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MAXIMISING COMMON FIXTURES IN A ROUND ROBIN

TOURNAMENT WITH TWO DIVISIONS

WAYNE BURROWS AND CHRISTOPHER TUFFLEY

Abstract. We describe a round robin scheduling problem for a competition played in
two divisions, motivated by a scheduling problem brought to the second author by a
local sports organisation. The first division has teams from 2n clubs, and is played in
a double round robin in which the draw for the second round robin is identical to the
first. The second division has teams from two additional clubs, and is played as a single
round robin during the first 2n + 1 rounds of the first division. We will say that two
clubs have a common fixture if their teams in division one and two are scheduled to play
each other in the same round, and show that for n ≥ 2 the maximum possible number of
common fixtures is 2n2 − 3n+ 4. Our construction of draws achieving this maximum is
based on a bipyramidal one-factorisation of K2n, which represents the draw in division
one. Moreover, if we additionally require the home and away status of common fixtures
to be the same in both divisions, we show that the draws can be chosen to be balanced
in all three round robins.

1. Introduction

We discuss a round robin tournament scheduling problem played in two divisions, with
the objective to maximise the number of common fixtures between two clubs playing
against each other in the same round in the two separate divisions. The first division
has teams from 2n clubs, and is played in a double round robin in which the draw for
the second round robin is identical to the first. The second division has teams from two
additional clubs, and is played as a single round robin during the first 2n+1 rounds of the
first division. We say that two clubs have a common fixture if their division one and two
teams both play each other in the same round, and show that for n ≥ 2 the maximum
possible number of common fixtures is 2n2 − 3n + 4. Our construction achieving this
bound is based on a bipyramidal one-factorisation of the complete graph K2n.
This problem was motivated by a scheduling problem in the Manawatū Rugby Union’s

first and second division tournaments in New Zealand in 2011. In that case there were
ten clubs with a team in both divisions, and an additional two clubs with teams in the
second division only. The Manawatū Rugby Union contacted the second author to request
help in designing a schedule to maximise the number of common fixtures. A near optimal
schedule was found by the second author and implemented by the rugby union. We solve
the problem for any number of clubs in the first division, with two additional clubs in the
second division.
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1.1. Organisation. The paper is organised as follows. In Section 2 we give a precise
statement of our problem, reformulate it in graph-theoretic terms, and state our main
theorem. In Section 3 we establish the upper bound given in our theorem, and in Section 4
we construct draws achieving this bound. This is done in two parts: we first handle the
case n = 2 separately in Section 4.1, and then give a general construction for n ≥ 3 in
Section 4.2. We conclude the paper in Section 4.3 by considering an oriented version of
the problem, representing home and away status, and show that the draws can be chosen
to be balanced.

1.2. Related work. In theory and application it is often desirable to construct a sports
schedule subject to additional constraints or objectives. Many such problems have been in-
vestigated, such as: Victoria Golf Association scheduling two divisions to avoid clashes [2];
scheduling n teams from each of two geographic locations so that games between teams
from the same location take place on weekdays, and games between teams from different
locations take place at weekends [5]; shared facilities in an Australian Basketball Asso-
ciation [6]; scheduling a round robin tennis tournament under availability constraints on
courts and players [7]; minimising “carry-over effects”, where teams x and y both play
team z immediately after playing team w [1]; avoiding consecutive away fixtures in the
Czech National Basketball League [8]; minimising waiting times in tournaments played
on a single court [12]; scheduling to avoid teams playing consecutive games against teams
from the same “strength group” [3, 4]; minimising breaks (consecutive home or away
games) [15]; a travelling tournament problem, where it is desirable to have a number of
consecutive away games (on tour) applied to a Japanese baseball league [10]. See Wal-
lis [16, Chapter 5] or Kendall et al’s comprehensive survey article [11] and the references
therein for further discussion and examples.
In problems involving teams that share facilities (for example, teams belonging to the

same club but playing in different divisions, as we consider here) it is common to apply
the constraint that such teams cannot have a home game in the same round (see for
example [2, 6] and [16, p. 35]). This reflects the common situation where it may be
physically impossible to conduct two games at the same time at the same venue. In this
paper we drop this constraint, and instead seek to maximise the number of games between
teams from the same two clubs, played in the same round and at the same venue. This
might for example allow the club’s teams to share transport, reducing the costs associated
with travel. The scheduling difficulty in the problem considered here arises from the fact
that not all clubs have a team in both divisions.

