Some properties of a sequence defined with the aid of prime numbers

Brăduț Apostol, Laurențiu Panaitopol, Lucian Petrescu, and László Tóth

Journal of Integer Sequences 18 (2015), Article 15.5.5

Abstract

For every integer $n \ge 1$ let a_n be the smallest positive integer such that $n + a_n$ is prime. We investigate the behavior of the sequence $(a_n)_{n\ge 1}$, and prove asymptotic results for the sums $\sum_{n\le x} a_n$, $\sum_{n\le x} 1/a_n$ and $\sum_{n\le x} \log a_n$.

2010 Mathematics Subject Classification: 11A41, 11N05

Key Words and Phrases: prime numbers, difference of consecutive primes, asymptotic behavior

1 Introduction

For every integer $n \ge 1$ let a_n be the smallest positive integer such that $n+a_n$ is prime. Here $a_1=1, a_2=1, a_3=2, a_4=1, a_5=2, a_6=1, a_7=4$, etc. This is sequence A013632 in Sloane's Online Encyclopedia of Integer Sequences [4]. For $n \ge 2$, a_n is the smallest positive integer such that $\gcd(n!, n+a_n)=1$. In this paper we study the behavior of the sequence $(a_n)_{n\ge 1}$, and prove asymptotic results for the sums $\sum_{n\le x} a_n$, $\sum_{n\le x} 1/a_n$ and $\sum_{n\le x} \log a_n$.

We are going to use the following standard notation:

- $\pi(x)$ is the number of primes $\leq x$,
- $\pi_2(x)$ is the number of twin primes p, p+2 such that $p \leq x$,
- p_n is the *n*-th prime,
- $\bullet \ d_n = p_{n+1} p_n,$
- $f(x) \ll g(x)$ means that $|f(x)| \leq Cg(x)$, where C is an absolute constant,
- $g(x) \gg f(x)$ means that $f(x) \ll g(x)$,
- f(x) = F(x) + O(g(x)) means that $f(x) F(x) \ll g(x)$,
- $f(x) \approx g(x)$ means that $cf(x) \leq g(x) \leq Cf(x)$ for some positive absolute constants c and C,
 - $f(x) \sim g(x)$ means that $\lim_{x\to\infty} f(x)/g(x) = 1$.

We will apply the following known asymptotic results concerning the distribution of the primes:

$$\pi(x) \sim \frac{x}{\log x}$$
, $p_n \sim n \log n$ (Prime number theorem),

$$\sum_{p_n \le x} d_n^2 \ll x^{23/18+\varepsilon} \quad \text{for every } \varepsilon > 0 \text{ (unconditional result of Heath-Brown [1])}, \tag{1}$$

$$\sum_{p_n \le x} d_n^2 \ll x (\log x)^3 \quad \text{(assuming the Riemann hypothesis, result of Selberg [3])}, \qquad (2)$$

$$\left(\frac{d_2 d_3 \cdots d_n}{(\log 2)(\log 3) \cdots (\log n)}\right)^{1/n} \approx 1 \quad \text{(due to Panaitopol [2, Prop. 3])}. \tag{3}$$

This research was initiated by Laurenţiu Panaitopol (1940–2008), former professor at the Faculty of Mathematics, University of Bucharest, Romania. The present paper is dedicated to his memory.

2 Equations and identities

By the definition of a_n , for every $n \ge 1$ we have $n + a_n = p_{\pi(n)+1}$, that is

$$a_n = p_{\pi(n)+1} - n. (4)$$

From (4) we deduce that for every $k \geq 1$,

$$a_{p_k} = p_{k+1} - p_k, a_{p_k+1} = p_{k+1} - p_k - 1, \dots, a_{p_{k+1}-1} = 1.$$
 (5)

Proposition 1. For every integer $a \ge 1$ the equation $a_n = a$ has infinitely many solutions.

Proof. Let $A_k = \{1, 2, \dots, p_{k+1} - p_k\}$. Since $\limsup_{k \to \infty} (p_{k+1} - p_k) = \infty$, it follows from (5) that for every integer $a \ge 1$ there exist infinitely many integers $k \ge 1$ such that $a \in A_k$, whence the equation $a_n = a$ has infinitely many solutions.

