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Abstract. We consider the most general single-spin-flip dynamics for the
ferromagnetic Ising chain with nearest-neighbour influence and spin reversal
symmetry. This dynamics is a two-parameter extension of Glauber dynamics
corresponding respectively to non-linearity and irreversibility. The associated
stationary measure is given by the usual Boltzmann-Gibbs distribution for the
ferromagnetic Hamiltonian of the chain. We study the properties of this dynamics
both at infinite and at finite temperature, all over its parameter space, with
particular emphasis on special lines and points.
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1. Introduction

The one-dimensional kinetic Ising model introduced by Glauber in 1963 [1] is a
prototypical model for the relaxation of a system towards thermal equilibrium. The
model evolves by non-conservative single-spin-flip dynamics, with the requirement
that the flipping rates fulfill the constraint of detailed balance with respect to the
ferromagnetic energy (or Hamiltonian)

E = −
∑
n

σnσn+1, (1.1)

in dimensionless units, where σn = ±1 are classical spins. The detailed balance
condition implies that the dynamics is reversible, and hence that its stationary state
is an equilibrium state.

It has recently been realized [2, 3, 4] that the most general single-spin-flip
dynamics for the ferromagnetic Ising chain with nearest-neighbour influence and spin
reversal symmetry is a natural extension of Glauber dynamics in two directions
associated respectively to non-linearity and irreversibility. The model introduced
in [2, 3, 4] is defined by the rate function (2.3) (or equivalently (2.7)), which are
extensions of the Glauber rate functions (2.1) and (2.3), where the parameters δ
and ε take arbitrary values in the triangular region depicted in figure 1. The
stationary measure of this general model is that of the equilibrium one-dimensional
Ising model, i.e., it is given by the usual Boltzmann-Gibbs distribution associated to
the ferromagnetic Hamiltonian (1.1).

The aim of the present work is to pursue the study undertaken in [3], where
an exact analysis of the dynamical properties of the model along the line δ = 0 of
figures 1 and 2 was performed. The present study is concerned with the properties of
the model at a generic point of the parameter space represented in figures 1 and 2,
with particular emphasis on special lines and points.

The main focus will be on the dynamical behaviour of two-spin correlation
functions for a system started in either a random initial state or in a thermalized
initial state.

• In the first case all spin configurations are equally probable, each spin σn taking
the values ±1 with probability 1/2 independently of the others, hence the two-
time correlation

Cn(0, t) = 〈σ0(0)σn(t)〉 (1.2)

describes the transient regime of relaxation of the system to stationarity. We
shall more particularly consider the autocorrelation

C(0, t) = C0(0, t) = 〈σ0(0)σ0(t)〉, (1.3)

which provides a measure of the overlap of the spin configuration of the system
at time t with its random initial state.

• In the second case the system remains stationary during its evolution, hence the
correlation

Cn,stat(t) = 〈σ0(0)σn(t)〉 (1.4)

gives a measure of the fluctuations of the system at stationarity. We shall more
particularly consider the autocorrelation

Cstat(t) = C0,stat(t) = 〈σ0(0)σ0(t)〉. (1.5)
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We shall also provide some insight in the behaviour of the equal-time correlation

Cn(t) = 〈σ0(t)σn(t)〉, (1.6)

for the system initially prepared in a random initial state and relaxing towards
stationarity. At long times this correlation converges to

Cn = 〈σ0σn〉 = (tanhβ)|n|, (1.7)

denoting by β = 1/T the inverse temperature, which is the well-known expression of
the correlation of the one-dimensional equilibrium Ising model [5].

The setup of the paper is as follows. Sections 2 and 3 provide some prerequisite
knowledge on the model investigated in the present work. In section 2 we give a
reminder of the dynamical rules defining the model [2, 4]. In section 3 we give a
reminder of some exact results [3] on the dynamics of this model on the solvability
line (δ = 0). We emphasize the existence of an oscillatory relaxation regime beyond
a temperature-dependent threshold. Section 4 is the bulk of the present work. It
is devoted to novel aspects of the infinite-temperature dynamics of the model, be it
reversible or irreversible, beyond the solvability line. To this end we use a wide range of
methods coming from various branches of statistical physics, each of these approaches
shedding some light onto the problem from another angle. More specifically, we first
use two general approaches, time series expansions (section 4.1) and mapping of the
dynamics onto a quantum spin chain (section 4.2), before we analyze some special
lines and points, including in particular the solvability line (δ = 0) (section 4.3), the
reversibility line (ε = 0) (section 4.4), the SEP point (δ = −1, ε = 0) (section 4.5),
the dual SEP point (δ = 1, ε = 0) (section 4.6) and the ASEP (microcanonical)
line (δ = −1) (section 4.7). We also present some observations on the dynamical
behaviour at a generic point (section 4.8), based on numerical simulations. Finally,
an investigation of the spectra of the Markov matrix (section 4.9) provides a useful
alternative tool to understand the qualitative features of the dynamics. In section 5
we investigate the main novel features of the finite-temperature dynamics which were
absent in the infinite-temperature situation. This includes a study of the relaxation
rate along the reversibility line (section 5.1) and the existence of an oscillating regime
of relaxation beyond a threshold in the generic irreversible case (section 5.2). We then
study the dynamics of the energy density of the model (section 5.3), and close with
an investigation of two special points on the reversibility line (KDH and Metropolis)
(section 5.4). We conclude by a brief discussion of our results in section 6.

2. A reminder on the rate function of the model

In this section we give an overview of the dynamical rules of the model introduced
in [2, 3, 4].‡

2.1. The rate function of the model

We first recall that the most general rate function wn for single-spin-flip dynamics
(σn → −σn) in continuous time with spatially homogeneous nearest-neighbour
influence obeying both detailed balance and spin reversal symmetry reads [1]

wn =
α

2

(
1− γ

2
(1 + δ)σn(σn−1 + σn+1) + δ σn−1σn+1

)
(Glauber). (2.1)

‡ We refer the reader to those references for more details, in order to keep the reminder contained
in this section succinct.
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This rate function depends on two free parameters: α (which fixes the time scale)
and δ. The parameter γ is related to inverse temperature β by

γ = tanh 2β, (2.2)

as a consequence of detailed balance [1]. The so-called Glauber model usually refers to
the case where the parameter δ is set to zero. The success of Glauber model relies on its
solvability, in the sense that its time-dependent behaviour can be determined exactly.
All spin correlation functions of interest indeed obey linear evolution equations, that
can be solved by analytical means. Whenever δ is non zero, the solvability of the model
is lost, in the sense that the hierarchy of evolution equations for spin correlations does
not close.

It has recently been shown [2, 4] that the generalization of (2.1) to a rate function
only satisfying the condition of global balance reads

wn =
α

2

(
1 + ε σn−1σn − (γ(1 + δ) + ε)σnσn+1 + δ σn−1σn+1

)
(Generic). (2.3)

This rate function now depends on the additional parameter ε. From now on, we set the
time unit by fixing α = 1. Global balance is a weaker condition than detailed balance.
It only requests that the (unique) stationary state of the system is given by the
same Boltzmann-Gibbs measure as at equilibrium, corresponding to the ferromagnetic
Hamiltonian (1.1) at fixed temperature T . A dynamics only obeying global balance is
generically irreversible, and therefore generically leads to a nonequilibrium stationary
state. Global balance contains detailed balance (leading to an equilibrium state) as a
particular case.