2. Problem statement

2.1. Setting. Our interest in this paper is in round robin tournaments : tournaments in
which every team or competitor taking part in the competition plays against every other
team or competitor exactly once (a [single] round robin) or twice (a double round robin).
For simplicity we will use the term team throughout (that is, we allow teams consisting of
one player only), since the number of players in a team plays no role in our discussion. We
assume that the round robin tournament takes place as a series of rounds, in which each
team plays exactly one match against another team. To handle the case where there is an
odd number of teams we follow common practice by introducing a phantom team; when
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a team is scheduled to play against the phantom team they have a bye in that round.
Thus in what follows we will always assume that there is an even number of teams.
We will regard the teams as belonging to clubs, and will assume that each club may

enter at most one team in a given tournament. However, a club may have more than one
team (for example, an “A” and a “B” team, a junior and a senior team, or a men’s and a
women’s team) that take part in different tournaments. We will refer to each tournament
and associated set of participating teams as a division.
In some sports or tournaments one of the two teams taking part in a given match may

be in a distinguished position. This is the case for example where one team plays first,
or where matches take place at the facilities belonging to one of the two teams, with the
team playing at their own facilities being the “home” team, and the team travelling to
the other’s facilities being the “away” team. For simplicity we will use the terms home
and away throughout to specify this distinction.
The draw for a tournament specifies which matches take place in each round. In some

sports home and away are decided by lot, whereas in others it must be specified as part
of the draw. In such cases it is desirable that every team has nearly equal numbers of
home games, and we will say that a draw is balanced if the numbers of home games of
any two teams differ by at most one. (Note that in a single round robin with 2n teams it
is impossible for all teams to have the same number of home games, because each team
plays 2n− 1 games.) We will use the term fixture to refer to a match scheduled to take
place in a particular round, with if applicable a designation of home and away teams.

2.2. Formulation. Let n be a positive integer. We consider a competition played in two
divisions among 2n+ 2 clubs labelled 0, 1, . . . , 2n+ 1. We suppose that

(C1) clubs 0, 1, . . . , 2n− 1 have a team competing in each division;
(C2) clubs 2n and 2n+ 1 have teams competing in division two only;
(C3) division one is played as a double round robin, in which the draws for rounds r

and r + (2n− 1) are identical for r = 1, . . . , 2n− 1, but with (if applicable) home
and away reversed;

(C4) division two is played as a single round robin, co-inciding with the first 2n + 1
rounds of division one.

We will say that clubs x and y have a common fixture in round r if their division one
and two teams both play each other in round r. When home and away are specified as
part of the draw we additionally require that the same club should be the home team in
both divisions.
It is clear that there are circumstances in which common fixtures might be desirable.

For example, they might allow a club’s division one and two teams to share transport, and
they might allow the club’s supporters to attend both the division one and two games.
This motivates our main problem:

Main Problem. Construct round robin draws maximising the total number of common
fixtures among clubs 0, 1, . . . , 2n− 1.

Our construction yields the following result:

Theorem 1. Let n be a positive integer. Then the maximum possible number of common
fixtures is 1 if n = 1, and c(n) = 2n2 − 3n+ 4 if n ≥ 2. Moreover, if home and away are
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specified the draws can be chosen to be balanced in all three round robins (division two,
and both round robins of division one).

When n = 1 there are only two teams in division one, and four teams in division two.
It is immediate that there can be at most one common fixture, and any draw for division
two in which the clubs belonging to division one play each other in round one or two
realises this. We therefore restrict attention to n ≥ 2 throughout the rest of the paper.

Remark 2.1. We have assumed that division one is played as a double round robin, and
division two as a single round robin, because that is the form in which the problem was
presented to us by a sports organisation in 2011. If division one is played only as a
single round robin, then our work shows that for n ≥ 2 the maximum possible number of
common fixtures is c(n)− 2 = 2n2 − 3n+ 2.

Remark 2.2. Our sequence c(n) is a translate by 1 of sequence A236257 in the Online
Encyclopedia of Integer Sequences (OEIS), published electronically at http://oeis.org.
This sequence is defined by a(n) = 2n2−7n+9 = c(n−1), and relates to sums of n-gonal
numbers.
The sequence c(n)− 2 is a translate by 1 of sequence A084849 in the OEIS, defined by

a(n) = 2n2+n+1 = c(n+1)− 2. This sequence counts the number of ways to place two
non-attacking bishops on a 2× (n+ 1) board.

