In what follows, such matchings will be
simply called matchings. A matching is perfect if every point is matched – that is, has degree 1.
Throughout the paper, all point sets are assumed to be in general position in the sense that no
three points lie on a line.

In this paper we deal with bounds on the number of perfect matchings that a set of size n can
have. This question arises in a broader context. Non-crossing straight-line matchings, either
perfect or not necessarily perfect, are just two kinds of geometric plane graphs, others being
triangulations, spanning trees, connected graphs, etc. A web page of Adam Sheffer1 maintains
the best up-to-date bounds on the maximum number of geometric plane graphs of several kinds.

First we recall that for the minimum number of perfect matchings that n points in general
position can have, the exact solution is known. Garćıa, Noy, and Tejel [6] proved the number of
perfect matching is minimized on point sets in convex position. It is well-known that the number
of perfect matchings is then Cn/2, where Ck = 1

k+1

(
2k
k

)
= Θ(4k/k3/2) is the k-th Catalan number.

The minimum number Cn/2 of perfect matchings is in fact attained only for point sets in convex
position, with the exception of one configuration of six points [2].

Regarding the maximum number of perfect matchings that a point set of size n can have,
only asymptotic bounds are known. The best upper bound to date, O(10.0438n), was proved
by Sharir and Welzl [9]. The best previous lower bound was given by Garćıa, Noy, and Tejel in
the above-mentioned paper [6]. They showed that for the so-called double chain with n points
(to be denoted by DCn) the following holds:

Theorem 1 ([6, Theorem 2.1]). The number of perfect matchings of the double chain with n
points is Θ

(
3nnO(1)

)
.

Actually, it follows from their proof that this number is Ω(3n/n4) and O(3n/n3). In Sec-
tion 2.3 we shall sketch this proof, and also determine the polynomial factor more precisely.

The double chain was used in [6] not only for improving the lower bounds on the maximum
number of perfect matchings, but also for some other kinds of geometric graphs: triangulations,
spanning trees and polygonizations. It was believed by some researchers in the field that it
might give the true upper bound at least for some of these kinds. However, in 2006, Aichholzer,
Hackl, Huemer, Hurtado, Krasser, and Vogtenhuber [1] introduced a new construction, the
double zigzag chain with n points (to be denoted by DZZCn), see Figure 3 below. They proved
that DZZCn improves the lower bound for the number of triangulations: it is Θ∗(8n) for DCn

and Θ∗(8.48n) for DZZCn. (The notations O∗, Ω∗, and Θ∗ correspond to the usual O-, Ω- and
Θ-notations, but with polynomial factors omitted.) To our knowledge, the number of geometric
graphs of other kinds mentioned above for DZZCn was not found.

1Numbers of Plane Graphs. http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html

http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html
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In this paper we determine asymptotically the number of perfect matchings for DZZCn and
its further generalizations, improving the existing lower bound.

Our results. In Section 4, we will first show that DZZCn has asymptotically more perfect
matchings than DCn:

Theorem 2. The number of perfect matchings of the double zigzag chain with n points is Θ∗(λn),

where λ =
√

(
√

93 + 9)/2 ≈ 3.0532.

In Sections 5 and 6, we will present a generalization of DCn, which comes in two variations:
double r-chains without corners and double r-chains with corners, see Figures 7 and 8 below.
Our best results for these constructions are as follows:

Theorem 3. The number of perfect matchings of the double 11-chain without corners with n
points is Θ∗(νn), where ν = 11

√
240054 ≈ 3.0840.

Theorem 4. The number of perfect matchings of the double 8-chain with corners with n points

is Ω((ν−ε)n), and O(νn), where ν = 8

√(
8389 + 3

√
7771737

)/
2 ≈ 3.0930 and ε > 0 is arbitrarily

small.

We shall present proofs for all three theorems because they use different techniques. First,
in Section 3 we introduce the notion of down-free matchings and show in Theorem 7 how one
can generally reduce the problem of asymptotic enumeration of perfect matchings of a “double
structure” to that of down-free matchings of the corresponding “single structure”. In the proof
of Theorem 2 (Section 4), we find a recursion for the number of down-free matchings of the
zigzag chain, and translate it into a functional equation satisfied by the generating function. We
solve this equation explicitly, which allows us to find the asymptotic growth rate by looking at
the smallest singularity of the function. In the proof of Theorem 3 (Section 5) we use matchings
which possibly have runners – edges with only one endpoint assigned. We define a sequence
of infinite vectors whose entries are the numbers of down-free matchings of the r-chain of a
certain size, sorted by the number of runners. These vectors can be computed recursively. We
reformulate this recursion in term of lattice paths and obtain the desired growth rate with the
help of a result of Banderier and Flajolet [3]. The proof of Theorem 4 (Section 6) starts similarly,
but due to technical obstacles, we need two sequences of infinite vectors, defined by a coupled
recursion. We find that the desired growth constant is determined by the dominant eigenvalue
of certain 2× 2 matrix.

Notation. We use the following notation and convention. A construction X is a family
{Xn}n∈I for some infinite I ⊆ N, where, for fixed n, Xn is a class of point sets of size n with
certain common properties, for example, a certain order type (or, in some cases: one of several
order types) and certain restrictions concerning position in the plane with respect to coordinate
axes. The double chain (DC) mentioned above is one of such constructions. Occasionally we
will abuse notation and denote by Xn not only such a class, but also any of its representatives.
If we know that all members of Xn have, for example, the same number of matchings, we can
speak unambiguously about “the number of matchings of Xn”, and so on.

In what follows, pm(Xn) denotes the number of perfect matchings of Xn; am(Xn), the
number of all (non-crossing straight-line, but not necessarily perfect) matchings of Xn; dfm(Xn),
the number of down-free matchings of Xn. For some constructions it can happen that not all
representatives of Xn have the same number of (for example) perfect matchings and, thus,
pm(Xn) is not well-defined, but the common asymptotic bound still can be given, which enables
us to write expressions like pm(Xn) = Θ∗(µn) in such cases as well.

For two distinct points p and q, the straight line through p and q will be denoted by `(p, q).
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A set of points is in downward position (respectively, in upward position) if the points lie
on the graph of a convex (respectively, concave) function. In particular, three points with
different x-coordinates are in downward position (respectively, in upward position) if they form
a counterclockwise (respectively, clockwise) oriented triangle when sorted by x-coordinate.

A point of X not matched by a matching will be called a free point.

2 Double chains and double zigzag chains

In this section we recall the definitions of a double chain and a double zigzag chain, and recall
how the bound pm(DCn) = Θ∗(3nnO(1)) from Theorem 1 for was obtained in [6].

2.1 One set high above another and “double constructions”

We start with a notion of a point set being one “high above” another point set.

Definition. Let P and Q be two point sets in the plane, each of them having distinct x-
coordinates. We say that P is high above Q if any point of P lies above any line through two
points of Q and any point of Q lies below any line through two points of P .

Observation 5. For any two point sets P and Q with distinct x-coordinates it is possible to put
a translate of P high above a translate of Q.

Proof. Assume that Q lies in the interior of a “topless rectangle” R = [a, b] × [c,+∞). Any
line that passes through two points of Q crosses the lines x = a and x = b in certain points.
Therefore there exists a number d such that all points of R above y = d are also above any line
containing two points of Q. A similar argument (with “below” instead “above”) applies for P .
Thus, if we put translates of P and Q between vertical lines x = a and x = b (where a and b are
chosen to fit bot sets) and, if needed, translate P upwards, we get eventually a translate of P
high above a translate of Q.

Let Xn be a construction. A double Xn (denoted by DX2n) is the family of sets obtained
by placing P , a representative of Xn, high above Q, a representative of Xn reflected across a
horizontal line. An edge between a point of P and a point of Q will be called a PQ-edge.

2.2 Double chains

A (single) downward chain (respectively, upward chain) of size n is a set of n points in downward
(respectively, downward) position. A downward chain of size n will be denoted by SCn.

Let n be an even number. A double chain of size n consists of a downward chain of size n/2,
P = {p1, p2, . . . , pn/2}, placed high above an upward chain of size n/2, Q = {q1, q2, . . . , qn/2}.
See Figure 1 for an example. A double chain of size n will be denoted by DCn. We assume that
both sets P and Q are sorted by x-coordinate.

2.3 Perfect matchings in the double chain

Theorem 1 was proved in [6] as follows.
Denote by pm(DCn,j) the number of perfect matchings of DCn that have exactly j PQ-edges

between the upper and the lower chain. If n/2 − j is odd, then no perfect matching exists, so
we assume that n/2 − j is even. One can construct a perfect matching with j PQ-edges in
the following way. First choose any j points of P and j points of Q and connect them by j
non-intersecting PQ-edges. It is easy to see that there is a unique way to connect the chosen
points (see also Proposition 6 below). Then, choose any perfect matching of the free points in
each chain. Alternatively, one can first choose n/2− j points of P and n/2− j points of Q, then
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P

Q

Figure 1: A double chain of size 22.

take any matching of P and any matching of Q that uses the chosen points; after that, the free
points can be matched by PQ-edges in a unique way. Since Q has the same order type as P , it
follows that

pm(DCn,j) =
(
am(SCn/2,j)

)2
=

((
n/2

j

)
· C(n/2−j)/2

)2

, (1)

where am(SCn/2,j) denotes the number of matchings of P (or, equivalently, of any set of n/2
points in convex position) with exactly j free points. Finally, the total number of perfect
matchings of DCn is

pm(DCn) =
∑

0≤j≤n/2
j≡n/2 (mod 2)

((
n/2

j

)
· C(n/2−j)/2

)2

. (2)

An analysis shows that the dominant term in this sum is the term corresponding to j ≈ n/6,

that is
((n/2

n/6

)
· Cn/6

)2
(n/6 should be rounded in one way or the other). Using the estimates(

ak
bk

)
= Θ

((
aa

bb (a−b)a−b

)k
/k1/2

)
and Ck = Θ(4k/k3/2), which follow from Stirling’s formula, one

obtains pm(DCn,n/6) = Θ(3n/n4), and, therefore, pm(DCn) = Ω(3n/n4) and O(3n/n3). With
the help of Stirling’s formula, and replacing the sum (2) by an integral, one can obtain the more
precise estimate pm(DCn) = 3n/n7/2 · 182/π3/2 · (1 + o(1)) (we omit the details).

2.4 Double zigzag chains

In this section we recall the definitions of a (single) zigzag chain SZZC and a double zigzag chain
DZZC.