In the present context, the condition of detailed balance corresponds to fixing the
parameter ε to the value

εr = −γ
2

(1 + δ) (2.4)

(where r stands for reversible), which yields (2.1) back, now rewritten as

wn =
1

2

(
1 + εr σn(σn−1 + σn+1) + δ σn−1σn+1

)
(Glauber). (2.5)

Whenever the condition ε = εr is not satisfied, the difference

η = ε− εr (2.6)

quantifies both the irreversibility of the dynamics and its left-right asymmetry, as can
be seen on the new form of (2.3) now rewritten as

wn =
1

2

(
1 + (εr + η)σn−1σn + (εr − η)σnσn+1 + δ σn−1σn+1

)
(Generic) (2.7)

which is invariant under the simultaneous change of η into −η and exchange of left
and right. This property only holds for the Ising chain and does not extend to higher-
dimensional situations [4]. It turns out that the expression (2.3) (or equivalently (2.7))
not only satisfies the requirement of global balance once temperature is known,
but represents the most general rate function for single-spin-flip dynamics with spin
reversal symmetry and nearest-neighbour influence. Equation (2.2) now becomes a
condition fixing the temperature [4].
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2.2. Spin-flip moves

The spin-flip moves associated with each environment are listed in table 1. The
expressions of the rates corresponding to these moves in terms of the parameters δ
and η (arbitrary) and εr (given by (2.4)) are deduced from (2.7). In the rightest
column, the subscripts in the rates wσσ′ refer to the two neighbours σ and σ′ of a
flipping (+) spin. The rates w++ and w−− (lines 1 and 4), which depend on δ and
εr, respectively correspond to the creation and the annihilation of a pair of domain
walls, with energy cost ∆E = ±4. The rates w+− and w−+ (lines 2 and 3), which
depend on δ and η, correspond to the motion of the domain walls, respectively to the
left and to the right, with no cost in energy (∆E = 0). In other words, the parameter
η = (w+− − w−+)/2 is only involved in the asymmetric motion of the domain walls.

An alternative description of the Ising chain can be given in terms of the domain
walls [6]. Defining occupation numbers living on the bonds of the chain, according to

τn =
1

2
(1− σnσn+1) = 0 or 1, (2.8)

then, if τn = 1 (i.e., σnσn+1 = −1), there is a particle (domain wall) on the
corresponding bond; if τn = 0 (i.e., σnσn+1 = +1), there is a hole (i.e., no
domain wall). On a finite system of N sites (and N bonds), with periodic boundary
conditions, the total ferromagnetic energy E is related to the number M of particles
by E = −N + 2M . The reactions among particles corresponding to the four spin-flip
moves appear in the fourth column of table 1.

# spin-flip move spin-flip move reaction rate

1 + + + → +−+ −−− → −+− 00 → 11 w++ = 1
2 (1 + δ) + εr

2 + +− → +−− −−+ → −+ + 01 → 10 w+− = 1
2 (1− δ) + η

3 −+ + → −−+ +−− → + +− 10 → 01 w−+ = 1
2 (1− δ)− η

4 −+− → −−− +−+ → + + + 11 → 00 w−− = 1
2 (1 + δ)− εr

Table 1. List of spin-flip moves, with corresponding reactions among particles,
and expressions of the corresponding rates in terms of the parameters δ and η.
The parameter εr is related to δ and temperature by (2.4).

The parameters δ and ε appearing in (2.3) are constrained by the condition that
all rates must be positive. The parameter δ has to obey |δ| ≤ 1, while η = ε− εr has
to obey |η| ≤ ηmax, with

ηmax =
1

2
(1− δ). (2.9)

This defines a triangular region of the δ–ε plane, depicted in figure 1 [4]. Two lines
on this plot are remarkable. The first one is the reversibility line (ε = εr, i.e., η = 0),
which corresponds to all possible reversible dynamics. The second one is the solvability
line (δ = 0), along which the dynamics is solvable, in the sense that spin correlation
functions obey a closed system of evolution equations. These lines intersect at point G,
representing the Glauber model (δ = η = 0). A detailed analysis of the dynamics along
the solvability line, beyond the Glauber model, was given in [3] and will be recalled in
section 3. In figure 1 the parameter η represents the vertical coordinate of a generic
point relatively to the reversibility line ε = εr. A δ–η plot gives a symmetric and
temperature-independent representation of the triangle of all possible dynamics, as
depicted in figure 2.
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reversibility

solvability

�

−γ

1−1

G

1

−1

δ
η

Figure 1. Region of the δ–ε plane where the dynamics obeys global balance
and all rates are positive, with its two remarkable lines, the reversibility and
solvability lines. These lines intersect at point G, representing the Glauber model
(δ = η = 0). The irreversibility parameter η is the vertical coordinate of a generic
point relatively to the reversibility line ε = εr. On the solvability line (δ = 0),
correlation functions exhibit an oscillatory temporal behaviour in the outer red
segments, i.e., for ε > 0 or ε < −γ, or, equivalently, for η0 < |η| < 1/2 (see (3.7)).
Black squares show the SEP point (δ = −1, ε = 0) and the two TASEP points
(δ = −1, ε = ±1) (After [4].)

For a generic point in the triangle shown in figures 1 and 2, the rates obey the
unique constraint

w++

w−−
= e−4β =

1− γ
1 + γ

, (2.10)

which is one of the two conditions for detailed balance. The other one,

w+− = w−+, (2.11)

only holds when the dynamics is symmetric or reversible (η = 0). The boundaries of
the triangle correspond to the vanishing of one of the rates given in table 1. The left
vertical side of the triangle (δ = −1) corresponds to w++ = w−− = 0, so that only
the motions of domain walls are allowed. Dynamics along this line will be hereafter
referred to as microcanonical, as they conserve the ferromagnetic energy. On the two
oblique lines one of the two conditions w+− = 0 (lower side) and w−+ = 0 (upper
side) holds, i.e., η = ∓ηmax. The point of intersection of these two oblique lines, to
the right of the triangles, corresponds to w+− = w−+ = 0, i.e., δ = 1 and η = 0, or
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reversibility

1−1 G

1

−1

δ

η

solvability

Figure 2. Same as figure 1, represented in the δ–η plane.

ε = −εr = −γ. The only allowed moves are the creation and the annihilation of pairs of
domain walls, with rates w++ and w−− respectively equal to 1∓γ. More generally, the
constant-energy moves, i.e., the motions of domain walls, are more favoured (resp. less
favoured) than in the Glauber model for δ < 0 (resp. δ > 0) [7].

3. A reminder of the dynamics on the solvability line

The solvability line (δ = 0) is the natural extension to irreversible dynamics of
the finite-temperature Glauber model (δ = η = 0). This line is parametrized by
the irreversibility parameter η = ε − εr, with εr = −γ/2. Although the dynamics
is asymmetric and irreversible, it is still solvable [3], in the sense that correlation
functions obey a closed system of linear evolution equations, that can be solved
analytically, just as for the Glauber model [1, 8, 9]. The outcomes are however
surprisingly non trivial, as we recall below.