2.3. Reformulation in graph-theoretic terms. To formulate the problem in graph-
theoretic terms we follow standard practice and represent each team by a vertex, and a
match between teams x and y by the edge {x, y}. In a round robin tournament with 2m
teams each round then corresponds to a perfect matching or one-factor of the complete
graph K2m, and the round robin draw to an ordered one-factorisation of K2m (Gelling
and Odeh [9], de Werra [5]). Recall that these terms are defined as follows.

Definition. A one-factor or perfect matching of G = (V,E) is a subgraph Ḡ = (V, Ē) of
G in which the edges Ē ⊆ E have the following properties:

(1) Every vertex v ∈ V is incident on an edge e ∈ Ē.
(2) No two edges e and e′ in Ē have any vertex in common.

As a consequence every vertex v ∈ V has degree one in Ḡ. A one-factorisation of G is a
set of one-factors {Ḡi = (V, Ēi) | i = 1, . . . , k} with the properties:

(1) Ēi ∩ Ēj = ∅, i 6= j.

(2)
k
⋃

i=1

Ēi = E.

Clearly, a necessary condition for G to have a one-factorisation into k one-factors is that
G is regular of degree k. In particular, for G = K2m any one-factorisation must have
k = 2m− 1 one-factors.

Any one-factorisation can be thought of as an edge colouring of the given graph, and
in the case of the complete graph K2m, a one-factorisation is equivalent to a minimum
edge colouring. In what follows we will be interested in the cases m = n and m = n + 1.
We will use the languages of one-factorisations and edge colourings interchangeably. Note
that a one-factorisation or minimum edge colouring does not necessarily impose an order

http://oeis.org/A236257
http://oeis.org
http://oeis.org/A084849
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on the one-factors. If an order is fixed, we will say the one-factorisation is ordered or we
have an ordered one-factorisation.
Turning now to the problem, suppose that the complete graphK2n = (V1, E1) has vertex

set V1 = {0, 1, . . . , 2n − 1}, and K2n+2 = (V2, E2) has vertex set V2 = {0, 1, . . . , 2n + 1}.
Then the round robin draw in division one rounds 1 to 2n− 1 may be represented by an
edge colouring

C1 : E1 → {1, 2, . . . , 2n− 1},

where the edges coloured r represent the draw in round r. By condition (C3) the draw in
rounds 2n to 4n− 2 is then given by the colouring

Ĉ1 : E1 → {2n, 2n+ 1, . . . , 4n− 2}

defined by Ĉ1(e) = C1(e) + (2n− 1), and by condition (C4) the draw in division 2 may be
represented by a colouring

C2 : E2 → {1, 2, . . . , 2n+ 1}.

Clubs x and y therefore have a common fixture in round r if and only if

C2({x, y}) = r ∈ {C1({x, y}), Ĉ1({x, y})};

since Ĉ1({x, y}) = C1({x, y}) + (2n− 1) this may be expressed concisely as

C2({x, y}) = r ≡ C1({x, y}) mod (2n− 1).

Our problem may then be stated as follows:

Main Problem, reformulated. Let K2n = (V1, E1) have vertex set V1 = {0, 1, . . . , 2n−
1}, and let K2n+2 = (V2, E2) have vertex set V2 = {0, 1, . . . , 2n + 1}. Construct proper
edge colourings

C1 : E1 → {1, 2, . . . , 2n− 1},

C2 : E2 → {1, 2, . . . , 2n+ 1},

of K2n and K2n+2, respectively, maximising the number of edges {x, y} ∈ E1 such that

(2.1) C2({x, y}) ≡ C1({x, y}) mod (2n− 1).

Remark 2.3. When division one is played as a single round robin then the condition of
equation (2.1) for clubs x and y to have a common fixture becomes simply

C2({x, y}) = C1({x, y}).

Remark 2.4. When applicable we will orient the edges to indicate the home and away
status of a game, with the edges pointing from the home team to the away team. In that
case we additionally require that identically coloured edges have the same orientation.
We address home and away status in Section 4.3.
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3. The upper bound

In this section we show that c(n) = 2n2 − 3n + 4 is an upper bound on the number of
common fixtures. Recall that we assume n ≥ 2 throughout.
Division one involves 2n teams, so in each round there are exactly n games. Thus in

each round there can be at most n common fixtures. However, in Lemma 3.1 we show
that there is at most one round in which this can occur. We then show in Lemma 3.2 that
condition (C3) constrains the total number of common fixtures that can occur in rounds
1 and 2n to at most n, and similarly in rounds 2 and 2n+1. Combining these conditions
gives c(n) as an upper bound.