Now we compute the sum $S_n = \sum_{i=1}^n a_i$.

Proposition 2. For every prime $n \geq 3$ we have

$$S_n = \frac{1}{2} \left(2p_{\pi(n)+1} - p_{\pi(n)} + \sum_{k=1}^{\pi(n)-1} d_k^2 \right), \tag{6}$$

and for every composite number $n \geq 4$,

$$S_n = \frac{1}{2} \left(p_{\pi(n)}^2 + 2(n+1 - p_{\pi(n)}) p_{\pi(n)+1} + \sum_{k=1}^{\pi(n)-1} d_k^2 - n^2 - n \right).$$
 (7)

Proof. If $n \geq 3$ is a prime, then $n = p_m$ for some $m \geq 2$. By using (4),

$$S_n = \sum_{i=1}^n (p_{\pi(i)+1} - i)$$

$$= 2 + 3 + (5 + 5) + \dots + (p_m - p_{m-1})p_m + p_{m+1} - \frac{n(n+1)}{2}$$

$$= 2 + \sum_{k=2}^m p_k(p_k - p_{k-1}) + p_{m+1} - \frac{n(n+1)}{2}$$

$$= \frac{1}{2} \left(p_1^2 + 2 \sum_{k=2}^m p_k^2 - 2 \sum_{k=2}^m p_k p_{k-1} + 2p_{m+1} - n^2 - n \right)$$

$$= \frac{1}{2} \left(2p_{m+1} - n + \sum_{k=1}^{m-1} (p_{k+1} - p_k)^2 \right)$$

and (6) follows by using that $m = \pi(n)$.

Now let $t \ge 4$ be composite. Let $m \ge 2$ be such that $p_m < t < p_{m+1}$. By applying (6) for $n = p_m$, where $m = \pi(n) = \pi(t)$, we deduce

$$S_{t} = S_{n} + \sum_{i=n+1}^{t} a_{i} = S_{n} + \sum_{i=n+1}^{t} (p_{\pi(i)+1} - i)$$

$$= \frac{1}{2} \left(2p_{\pi(t)+1} - p_{\pi(t)} + \sum_{k=1}^{\pi(t)-1} (p_{k+1} - p_{k})^{2} \right) + \frac{(2p_{\pi(t)+1} - n - t - 1)(t - n)}{2}$$

$$= \frac{1}{2} \left(2p_{\pi(t)+1} - p_{\pi(t)} + \sum_{k=1}^{\pi(t)-1} (p_{k+1} - p_{k})^{2} + 2p_{\pi(t)+1}(t - n) - t^{2} - t + n^{2} + n \right)$$

$$= \frac{1}{2} \left(p_{\pi(t)}^{2} + 2(t + 1 - p_{\pi(t)})p_{\pi(t)+1} + \sum_{k=1}^{\pi(t)-1} (p_{k+1} - p_{k})^{2} - t^{2} - t \right)$$

and (7) is proved.

Remark 3. If n is prime, then (7) reduces to (6). Therefore, the identity (7) holds for every integer $n \geq 3$.

Next we compute the product $P_n = \prod_{i=1}^n a_i$.

Proposition 4. For every prime $n \geq 3$ we have

$$P_{n-1} = \prod_{k=1}^{\pi(n)-1} d_k!, \tag{8}$$

and for every composite number $n \geq 4$,

$$P_{n-1} = \prod_{k=1}^{\pi(n)-1} d_k! \prod_{k=1}^{n-p_{\pi(n)}} (p_{\pi(n)+1} - p_{\pi(n)} - k + 1).$$
 (9)

Proof. Let $n = p_m \ge 3$ be a prime. By using (5),

$$P_{n-1} = \prod_{i=2}^{m} (p_i - p_{i-1})! = \prod_{i=1}^{m-1} (p_{i+1} - p_i)!,$$

which proves (8).