Let P = {p1, p2, . . . , pn} be a downward chain (SCn) sorted by x-coordinate. For each even i,
1 < i < n, we move the point pi vertically up, very slightly above the segment pi−1pi+1, so that
all triples pi−1pipi+1 with even i (1 < i < n) are now in upward position, and all other triples of
points remain in downward position. After this modification, the points p1, p2, . . . , pn are still
sorted by x-coordinate. A set obtained in this way will be called an even (single) downward zigzag
chain of size n and denoted by eSZZCn. If instead of even i-s we perform this transformation
for each odd i, 1 < i < n, we obtain an odd (single) downward zigzag chain (oSZZCn). If n is
even, then eSZZCn and oSZZCn are reflections of each other with respect to a vertical line; but
if n is odd, then eSZZCn and oSZZCn have different order types, and – as one can verify on
some small examples – different numbers of (perfect or not necessarily perfect) matchings. See
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Figure 2 for an example. A zigzag chain of size n, denoted by SZZCn, is either an eSZZCn or an
oSZZCn. For both types of SZZCn, we shall derive the same asymptotic bound on the number
of perfect matchings.

1

2

n = 2k+1

3

n = 2k

1

2

3

An even DZZC for odd n

An odd DZZC for odd n

An even DZZC for even n

An odd DZZC for even n

1

2

n = 2k+1

3

1

2 n = 2k

3

Figure 2: A (single) zigzag chain – several cases.

An upward zigzag chain (of either kind) is a downward zigzag chain reflected across a hor-
izontal line. The construction of a double zigzag chain from zigzag chains is analogous to the
construction of the double chain from two single chains: A double zigzag chain of (even) size n
(DZZCn) consists of a downward zigzag chain P = {p1, p2, . . . , pn/2} high above an upward
zigzag chain Q = {q1, q2, . . . , qn/2}. We can combine even and odd zigzag chains in various
ways, but as mentioned above, this will make no difference for the asymptotic number of perfect
matchings. See Figure 3 for an example of double zigzag chain obtained from two even zigzag
chains of odd size.

P

Q

Figure 3: A double zigzag chain of size n = 22.

3 Down-free matchings and perfect matchings

3.1 Down-free matchings

Suppose that we want to adapt the argument that was used for estimating pm(DCn) for the case
of pm(DZZCn) (of any kind). That is: for fixed j (such that n/2−j is even) we want to choose j
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PQ-edges, and to complete this matching to a perfect matching by choosing edges that connect
free points of the same chain in all possible ways. One can hope for improvement since the

number of perfect matchings in SZZCn (of any kind) is Θ∗(νn) with ν =
√

2 + 2
√

2 ≈ 2.1974,
in contrast to Θ∗(2n) for SCn. (This bound for SZZCn was proven in [1] for a slightly different
construction, the so called double circle. The order type of SZZC is different from that of a
double circle only in one triple of points; it is easy to show that they have the same asymptotic
number of perfect matchings.) However, in comparison with the case of DCn, here we have
less freedom and no uniformity in constructing the matchings inside P and Q, once PQ-edges
are chosen. Indeed, the j chosen PQ-edges may block visibility between certain pairs of free
points from P or from Q. Moreover, for different choices of j PQ-edges, we have in general
different numbers of ways to complete them to a perfect matching of DZZCn. This follows from
the fact that sets of points that remain free after choosing j PQ-edges have in general various
order types, and, so, it seems hopeless to enumerate them in this way. On the other hand, if we
first choose (n− 2j)/4 edges between two points of P and (n− 2j)/4 edges between two points
of Q, then – as we prove below in Proposition 6 – there is at most one way to complete such a
matching to a perfect matching of DZZCn. More precisely, if the free points of P “see” all free
points of Q, there is exactly one way of complete a matching to a perfect one, otherwise it is
impossible. Next we define a property of matchings which – for two sets being one high above
another – ensures the desired visibility of free points.

Definition. Let P be a set of points with distinct x-coordinates. Let M be a matching of P .
M is a down-free matching if for each unmatched point p ∈ P , no edge of M has a point directly
below p. In other words: for each free point p ∈ P , the vertical ray going down from p, does not
cross any edge of M . Similarly, one defines an up-free matching.

Proposition 6. Let P and Q be two point sets in general position with distinct x-coordinates
such that P is high above Q. Let MP be a matching of P and MQ a matching of Q, such that
MP and MQ have the same number of free points.

1. If MP is a down-free matching and MQ is an up-free matching, then MP ∪MQ can be
completed to a perfect matching of P ∪Q in a unique way.

2. If MP is not down-free or MQ is not up-free, then it is impossible to complete MP ∪MQ

to a perfect matching of P ∪Q.

Proof. We assume again that the points P = {p1, p2, p3, . . . } and Q = {q1, q2, q3, . . . } are sorted
by x-coordinate.

First we observe that for any pα, pβ ∈ P , qγ , qδ ∈ Q, the points pα, pβ, qγ , qδ are in convex
position. Indeed, if, for example, qδ ∈ conv(pα, pβ, qγ), then the points pα and pβ would lie on
different sides of the line `(qγ , qδ), and this contradicts P being high above Q.

Now we show that for α < β and γ < δ the points pα, pβ, qδ, qγ lie on the boundary of
their convex hull in this clockwise order, see Figure 4(a) for an illustration. Since P lies high
above Q, the points of Q lie below `(pα, pβ) and thus the points pα and pβ lie on the convex hull
consecutively and in this clockwise order. Similarly qδ and qγ lie on the convex hull consecutively
and in this clockwise order. This implies the claim.

1. Assume that MP is down-free and MQ is up-free.

Let pα1 , pα2 , . . . , pαm be the free points of P and let qγ1 , qγ2 , . . . , qγm be the free points
of Q, sorted from left to right. We complete MP ∪MQ to a perfect matching of P ∪ Q
by connecting pαi with qγi for i = 1, 2, . . . ,m. By the just-proven claim about the cyclic
order of pα, pβ, qδ, qγ , these new PQ-edges do not cross each other. Moreover, they do not
cross the edges of MP and of MQ. Indeed, assume that an edge pαqγ = pαiqγi crosses an
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pα

pβ

qγ

qδ

e

pα

qγ

r1

r2

Γ

pα

pγ

q

pβ

(a) (b) (c)

`(pα, pβ)

`(qγ , qδ)
Q

px

Figure 4: Illustrations to the proof of Proposition 6.

edge e ∈ MP . Consider the angular sector Γ bounded by the downward vertical ray r1
with the origin pα and the ray r2 from pα through qγ , see Figure 4(b). The edge e crosses
the ray r2 by assumption and does not cross the ray r1, because the matching MP is
down-free. Therefore, one of the endpoints of e, say px, lies in the interior of Γ. However,
this is impossible because in such a case qγ lies above the line `(pα, px).

Finally, we need to show that this is the only way to complete MP ∪MQ to a perfect
matching of P ∪ Q. Indeed, for any other possibility to match the free points we would
have a pair of edges pαqδ and pβqγ with α < β, γ < δ. However, it follows from the claim
about the cyclic order of pα, pβ, qδ, qγ that such edges necessarily cross.

2. Assume without loss of generality that MP is not down-free. Then there is a free point pβ in
MP so that the vertical downward ray from pβ crosses an edge pαpγ , with α < β < γ. See
Figure 4(c) for an illustration. The set Q must lie below `(pα, pβ), `(pα, pγ), and `(pβ, pγ).
There is no way to connect pβ to a point q ∈ Q without crossing the edge pαpγ .

3.2 Down-free matchings of X and perfect matchings of double X

In the following theorem we show how asymptotic bounds on dfm for a structure X imply those
on pm for the corresponding double structure DX.

Theorem 7. Let X be a construction so that dfm(Xn) = Θ∗(λn). Then for the double structure
DX we have pm(DXn) = Θ∗(λn).

More precisely: If dfm(Xn) = Θ(λn/nα), then pm(DXn) = Ω(λn/n2α+1) and O(λn/n2α).

Proof. Denote by dfmj(Xn/2) the number of down-free matchings of Xn/2 with exactly j free
points, for 0 ≤ j ≤ n/2, and let pj = dfmj(Xn/2)/dfm(Xn/2). Then we have

∑
0≤j≤n/2 pj = 1,

which implies 1
n/2+1 ≤

∑
0≤j≤n/2 p

2
j ≤ 1. Now

pm(DXn) =
∑

0≤j≤n/2

pmj(DXn) =
∑

0≤j≤n/2

dfmj(Xn/2)
2 = dfm(Xn/2)

2 ·
∑

0≤j≤n/2

p2j ,

which implies the claim immediately.

As the first application of Theorem 7, we show how one can reprove Theorem 1 without need
to determine the dominant term in Equation (2). We use the following well-known fact.

Proposition 8 ([8] A001006). The number of all matchings in a set of n points in convex
position is the nth Motzkin number Mn. Asymptotically, Mn = Θ(3n/n3/2).

Moreover, every matching of a downward chain is obviously down-free. Therefore, Theorem 7,
with λ = 3 and α = 3/2 gives immediately pm(DCn) = Ω(3n/n4) and O(3n/n3).

In the next sections we use Theorem 7 for estimating pm for other constructions.
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4 Zigzag chains

By Theorem 7, asymptotic bounds on dfm(SZZCn) imply those on pm(DZZCn). Thus, we
analyze the number of down-free matchings of SZZCn. We defined above two kinds of double
chains: even and odd. We introduce three generating functions depending on the kind of chain
and on the parity of n:

1. A(x) =
∑

k≥0 akx
k, where ak = dfm(eSZZC2k+1);

2. B(x) =
∑

k≥0 bkx
k, where bk = dfm(oSZZC2k+1);

3. C(x) =
∑

k≥0 ckx
k, where ck = dfm(eSZZC2k) = dfm(oSZZC2k).

We find recursive relationships between the coefficients of these functions.

Recursion for ak. For every k ≥ 0 we have the following cases (Figure 5).

1. p1 is not matched. This contributes ck matchings.

2. p1 is matched to p2i+1 with 2 ≤ i ≤ k. This contributes
∑

2≤i≤k bi−1ck−i matchings.

3. p1 is matched to p2i with 1 ≤ i ≤ k, p2i−1 and p2i+1 are not matched to each other. This
contributes

∑
1≤i≤k ci−1ak−i matchings.

4. p1 is matched to p2i with 2 ≤ i ≤ k, p2i−1 and p2i+1 are matched to each other. This
contributes

∑
2≤i≤k bi−2ck−i matchings.

5. p1 is matched to p3. Then p2 must be matched to some point p2i+1 with 2 ≤ i ≤ k. This
contributes

∑
2≤i≤k bi−2ck−i matchings.