Lemma 3.1. There is at most one round in which there are n common fixtures. For
every other round there are at most n− 1 common fixtures.

Proof. In each round of division two there are n + 1 games. In exactly one round the
teams from the additional clubs 2n and 2n + 1 play each other, leaving (n + 1)− 1 = n

games between the 2n clubs common to both divisions in which it is possible to have a
common fixture.
In every other round the clubs 2n and 2n+ 1 each play a club that is common to both

divisions. This leaves (n+1)− 2 = n− 1 games between clubs common to both divisions
in which it is possible to have a common fixture. �

Recall by condition (C4) that the draws for the first and second round robins in division
one are identical. This constrains the total number of common fixtures between the pairs
of identical rounds in the two round robins of the first division.

Lemma 3.2. In total there are at most n common fixtures in rounds 1 and 2n. Similarly,
in total there are at most n common fixtures in rounds 2 and 2n+ 1.

Proof. Rounds 1 and 2n correspond to the first round of the first round robin in division
one, and the first round of the second round robin in division one. Since the fixtures
in these rounds are identical (disregarding the home and away status), and each fixture
occurs once only in division two, there are at most n distinct fixtures and therefore at
most n common fixtures in total between the two rounds.
By an identical argument, rounds 2 and 2n+1 have in total at most n common fixtures

also. �

Corollary 3.3. The number of common fixtures is at most c(n) = 2n2 − 3n+4. For this
to be possible the game between teams 2n and 2n + 1 in division two must take place in
one of rounds 3 to 2n− 1.

Proof. Let fr be the number of common fixtures in round r, 1 ≤ r ≤ 2n+ 1. We want to
bound the total number of common fixtures, which is

∑2n+1

r=1
fr.

Suppose that the game between teams 2n and 2n + 1 occurs in round q. Then, by
Lemmas 3.1 and 3.2 we have:

fq ≤ n,

fr ≤ n− 1, r 6= q,

fr + f2n−1+r ≤ n, r ∈ {1, 2}.
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If q ∈ {1, 2, 2n, 2n+ 1} then

2n+1
∑

r=1

fr = f1 + f2 + f2n + f2n+1 +
2n−1
∑

r=3

fr

≤ 2n+ (2n− 3)(n− 1)

= 2n2 − 3n+ 3.

Otherwise, we have q ∈ {3, 4, . . . , 2n− 1} and

2n+1
∑

r=1

fr = f1 + f2 + f2n + f2n+1 +
2n−1
∑

r=3

fr

≤ 2n+ (2n− 4)(n− 1) + n

= 2n2 − 3n+ 4.

In either case we have
∑2n+1

r=1
fr ≤ 2n2 − 3n + 4, with equality possible only when q ∈

{3, 4, . . . , 2n− 1}. �

Remark 3.4. When division one is played as a single round robin, the above argument
shows that the number of common fixtures is at most

n+ (2n− 2)(n− 1) = 2n2 − 3n+ 2 = c(n)− 2.

4. The construction

In this section we construct one-factorisations F1 = {F 1
r | 1 ≤ r ≤ 2n− 1} of K2n and

F2 = {F 2
r | 1 ≤ r ≤ 2n + 1} of K2n+2 realising the upper bound c(n) of Corollary 3.3.

Here each one-factor F d
r represents the draw in round r of division d. In the general case

n ≥ 3 our construction uses a factor-1-rotational [14] one-factorisation of K2n, also known
as a bipyramidal [13] one-factorisation. This construction does not apply when n = 2, so
we first handle this case separately in Section 4.1, before giving our general construction
in Section 4.2. We conclude by discussing home and away status for n ≥ 3 in Section 4.3.

4.1. The case n = 2. When n = 2 we define the required one-factorisations F1 = {F 1
r |

1 ≤ r ≤ 3} of K4 and F2 = {F 2
r | 1 ≤ r ≤ 5} of K6 as follows:

F 1
1 = {(0, 1), (2, 3)}, F 2

1 = {(2, 3), (4, 0), (5, 1)},

F 1
2 = {(2, 0), (3, 1)}, F 2

2 = {(2, 0), (3, 5), (4, 1)},

F 1
3 = {(0, 3), (1, 2)}, F 2

3 = {(0, 3), (1, 2), (4, 5)},

F 2
4 = {(1, 0), (3, 4), (5, 2)},

F 2
5 = {(0, 5), (1, 3), (2, 4)}.