Now let $t \ge 4$ be composite such that $p_m < t < p_{m+1}$. By applying (8) for $n = p_m$, where $m = \pi(n) = \pi(t)$, we deduce

$$P_{t-1} = P_{n-1} \prod_{i=n}^{t-1} a_i = P_{n-1} \prod_{i=n}^{t-1} \left(p_{\pi(i)+1} - i \right)$$

$$= \prod_{k=1}^{\pi(t)-1} d_k! \prod_{j=1}^{t-p_m} \left(p_{m+1} - p_m - j + 1 \right)$$

$$= \prod_{k=1}^{\pi(t)-1} d_k! \prod_{k=1}^{t-p_{\pi(t)}} \left(p_{\pi(t)+1} - p_{\pi(t)} - k + 1 \right)$$

and (9) is proved.

Remark 5. If n is prime, then the second product in (9) is empty and (9) reduces to (8). Hence the identity (9) holds for every integer $n \geq 3$.

3 Asymptotic results

Theorem 6. For every $\varepsilon > 0$,

$$x \log x \ll \sum_{n \le x} a_n \ll x^{23/18 + \varepsilon},\tag{10}$$

where $23/18 \doteq 1.277$. If the Riemann hypothesis is true, then the upper bound in (10) is $x(\log x)^3$.

Proof. Let $x \ge 2$ and let $p_k \le x < p_{k+1}$. By using (6) for $n = p_{k+1}$,

$$\sum_{n \le x} a_n \le \sum_{i=1}^{p_{k+1}} a_i = \frac{1}{2} \left(2p_{k+2} - p_{k+1} + \sum_{i=1}^k d_i^2 \right)$$

$$\ll p_{k+2} + \sum_{p_i \le x} d_i^2.$$

Taking into account the estimate (1) due to Heath-Brown, and the fact that $p_{k+2} \sim p_k \leq x$ we get the unconditional upper bound in (10). If the Riemann hypothesis is true, then by using Selberg's result (2) we obtain the upper bound $x(\log x)^3$.

Now, for the lower bound we use the trivial estimate

$$\sum_{p_n \le x} d_n^2 \gg x \log x,$$

which follows from the inequality between the arithmetic and quadratic means. We deduce that

$$\sum_{n \le x} a_n \ge \sum_{i=1}^{p_k} a_i = \frac{1}{2} \left(2p_{k+1} - p_k + \sum_{i=1}^{k-1} d_i^2 \right)$$

$$\gg \sum_{p_i \le p_{k-1}} d_i^2 \gg p_{k-1} \log p_{k-1} \sim x \log x,$$

since $p_{k-1} \sim k \log k$ and $k = \pi(x) \sim x/\log x$, $\log k \sim \log x$.

To prove our next result we need the following

Lemma 7. We have

$$\sum_{2 \le n \le x} \log d_n = x \log \log x + O(x). \tag{11}$$

Proof. The inequalities (3) can be written as

$$cn < \sum_{i=2}^{n} \log d_i - \sum_{i=2}^{n} \log \log i < Cn$$

for some positive absolute constants c and C. Now (11) emerges by applying the well known asymptotic formula

$$\sum_{2 \le n \le x} \log \log n = x \log \log x + O(x).$$

Theorem 8. We have

$$\sum_{n \le x} \frac{1}{a_n} = \frac{x \log \log x}{\log x} + O\left(\frac{x}{\log x}\right). \tag{12}$$

Proof. For $x = p_m - 1$ $(m \ge 2)$ we have by (5),

$$\sum_{n \le p_m - 1} \frac{1}{a_n} = 1 + \sum_{i=2}^m \left(1 + \frac{1}{2} + \dots + \frac{1}{p_i - p_{i-1}} \right).$$

For an arbitrary $x \geq 3$ let p_k $(k \geq 2)$ be the prime such that $p_k \leq x < p_{k+1}$. Using the familiar inequalities

$$\log m < 1 + \frac{1}{2} + \dots + \frac{1}{m} \le 1 + \log m \quad (m \ge 1)$$

we deduce

$$\log(p_i - p_{i-1}) < 1 + \frac{1}{2} + \dots + \frac{1}{p_i - p_{i-1}} \le 1 + \log(p_i - p_{i-1}) \quad (i \ge 2)$$

and

$$1 + \sum_{i=2}^{k} \log(p_i - p_{i-1}) + \frac{1}{d_k} < \sum_{n < p_{k-1}} \frac{1}{a_n} + \frac{1}{a_{p_k}}$$

$$\leq \sum_{n \leq x} \frac{1}{a_n} \leq \sum_{n \leq p_{k+1} - 1} \frac{1}{a_n} \leq 1 + k + \sum_{i=2}^{k+1} \log(p_i - p_{i-1}).$$

By (11) we obtain

$$\sum_{n \le x} \frac{1}{a_n} = k \log \log k + O(k),$$

Here $k = \pi(x) \sim x/\log x$, $\log k \sim \log x$ and we deduce (12).