6. p1 is matched to p3, p2 is matched to p2i with 2 ≤ i ≤ k, and p2i−1 and p2i+1 are not
matched to each other. This contributes

∑
2≤i≤k ci−2ak−i matchings.

7. p1 is matched to p3, p2 is matched to p2i with 3 ≤ i ≤ k, and p2i−1 and p2i+1 are matched
to each other. This contributes

∑
3≤i≤k bi−3ck−i matchings.

Thus we obtain

ak = ck+
∑

2≤i≤k
bi−1ck−i+

∑
1≤i≤k

ci−1ak−i+2
∑

2≤i≤k
bi−2ck−i+

∑
2≤i≤k

ci−2ak−i+
∑

3≤i≤k
bi−3ck−i. (3)

Recursion for bk. For every k ≥ 0 we have the following cases, see Figure 6, left side.

1. p1 is not matched. This contributes ck matchings.

2. p1 is matched to p2i with 1 ≤ i ≤ k. This contributes
∑

1≤i≤k ci−1bk−i matchings.

3. p1 is matched to p2i+1 with 1 ≤ i ≤ k, p2i and p2i+2 are not matched to each other. This
contributes

∑
1≤i≤k ai−1ck−i matchings.

4. p1 is matched to p2i+1 with 1 ≤ i ≤ k − 1, p2i and p2i+2 are matched to each other. This
contributes

∑
1≤i≤k−1 ci−1bk−i−1 matchings.

This yields

bk = ck +
∑

1≤i≤k
ci−1bk−i +

∑
1≤i≤k

ai−1ck−i +
∑

1≤i≤k−1
ci−1bk−i−1. (4)
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1
2

2k+1

3

2i+ 1

1
2

2k+1

3

2i

1
2

2k+1

3

2i

1
2

2k+1

3

2i+ 1

1
2

2k+1

3

2i

1
2

2k+1

3

2i

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Figure 5: The cases in the recursion for ak.

Recursion for ck. Clearly, c0 = 1. For k ≥ 1 we have the following cases, see Figure 6, right
side.

1. p1 is not matched. This contributes ak−1 matchings.

2. p1 is matched to p2i with 1 ≤ i ≤ k. This contributes
∑

1≤i≤k ci−1ck−i matchings.

3. p1 is matched to p2i+1 with 1 ≤ i ≤ k − 1, p2i and p2i+2 are not matched to each other.
This contributes

∑
1≤i≤k−1 ai−1ak−i−1 matchings.

4. p1 is matched to p2i+1 with 1 ≤ i ≤ k − 1, p2i and p2i+2 are matched to each other. This
contributes

∑
1≤i≤k−1 ci−1ck−i−1 matchings.

This gives

ck = ak−1 +
∑

1≤i≤k
ci−1ck−i +

∑
1≤i≤k−1

ai−1ak−i−1 +
∑

1≤i≤k−1
ci−1ck−i−1. (5)

After simplifying equations (3–5), we obtain:

ak = ck − ck−1 +
k−1∑
i=0

bick−1−i +

k−1∑
i=0

ciak−1−i + 2
k−2∑
i=0

bick−2−i +
k−2∑
i=0

ciak−2−i +
k−3∑
i=0

bick−3−i

bk = ck +
k−1∑
i=0

cibk−1−i +
k−1∑
i=0

aick−1−i +
k−2∑
i=0

cibk−2−i

ck = ak−1 +

k−1∑
i=0

cick−1−i +

k−2∑
i=0

aiak−2−i +

k−2∑
i=0

cick−2−i
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1

2

2k+1

3

2k+1

2k+1

2k

2k

2k

Case 2

Case 3

Case 4

Case 2

Case 3

Case 4

1

2
3

1

2
3

2i+ 1

2i

2i+ 1

1

2
3

1

2
3

1

2
3

2i+ 1

2i

2i+ 1

bk ck

Figure 6: The cases in the recursions for bk and ck.

We translate these equations into generating functions and obtain the following system, where
we write A,B,C for A(x), B(x), C(x):

A = C((1− x) + x(1 + x)A+ x(1 + x)2B)

B = C(1 + xA+ x(1 + x)B)

C = 1 + xA+ x2A2 + x(1 + x)C2

We eliminate A and B from this system and find that C satisfies the equation

1− (1 + 3x+ 5x2)C + x(5 + 8x+ 8x2 + 9x3)C2 − 8x2(1 + x)(1 + x+ x3)C3 +

+ 4x3(1 + x+ x3)(1 + x)2C4 = 0, (6)

and that A and B are related to C as follows:

A =
C(1− x+ 2x2C + 2x3C)

1− 2xC − 2x2C

B =
C(1− 2x2C)

1− 2xC − 2x2C

Equation (6) has four solutions. Only one of them can be written as a formal power series:

C =
2(1+x+x3)−

√
2(1+x+x3)

(
1−2x−8x2−3x3+(1+x)

√
(1−x−3x2)(1−9x−3x2)

)
4x(1+x)(1+x+x3)

.

The other three solutions have different combinations of signs before the two square roots. For
those combinations, the numerator has a non-zero constant term, and this cannot balance the
absence of a constant term in the denominator. For the series C(x) given above, the singularity
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closest to 0 occurs in µ =
√
93
6 − 3

2 , one of the roots of 1−9x−3x2. It is a square root singularity,
and there is no other singularity with the same absolute value; thus, by the exponential growth
formula [5, Thm. IV.7] and a transfer theorem [5, Thm. VI.1], the asymptotics of the sequence
is ck = Θ((1/µ)k k−3/2) with 1/µ = (

√
93 + 9)/2 ≈ 9.3218.

Since ck counts matchings of 2k points, it follows that the number of down-free matchings of

SZZCn of this kind is Θ(λn/n3/2), where λ =
√

1/µ =
√

(
√

93 + 9)/2 ≈ 3.0532. It is easy to see
that the same bound holds for all kinds of zigzag chains: for the proof, note that a zigzag chain
of kind C with 2k points includes a zigzag chain of kind A with 2k− 1 points and is included in
a zigzag chain of kind A with 2k + 1 points; similarly for kind B.

Finally, it follows from Theorem 7 that the number of perfect matchings of DZZCn (of either
kind) is Ω(λn/n4) and O(λn/n3). This proves Theorem 2.

5 r-chains without corners

5.1 Definition of r-chains with and without corners

In the following two sections we deal with further generalizations of the double chain. An upward
single chain will be called an arc. As usual, the size of an arc is the number of its points. Recall
that three points with distinct x-coordinates are in upward position if they form a clockwise
oriented triangle when sorted by x-coordinate.

We define an r-chain (with corners) with k arcs, to be denoted by CH(r, k), see Figure 7(a)
for an example. It consists of k arcs of size r+1, the rightmost point of the ith arc (1 ≤ i ≤ k−1)
coinciding with the leftmost point of the (i + 1)st arc, so that any three points are in upward
position if and only if they belong to the same arc. An r-chain CH(r, k) has rk + 1 points. As
a special case, a simple (downward) chain is a 1-chain, and an even zigzag chain of odd size is
a 2-chain.

One can construct an r-chain CH(r, k) with k arcs as follows:

• Take k + 1 points V0, V1, V2, . . . , Vk, sorted by x-coordinate, in downward position. These
points will be called the corners.

• For each i = 1, 2, . . . , k, add r − 1 points on the segment Vi−1Vi.

• Replace each segment Vi−1Vi by a very flat upward circular arc through Vi−1 and Vi. Move
the r − 1 points from the segment vertically upwards so that they lie on this circular arc.
The radius of the circular arc must be sufficiently big so that the orientation of triples of
points that do not lie on the same segment is not changed.

We shall often use a compact schematic drawing of r-chains as in Figure 7(b). In such drawings
we have to draw some matching edges as curved lines rather than as straight-line segments.

The class of (double) r-chains was earlier used for finding lower bounds on the maximal
number of triangulations (tr) of point sets in the plane. Garćıa, Noy, and Tejel [6] showed
that tr(DCn) = Θ∗(8n). Aichholzer, Hackl, Huemer, Hurtado, Krasser, and Vogtenhuber [1]
improved this bound by showing that tr(DZZCn) = Θ∗(8.48n). This result was further improved
by Dumitrescu, Schulz, Sheffer, and Tóth [4], who showed that a double 4-chain of size n, denoted
in their work by D(n, 3n/8), has Ω(8.65n) triangulations.

Now we define a variation of this structure whose analysis is easier. An r-chain without
corners with k arcs, denoted by CH∗(r, k), is a set obtained from CH(r + 1, k) by deleting the
corners. It consists of rk points. See Figure 8 for an example. In this section, we will analyze
r-chains without corners, and we will find precise asymptotic estimates for the number of down-
free matchings. In the next section, we will turn to r-chains with corners. They give even
stronger lower bounds, but the analysis will not be so precise.
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(a)

(b)

V0

V1

V2

V3

V4

V5

V6

Figure 7: A 5-chain (with corners) with six arcs: (a) a precise drawing; (b) a schematic drawing.

5.2 Matchings with runners

Consider a matching of X = CH∗(r, k). We want to build down-free matchings incrementally
from left to right by adding one arc at a time. If we cut such a matching between two arcs,
then we possibly have some edges cut into two “half-edges”, which we call runners. (In botany,
runners are shoots that connect individual plants.) A runner can be formally defined as a marked
vertex. Such a vertex must not be matched by “proper” edges and must be visible from above.
These requirements ensure that, in the course of the incremental construction, two runners can
be joined into one edge. Runners are visualized as half-edges that have one endpoint in X and
the other end dangling, see Figure 9(a). Note that it is not assigned in advance whether a runner
will be matched to the left or to the right.

A matching which possibly has runners will be called a ρ-matching. Extending our previous
definition of free points, we call a point free in a ρ-matching if it is neither matched by a “proper”
edge nor marked as an endpoint of a runner. A ρ-matching is down-free if all free vertices are
visible from below.

In the course of the recursive construction of down-free ρ-matchings, runners from different
arcs can be matched as follows. Let A and B be two r-chains without corners, and let MA

and MB be down-free ρ-matchings of these sets. We place B to the right of A. If MA has j
runners and MB has β runners, then for each ` in the range 0 ≤ ` ≤ min{j, β} we can match,
in a unique way, the rightmost ` runners of MA to the leftmost ` runners of MB. The obtained
ρ-matching M is also down-free; the runners which were not matched in this procedure remain
runners in M ; the number of such runners is j + β − 2`. Conversely, each down-free ρ-matching
of A∪B can be obtained by this procedure from two uniquely determined down-free ρ-matchings
of A and B. Figure 9(b) shows an example with j = 4, β = 3, ` = 2.