The draw is also shown graphically in Figure 1. The common fixtures are indicated in
bold, and we see that there are a total of c(2) = 2·22−3·2+4 = 6 of them. Moreover, with
the edges oriented as given we see that pairs of edges corresponding to common fixtures
are identically oriented, and that every vertex in division one has outdegree either 1 or 2,
and every vertex in division two has outdegree either 2 or 3. Thus, all three round robin
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2

3

(a)

0

1

2

3

(b)

0

1

2

3

4

5

(c)

Figure 1. The draws for n = 2, with common fixtures denoted by thicker
edges. (a) The draw in division one rounds 1–3, with the rounds denoted by
red solid edges; blue dashed edges; and green dotted edges, respectively. (b)
The draw in division one rounds 4–6, with the rounds denoted by magenta
dash-dotted edges; cyan dash-dot-dotted edges; and black dashed edges,
respectively. (c) The draw in division two, with the rounds denoted as
above.

draws are balanced, and together with Corollary 3.3 this establishes Theorem 1 in the
case n = 2.

4.2. The general case n ≥ 3.

4.2.1. Overview. In the general case n ≥ 3 our draw in division one is based on a class of
one-factorisations ofK2n known as factor-1-rotational [14] or bipyramidal [13]. Such a one-
factorisation is obtained by first constructing a single one-factor, known as a starter. Two
of the vertices are then held fixed, while the remaining vertices are permuted according
to the sharply transitive action of a group G of order 2n − 2. In our case we use the
cyclic group of order 2n − 2. This produces 2n − 2 one-factors, and by careful choice
of the initial one-factor and group action these are all disjoint, and are completed to a
one-factorisation by the addition of a final one-factor, that is fixed by the action of G and
consists of the remaining edges.
In order to achieve the close agreement required between the division one and two draws

we exploit the symmetry of the division one draw in constructing the draw for division
two. We begin by modifying the starter one-factor of K2n, by replacing one of its edges
with a pair of edges joining its endpoints to the two additional vertices. This gives us
n− 1 common fixtures in round 1. We then translate this one-factor by the action of G,
to obtain n − 1 common fixtures in each of rounds 2 to 2n − 2 as well. The draw for
division one round 2n−1 is described by the fixed one-factor of K2n, and adding the edge
between the two additional teams to this gives us a round in which there are n common
fixtures. It then remains to organise the remaining edges — those removed from the
cyclicly permuted one-factors, as well as the remaining edges between the fixed vertices
— into two more rounds, in such a way that we pick up an additional common fixture in
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each. We will ensure that this is possible by choosing the edge removed from the starter
so that its orbit forms a cycle in the graph of length 2n − 2, and so consequently has a
one-factorisation.

4.2.2. The construction. In order to describe the construction, it will be convenient to
denote the vertices 2n−2 and 2n−1 by ±∞, and the vertices 2n and 2n+1 by ±i∞. Then
we may unambiguously define the permutation σ of V2 = {0, . . . , 2n−3}∪{±∞}∪{±i∞}
by σ(x) = x+1, where addition is done modulo 2n− 2 for 0 ≤ x ≤ 2n− 3, and x+ k = x

for x ∈ {±∞,±i∞}, k ∈ Z. The group G = 〈σ〉 is cyclic of order 2n−2, and acts sharply
transitively on the vertices {0, 1, . . . , 2n− 3}.
We begin by constructing the one-factors F 1

1 and F 2
1 in Lemma 4.1. The cases n = 7

and n = 8 are illustrated in Figures 2 and 3, respectively.

Lemma 4.1. Define

s =

{

n−4

2
n even,

n−3

2
n odd,

t = n− 2− s =

{

s+ 2 = n
2

n even,

s+ 1 = n−1

2
n odd,

u =

{

3n−6

2
n even,

3n−7

2
n odd,

v = 3n− 5− u =

{

u+ 1 = 3n−4

2
n even,

u+ 2 = 3n−3

2
n odd,

and let

E1 =
{

{x, y} : x+ y = n− 2, 0 ≤ x ≤ s
}

=
{

{0, n− 2}, {1, n− 3}, . . . , {s, t}
}

,

E2 =
{

{x, y} : x+ y = 3n− 5, n− 1 ≤ x ≤ u
}

=
{

{n− 1, 2n− 4}, {n, 2n− 5}, . . . , {u, v}
}

,

E3 =

{

{

{n−2

2
,−∞}, {2n− 3,∞}

}

, n even,
{

{3n−5

2
,−∞}, {2n− 3,∞}

}

, n odd,

E4 =

{

{

{u,−i∞}, {v, i∞}
}

, n even,
{

{s,−i∞}, {t, i∞}
}

, n odd.