3.1. Random initial state

In the case where the system is started in a random initial state, the two-time
correlation Cn(0, t) obeys the equation

dCn(0, t)

dt
= −Cn(0, t)− (εr − η)Cn+1(0, t)− (εr + η)Cn−1(0, t), (3.1)
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with Cn(0, 0) = δn,0. Introducing the Fourier transform

Ĉ(q, 0, t) =
∑
n

Cn(0, t)e−inq, (3.2)

we readily obtain

Ĉ(q, 0, t) = e−Ω(q)t, (3.3)

with

Ω(q) = 1 + 2(εr cos q − iη sin q). (3.4)

Let us first consider the case where |η| < |εr|. We have

Cn(0, t) = e−t
( |εr| − η
|εr|+ η

)n/2
In

(
2t
√
ε2r − η2

)
, (3.5)

where the In are the modified Bessel functions. In particular the autocorrelation reads

C(0, t) = e−tI0

(
2t
√
ε2r − η2

)
. (3.6)

The above results were derived in [3], where the ratio η/εr is interpreted as a velocity
and denoted by V . They demonstrate the existence of a threshold for the irreversibility
parameter η, namely η = ±η0 (i.e., V = ±1), with

η0 = |εr| =
γ

2
. (3.7)

As long as |η| < η0, the correlation C(0, t) decreases monotonically and falls off
exponentially, with the decay rate

α1 = 1− 2
√
ε2r − η2 = 1−

√
γ2 − 4η2. (3.8)

This rate is minimal at the Glauber point (η = 0), where it equals

α1 = 1− γ, (3.9)

and it increases towards 1 at threshold (see figure 3).
Right at the threshold values η = ±η0 (respectively corresponding to ε = 0 and

ε = −γ, the two endpoints of the green segment on figures 1 and 2), the dynamics
become totally asymmetric, in the sense that the influence on the flipping spin comes
from only one of the neighbours [10, 2, 3, 4], with respectively

wn =
1

2
(1− γσn−1σn) and wn =

1

2
(1− γσnσn+1). (3.10)

Note that such a totally asymmetric dynamics can only occur if δ = 0, since otherwise
both neighbours always have an influence on the flipping spin. For η = −η0, the
correlation Cn(0, t) vanishes for n < 0, while for n ≥ 0 we have [3],

Cn(0, t) =
e−t(γt)n

n!
. (3.11)

Likewise, for η = η0, the same correlation vanishes for n > 0, while for n ≤ 0 we have

Cn(0, t) =
e−t(γt)−n

(−n)!
. (3.12)

The autocorrelation at the threshold, C(0, t) = e−t, is independent of temperature.
Beyond threshold (η0 < |η| < 1/2), i.e., in the outer red segments of figures 1

and 2, the correlation C(0, t) is given by the analytic continuation of (3.6),

C(0, t) = e−tJ0

(
2t
√
η2 − ε2r

)
, (3.13)
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where J0 is the usual Bessel function. This correlation now exhibits a damped
oscillatory behaviour, in the form of asymptotically periodic oscillations, multiplying
an exponential decay with unit rate. It vanishes for the first time at

t1 =
j

2
√
η2 − ε2r

, (3.14)

where j ≈ 2.404825 is the first positive zero of J0, while subsequent zeros are
asymptotically separated by the half-period

∆ =
π

2
√
η2 − ε2r

. (3.15)

The time scales t1 and ∆ both diverge according to the same inverse-square-root law
as the threshold is approached (|η| → η0).

The occurrence of an oscillatory behaviour beyond the threshold (|η| > η0)
can be given the following simple explanation. Before threshold (|η| < η0), both
coefficients −(εr + η) and −(εr − η) which appear in (3.1) are positive. The
latter equation is therefore similar to a discrete diffusion equation, and leads to
monotonically decaying correlations. Right at threshold (|η| = η0), one of the
coefficients vanishes, giving rise to a totally asymmetric dynamics and to the totally
directed correlations (3.11) and (3.12). Finally, beyond threshold (|η| > η0), the
coefficients have opposite signs, giving rise to competing effects. The interpretation
of (3.1) as a discrete diffusion equation is lost. The net outcome of these competing
terms is the occurrence of damped oscillations.

3.2. Thermalized initial state

The case where the system is started in a thermalized initial state yields a richer
behaviour, with two successive thresholds.

The correlation Cn,stat(0, t), which accounts for the fluctuations of the system in
the stationary state, still obeys (3.1), albeit with the initial condition Cn,stat(0, 0) =
v|n| (see (1.7)), with v = tanhβ, so that γ = 2v/(1 + v2), hence

Ĉstat(q, 0) =
1− v2

1− 2v cos q + v2
. (3.16)

The linearity of the differential equation (3.1) ensures that

Ĉstat(q, t) = Ĉstat(q, 0)e−Ω(q)t. (3.17)

In other words, Cn,stat(0, t) is given by the spatial convolution

Cn,stat(0, t) = e−t
∑
m

v|n−m|
( |εr| − η
|εr|+ η

)m/2
Im

(
2t
√
ε2r − η2

)
. (3.18)

We have in particular

Cstat(t) = e−t
∑
m

v|m|
( |εr| − η
|εr|+ η

)m/2
Im

(
2t
√
ε2r − η2

)
. (3.19)

This correlation falls off exponentially whenever the irreversibility parameter η is less
than the above threshold (|η| < η0). The corresponding decay rate however takes two
different values in the following regimes.



Single-spin-flip dynamics of the Ising chain 10

• Regime I, corresponding to a weak violation of the equilibrium fluctuation-
dissipation theorem [3], takes place for |η| < ηc, with

ηc =
γ

2

√
1− γ2. (3.20)

Here, Cstat(t) exhibits the same decay rate as C(0, t) (see (3.8)), i.e.,

α1 = 1−
√
γ2 − 4η2. (3.21)

• Regime II, corresponding to a strong violation of the fluctuation-dissipation theo-
rem [3], takes place for ηc < |η| < η0. Here, the decay rate of Cstat(t) reads

α2 =
2|η|
γ

√
1− γ2. (3.22)

We have α2 < α1.

Both rates match at η = ηc, as well as their derivatives with respect to η, i.e.,

α1 = α2 = 1− γ2,
dα1

dη
=

dα2

dη
=

2

γ

√
1− γ2 (η = ηc). (3.23)

Figure 3 shows the η dependence of the decay rates α1 and α2. Temperature is chosen
in such a way that ηc assumes its maximal value ηc = 1/4. This occurs for γ = 1/

√
2,

where we have α1(ηc) = α2(ηc) = 1/2, η0 = 1/(2
√

2) and α2(η0) = 1/
√

2.

0 0.1 0.2 0.3 0.4 0.5
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0.6
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0
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I II OSC

Figure 3. Relaxation rates α1,2 against η for C(0, t) and Cstat(t). In region I, α1

holds for both correlation functions (in blue). In region II, α1 holds for C(0, t)
(upper curve in blue), while α2 holds for Cstat(t) (lower curve in green). The
black dotted vertical line is located at the critical value ηc, which marks a
bifurcation between two regimes of violation of the equilibrium fluctuation-
dissipation theorem. The red dotted vertical line is located at the threshold
value η0 beyond which both correlation functions oscillate. Temperature is chosen
such that γ = 1/

√
2.

The behaviour of the correlation functions C(0, t) (random initial state) and
Cstat(t) (thermalized initial state) can be summarised as a phase diagram in the γ–η
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plane, shown in figure 4. In Regime I (|η| < ηc), both correlations fall off monotonically
to zero and share the same decay rate α1. In Regime II (ηc < |η| < η0), the correlation
functions still fall off monotonically to zero, albeit with different decay rates, namely α1

for C(0, t) and α2 < α1 for Cstat(t). Finally, in the regions marked OSC (|η| > η0),
both correlation functions exhibit oscillations.