We summarize these observations for the special case that we will use in the recursive con-
struction of r-chains: adding one new arc to the right of a given r-chain, see Figure 10.

Observation 9. Let X = CH∗(r, k) be an r-chain without corners with k ≥ 1 arcs. Let B be the
rightmost arc of X, and let A = X \B. Let MA be a down-free ρ-matching of A with j runners,
and let MB be a down-free ρ-matching of B with β runners. For each 0 ≤ ` ≤ min{j, β} there
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(a)

(b)

Figure 8: A 4-chain without corners with six arcs: (a) precise drawing; (b) schematic drawing.

(a)

(b)

A B

Figure 9: (a) A down-free ρ-matching MA with four runners of A = CH∗(6, 3). (b) Combining
MA with a down-free ρ-matching with three runners of B = CH∗(6, 1).

exists a unique down-free ρ-matching MX,` of X obtained by matching the rightmost ` runners
of M with the leftmost ` runners of N . The number of runners in MX,` is i = j + β − 2`.

Conversely, each down-free ρ-matching M of X can be obtained in this way from uniquely
determined matchings MA and MB (of A and B) as above. If M has i runners, MA has j
runners, and MB has β runners, then the number of edges obtained by matching of pairs of
runners is ` = (j + β − i)/2.

For k = 1, this observation holds trivially: A is empty, and the only possibility is j = ` =
0, β = i. From the above relations between the parameters i, j, β, `, one can work out the
constraints on the possible values of β for given i and j: The equation i = j + β − 2` together
with 0 ≤ ` ≤ min{j, β} implies that β must satisfy |i− j| ≤ β ≤ i+ j and β ≡ i− j (mod 2).

5.3 Recursion for matchings with runners in r-chains without corners

Denote the number of down-free ρ-matchings of CH∗(r, k) with i runners by zki (r) or simply by
zki , since we will regard r as fixed. Obviously, the down-free matchings of X = CH∗(r, k) are
the down-free ρ-matchings without runners. Since the size of X is rk, the growth rate for the
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j i

β

A: k − 1 arcs
zk−1
j zki

B: the kth arc

`
. . .

Figure 10: Runners in a recursive construction of a ρ-matching of an r-chain without corners.

number of its down-free matchings is r

√
zk0 (r).

For k = 0 we have z00 = 1 and z0i = 0 for i > 0. The numbers z1i for a single arc will serve
as a basis of the recursion. They are determined in the following proposition.

Proposition 10. 1. The number of down-free matchings (without runners) of a single arc
of size r is

z10 = z10(r) =

(
r

br/2c

)
.

2. The number of down-free ρ-matchings of a single arc of size r that have i runners is

z1i = z1i (r) =

(
r

i

)(
r − i

b(r − i)/2c

)
=

(
r

i, b(r − i)/2c, d(r − i)/2e

)
.

Proof. 1. For the first equation, let f(x) =
∑∞

r=0 z
1
0(r)xr be the generating function for the

number of such matchings in terms of the size r of an arc. We will show that f(x) satisfies the
equation

f(x) =
1

1− x
(
x2 · c(x2) · f(x) + 1

)
, (7)

where c(x) = (1 −
√

1− 4x)/2x is the generating function of the Catalan numbers. Therefore,
we have

f(x) =
1

1− x− x2c(x2) ,

and this is known to be the generating function for
(

r
br/2c

)
[8, A001405].

To see why (7) holds, consider the leftmost matched point p (if there is any). Suppose that
p is matched with q, see Figure 11 for illustration. Then all points to the left of p are free, which
contributes 1/(1−x) to the generating function. The points between p and q are not visible from
below and, therefore, they are matched by a perfect matching; this contributes c(x2). Finally,
the points to the right of q are matched by a down-free matching, whose generating function
is again f(x). The factor x2 accounts for the two points p and q, and the additive term +1
accounts for the case that p does not exist.

We give another proof – a bijective one. For a given matching, we mark the left and right
endpoints of each edge by L and R, respectively. We leave the free points unmarked for the
moment. Then the non-crossing matching can be reconstructed from the labels: We traverse
the points from left to right, and we match each R that we meet with the closest previous
unmatched L. Moreover, since the matching is down-free, free vertices can only appear when
there are no previous unmatched L-vertices. Now we label the free points: If there are γ free
points, we label the first bγc free points by R and the last dγe free points by L, see Figure 12
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p

q

Figure 11: The leftmost edge pq in the proof of Proposition 10.1.

for illustration. The free points marked R can be recovered in a left-to-right sweep as those
R-vertices for which we find no previous matching L-vertex in the above procedure. The free
points marked L can be recovered similarly in a right-to-left sweep, and finally, the matching
among the non-free points can be found as described above. Thus we have established a bijection
with sequences of length r over the alphabet {L, R} that contain br/2c R’s.

RRLLL LRRLL RLRLL RLLRL RLLLR

LLRRL LRLRL LLLRR LLRLR LRLLR

Figure 12: The coding of down-free matchings in the second proof of Proposition 10.1.

2. Let us turn to the second equation. Once we choose i endpoints of runners, the whole
matching is down-free if and only if its restriction on the remaining r − i points is down-free.
Therefore, the result follows directly from the first part.

Now we find a recursion for zki , k ≥ 1.

Proposition 11. For fixed r, we have the recursion

zki =
∑
j≥0

aijz
k−1
j , (8)

with coefficients

aij =
∑

0≤β≤r,
|i−j|≤β≤i+j,

β≡i−j (mod 2)

z1β = z1|i−j| + z1|i−j|+2 + · · ·+ z1min{r∗,i+j}, (9)

where r∗ is r or r − 1 and has the same parity as i− j.

Proof. For k = 1, (8) can be verified directly. Assume now X = CH∗(r, k) with k > 1, let B be
the rightmost arc of X, and let A = X \B. For each j ≥ 0 and each possible β we will find the
number of ρ-matchings of X with i runners whose restriction to A has j runners and restriction
to B has β runners. By Observation 9, ρ-matchings of A and B and the values of i, j and β
determine uniquely an ρ-matching of X. Therefore ρ-matchings of A and B with (respectively)
j and β runners contribute zk−1j · z1β ρ-matchings of X with i runners.

For given i and j, the bounds |i− j| ≤ β ≤ i+ j and the restriction β ≡ i− j (mod 2) given
in (9) are explained in the remark after Observation 9.
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5.4 Analysis of the recursion

For each k ≥ 0, denote vk = (zk0 , z
k
1 , z

k
2 , z

k
3 , . . . )

>. In particular we have v0 = (1, 0, 0, 0, . . . )>.
Consider the infinite coefficient matrix A = (aij)i,j∈N0 with aij given by (9). By Proposition 11,
we have Avk−1 = vk for each k ≥ 1. One easily verifies that the matrix A has the following
properties:

• A is symmetric.

• A is a band matrix of bandwidth r: for |i− j| > r we have aij = 0.

• The entries of the first row and column are ai0 = a0i = z1i =
(
r
i

)(
r−i

b(r−i)/2c
)
.

• For i + j ≥ r∗ we have ai+1,j+1 = aij . That is, the diagonals – sets of entries with fixed
q := j− i, |q| ≤ r – stabilize starting from the entry a(r∗−q)/2,(r∗+q)/2. For these entries we
have:

aij = ai,i+q =
∑
|q|≤β≤r

β≡q (mod 2)

z1β. (10)

In particular, starting from the rth row (resp. column), the rows (resp. columns) are shifts
of each other, and therefore, have the same sum of elements.

• The elements in the upper-left corner (i+j < r∗) are positive and smaller than the elements
in the same diagonal after stabilization – since in this case we have a partial sum of (10).

For example, for r = 5, the matrix is

A =



10 30 30 20 5 1 0 0 0 0 0 · · ·
30 40 50 35 21 5 1 0 0 0 0 · · ·
30 50 45 51 35 21 5 1 0 0 0 · · ·
20 35 51 45 51 35 21 5 1 0 0 · · ·
5 21 35 51 45 51 35 21 5 1 0 · · ·
1 5 21 35 51 45 51 35 21 5 1 · · ·
0 1 5 21 35 51 45 51 35 21 5 · · ·
0 0 1 5 21 35 51 45 51 35 21 · · ·
0 0 0 1 5 21 35 51 45 51 35 · · ·
0 0 0 0 1 5 21 35 51 45 51 · · ·
0 0 0 0 0 1 5 21 35 51 45 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .



(11)

The column sum λr after stabilization of the columns, that is, starting from the (r + 1)st
column, is as follows:

λr =
r∑
i=0

(i+ 1)z1i =
r∑
i=0

(i+ 1)

(
r

i

)(
r − i

b(r − i)/2c

)
=

r∑
i=0

(i+ 1)

(
r

i, b(r − i)/2c, d(r − i)/2e

)
(12)

In the spirit of the Perron-Frobenius theorem for non-negative stochastic matrices, one can
expect that λr is the growth rate for (zk0 )k≥0. We will prove the this is indeed the case by using a
result by Banderier and Flajolet [3] about enumeration of certain kinds of colored lattice paths.

Proposition 12. For fixed r, we have zk0 = Θ∗((λr)
k).

Note that the superscript k in the left-hand side denotes an index, whereas in the right-hand
side it is a power.
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Proof. We begin with some notion for lattice paths. Families of lattice paths are usually defined
by indicating a starting point – normally (0, 0) – and a set of possible moves of the form (1, β).
For many familiar families it is additionally required that the paths never go below the x-axis
and/or end at the x-axis. The paths that start at (0, 0) and satisfy both these restrictions are
called excursions. For example, Motzkin paths [8, A001006] are excursions that use the moves
(1, 1), (1, 0), (1,−1).

In a more general setting, a set of possible moves may depend on the point reached by a
path. Moreover, each move (1, βi) starting in certain point can have a non-negative integer
multiplicity mi. This is sometimes expressed by saying that these are copies of the same move
that are distinguished by mi different “colors”.

In summary, to each lattice point (a, b) we assign a rule – a set of moves that can be used
for the next step once a path reached this point, together with multiplicities. It is assumed that
for each lattice point the number of moves with non-zero multiplicity is finite. Note that one
can express the condition of non-crossing the x-axis in terms of such rules: one has to require
that for each point (a, b) there are only moves (1, β) with β ≥ −b.