Then
F 1
1 = E1 ∪ E2 ∪ E3

is a one-factor of K2n, and

F 2
1 =

{

(F 1
1 ∪ E4)−

{

{u, v}
}

, n even,

(F 1
1 ∪ E4)−

{

{s, t}
}

, n odd

is a one-factor of K2n+2. Moreover, F 1
1 and F 2

1 have precisely n− 1 edges in common.

Proof. It is easy to check that each of the 2n vertices x ∈ V1 = {0, 1, . . . , 2n− 3}∪{±∞}
belongs to precisely one edge in the union E1 ∪ E2 ∪ E3. For 0 ≤ x ≤ n − 2 the edge
containing x belongs to E1, unless n is even and x = n−2

2
, in which case it belongs to E3.

For n − 1 ≤ x ≤ 2n − 4 the edge belongs to E2, unless n is odd and x = 3n−5

2
, in which

case it belongs to E3; and for x = 2n− 3 and x ∈ {±∞} the edge belongs to E3.
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0
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10

11

−∞ ∞ 0

1

2

3

4

5

6

7

8

9

10

11

−∞ ∞

i∞

−i∞

Figure 2. The one-factors F 1
1 (left) and F 2

1 (right) in the case n = 7.

When n is even we obtain F 2
1 from F 1

1 by deleting the edge {u, v} and adding the edges
{u,−i∞} and {v, i∞}; while when n is odd we obtain F 2

1 from F 1
1 by deleting the edge

{s, t} and adding the edges {s,−i∞} and {t, i∞}. Thus each vertex of K2n+2 belongs
to precisely one edge of F 2

1 also. Since F 1
1 contains precisely n edges it follows moreover

that |F 1
1 ∩ F 2

1 | = n− 1, as claimed. �

The one-factor F 1
1 is the starter discussed above in Section 4.2.1. From each one-factor

F d
1 , d = 1, 2, we now construct 2n − 2 one-factors F d

r , 1 ≤ r ≤ 2n − 2, by permuting
the vertices {0, 1, . . . 2n − 3} according to the permutation σ = (0, 1, . . . , 2n − 3). For
1 ≤ r ≤ 2n− 2 and d = 1, 2 we define

F d
r = σr−1(F d

1 ) =
{

{σr−1(x), σr−1(y)} | {x, y} ∈ F d
1

}

.

Then each F d
r is necessarily a one-factor of K2n or K2n+2, since it’s obtained from the

one-factor F d
1 by an automorphism of the graph. This gives us a total of 2n − 2 one-

factors for each graph, whereas a one-factorisation of K2n requires a total of 2n−1, and a
one-factorisation of K2n+2 requires a total of 2n+1. To construct a (2n− 1)th one-factor
for each graph we set

F 1
2n−1 =

{

{x, x+ n− 1} | 0 ≤ x ≤ n− 2
}

∪
{

{−∞,∞}
}

,

=
{

{0, n− 1}, {1, n}, . . . , {n− 2, 2n− 3}, {−∞,∞}
}

,

F 2
2n−1 = F 1

2n−1 ∪
{

{−i∞, i∞}
}

.

These sets of edges are easily seen to meet each vertex of K2n and K2n+2, respectively,
exactly once. Moreover they have precisely n edges in common, namely all n edges of
F 1
2n−1.
In order to construct the final two one-factors for K2n+2 we must proceed carefully, in

order to make sure we pick up an extra common fixture in each of rounds 2n and 2n+ 1.
The key point is to ensure that we place the edge {s, t} or {u, v} removed from F 1

1 when
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Figure 3. The one-factors F 1
1 (left) and F 2

1 (right) in the case n = 8.

constructing F 2
1 in F 2

2n. This may be done as follows. When n is even we set

T1 =
{

σ2j({u, v}) | 0 ≤ j ≤ n− 2
}

,

T2 = σ(T1)

=
{

σ2j+1({u, v}) | 0 ≤ j ≤ n− 2
}

,

and when n is odd we set

T1 =
{

σ2j({s, t}) | 0 ≤ j ≤ n− 2
}

,

T2 = σ(T1)

=
{

σ2j+1({s, t}) | 0 ≤ j ≤ n− 2
}

.