0 1
 

-0.5

0

0.5

 

OSC

OSC

II

II

I

Figure 4. Dynamical phase diagram at finite temperature in the γ–η plane
for the correlation C(0, t) and Cstat(t) on the solvability line (δ = 0). Black
curves: η = ±ηc (see (3.20)). Red lines: η = ±η0 (see (3.7)). The threshold
values occurring in figure 3 are recovered for γ = 1/

√
2.

In contrast, the equal-time correlation Cn(t) does not depend at all on the
irreversibility parameter η [3]. This is a symmetry of the solvability line, which is
(weakly) violated for generic values of the parameter δ (see section 5.3).

We refer the reader to [3] for more details on the results mentioned above and for
further investigations on two-time observables. A parallel study has been performed
both for the spherical model [11] and for the two-dimensional Ising model [12].

4. Infinite temperature

We now address new aspects of the dynamics of the model, beyond the solvability
line. In this section, which is the bulk of the present work, we focus our attention
onto the case of infinite-temperature dynamics. In spite of its simplicity, this situation
already encompasses most of the novel dynamical features of the generic model. The
rate (2.3) becomes

wn =
1

2

(
1 + ε σn(σn−1 − σn+1) + δ σn−1σn+1

)
, (4.1)

where the two free parameters δ and ε respectively encode the non-linearity and the
irreversibility of the dynamics. The parameter ε is indeed identical to η at infinite
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temperature, thus figure 1 degenerates into figure 2. It has to obey |ε| ≤ εmax, with

εmax = ηmax =
1

2
(1− δ). (4.2)

The dynamics defined by (4.1) is generically irreversible and gives birth to a
nonequilibrium stationary state, except on the line ε = 0, where it is reversible and
yields an equilibrium state. This infinite-temperature stationary state is the random
state where all spin configurations are equally probable. In other words, a random
initial state is already thermalized. The correlation functions C(0, t) and Cstat(t) are
therefore identical.

For the infinite-temperature Glauber model (δ = 0, ε = 0), the spins flip with
constant rate 1/2, and thus remain independent of each other in the course of time.
The two parameters of the model, δ and ε, deform this dynamics in a non-trivial
fashion. The very simple statics of the model indeed does not preclude the occurrence
of interesting dynamical features, which are investigated hereafter by means of a
variety of techniques. We first use two general approaches, time series expansions
(section 4.1) and mapping of the dynamics onto a quantum spin chain (section 4.2),
before we analyze some special lines and points, including in particular the solvability
line (δ = 0) (section 4.3), the reversibility line (ε = 0) (section 4.4), the SEP point
(δ = −1, ε = 0) (section 4.5), the dual SEP point (δ = 1, ε = 0) (section 4.6)
and the ASEP (microcanonical) line (δ = −1) (section 4.7). We end up with some
observations on the dynamical behaviour at a generic point (section 4.8), based on
numerical simulations, and with an investigation of the spectra of the Markov matrix
of the dynamics (section 4.9).

4.1. Time series expansion

In order to apprehend the role of the parameters δ and ε, a first approach consists
in expanding the correlation C(0, t) as a power series in time t. This technique is
presented in full detail in [13]. In the present context, it will prove useful in identifying
various symmetries of the dynamics.

Consider the correlation 〈σ0(0)PA(t)〉, where

PA(t) =
∏
n∈A

σn(t) (4.3)

is the product of the spins of an arbitrary finite set A of sites. This correlation is
non-vanishing only if the size |A| of the set A is an odd integer. It obeys the linear
differential equation

d

dt
〈σ0(0)PA(t)〉 = −2

∑
n∈A
〈σ0(0)wn(t)PA(t)〉. (4.4)

The simplest of these equations, corresponding to A = {0}, reads explicitly

d

dt
〈σ0(0)σ0(t)〉 = − 2〈σ0(0)w0(t)σ0(t)〉

= − 〈σ0(0)σ0(t)〉 − δ〈σ0(0)σ−1(t)σ0(t)σ1(t)〉
+ ε〈σ0(0)σ1(t)〉 − ε〈σ0(0)σ−1(t)〉. (4.5)

By considering larger and larger sets, such as A = {−1}, {1}, {−1, 0, 1}, and so on,
and taking averages over the random initial state, one can systematically derive the
coefficients

ak = (−1)k
dk

dtk
〈σ0(0)σ0(t)〉t=0 (4.6)
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of the time series expansion of the correlation of interest:

C(0, t) =
∑
k≥0

ak
(−t)k
k!

. (4.7)

A similar expansion can be derived for any other local observable.
Symbolic routines run on the computer allow one to derive up to 20 coefficients

of the above expansion. The first few of them read

a0 = 1,

a1 = 1,

a2 = 1 + δ2 − 2ε2,

a3 = 1 + 5δ2 − 6ε2,

a4 = 1 + 18δ2 + 3δ4 − (12 + 8δ2)ε2 + 6ε4,

a5 = 1 + 58δ2 + 31δ4 − (20 + 64δ2 + 4δ3)ε2 + 30ε4. (4.8)

For the infinite-temperature Glauber model (δ = ε = 0), we have C(0, t) = e−t

(see (4.13)) so all the coefficients ak equal unity. Generically the ak are polynomials
in δ and ε, whose degree grows linearly with the order k.

4.2. Mapping onto a quantum spin chain

Another technique which is very commonly used in investigations of kinetic Ising
models [14, 15, 16, 17] consists in mapping the dynamics of a chain of classical spins
onto the statics of a quantum chain of spin operators in the spin-1/2 representation,

Sxn =
1

2
σxn, Syn =

1

2
σyn, Szn =

1

2
σzn, (4.9)

where σxn, σyn, σzn, are Pauli matrices acting at site n.§
There are in general several ways of mapping either the dynamics of a classical

spin chain or a reaction-diffusion system onto a quantum Hamiltonian H. The review
by Schütz [17] presents a systematic way of doing so. Following this route, we obtain
in the present case

H =
1

2

∑
n

(
1− σxnσxn+1 + δ(σynσ

y
n+1 + σznσ

z
n+1) + iε(σynσ

x
n+1 − σxnσyn+1)

)
. (4.10)

On the infinite-temperature reversibility line (ε = 0), H coincides with the
Hamiltonian of the XXZ (anisotropic Heisenberg) quantum spin chain [18, 5], with δ
being the anisotropy parameter. This spin chain is known to be integrable in the
usual sense (existence of an infinity of conservation laws, applicability of Bethe Ansatz
techniques). This property will be exploited in section 4.4.

Whenever the dynamics is irreversible (ε 6= 0), (4.10) is the Hamiltonian of the
asymmetric XXZ chain, investigated in [19]. The latter Hamiltonian is still integrable,
albeit non-Hermitian. It has complex spectrum in general (see section 4.9). For
δ = −1, i.e., along the ASEP line, ferromagnetic interactions become isotropic. The
corresponding Hamiltonian [20, 21] provides the basis for investigations of the ASEP
by Bethe Ansatz techniques (see [22] for a review).