Consider now the case that all points that lie on the same horizontal line have the same rule.
Namely, for y = j and i ≥ 0 we denote by dij the multiplicity of the move (1, i−j) at (any) point
(a, j). We collect these data in the infinite matrix D = (dij)i,j∈N0 . Let u = (1, 0, 0, . . . )>. Then
the number of paths that start at (0, 0), do not cross the x-axis, and end at a point (a, b) is equal
to the bth component of Dau – this follows directly from matrix multiplication. In particular,
the upper-left entry of Dk is the number of excursions of length k, which we will denote by
Ex(D, k). The quantity in which we are interested, the number zk0 of down-free matchings, is
then given by zk0 = Ex(A, k), where A is the coefficient matrix given above (10).

Suppose now that we have an even more restricted case: all points have the same rules; yet
still we want to consider only paths that remain weakly above the x-axis, so we exclude the
moves that violate this requirement. For such families, a result of [3, Theorem 3] can be applied.
It states that the number of excursions of length k with moves {(1, b1), (1, b2), . . . , (1, bm)} and
associated multiplicities w1, . . . , wm, is of the form Θ(Ck/k3/2), where the base C of the expo-
nential growth is determined as follows: For the Laurent polynomial P (u) =

∑m
j=1wju

bj , let τ
be the unique positive number such that P ′(τ) = 0; then C = P (τ). The situation is particularly
easy for families with a symmetric set of moves, that is, if (1, b) is a move then (1,−b) is also
a move with the same multiplicity, or equivalently, P (u) = P (u−1). In this case, τ = 1, and
consequently, C = P (τ) =

∑m
j=1wj .

The situation for our matrix A is very similar to this case, except that the first r − 1
horizontal lines of the lattice follow different rules, in accordance with the fact that the first
r − 1 rows of A are different from the others. However, this does not affect the asymptotic
growth rate. Indeed, let us look at the matrix A′ in which the first r rows and columns of
A have been removed. It coincides with A for i + j ≥ r, but the rule ai+1,j+1 = aij holds
for all entries – also in the upper-left corner. Since A ≤ A′ element-wise, we clearly have
Ex(A, k) ≤ Ex(A′, k) = Θ(λkr/k

3/2). To see that we have a lower bound of the same asymptotic
form, consider only those excursions that start with the move (1,+r), end with the move (1,−r),
and never go below level r. The intermediate part of the excursion is governed by the matrix A
from which the first r rows and columns have been removed, which coincides with the matrix A′.
Thus Ex(A, k) ≥ Ex(A′, k − 2) = Θ(λkr/k

3/2).

5.5 Asymptotic growth constants

Since A = CH∗(r, k) has n = rk points, it follows from Proposition 12 that the growth rate for
the number of down-free matchings of the r-chain without corners of size n is r

√
λr. In order to

estimate λr, we note that the expression (12), when the factor (i+1) is ignored, counts partitions
of r elements into three subsets (the latter two being of almost equal size). The total number
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of such partitions is 3r. Hence, λr ≤ (r + 1)3r, and r
√
λr converges to 3. Computations suggest

that the maximum of r
√
λr is obtained for r = 11: 11

√
λ11 = 11

√
240054 ≈ 3.0840; after that it

apparently decreases monotonically to 3, see the left part of Table 1 for the first few values. To
prove that r = 11 gives indeed the maximum, one estimates that r

√
λr ≤ 3 r

√
r + 1 < 3.0838 for

r ≥ 191, and the finitely many values up to r = 190 can be checked individually. This completes
the proof of Theorem 3.

In order to find a more precise estimate for λr, we notice that the middle expression in (12)
expresses λr as the binomial convolution of the sequence of natural numbers and the sequence(

m
bm/2c

)
. It follows that the exponential generating function for (λr)r≥0 is

(1 + x) ex (I0(2x) + I1(2x)),

where I0(x) and I1(x) are the modified Bessel functions of the first kind. From this we can
conclude that the sequence (λr)r≥0 is the sum of the sequence A005773 and a shifted copy of
A132894 in [8]. The ordinary generating function for this sequence is then

1

2x

(
1− 2x− x2

(1 + x)1/2(1− 3x)3/2
− 1

)
,

and it follows from the exponential growth formula that λr = Θ(3rr1/2). By Theorem 7 this
number is also the growth rate of the number of perfect matchings for the corresponding double
structure.

6 r-chains with corners

6.1 Recursion

In this section, we will treat r-chains with corners, but we will simply refer to them as r-chains.
The analysis of these r-chains is more complicated due to the fact that the corners belong to two
arcs. As before, we will incrementally build the r-chain and estimate the number of matchings
of the r-chain with k arcs, which possibly have runners. We extend the notions of runners, free
points, and ρ-matchings to r-chains with corners in the obvious way.

We cut a down-free ρ-matching M of CH(r, k) to the right of Vk−1 – the rightmost point of
the (k−1)st arc – and obtain two down-free ρ-matchings: the first, MA, of A – the set consisting
of the first k − 1 arcs of CH(r, k); and the second, MB, of B – the rightmost arc of CH(r, k)
without the point Vk−1. See examples in Figures 13–18. Note that in the case of r-chains with
corners a runner incident to Vk−1, upon adding B on the right, can be also connected to a point
of B: in such a case we say that it is matched internally.

We distinguish whether M has a runner incident to Vk or not. Let Cki be the number of
down-free ρ-matchings of CH(r, k), where Vk has a runner and in addition there are i runners.
Let F ki be the number of down-free ρ-matchings of CH(r, k), where Vk has no runner and there
are i runners. (C stands for “corner”, F for “free”.) For k = 0, there is a single vertex, and we
have C0

0 = F 0
0 = 1 and C0

i = F 0
i = 0 for all i > 0. The number that we are interested in, the

number of matchings in CH(r, k), is F k0 . Next we find recursive expressions for Cki and for F ki .

Recursion for Cki . For Cki , the new corner Vk has a runner and is not available for receiving
edges from the left. Thus for the formulae below, it can be treated as if it were not present in
the kth arc. We have the following three cases:

1. (Figure 13.) The previous corner Vk−1 has a runner which is not matched internally in
the kth arc. Suppose there are α runners originating in the k-th arc, in addition to that
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without corners with corners

r λr
r
√
λr Mr Tr

1 3 3
(
1 1
2 2

)
3

2 9 3
(
3 3
7 6

)
3.0532

3 28 3.0366
(
10 9
21 19

)
3.0711

4 87 3.0541
(
31 28
66 59

)
3.0819

5 271 3.0662
(

97 87
204 184

)
3.0877

6 843 3.0735
(
301 271
632 572

)
3.0909

7 2619 3.0783
(

933 843
1952 1776

)
3.0925

8 8123 3.0812
(
2885 2619
6022 5504

)
3.0930

9 25153 3.0829
(

8907 8123
18550 17040

)
3.0929

10 77763 3.0837
(
27457 25153
57071 52610

)
3.0923

11 240054 3.0840
(

84528 77763
175381 162291

)
3.0915

12 740017 3.0839
(
259909 240054
538386 499963

)
3.0904

13 2278329 3.0835
(

798295 740017
1651140 1538312

)
3.0893

14 7006093 3.0829
(
2449435 2278329
5059251 4727764

)
3.0880

15 21520872 3.0822
(

7508686 7006093
15489221 14514779

)
3.0867

16 66039651 3.0813
(
22997907 21520872
47384904 44518779

)
3.0854

17 202462113 3.0804
(

70382811 66039651
144857454 136422462

)
3.0841

18 620164491 3.0794
(
215240265 202462113
442540653 417702378

)
3.0828

19 1898109900 3.0785
(

657780918 620164491
1351126551 1277945409

)
3.0815

20 5805127269 3.0774
(
2008907469 1898109900
4122747150 3907017369

)
3.0803

Table 1: Summary of results for r-chains without and with corners, for 1 ≤ r ≤ 20. For r-chains
without corners, λr is the row sum of the matrix A (Section 5.4), and r

√
λr is the growth rate for

pm. For r-chains with corners, the condensed coefficient matrix Mr is derived from the recursion
(Section 6.4), and Tr, the r-th root of its dominant eigenvalue, is the growth rate for pm. In
both cases, the values for r = 1 and r = 2 reproduce the known bounds. Indeed, a 1- and a
2-chain without corners, as well as a 1-chain with corners, is just a downward chain, and thus
the growth rate of 3 agrees with Theorem 1. A 2-chain with corners is a zigzag chain, and thus
T2 ≈ 3.0532 agrees with Theorem 2.

originating in Vk−1. These runners can be only matched to the right. The contribution to
Cki is ∑

0≤α≤min{r−1,i−1}

ZαC
k−1
i−1−α, (13)

where

Zα =

(
r − 1

α

)(
r − 1− α

b(r − 1− α)/2c

)
.

The expression for Zα is similar to z1α from Proposition 10.2, but here we have only r − 1
points: all the points of the kth arc, excluding the corners.

2. (Figure 14.) Vk−1 has no runner. This possibility contributes∑
j≥0

∑
|i−j|≤α≤i+j

α≡i−j (mod 2)
0≤α≤r−1

ZαF
k−1
j . (14)
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the kth arc

Vk−1 Vk

i

α

Figure 13: Case 1 in the recursion for Cki : Vk−1 has a runner not matched internally in the kth
arc.

This formula (as well as some of the formulae in the following cases) has the same pattern
as (8), with appropriate changes.

the kth arc

Vk−1 Vk

i

α

j

Figure 14: Case 2 in the recursion for Cki : Vk−1 has no runner.

3. (Figure 15.) Vk−1 has a runner matched internally in the k-th arc. The contribution to
Cki is ∑

j≥0

∑
|i−j|≤α≤i+j

α≡i−j (mod 2)
0≤α≤r−1

IαC
k−1
j , (15)

where

Iα =

(
r − 1

α

)[(
r − α

b(r − α)/2c

)
−
(

r − 1− α
b(r − 1− α)/2c

)]
=

(
r − 1

α

)(
r − 1− α

b(r − 2− α)/2c

)
.

In the expression for Iα, the first factor counts the choices of α runners from the r − 1
points. In the second factor, we subtract from all down-free ρ-matchings on the remaining
r − α points (including Vk−1) those in which Vk−1 is unmatched, which is the same as
down-free ρ matchings on r − 1− α points.
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the kth arc

Vk−1 Vk

i

α

j

Figure 15: Case 3 in the recursion for Cki : Vk−1 has a runner matched internally in the kth arc.

Cki is the sum of the three expressions (13–15).