Theorem 9. One has

$$x \ll \sum_{n \le x} \log a_n \ll x \log x.$$

Proof. For an arbitrary $x \ge 3$ let p_k $(k \ge 2)$ be the prime such that $p_k \le x < p_{k+1}$. Using the elementary inequalities

$$m \log m - m + 1 \le \log m! \le m \log m \quad (m \ge 1)$$

we deduce by applying (8) that

$$\sum_{n \le x} \log a_n \le \sum_{n \le p_{k+1} - 1} \log a_n = \sum_{i=1}^k \log d_i! \le \sum_{i=1}^k d_i \log d_i$$

$$<\sum_{i=1}^{k} d_i \log p_i < (\log p_k) \sum_{i=1}^{k} d_i < (\log p_k) p_{k+1},$$

where we also used that $d_i = p_{i+1} - p_i < p_i$ by Chebyshev's theorem. Here

$$p_k \sim k \log k, \quad k = \pi(x) \sim x/\log x, \quad \log k \sim \log x,$$
 (13)

and we obtain the upper bound $x \log x$.

On the other hand,

$$\sum_{n \le x} \log a_n > \sum_{n \le p_k - 1} \log a_n = \sum_{i = 1}^{k - 1} \log d_i!$$

$$> \sum_{i=1}^{k-1} (d_i \log d_i - d_i + 1) = \sum_{i=2}^{k-1} d_i \log d_i - p_k + k + 1.$$

Here

$$\sum_{i=2}^{k-1} d_i \log d_i = \sum_{\substack{i=2\\d_i \ge 3}}^{k-1} d_i \log d_i + 2 \log 2 \sum_{\substack{i=2\\d_i = 2}}^{k-1} 1$$

$$\geq (\log 3) \sum_{\substack{i=2\\d_i \ge 3}}^{k-1} d_i + (2 \log 2) \pi_2 (k-1)$$

$$= (\log 3) \left(\sum_{i=2}^{k-1} d_i - \sum_{\substack{i=2\\d_i = 2}}^{k-1} d_i \right) + (2 \log 2) \pi_2 (k-1)$$

$$= (\log 3) \left(p_k - p_2 - 2\pi_2 (k-1) \right) + (2 \log 2) \pi_2 (k-1)$$

$$= (\log 3) p_k - 2 \log(3/2) \pi_2 (k-1) - 3 \log 3$$

$$> (\log 3) p_k - 2 \log(3/2) k - 3 \log 3,$$

where it is sufficient to use the obvious estimate $\pi_2(k-1) < k$. Note that $\log 3 \doteq 1.09$, $2\log(3/2) \doteq 0.81$, $3\log 3 \doteq 3.29$.

We deduce that

$$\sum_{n \le x} \log a_n > 0.09 p_k - 3.$$

Now, (13) gives the lower bound x.

References

- [1] D. R. Heath–Brown, The differences between consecutive primes, III, J. London Math. Soc. (2) 20 (1979), 177–178.
- [2] L. Panaitopol, Properties of the series of differences of prime numbers, *Publ. Centre de Rech. Math. Pures Neuchâtel (Serie 1)* **31** (2000), 21–28.
- [3] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, *Arch. Math. Naturvid.* **47** (1943), No. 6, 87–105.
- [4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.org

B. Apostol

Pedagogic High School "Spiru Haret", Str. Timotei Cipariu 5, RO-620004 Focşani, Romania E-mail: apo_brad@yahoo.com

L. Petrescu

Technical College "Henri Coandă", Str. Tineretului 2, RO-820235 Tilcea, Romania E-mail: petrescuandreea@yahoo.com

L. Tóth

Department of Mathematics, University of Pécs

Ifjúság útja 6, H–7624 Pécs, Hungary

E-mail: ltoth@gamma.ttk.pte.hu