§ This notation for the Pauli matrices should not be confused with the notation σn for the classical
Ising spin sitting at site n.
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4.3. Solvability line (δ = 0)

In this section we mention briefly how the results concerning the solvability line,
recalled in section 3, simplify at infinite temperature. Equation (3.1) becomes

dCn(0, t)

dt
= −Cn(0, t) + ε(Cn+1(0, t)− Cn−1(0, t)), (4.11)

with the initial condition Cn(0, 0) = δn,0. We thus obtain, in Fourier space,

Ĉ(q, t) = e−Ω(q)t, with

Ω(q) = 1− 2iε sin q, (4.12)

and finally Cn(0, t) = e−tJn(2εt). In particular the autocorrelation reads C(0, t) =
e−tJ0(2εt). In the reversible case, i.e., for the infinite-temperature Glauber model
(δ = ε = 0), we are facing a dynamics of independent spins with rate 1/2, hence

C(0, t) = e−t. (4.13)

As soon as the dynamics is irreversible (ε 6= 0), the correlation C(0, t) exhibits an
exponential decay with unit rate, modulated by asymptotically periodic oscillations.
The dynamics is indeed always in its oscillatory regime, because the threshold η0

vanishes at infinite temperature. The first zero of C(0, t) occurs at time

t1 =
j

2|ε| , (4.14)

where j ≈ 2.404825 is the first positive zero of J0, while subsequent zeros are
asymptotically separated by the half-period

∆ =
π

2|ε| . (4.15)

4.4. Reversibility line (ε = 0)

The dynamics is reversible on the line ε = 0, where the second detailed balance
condition (2.11) holds. This infinite-temperature reversible model has the following
peculiarity. The coefficients ak listed in (4.8) appear to involve only even powers of
the non-linearity parameter δ. This suggests that the correlation C(0, t) is symmetric
under the change δ → −δ. This is indeed an exact dynamical symmetry, which can be
demonstrated as follows. Define new spin variables σ̂n, obtained from σn by flipping
every second pair of spins, according to‖

σ̂n = (−1)Int(n/2)σn. (4.16)

This construction was already used by Németh [7]. Consider now a given spin flip,
expressed both in the original variables σn and in the new variables σ̂n. If the σn flip
is of type 1 or 4 (see table 1), the σ̂n flip is of type 2 or 3, and vice versa. In the
infinite-temperature reversible case, flips of types 1 and 4 have the rate (1+δ)/2, while
flips of types 2 and 3 have the rate (1 − δ)/2. This explains the observed symmetry.
The latter is broken as soon as the dynamics is irreversible (ε 6= 0). This is testified
by the presence of the term 4δ3ε2 in the expression (4.8) of a5.

The spectrum of relaxation times of the model can be, at least in principle,
extracted from the corresponding quantum Hamiltonian H. In particular the
relaxation rate α1, characterizing the exponential fall-off of the correlation

C(0, t) ∼ e−α1t, (4.17)

‖ Int(x) denotes the integer part of x, i.e., the largest integer less than or equal to x.
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coincides with the spectral gap of H in the thermodynamic limit and in the appropriate
sector. For the reversible model, where H is the integrable Hamiltonian of the XXZ
spin chain, the gap in the relevant magnetic sector can be read off from [23]. In our
units, it reads

α1 =
√

1− δ2. (4.18)

We have thus found an exact expression for the relaxation rate of the reversible model
at infinite temperature.

For the infinite-temperature Glauber model (δ = 0), we have α1 = 1, in agreement
with the exponential decay C(0, t) = e−t of the correlation at all times (see (4.13)).
More interestingly, the above relaxation rate vanishes with a square-root singularity
at the endpoints of the reversibility line (δ → ±1). The properties of the dynamics at
these points are addressed in sections 4.5 and 4.6.

4.5. SEP point (δ = −1, ε = 0)

At this point, the dynamics looks particularly simple, as we have

w++ = w−− = 0, w+− = w−+ = 1. (4.19)

This dynamics was already considered by several authors [24, 25]. In terms of the
spin variables, it conserves the total energy E of the ferromagnetic model. It may
therefore be referred to as a microcanonical dynamics. In terms of the particles
representing domain walls, the dynamics conserves the total number M of particles. It
coincides with the dynamics of the symmetric exclusion process (SEP) [17, 26], where
the reversible diffusive moves 01 ↔ 10 occur with unit rate. The dynamics at this
point is entirely independent of temperature, in agreement with its microcanonical
character.

The SEP point is one of the endpoints of the reversibility line, where the
relaxation rate α1 vanishes (see (4.18)), pointing toward a sub-exponential decay of
the correlation C(0, t). The time series for the latter quantity involves coefficients
which are pure numbers:

a0 = 1, a1 = 1, a2 = 2, a3 = 6, a4 = 22, a5 = 90,

a6 = 396, a7 = 1848, a8 = 9108, a9 = 47400, . . . (4.20)

These numbers are not listed in the OEIS [27]. It would be interesting to give them a
combinatorial interpretation.

The spin correlation C(0, t) can be recast in the language of the SEP as follows.
The spin σ0 flips each time a particle crosses the origin. Let Q(t) be the net number of
particles which cross the origin during a lapse of time of duration t (counted positively
if moving to the right, and negatively if moving to the left) in the stationary state of
the SEP characterised by a particle density ρ (a random initial spin state corresponds
to ρ = 1/2). We have

C(0, t) = 〈(−1)Q(t)〉 = 〈eiπQ(t)〉. (4.21)

After a long time t, Q(t) will be typically large, and hence approximately given by
Q(t) ≈ ρR(t), where R(t) is the random position at time t of the particle which was
the first to the right of the origin at time t = 0, say. The distribution of R(t) has
been studied by several authors [28]. The bulk of this distribution is known to be
asymptotically a centered Gaussian, with a variance growing as

〈R2(t)〉 ≈ 2(1− ρ)

ρ

√
t

π
. (4.22)
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Taking this result literally, forgetting about the discrete nature of particles, we obtain
the rough estimate

C(0, t) ∼ exp

(
−π

2

2
ρ2〈R2(t)〉

)
∼ exp

(
−ρ(1− ρ)

√
π3t
)
. (4.23)

A stretched exponential decay of the correlation C(0, t), of the form

C(0, t) ∼ exp
(
−A(ρ)

√
t
)
, (4.24)

has indeed been predicted in [25], where the amplitude A(ρ) is expressed in terms of
the solution of a variational problem. A quantitative prediction for this amplitude,

A(ρ) =
1√
π

∑
k≥1

(4ρ(1− ρ))k

k3/2
, (4.25)

can be read off from the work by Derrida and Gerschenfeld [29], involving the Bethe
Ansatz and the use of results by Tracy and Widom.