Recursion for F ki . For F ki , we have again three cases:

1. (Figure 16.) Vk−1 has a runner not matched internally in the kth arc. In this case, all the
additional α runners originating in the interior of the k-th arc must be matched to the
right. Vk is either free or matched internally to the left. The contribution to F ki is∑

0≤α≤min{r−1,i−1}

WαC
k−1
i−1−α, (16)

where

Wα =

(
r − 1

α

)(
r − α

b(r − α)/2c

)
is again similar to z1α from Proposition 10.2, but here we have r − 1 in the first factor
because no runner originates from Vk.

the kth arc

Vk−1 Vk

i

α

Figure 16: Case 1 in the recursion for F ki : Vk−1 has a runner not matched internally in the kth
arc.
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2. (Figure 17.) Vk has a runner connected to a point of A\{Vk−1}. In this case, all α runners
originating in the k-th arc must be matched to the left. The contribution to F ki is∑

0≤α≤r−1
(IαC

k−1
i+1+α + ZαF

k−1
i+1+α). (17)

The two terms – with Ck−1 and with F k−1 – correspond to the subcases where Vk−1 is
internally matched or, respectively, not matched to a point of the kth arc.

the kth arc

Vk−1 Vk

i

α

Figure 17: Case 2 in the recursion for F ki : Vk is connected to a point to the left of Vk−1.

3. (Figure 18.) Vk−1 has no runner, and Vk has no runner matched to a point of A \ {Vk−1}.
The contribution to F ki is∑

j≥0

∑
|i−j|≤α≤i+j

α≡j−i (mod 2)
0≤α≤r−1

(UαC
k−1
j +WαF

k−1
j ), (18)

where

Uα =

(
r − 1

α

)[(
r + 1− α

b(r + 1− α)/2c

)
−
(

r − α
b(r − α)/2c

)]
=

(
r − 1

α

)(
r − α

b(r − 1− α)/2c

)
The two terms correspond to the same possibilities as in the previous case. The factor Uα
is similar to Iα in the third case for Cki , but here we count the down free ρ-matchings of
the whole kth arc with both its corners, hence we have r + 1 instead of r in the second
factor.

F ki is the sum of the three expressions (16–18).

6.2 Analysis of the recursion

The expressions above imply a coupled mutual recurrence between two sequences of vectors Ck =
(Ck0 , C

k
1 , C

k
2 , . . .)

> and F k = (F k0 , F
k
1 , F

k
2 , . . .)

>. The initial values are C0 = F 0 = (1, 0, 0, . . .)>.
Ck and F k are expressed in terms of Ck−1 and F k−1 as follows. For i ≥ r, we have:

Cki =

r∑
β=−r

aCCβ Ck−1i+β +

r∑
β=−r

aCFβ F k−1i+β

F ki =

r∑
β=−r

aFCβ Ck−1i+β +

r∑
β=−r

aFFβ F k−1i+β ,

(19)
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the kth arc

Vk−1 Vk

i

α

j

Figure 18: Case 3 in the recursion for F ki : Vk−1 has no runner and Vk is not connected to a
point to the left of Vk−1.

where the numbers aCC , aCF , aFC , aFF are to be read out from the expressions in Section 6.1.
For the small indices i < r, we have irregularities, like for r-chains without corners: The co-
efficients in (19) must be replaced by smaller coefficients which depend also on i. In matrix
notation, the recursion is written as

Ck = ACCCk−1 +ACFF k−1

F k = AFCCk−1 +AFFF k−1,
(20)

where there are four band matrices ACC , ACF , AFC , AFF of bandwidth r, similar to the matrix
A from (11).

C0

F0

C1

F1

Ci

Fi

. . .

. . .

rr

C2

F2

. . .

. . .

Figure 19: The recursion (19) gives the number of paths on this network. The neighborhood of
a typical vertex Ci is shown in a schematic way.

This system can be interpreted as a set of lattice paths on a two-layer lattice, see Figure 19.
We have a row of nodes C0, C1, C2, . . . and another row of nodes F0, F1, F2, . . . immediately below
it. The possible jumps and their multiplicity depend only on the row, with irregularities close to
the left edge. (In this representation, the lattice paths considered in the proof of Proposition 12
in Section 5.3 correspond to walks on a ray 0, 1, 2, . . .. The x-coordinate of the two-dimensional
lattice in Section 5.3 is now represented as time.

We are not able to provide as precise estimates for the growth rate as for chains without
corners, where we had a single recursion. One would expect a similar behaviour. However, we
can still pin down the base of the exponential growth as an eigenvalue of an associated 2 × 2
matrix.

First, we can get rid of the irregularities but cutting of the first r rows and columns of
the coefficient matrices. As for the case of a single matrix, this does not affect the asymptotic
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growth. We can now assume that the diagonals are constant, and the recursion (19) holds for
all i, with the convention that Ck−1j and F k−1j in the right-hand side are taken as 0 for j < 0.

For better readability, we will now replace the vectors Ck and F k by more generic names xk

and yk:

xki =
r∑

β=−r
aXXβ xk−1i+β +

r∑
β=−r

aXYβ yk−1i+β

yki =
r∑

β=−r
aY Xβ xk−1i+β +

r∑
β=−r

aY Yβ yk−1i+β ,

(21)

for all i, with the understanding that quantities xk−1j and yk−1j with negative subscripts j on
the right-hand side are regarded as zero.

Our analysis below is valid under the condition that the coefficients of this recursion don’t
exhibit a tendency to favor larger or smaller indices, or in other words, that the Markov chain
associated to the system does not systematically drift to the left or to the right. (In the one-
vector recursion analyzed in the proof of Proposition 12, this no-drift condition was not an issue
because the set of moves was symmetric.) To formulate this condition precisely, we have to set
up some notation and establish some terms.

Let us denote the coefficient sums in the terms of the recursion (21) as follows:

ĀXX =
r∑

β=−r
aXXβ , ĀXY =

r∑
β=−r

aXYβ , ĀY X =
r∑

β=−r
aY Xβ , ĀY Y =

r∑
β=−r

aY Yβ .

These numbers are the column sums of the coefficient matrices after stabilization. These sums
form the condensed coefficient matrix (

ĀXX ĀXY

ĀY X ĀY Y

)
. (22)

Let M denote its dominant eigenvalue. Let (ρX , ρY ) be the corresponding left eigenvector and
(πX , πY )> be the corresponding right eigenvector, with the normalization ρX+ρY = πX+πY = 1.
Since the matrix is positive, these two vectors are positive.

We define the total group-to-group jump sizes of the system:

DXX =

r∑
β=−r

aXXβ β, DXY =

r∑
β=−r

aXYβ β, DY X =
r∑

β=−r
aY Xβ β, DY Y =

r∑
β=−r

aY Yβ β.

The weighted total jump size D of the system is then defined as follows:

D = ρXπXD
XX + ρXπYD

XY + ρY πXD
Y X + ρY πYD

Y Y (23)

=
(
ρX ρY

)(DXX DXY

DY X DY Y

)(
πX
πY

)
Now we can state the main result of the analysis.

Theorem 13. Suppose the system (21) has non-negative coefficients, and the weighted total jump
size D is zero. Assume that the coefficients aXXβ , aXYβ , aY Xβ , aY Yβ are positive for β = −1, 0, 1.
Let M be the dominant eigenvalue of the condensed coefficient matrix (22). Then

xk0 = O(Mk), yk0 = O(Mk),

and
xk0 = Ω((M − ε)k), yk0 = Ω((M − ε)k)

for every ε > 0.

Since the proof is quite substantial, we devote a separate section to it.
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6.3 Proof of the theorem about mutually coupled recursions

We will transform the problem to a recursion in which the left eigenvector is (ρX , ρY ) = (1, 1),
and thus the column sums of the coefficient matrix (after stabilization) are constant. We achieve
this by rescaling the vectors x and y to x̃ki = ρXx

k
i and ỹki = ρY y

k
i . Clearly, the asymptotic

growth of x and y is unaffected by this multiplication with a constant. For these new vectors, the
coefficients of the recursion change to ãXYβ = ρX/ρY ·aXYβ and ãY Xβ = ρY /ρX ·aY Xβ , while ãXXβ =

aXXβ , ãY Yβ = aY Yβ are unchanged. Consequently, the first column sum of the condensed coefficient

matrix (22) becomes ĀXX + ρY /ρX · ĀXY = (ρX · ĀXX + ρY · ĀXY )/ρX = (MρX)/ρX = M ,
and similarly for the second column. Theorem 13 follows therefore from the following theorem,
which is a special case of Theorem 13 with the additional assumption that the matrix (22) has
constant column sums.

Theorem 14. Suppose the system (21) has non-negative coefficients and constant column sums

M = ĀXX + ĀY X = ĀXY + ĀY Y . (24)

Suppose that
πX
(
DXX +DY X

)
+ πY

(
DXY +DY Y

)
= 0, (25)

where (πX , πY ) is a right eigenvector of the matrix (22) with eigenvalue M . Suppose further
that the coefficients aXXβ , aXYβ , aY Xβ , aY Yβ are positive for β = −1, 0, 1. Then

xk0 = O(Mk), yk0 = O(Mk),

and
xk0 = Ω((M − ε)k), yk0 = Ω((M − ε)k)

for every ε > 0.

Theorem 14 is formulated in terms of the original recursion (21), but it must be applied to x̃
and ỹ instead of x and y in order to prove Theorem 13. Our rescaling modifies group-to-group
jump sizes in the same way as the coefficients: D̃XY = ρX/ρY ·DXY , etc.; the eigenvectors of
the modified condensed coefficient matrix are (π̃X , π̃Y ) = (ρXπX , ρY πY ) and (ρ̃X , ρ̃Y ) = (1, 1)
(without normalization), and with these substitutions, the condition that D from (23) is zero
translates into (25), after erasing the tildes. This concludes the proof of Theorem 13.

Proof of Theorem 14. The upper bound is easy: by summing all equations of (21), one sees
that

∑
i≥0 x

k
i +

∑
i≥0 y

k
i can grow at most by the factor M in each iteration, since the column

sums of the coefficient matrix are bounded by M . It follows that xk0, y
k
0 ≤

∑
i x

k
i +

∑
i y
k
i ≤

Mk(
∑

i x
0
i +

∑
i y

0
i ) = 2Mk.

Let us now turn to the lower bound: To have a compact notation for the linear operator
expressing in the recursion (21), we denote it by φ:

(xk, yk) = φ(xk−1, yk−1)

As an intermediate lemma, we will show that any “sub-eigenvector” with eigenvalue λ is enough
for a lower bound on the growth.