Since v − u = 1 when n is even, and t− s = 1 when n is odd, in all cases the sets T1 and
T2 are the sets

Teven =
{

{2k, 2k + 1} | 0 ≤ k ≤ n− 2
}

,

Todd =
{

{2k − 1, 2k} | 0 ≤ k ≤ n− 2
}

in some order. Just which is which depends on the value of n modulo 4:

(1) For n = 4ℓ, the vertex u = 3n−6

2
= 12ℓ−6

2
= 6ℓ− 3 is odd, so T1 = Todd;

(2) for n = 4ℓ+ 1, the vertex s = n−3

2
= 4ℓ−2

2
= 2ℓ− 1 is odd, so T1 = Todd;

(3) for n = 4ℓ+ 2, the vertex u = 3n−6

2
= 12ℓ

2
= 6ℓ is even, so T1 = Teven; and

(4) for n = 4ℓ+ 3, the vertex s = n−3

2
= 4ℓ

2
= 2ℓ is even, so T1 = Teven.

To complete T1 and T2 to one-factors of K2n+2 we set

F 2
2n = T1 ∪

{

{−∞,−i∞}, {∞, i∞}
}

,

F 2
2n+1 = T2 ∪

{

{−∞, i∞}, {∞,−i∞}
}

.

Let

F1 = {F 1
r | 1 ≤ r ≤ 2n− 1}, F2 = {F 2

r | 1 ≤ r ≤ 2n+ 1}.
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We now claim:

Theorem 2. The set F1 is a one-factorisation of K2n, and the set F
2 is a one-factorisation

of K2n+2. Together these one-factorisations realise the upper bound of Corollary 3.3.

Proof. We begin by understanding the orbits of the cyclic group G = 〈σ〉 of order 2n− 2
acting on the edges of K2n and K2n+2.
For δ = 1, . . . , n− 1 let

Oδ =
{

{x, x+ δ} | 0 ≤ x ≤ 2n− 3
}

,

where addition is carried out modulo 2n− 2, and for α ∈ {±∞,±i∞} let

Oα =
{

{x, α} | 0 ≤ x ≤ 2n− 3
}

.

Finally, let also
EG =

{

{α, β} | α, β ∈ {±∞,±i∞}, α 6= β
}

.

Then it is easily seen that each set O1, . . . , On−1, O−∞, O∞, O−i∞, Oi∞ is an orbit of G
acting on the edges of K2n+2, and that EG is the fixed point set of this action. The orbits
Oδ for 1 ≤ δ ≤ n−2 and Oα for α ∈ {±∞,±i∞} have order 2n−2, while the orbit On−1

has order n− 1. This gives us a total of

• n+ 2 orbits of size 2n− 2 in K2n+2, of which n lie in K2n;
• one orbit of size n− 1 in K2n+2, which also lies in K2n;
• six orbits of size 1 in Kn+2, of which precisely one lies in K2n.

Together these account for all (n+2)(2n−2)+(n−1)+6 = 2n2+3n+1 = (n+1)(2n+1)
edges of K2n+2, and all n(2n− 2) + (n− 1) + 1 = n(2n− 1) edges of K2n.
Beginning with F1, observe that in E1 ⊆ F 1

1 the differences between the vertices in
each edge are

(n− 2)− 0 = n− 2,

(n− 3)− 1 = n− 4,

...

t− s =

{

n
2
− n−4

2
= 2, n even

n−1

2
− n−3

2
= 1, n odd,

while in E2 ⊆ F 1
1 the differences are given by

(2n− 4)− (n− 1) = n− 3,

(2n− 5)− (n) = n− 5,

...

v − u =

{

3n−4

2
− 3n−6

2
= 1, n even

3n−7

2
− 3n−3

2
= 2, n odd.

Together these differences are distinct and take all values from 1 to n− 2. Consequently,
E1 ∪E2 contains precisely one edge from each orbit O1, . . . , On−2. In addition, the set E3

contains precisely one edge from each orbit O±∞, and so in total F 1
1 contains precisely
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one representative from each of the n orbits of size 2n − 2 lying in K2n. Note also that
F 1
2n−1 consists of On−1, together with the sole fixed edge {−∞,∞} lying in K2n. Since

F 1
r = σr−1(F 1

1 ) for 1 ≤ r ≤ 2n− 2 it immediately follows that the F 1
r are all disjoint, and

together account for every edge of K2n. The set F1 = {F 1
r | 1 ≤ r ≤ 2n − 1} therefore

forms a one-factorisation of K2n.
Turning now to F2, the one-factor F 2

1 is obtained from F 1
1 by deleting whichever edge

{s, t} or {u, v} belongs to O1, and replacing it with an edge from each of O−i∞ and Oi∞.
Consequently F 2