Coming back to the Ising chain, a random initial state corresponds to a particle
density ρ = 1/2, where the amplitude A(ρ) takes its maximal value

A(1/2) =
ζ(3/2)√

π
≈ 1.473874, (4.26)

where ζ is the Riemann zeta function. Interestingly enough, the particle density
ρ = 1/2 appears as a singular point, around which the amplitude A(ρ) has a triangular
shape:

A(ρ) ≈ A(1/2)− 4
∣∣ρ− 1/2

∣∣. (4.27)

4.6. Dual SEP point (δ = 1, ε = 0)

This point, where w++ = w−− = 1 and w+− = w−+ = 0, is the other endpoint of
the infinite-temperature reversibility line. In terms of the spin variables σn, all moves
which change the ferromagnetic energy E , i.e., moves of types 1 and 4 (see table 1), are
equally allowed and take place with unit rate. In terms of the particles τn representing
domain walls, the dynamics consists in the pair creation and annihilation reactions
00↔ 11 with unit rate. This dynamics has a simple alternative description. In terms
of the new (dual) particles

τ̂n =
1

2
(1− σ̂nσ̂n+1) =

{
τn (n even),
1− τn (n odd)

(4.28)

(see (4.16)), the dynamics is again that of a SEP.
The symmetry related to the transformations (4.16) and (4.28) of spins and

particles exchanges the SEP and dual SEP points. In particular the correlation C(0, t)
is identical at both points. We recall that this symmetry only holds in the infinite-
temperature case.
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4.7. ASEP (microcanonical) line (δ = −1)

Along this whole line, we have w++ = w−− = 0, therefore the dynamics is
microcanonical. In terms of the particles representing domain walls, the dynamics
consists in the moves 01 → 10 and 10 → 01 with respective rates 1 + ε and 1 − ε.
Particles go preferentially to the left for ε > 0 and to the right for ε < 0. This
dynamics is that of the asymmetric exclusion process (ASEP). It is invariant under
the simultaneous change of ε into −ε and exchange of left and right. The reversible
dynamics of the SEP point is recovered when ε = 0. The endpoints ε = ±1 correspond
to the totally asymmetric exclusion process (TASEP) [17, 26].

The time series of the correlation C(0, t) at both TASEP points again involves
coefficients which are positive integers,

a0 = 1, a1 = 1, a2 = 0, a3 = 0, a4 = 8, a5 = 40,

a6 = 136, a7 = 392, a8 = 1032, a9 = 3912, . . . (4.29)

For arbitrary values of ε, the correlation C(0, t) is still related by the iden-
tity (4.21) to the net number Q(t) of particles which cross the origin during a lapse
of time of duration t in the stationary state of the ASEP with a particle density ρ.
A random initial spin state again corresponds to ρ = 1/2. The distribution of Q(t)
is however no longer Gaussian, as was the case for the SEP. It is indeed governed
by the non-linear Kardar-Parisi-Zhang (KPZ) theory [30]. The mean value of Q(t)
is given by the mean stationary current, i.e., 〈Q(t)〉 = Jt, with J = −2ρ(1 − ρ)ε in
our units. The magnitude of the fluctuations of Q(t) around its mean value depends
on the way it is measured. For a given particle and a given configuration of the
system at time t = 0, typical fluctuations scale as (ε2t)1/3. Their statistics are by now
well characterised [31]: they involve one of the universal laws originally discovered
by Tracy and Widom in random matrix theory. The situation is however made more
intricate by the fact that intrinsic fluctuations are masked by statistical ones, as soon
as they are averaged either over different particles and/or over different configurations
of the system at time t = 0 [32]. To the best of our knowledge, no analogue of the
results (4.24), (4.25) has been derived for the ASEP so far.

We have investigated the correlation C(0, t) by means of numerical simulations.
It is observed to exhibit a stretched exponential law of the form

C(0, t) ∼ exp
(
−A
√
t
)
, (4.30)

i.e., the same functional form as the exact result (4.24) which holds at the symmetric
SEP point (ε = 0). The amplitude A depends continuously on the irreversibility
parameter ε. The decay law (4.30) is modulated by oscillations, whose half-period ∆
also depends on ε (see figure 6 below). The exponent 1/3 characterising the anomalous
scaling of intrinsic fluctuations in one-dimensional KPZ theory does not enter (4.30).
This feature, which may seem surprising at first sight, is certainly related to the above
discussion on the nature of the fluctuations. It would be very desirable to obtain a
derivation of our conjectured result (4.30) from the vast body of knowledge on KPZ
theory.

Let us first present our numerical data for the TASEP point (ε = 1). Figure 5
shows absolute logarithmic plots of C(0, t) against time t (left) and against

√
t (right).

The left panel shows the periodic pattern of oscillations, with a first zero at t1 ≈ 1.26
and a half-period ∆ ≈ 1.84. The slope of the straight line drawn on the right panel
yields A ≈ 2.06 for ε = 1.
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Figure 5. Absolute logarithmic plots of the correlation C(0, t) at the
TASEP point. Left: plot against time t. Bar with left-right arrows: half-
period ∆ ≈ 1.84. Right: plot against

√
t. The straight line tangent to the

data has an absolute slope A ≈ 2.06.

Repeating the same analysis for several positive values of ε along the ASEP line,
we obtain the data shown in figure 6. The left panel shows the amplitude A of
the stretched exponential law (4.30) against ε. This quantity is observed to depart
continuously from the analytically known SEP value (see (4.26)), shown as a blue
square. The right panel shows the products εt1 and ε∆ against ε, where t1 is the
location of the first zero of C(0, t), while the semi-period ∆ is the asymptotic lapse
of time between two consecutive zeros. Both products hardly depend on ε. So, the
scaling laws

t1 ∼ ∆ ∼ 1

ε
, (4.31)

which hold exactly along the solvability line (see (4.14), (4.15)), also hold approxima-
tely along the ASEP line.
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Figure 6. Left: amplitude A of the stretched exponential law (4.30) along
the ASEP line, against ε. Blue square: analytically known SEP value at
ε = 0 (see (4.26)). Right: products εt1 and ε∆ along the ASEP line,
against ε.
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4.8. Generic behaviour

We now turn to a brief description of the infinite-temperature dynamics for generic
values of the parameters δ and ε inside the triangular region shown in figures 1 and 2.
The correlation C(0, t) falls off exponentially, as

C(0, t) ∼ e−α1t, (4.32)

where the decay rate α1 has a rather weak dependence on the irreversibility
parameter ε. This exponential decay is modulated by oscillations which are
asymptotically periodic in time. Here again, both the first zero t1 and the half-
period ∆ roughly follow the 1/ε law (4.31).

These features are illustrated in figure 7 for δ = −1/2, hence εmax = 3/4. Data
are only given whenever the plotted quantities can be measured with a reasonable
enough accuracy, i.e., for not too small values of the irreversibility parameter ε. Even
so, statistical errors are more important than along the ASEP line (compare figures 6
and 7). The left panel shows the decay rate α1 against ε. This quantity seems to depart
continuously from the analytically known value α1 =

√
3/2 at ε = 0 (see (4.18)), shown

as a blue square. The right panel shows the products εt1 and ε∆ against ε. These
products again exhibit a very weak dependence on ε, so the scaling laws (4.31) hold
approximately for generic values of the parameters δ and ε.
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Figure 7. Left: decay rate α1 against ε for δ = −1/2. Blue square: known
value α1 =

√
3/2 at ε = 0 (see (4.18)). Right: products εt1 and ε∆ against ε

for δ = −1/2.

4.9. Spectrum of the Markov matrix

A useful alternative way of investigating the problem consists in looking at the
spectrum of the Markov matrix which represents the generator of the stochastic
dynamics on a finite chain. This approach has already proved to be a useful tool
in several circumstances [33, 34, 35]. Here again, the shape of the spectra of Markov
matrices will provide a clear picture of the main characteristics of the dynamics,
including reversibility or integrability.

A finite system ofN sites with periodic boundary conditions has 2N configurations
{σ1 . . . σN}, that we assume to be ordered lexicographically from {+ + + · · ·} to
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{−−− · · ·}. Let P(t) denote the vector of the probabilities of these configurations at
time t. This vector obeys the differential equation

dP

dt
= MP, (4.33)

where the 2N × 2N matrix M is the Markov matrix of the problem. Its non-diagonal
entries are the transition rates between adjacent configurations (i.e., configurations
which differ by a single spin flip), while its diagonal entries are determined by the rule
that column sums vanish, ensuring the conservation of probability.