Lemma 15. Suppose there is a pair of non-negative non-zero vectors x̄ and ȳ with finitely many
non-zero elements such that the inequality

φ(x̄, ȳ) ≥ λ · (x̄, ȳ) (26)

holds componentwise for some λ > 0. Then there is a constant K > 0 such that xn0 , y
n
0 ≥ Kλn

for all n ∈ N.



A. Asinowski and G. Rote: Point Sets with Many Non-Crossing Matchings 27

Proof. Since φ is a monotone operator, the inequality (26) remains fulfilled if we apply φ on the
vectors arbitrary many times:

φk+1(x̄, ȳ) ≥ λ · φk(x̄, ȳ)

Applying φ on (x̄, ȳ) sufficiently many times, we eventually obtain a vector whose components
x̄0 and ȳ0 are positive, since the coefficients aXX1 , aXY1 , aY X1 , aY Y1 are positive by assumption.
Moreover, by scaling we can obtain a vector in which these components are bigger than 1. Thus,
we can assume that x̄0 ≥ 1 and ȳ0 ≥ 1.

Now, we find n1 and K such that the following inequality holds componentwise for n = n1:

(xn, yn) ≥ Kλn · (x̄, ȳ) (27)

To see that this is possible, we use the assumption that aXXβ , aXYβ , aY Xβ , aY Yβ are positive for
β = 0 and β = −1. Thus, by making n1 big enough, we can ensure that (xn1 , yn1) has positive
components wherever (x̄, ȳ) has positive components. We can then fulfill (27) by choosing K
small enough.

The inequality (27) carries over to all larger n by induction, using monotonicity of the
operator φ and the assumption (26). Since x̄0 ≥ 1 and ȳ0 ≥ 1, the desired inequalities follow
from (27) for all n ≥ n1. Finally, for the finitely many values n < n1, we can fulfill the inequalities
xn0 , y

n
0 ≥ Kλn by decreasing K if necessary.

Let us explain the idea for getting “sub-eigenvectors” x̄ and ȳ for Lemma 15. If we wish
to fulfill (26) for λ = M , vectors x̄ and ȳ with constant entries will do the job. However, they
have infinitely many non-zero entries. Thus, we aim for a smaller λ = M − ε, and we make
an ansatz where the entries are determined by a concave quadratic function. This has to be
adjusted later because the vectors have to be non-negative, and because the recursion (21) has
some irregularities for the small values i < r. Moreover, the two coupled sequences x̄ and ȳ
depend on each other in a non-symmetric way, and therefore we cannot use the same quadratic
function for both sequences. They have to be scaled differently, and shifted horizontally relative
to each other.

We define the shift constant

δ =
πXD

XX + πYD
XY

−πYAXY
=
−(πXD

Y X + πYD
Y Y )

πY (AY Y −M)
.

In this definition, equality of the numerators follows from the assumption (25), which expresses
that the weighted total jump size is zero. The denominators are equal because the column sums
are M (24).

We take some real parameters p and s, to be determined later, and define the quadratic
functions hX and hY and two auxiliary vectors x̂ and ŷ as follows:

hX(i) = πX(p− i2) (28)

hY (i) = πY (p− (i+ δ)2) (29)

x̂i = hX(i− s)
ŷi = hY (i− s)

for all i ∈ Z. The two quadratic functions have their peaks at i = 0 and i = −δ, with respective
values pπX and pπY . These function are shifted to the right by s before they are used as
entries of x̂ and ŷ. The following lemma expresses the difference of these vectors from being an
eigenvector with eigenvalue M .
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Lemma 16. Each of the two expressions

QX = M · x̂i −

 r∑
β=−r

aXXβ x̂i+β +
r∑

β=−r
aXYβ ŷi+β

 , (30)

QY = M · ŷi −

 r∑
β=−r

aY Xβ x̂i+β +

r∑
β=−r

aY Yβ ŷi+β

 (31)

has a constant value, independent of i, p, and s.

Proof. First, we replace the quadratic function in each of the summation terms by a Taylor
series around the weighted average point. The linear terms will then cancel, and the quadratic
terms have a constant value. We carry this out by way of example for the sum of the aXX terms.
The parameters i and s always occur together in the combined term i− s, and thus we express
our terms in terms of the parameter t := i− s.

r∑
β=−r

aXXβ x̂i+β =
r∑

β=−r
aXXβ hX(i+ β − s) =

r∑
β=−r

aXXβ hX(t+ β)

Let

D̄XX =

r∑
β=−r

aXXβ β

r∑
β=−r

aXXβ

=
DXX

AXX

denote the average jump size from group X to group X. Then we rewrite hX as a Taylor series
in the point t+ D̄XX .

hX(t+ x) = hX(t+ D̄XX) + h′X(t+ D̄XX)(x− D̄XX)− πX(x− D̄XX)2

We get

r∑
β=−r

aXXβ hX(t+ β)

= hX(t+ D̄XX)
∑
β

aXXβ + h′X(t+ D̄XX)
∑
β

aXXβ (β − D̄XX)− πX
∑
β

aXXβ (β − D̄XX)2

= hX(t+ D̄XX)AXX + h′X(t+ D̄XX) · 0− const.

We transform the other sum in the expression (30) analogously, using the average jump size
D̄XY , and we rewrite (30) as follows:

QX = M · hX(t)− hX(t+ D̄XX)AXX − hY (t+ D̄XY )AXY + const

= M · πX(p− t2)− πX
(
p− (t+ D̄XX)2

)
AXX − πY

(
p− (t+ D̄XY + δ)2

)
AXY + const

= (p− t2)(πXM − πXAXX − πYAXY )

+ 2t(πXD̄
XXAXX + πY D̄

XYAXY + πY δA
XY ) + const

The coefficient of (p − t2) is zero because (πX , πY ) is an eigenvector, and the coefficient of t is
zero by the definition of δ. Thus, the expression QX has a constant value, as claimed.



A. Asinowski and G. Rote: Point Sets with Many Non-Crossing Matchings 29

For the expression (31), the calculation is slightly different.

QY = M · hY (t)− hX(t+ D̄XY )AXY − hY (t+ D̄Y Y )AY Y + const

= M · πY
(
p− (t+ δ)2

)
− πX

(
p− (t+ D̄XY )2)

)
AXY − πY

(
p− (t+ D̄Y Y + δ)2

)
AY Y + const

= (p− t2)(πYM − πXAXX − πYAXY )

+ 2t(−πY δM + πXD̄
XYAXY + πY D̄

Y YAY Y + πY δA
Y Y ) + const

The coefficients of (p− t2) and t vanish for the same reasons as above. This concludes the proof
of the lemma.

The vectors x̂ and ŷ have negative values. To get our desired vectors x̄ and ȳ, we will clip
these values to 0. We determine the parameters p and s in such a way that the resulting vectors
x̄ and ȳ start with a big jump from 0 to a positive value, big enough to accommodate the
“perturbation” resulting from modifying the negative values to 0. Let ε > 0 be given, and let
K := max{QX , QY } be the maximum of QX and QY . (K is positive, but the ensuing argument
does not depend on this fact.) We look at the sorted set of values

{ i2 | i ∈ Z } ∪ { (i− δ)2 | i ∈ Z }

and find p as a positive value in this set such that the gap to the largest value which is smaller
than p is at least K/(εmin{π1, π2}). Since the functions are quadratic, there must be larger and
larger gaps as the numbers get bigger, and therefore such a value p exists. For the functions
hX(i) = πX(p − i2) and hY (i) = πY (p − (i + δ)2) in (28–29), this implies that the smallest
positive value in their range is at least K/ε. Now we shift the functions horizontally such that
positive values occur only at positive arguments, by choosing s ≥ √p ± δ. Finally, we clip the
negative values and define

x̄i = max{hX(i− s), 0}, ȳi = max{hY (i− s), 0},

for all i ∈ Z. This will set x̄i = ȳi = 0 for i < 0, in accordance with the interpretation that is
given in (21) when these values appear on the right-hand side.

We will show that
φ(x̄, ȳ) ≥ (M − ε) · (x̄, ȳ), (32)

thus establishing condition (26) and proving the lower bound of the theorem with the help of
Lemma 15.

In concrete terms, our desired relation (32) looks as follows:

(M − ε) · x̄i ≤
r∑

β=−r
aXXβ x̄i+β +

r∑
β=−r

aXYβ ȳi+β (33)

(M − ε) · ȳi ≤
r∑

β=−r
aY Xβ x̄i+β +

r∑
β=−r

aY Yβ ȳi+β (34)

We concentrate on the first inequality (33). When x̄i is 0, the inequality is trivially fulfilled.
Thus, we can restrict ourselves to the case when x̄i > 0, and hence x̄i = x̂i. If we set ε = 0 and
replace (x̄, ȳ) by (x̂, ŷ) everywhere, the difference between the two sides of (33) is the quantity
QX in Lemma 16, and hence it is bounded by K. Going back from (x̂, ŷ) to (x̄, ȳ) cannot make
the right-hand side smaller. Thus we are done if we prove that the “slack term” term ε · x̄i is
at least K. This is true by construction, since the non-zero values of x̄i are at least K/ε. The
other inequality (34) follows similarly.

This concludes the proof of the lower bound.
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The theorem can be extended to more than two coupled recursive sequences. Then we need
a separate parameter δ for each function in (28–29) These parameters must be determined from
a system of equations, and the no-drift condition ensures that this system has a solution.

The technical condition of Theorems 13 and 14 that certain coefficients are non-negative
have the purpose to exclude periodicity and can be replaced by weaker conditions.

6.4 Asymptotic growth constants

We apply Theorem 13 to the recursion describing the r-chain with corners. It is straightforward
to compute the 2×2 condensed coefficient matrix (22) with a computer by accumulating all terms
derived in Section 6.1, and to compute its dominant eigenvalue. Since n = rk + 1, the growth
constant Tr in terms of n is r-th root of this eigenvector. We observe the same phenomenon
as for chains without corners, see the right-most column of Table 1: The values increase to
some maximum, and then the taper off and converge to 3 as r increases further. The first two
entries in the table reproduce the results for the double-chain (the condensed coefficient matrix
is
(
1 1
2 2

)
which gives T1 = 3) and the double zigzag chain (the condensed coefficient matrix is(

3 3
7 6

)
which gives T2 ≈ 3.0532). We observe that the maximum is achieved for the 8-chain with

corners (r = 8).
To establish this bound rigorously as a lower bound, we have to check the conditions of

Theorem 13. It is easy to check that the coefficients aCCβ , aCFβ , aFCβ , aFFβ are indeed positive for
β = −1, 0, 1. The condensed coefficient matrix (22) is(

ĀCC ĀCF

ĀFC ĀFF

)
=

(
2885 2619
6022 5504

)
. (35)

Its dominant eigenvalue is M = (8389 +
√

69945633 )/2 ≈ 8376.175, with corresponding left
(unnormalized) eigenvector (ρX , ρY ) = (6022,M − 2885) and right eigenvector (πX , πY )> =
(2619,M − 2885)>. The matrix of total group-to-group jump sizes is(

DCC DCF

DFC DFF

)
=

(
−2619 0
−2619 2619

)
.