1 contains precisely one representative of n+1 of the orbits of size 2n−2,
namely O2, . . . , On−2 and Oα for α ∈ {±∞,±i∞}. We again have F 2

r = σr−1(F 2
1 ) for

1 ≤ r ≤ 2n−2, so it immediately follows that the F 2
r are disjoint for 1 ≤ r ≤ 2n−2, with

union O2 ∪ · · · ∪On−2 ∪O−∞ ∪O∞ ∪O−i∞ ∪Oi∞. It’s now easily checked the remaining
one-factors F 2

2n−1, F
2
2n, F

2
2n+1 are disjoint with union O1 ∪ On−1 ∪ EG, and the claim that

F2 is a one-factorisation of K2n+2 follows.
We now count the common fixtures. By Lemma 4.1 we obtain n−1 common fixtures in

round 1, and this gives us n−1 common fixtures in each round r for 1 ≤ r ≤ 2n−2, since
the draws for these rounds are obtained from those in round 1 by translation by σr−1. As
observed above |F 1

2n−1 ∩ F 2
2n−1| = n, so we obtain n common fixtures in round 2n − 1.

By choice of T1 we obtain a further common fixture in round 2n, and since T2 = σ(T1),
F 1
2 = σ(F 1

1 ), this gives another common fixture in round 2n+1 also. Summing, we obtain
the upper bound of Corollary 3.3, as claimed. �

Remark 4.2. In the above construction only two of the common fixtures occur in the final
two rounds of division two. Thus, if division one is played as a single round robin only,
then our construction achieves a total of c(n) − 2 common fixtures. Combined with the
lower bound of Remark 3.4, this proves the claim of Remark 2.1 that c(n) − 2 is the
maximum possible number of common fixtures in this case.

Remark 4.3. Our general construction described in this section does not apply when n = 2,
because for n = 2 the only orbits of order 2n − 2 = 2 are O±∞. In particular, for n = 2
the orbit O1 has order n− 1 = 1 rather than 2.

4.3. Home and away status. To complete the proof of Theorem 1 it remains to show
that the draws for all three round robins can be chosen to be balanced for n ≥ 3, subject
to the condition that the same club be designated the home team in both divisions in any
common fixture. This amounts to orienting the edges of K2n and K2n+2 in such a way
that the indegree of each vertex differs from its outdegree by exactly one, and any edge
corresponding to a common fixture is identically oriented in both graphs.
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To achieve this we orient the edges of K2n+2 belonging to each orbit of the action of G
as follows:

Oδ = {(x, x+ δ) | 0 ≤ x ≤ 2n− 3} for 1 ≤ δ ≤ n− 2,

On−1 = {(x, x+ (n− 1)) | 0 ≤ x ≤ n− 2},

Oα =

n−2
⋃

k=0

{(2k, α), (α, 2k + 1)} for α = ∞, i∞,

Oα =
n−2
⋃

k=0

{(2k + 1, α), (α, 2k)} for α = −∞,−i∞,

and

EG = {(−∞,∞), (−∞,−i∞), (∞, i∞), (−i∞,∞), (−i∞, i∞), (i∞,−∞)}.

For 1 ≤ δ ≤ n−2 each orbit Oδ is a disjoint union of cycles of length at least 3. Using this
fact it is easily checked that orienting the edges as above achieves balance for the draw in
division two, with the vertices belonging to {0, 1, . . . , n − 2,−∞,−i∞} having indegree
n and outdegree n+1, and the vertices belonging to {n− 1, n, . . . , 2n− 3,∞, i∞} having
indegree n + 1 and outdegree n.
As a first step towards achieving balance in division one we regard K2n as a subgraph

of K2n+2, and give each edge of K2n the orientation it receives as an edge of K2n+2. The
resulting draw is balanced, and edges corresponding to common fixtures in rounds 1 to
2n−1 are identically oriented. However, the two edges corresponding to common fixtures
in rounds 2n and 2n + 1 are oppositely oriented, because the orientations of the edges
of K2n are reversed in rounds 2n to 4n − 2. But this is easily remedied, because these
edges both belong to O1, and are the only edges in this orbit that occur in common
fixtures. Thus we may achieve our goal by simply reversing the orientation in K2n of all
edges belonging to O1, which has no effect on the balance. This completes the proof of
Theorem 1.

Remark 4.4. When division one is played as a single round robin only, the final step
of reversing the orientation of O1 is unnecessary, and we may achieve balance in both
divisions one and two by simply orienting K2n as a subgraph of K2n+2.
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