If the dynamics is reversible (ε = 0, i.e., w+− = w−+), the Markov matrix M
is symmetric and its eigenvalues are real. Otherwise M has complex spectrum in
general. Let us henceforth denote the eigenvalues of M as −Λi, with Re Λi ≥ 0. As the
dynamics obeys spin reversal symmetry, the eigenvectors of M have a definite parity,
i.e., they are either even or odd under spin reversal. Even and odd subspaces have
equal dimensions 2N−1. The eigenvalue Λ1 = 0, corresponding to the stationary state,
pertains to the even sector. The stationary state is unique, so Λ1 is non-degenerate,
except in the extremal cases (δ = ±1) which obey conservation laws. Finally, the
spectra of the Markov matrix M and of the corresponding quantum Hamiltonian H
(see section 4.2) are related as follows: the spectrum of H consists of two copies of
the spectrum of M in the even sector, while the eigenvalues of M in the odd sector
do not appear in H.

The smallest generic system consists of N = 3 sites. The corresponding 8 × 8
Markov matrix M and its eigenvalues can be written down explicitly. We have

M =



−3w++ w++ w++ 0 w++ 0 0 0
w++ −s 0 w−+ 0 w+− 0 0
w++ 0 −s w+− 0 0 w−+ 0

0 w+− w−+ −s 0 0 0 w++

w++ 0 0 0 −s w−+ w+− 0
0 w−+ 0 0 w+− −s 0 w++

0 0 w+− 0 w−+ 0 −s w++

0 0 0 w++ 0 w++ w++ −3w++


, (4.34)

where the rates w++, w+−, w−+ are given in table 1 in the infinite-temperature case
(εr = 0), and with the shorthand s = w++ + w+− + w−+. The eigenvalues of M are
as follows.

Even sector: Λ1 = 0, Λ2 = 2(1 + δ), Λ3,4 = 2− δ ± i ε
√

3.

Odd sector: Λ5,6 = 2±
√

1 + 3δ2, Λ7,8 = 1± i ε
√

3. (4.35)

These expressions are not invariant under the change δ → −δ. This symmetry of the
infinite chain indeed only holds on systems whose size N is a multiple of 4.

Let us now describe the spectrum of the Markov matrix of infinite-temperature
dynamics on larger systems. The following discussion (see the contrast between
figures 8, 9 and 10) clearly demonstrates that an investigation of these spectra provides
a very sensitive tool to detect characteristic features of the underlying dynamics, such
as integrability or irreversibility.

• Infinite-temperature Glauber model (δ = ε = 0). As already mentioned, this case
corresponds to a dynamics of independent spins. The result (4.13) generalizes
as follows. The correlation function built on any kuple of distinct spins decays
exponentially as

〈σi1(t) . . . σik(t)σi1(0) . . . σik(0)〉 = e−kt. (4.36)
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The spectrum of the Markov matrix is therefore highly degenerate [35]: it consists
of the integers k = 0, . . . , N , with the combinatorial multiplicities

µ(N, k) =

(
N
k

)
=

N !

k!(N − k)!
. (4.37)

The even (resp. odd) sector corresponds to even (resp. odd) values of k.

• Solvability line (δ = 0). Along this line, parametrized by the irreversibility
parameter ε, the eigenvalues of the Markov matrix are still given by simple
formulas. They are indeed observed to be linear combinations, with integer
coefficients, of the following complex frequencies

Ωn = 1− iln, ln = 2ε sin
nπ

N
. (4.38)

The latter frequencies are obtained by inserting into the dispersion law (4.12)
discrete quantized momenta of the form q = nπ/N , corresponding to both
periodic and anti-periodic boundary conditions. So, the real part of any eigenvalue
is still an integer k = 0, . . . , N , while its imaginary part is an integer linear
combination of the ln. It is therefore strictly proportional to ε. Figure 8 shows
the upper parts (Im Λ ≥ 0) of the spectra of the Markov matrices for N = 6 and
N = 7, with δ = 0 and ε = εmax = 1/2. The imaginary parts of the eigenvalues,
shown by horizontal lines, read in increasing order (bottom to top): For N = 6
(left): l1, l2, l3, l1 + l3, 2l2. For N = 7 (right): l3 − l2, l1 + l2 − l3, l2 − l1, l1,
l3 − l1, l1 + l3 − l2, l2, l3, l1 + l2, l2 + l3 − l1, l1 + l3, l2 + l3, l1 + l2 + l3.
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Figure 8. Upper parts (Im Λ ≥ 0) of the spectra of the infinite-temperature
Markov matrices M for N = 6 (left) and N = 7 (right) with δ = 0 and
ε = εmax = 1/2. Blue symbols: even sector. Red symbols: odd sector.
Horizontal lines: imaginary parts listed in the text.

• Reversibility line (ε = 0). Along this line, parametrized by the non-linearity
parameter δ, the spectrum of the Markov matrix is real. Figure 9 shows this
spectrum for N = 8 against δ. The plot is invariant under the change δ → −δ,
as expected as the system size is a multiple of 4. The highly degenerate integer
spectrum of the Glauber point is manifest in the middle of the plot (δ = 0). Level
crossings take place in both sectors. The lowest eigenvalue Λ = 0, corresponding
to the stationary state, is non-degenerate, except at the endpoints (δ = ±1),
where the conservation laws induce degeneracies.
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Figure 9. Spectrum of the Markov matrix M of the infinite-temperature
reversible dynamics against the non-linearity parameter δ for N = 8. Blue
lines: even sector. Red lines: odd sector.

• Generic case. For arbitrary parameter values (δ 6= 0 and ε 6= 0), the spectrum
of the Markov matrix appears as a rather structureless cloud in the complex Λ-
plane. Figure 10 shows this spectrum for N = 12 in two cases. At the TASEP
point (δ = −1, ε = 1) (left), eigenvalues tend to accumulate near Re Λ = 0.
This observation goes hand in hand with the fact that the eigenvalue Λ = 0 is
degenerate, because the dynamics conserves the total energy. At a generic point
(δ = −1/2, ε = 2/3) (right), there are fewer eigenvalues near Re Λ = 0. The
outermost part of the spectrum shows alternating blue and red stripes, which are
remnants of the ordered structure of the spectrum in the solvable case.
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Figure 10. Spectrum in the complex Λ-plane of the infinite-temperature
Markov matrix M for N = 12. Left: TASEP point. Right: a generic point
(δ = −1/2, ε = 2/3). Blue symbols: even sector. Red symbols: odd sector.
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5. Finite temperature

In this section we focus our attention onto the novel features of the finite-temperature
dynamics which were absent in the infinite-temperature situation, investigated in
section 4.

5.1. Reversibility line (η = 0)

The finite-temperature reversible dynamics exhibits several novel features with respect
to its infinite-temperature counterpart (see section 4.4).

The correlation functions C(0, t) (random initial state) and Cstat(t) (thermalized
initial state) are different from each other. The analysis of the solvable case (δ = 0)
recalled in section 3 however strongly suggests that, for a reversible dynamics, both
correlations fall off exponentially with a common decay rate α1, which depends both
on temperature and on the non-linearity parameter δ.