Weighting these numbers with the eigenvectors and summing them up (23) yields that the
weighted total jump size D is zero. The conditions of Theorem 13 are thus fulfilled.

An intuitive explanation of the equality D = 0 might be as follows. The recursion between
the two vectors Ck and F k is not symmetric, as witnessed, for example, by the non-symmetric
condensed matrix (35). This asymmetry comes from the arbitrary decision to cut the construc-
tion to the right of each corner point. However, on the whole, this irregularity should not cause
a systematic “drift” in the recursion, which would favor a tendency towards larger or smaller
numbers i of unfinished runners crossing the cut. Thus, it is not surprising that D = 0. We
expect that D = 0 should hold for all r, but we have only checked it numerically for small values
of r, and we have established it rigorously only for the concrete case r = 8.

By Theorem 13, the sequence F k0 grows at most like Mk and at least like (M − ε)k, for any
ε > 0. Since n = 8k + 1, the growth constant in terms of n is T8 = 8

√
M ≈ 3.093005695.

Corollary 17. The 8-chains with corners have O(Tn8 ) and Ω((T8 − ε)n) down-free matchings,
for every ε > 0.

This implies Theorem 4 with the help of Theorem 7.
Numerical data suggest the more precise estimate F k0 = Mk/k3/2(c0 + c1/k + O(1/k2))

with c0 ≈ 0.1321 and c1 ≈ −0.102. This has been computed by Moritz Firsching (personal
communication) by interpolation from the elements F 785

0 , F 786
0 , F 787

0 , . . . , F 1000
0 , assuming that

the sequence has the asymptotic form F k0 = Ck/kα(c0 + c/k + c2/k
2 + · · · ). This method has
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predicted more than 300 correct decimal digits of C = M , and it gives α = 3/2 also to a precision
of more than 300 digits. By comparison, for the sequence ak of down-free matching numbers
of the zigzag-chain (Section 4), for which the explicit generating function and hence the form
of the asymptotic growth is known, the same method gave estimates that were accurate also to
more than 300 digits, both regarding the growth constant 1/µ = (

√
93 + 9)/2 and the power

α = 3/2 of the polynomial factor.
The asymptotic growth of the form F k0 = c0M

k/k3/2(1 + o(1)) is not unexpected; it is in
accordance with the behaviour of r-chains without runners, which has been derived in the proof
of Proposition 12 (Section 5.4) by lattice path method [3, Theorem 3].

7 Concluding remarks

7.1 Table of results for pm, dfm and am

In Table 2 we summarize asymptotic bounds on different structures for three kinds of matchings
considered in this paper – pm, dfm and am. Some of them do not follow from results proven
or mentioned in this paper, and we explain them below. First we want to point out some
observations that can be seen in the table.

Obviously, pm(Xn) ≤ dfm(Xn) ≤ am(Xn), but is dfm(Xn) more likely to behave similarly to
pm(Xn) or to am(Xn)? Table 2 shows that different possibilities exist. For a downward chain
SCn, every matching is down-free and thus dfm(SCn) = am(Xn), but for an upward chain dfm
is equal, up to a polynomial factor, to the lower bound. For SZZCn, the three growth constants
are all different, but the intermediate basis for dfm is closer to the upper bound. However for
r-chains without corners, as r grows, the growth rate for pm and dfm tends to the same constant,
3, from below and from above respectively; whereas that for am tends to 4.

Xn pm(Xn) dfm(Xn) am(Xn)

SCn upside down Cn/2 = Θ∗(2n)
(

n
bn/2c

)
= Θ∗(2n) Mn = Θ∗(3n)

SCn Cn/2 = Θ∗(2n) Mn = Θ∗(3n) Mn = Θ∗(3n)

SZZCn Θ∗(2.1974n) Θ∗(3.0532n) Θ∗(3.1022n)

CH∗(11, n/11) Θ∗(2.5517n) Θ∗(3.0840n) Θ∗(3.4614n)

CH∗(r, n/r), r →∞ Θ∗(αn), α↗ 3 Θ∗(βn), β ↘ 3 Θ∗(γn), γ ↗ 4

CH(8, (n− 1)/8) Θ∗(3.0930n)

CH(r, (n− 1)/r), r →∞ Θ∗(δn), δ ↘ 3 ?

DCn Θ∗(3n) ? Θ∗(4n)

Table 2: pm, dfm, am for several structures.

Now we describe the entries of the table. The first two lines are classical results, except for
the formula dfm =

(
n
bn/2c

)
for an upward chain, which has been proved in Proposition 10.

The estimate pm(SZZCn) = Θ∗(2.1974n) from [1] was mentioned in Section 3. Actually, it
was the fact that pm increases from SC to SZZC which initially prompted us to try whether the
old record of the double structure DC could be beaten by the corresponding double structure
DZZC. The formula dfm(SZZCn) = Θ∗(3.0532n) is the main result of Section 4. The estimate
am(SZZCn) = Θ∗(3.1022n) can be derived in a similar way, by adding an appropriate term to the
recursion (3) for ak: the only difference is that when P1 is matched to P3, the point P2 can be free.
The singularity closest to 0 of the resulting generating functions occurs now in (

√
105− 9)/12,

one of the roots of 1− 9x− 6x2. Thus, in this case the base is
√

12/(
√

105− 9) ≈ 3.1022.
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For r-chains without corners, CH∗(r, k), the growth rate for dfm has been determined in
Section 5.3, and, as was discussed in Section 5.4, it converges to 3 from above as r → ∞. The
other entries in the line for CH∗ can be obtained by modifying the analysis of Section 5.3; we
only need to replace appropriately in the formula for z1i in Proposition 10 the factor

(
r−i

b(r−i)/2c
)
,

representing the number of down-free matching on an arc of r − i points. For pm, we have to
replace it by the Catalan number C(r−i)/2 when r − i is even and by 0 when r − i is odd; for
am, we replace it by the Motzkin number Mr−i. The row sums of the recursion matrix can be
obtained by plugging these modified expressions for z1i into (12). For pm, the resulting sequence
of row sums is the sequence A189912 from [8], and for am, it is the sequence A077587 (we omit
the proofs). From the asymptotic behavior of these sequences it follows that their r-th roots,
which are the growth constants, converge to 3 and 4 from below.

The growth rate for dfm for r-chains with corners, CH(r, k), was treated in Section 6. Em-
pirically, they seem to be better than r-chains without corners. The monotone convergence to 3
from above is not proved. It seems plausible that the difference between r-chains with corners
and r-chains without corners should become negligible as r →∞, and therefore the growth con-
stant should converge to the same constant 3. That the convergence should be monotonically
decreasing is only based on the empirical observation from Table 1. We have not extended the
analysis to pm and am, although this would be feasible with some effort. We expect that the
results would be the same as for r-chains without corners.

The formula pm(DCn) = Θ∗(3n) is the classical result of Garćıa, Noy, and Tejel [6], in
accordance with dfm(SCn) = Θ∗(3n) from the first line. The estimate am(DCn) = Θ∗(4n) is due
to Sharir and Welzl [9], and it is currently the best lower bound on the maximum number of
am. The growth of dfm(DCn) remains unknown, but it is Ω∗(3n) and O∗(4n).

We see no reason to think that our best construction CH(8, k) is optimal in the sense that it
has the maximal possible dfm and/or that the corresponding double construction has the max-
imal possible pm. Sets with asymptotically higher bounds may very well be more complicated
— both in terms of their description and their analysis. An obvious continuation from single
chains to r-chains would be to insert a third level of downward arcs between the vertices of
r-chains, possibly continuing towards a fractal-like pattern. We have not attempted to analyze
these structures.

7.2 Summary and Outlook

We have found new constructions of point sets with a larger number of perfect matchings than
previously known. More importantly, we show that, like for triangulations, the true bound
for perfect matchings is not given by the double chain. For the analysis of these sets, the
notion of down-free matchings was crucial. It allowed us to concentrate on one half of a double-
construction.

We have also shown that methods from analytic combinatorics are useful for counting prob-
lems for geometric plane graphs. However, the results from analytic combinatorics that we are
aware of cannot be readily applied for r-chains with corners. In this case, the analysis leads to
coupled recursions involving two sets of variables. For these recursions, we had to develop our
own methods. These somewhat pedestrian methods give the growth rate only up to an arbi-
trarily small error ε. We hope that that the methods of analytic combinatorics will be further
developed to encompass such cases as well.
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[6] A. Garćıa, M. Noy, and J. Tejel. Lower bounds for the number of crossing-free subgraphs
of Kn. Comput. Geom., 16 (2000), 211–221.

[7] F. Hurtado and M. Noy. Counting triangulations of almost-convex polygons. Ars Combi-
natoria, 45 (1997), 169–179.

[8] The On-Line Encyclopedia of Integer Sequences. http://oeis.org/

[9] M. Sharir and W. Welzl. On the number of crossing-free matchings, cycles, and partitions.
SIAM J. Comput., 36:3 (2006), 695–720.

http://algo.inria.fr/flajolet/Publications/AnaCombi/book.pdf
http://oeis.org/

	1 Introduction
	2 Double chains and double zigzag chains
	2.1 One set high above another and ``double constructions''
	2.2 Double chains
	2.3 Perfect matchings in the double chain
	2.4 Double zigzag chains

	3 Down-free matchings and perfect matchings
	3.1 Down-free matchings
	3.2 Down-free matchings of X and perfect matchings of double X

	4 Zigzag chains
	5 r-chains without corners
	5.1 Definition of r-chains with and without corners
	5.2 Matchings with runners
	5.3 Recursion for matchings with runners in r-chains without corners
	5.4 Analysis of the recursion
	5.5 Asymptotic growth constants

	6 r-chains with corners
	6.1 Recursion
	6.2 Analysis of the recursion
	6.3 Proof of the theorem about mutually coupled recursions
	6.4 Asymptotic growth constants

	7 Concluding remarks
	7.1 Table of results for pm, dfm and am
	7.2 Summary and Outlook