The first few coefficients of the time series expansion (4.7) of the correlation
function C(0, t) read

a0 = 1,

a1 = 1,

a2 = 1 + 2ε2r + δ2,

a3 = 1 + 6ε2r + 8ε2r δ + 5δ2,

a4 = 1 + 12ε2r + 6ε4r + 48ε2r δ + 2(9 + 16ε2r )δ2 + 3δ4. (5.1)

The invariance of the infinite-temperature reversible dynamics under the change
δ → −δ is broken at any finite temperature. This is testified by the presence of a
term proportional to ε2r δ in the coefficient a3 in (5.1). Therefore, at variance with
the infinite-temperature situation (see (4.18)), the decay rate α1 is not expected to
be even in δ. In particular the dynamics at the two endpoints (δ = ±1) are now
different. For δ = −1, we recover the SEP point and its microcanonical dynamics,
investigated in section 4.5, irrespective of temperature. For δ = 1, the allowed moves
are the creation and annihilation of pairs of domain walls, with respective rates 1∓ γ.
This temperature-dependent dynamics conserves the total number of dual particles
described by the occupation numbers τ̂n (see (4.28)). In the zero-temperature limit,
this non-generic dynamics becomes an interesting example of a kinetically constrained
model, which exhibits all the generic features of metastability. This model has been
investigated in detail in [36], together with various other one-dimensional examples.

The corresponding quantum Hamiltonian reads

H =
1

2

∑
n

(
1 +

v2δ − 1

1 + v2
σxnσ

x
n+1 +

δ − v2

1 + v2
σynσ

y
n+1 + δσznσ

z
n+1 +

2v(1 + δ)

1 + v2
σzn

)
, (5.2)

where we recall that v is a shorthand notation for tanhβ. This Hamiltonian was
already derived by Németh [7] (up to a global factor 2 and with a different convention
for the sign of σzn). It describes the XYZ (fully anisotropic Heisenberg) spin chain
in a uniform external field. This model is known not to be integrable in general. As
a consequence, we have no analytical prediction for the relaxation rate α1, except
in the solvable case (δ = 0), where α1 = 1 − γ (see (3.9)), and at the endpoints
(δ = ±1), where ferromagnetic interactions become isotropic, so that H becomes
invariant under spin rotations around the z axis. This symmetry goes hand in hand
with the conservation laws. As already underlined in [7], it implies the vanishing of α1
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at these points. Furthermore, the relaxation rate α1 can also be determined exactly
at a special point known as the KDH point (see section 5.4). Finally, yet other
special cases of the Hamiltonian (5.2) are integrable as they correspond to physical
realizations of Hecke algebras [37]. The latter cases however do not bring more results
on the present problem.

In order to investigate the dependence of the relaxation rate α1 on the non-
linearity parameter δ, we have measured the correlation C(0, t) by means of numerical
simulations. Figure 11 shows our results for a case of moderate temperature (v = 1/2,
i.e., γ = 4/5). The plotted values of α1 are reasonably accurate. The estimated error
bar is comparable to the symbol size on the figure. Furthermore, we have checked
that the stationary correlation Cstat(t) yields compatible values of α1 within the error
bar. The extrapolation procedure looses its accuracy near the endpoints (δ → ±1),
where α1 is known to vanish. This is to be expected, as the correlation exhibits a
crossover to the stretched exponential law (4.24) as δ → −1, and to a similar kind
of subexponential relaxation law as δ → 1. The plotted values for α1 seem to vanish
according to the same square-root law as the infinite-temperature result (4.18). They
are also compatible with the presence of a slight cusp at the solvable point (δ = 0),
shown as a blue symbol, where α1 = 1− γ = 1/5. The full curves show the outcomes
of two separate fits of the data points for δ ≤ 0 and δ ≥ 0, where α1 is assumed to be
the product of the result (4.18) by a second-degree polynomial.
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Figure 11. Relaxation rate α1 of the correlations C(0, t) and Cstat(t) on
the finite-temperature reversibility line (η = 0) against the non-linearity
parameter δ for v = 1/2, i.e., γ = 4/5. Blue symbol: exact result
α1 = 1 − γ = 1/5 in the solvable case (δ = 0). Green symbol: exact
result for the KDH point (see (5.19)). Red symbols: numerical data. Full
curves: fits (see text).
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5.2. Generic behaviour

In the generic situation of an irreversible dynamics, the most natural question is
whether the non-trivial phase diagram in the δ–η plane depicted in figure 4 subsists
at finite temperature.

We have evidenced, by means of numerical simulations, the existence of the
threshold η0 between a regime where the correlation C(0, t) falls off monotonically
and a regime where it is oscillatory. We have not addressed the more delicate question
(from a mere numerical standpoint) of the existence of the other threshold ηc, related
to the non-analyticity of the decay rate of the thermalized correlation Cstat(t).

The threshold η0 between the oscillatory and monotonic regimes has been
determined as the value of η where t1, the first zero of the correlation C(0, t), diverges.
Figure 12 shows 1/t21 against η2 for γ = 1/2 and δ = −0.7. This way of analyzing
data is inspired from the analytical result (3.14) in the solvable case (δ = 0). The
data points (red symbols) exhibit an almost perfect linear law. A quadratic fit (full
curve) yields the threshold η0 = 0.162.
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Figure 12. Plot of 1/t21 against η2 for γ = 1/2 and δ = −0.7. Red symbols:
data points obtained by numerical simulation. Full curve: quadratic fit
yielding the threshold η0 = 0.162.

Repeating the same analysis for several values of δ, we obtain the phase diagram
in the δ–η plane shown in figure 13, for γ = 1/2. Symbols show the dependence
on δ of our prediction for the threshold η0 (and its symmetric counterpart −η0). The
oscillatory regions (|η| > η0) are marked OSC. The threshold η0 is observed to be
nearly constant for δ ≥ 0 and equal to its value η0 = γ/2 = 1/4 in the solvable case
(δ = 0) (see (3.7)), shown as green squares. The fit (full curve) suggests that the
threshold vanishes with a square-root singularity,

η0 ∼
√

1 + δ, (5.3)

as the SEP point is approached (δ → −1).
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Figure 13. Phase diagram in the δ–η plane for γ = 1/2. Red symbols: data
for the threshold ±η0. Full black curves: fits suggesting the square-root
law (5.3). Green squares: exact values ±η0 = ±1/4 for δ = 0 (see figures 1
and 2).

To close, let us underline that the existence of the threshold η0 in the δ–η plane
is not visible on the spectra of Markov matrices, which always look like the infinite-
temperature spectra shown in figure 10.

5.3. Equal-time spin-correlation function

Another novel feature of finite-temperature dynamics is the non-triviality of the equal-
time spin-correlation function Cn(t) (see (1.6)), starting from a random initial state.

Here we focus our attention onto the correlation between neighboring spins
C1(t) = 〈σ0(t)σ1(t)〉, i.e., (minus) the ferromagnetic energy density per site (or bond).
At infinite temperature, for an arbitrary spatially homogeneous initial state, this
quantity obeys the closed evolution equation

dC1(t)

dt
= −2(1 + δ)C1(t). (5.4)

For a random initial condition (C1(0) = 0), we thus recover that C1(t) remains equal
to zero all throughout its evolution.

At finite temperature, in contrast, C1(t) increases monotonically from zero
towards its equilibrium value C1 = tanhβ (see (1.7)). Its time series expansion reads

C1(t) =
∑
k≥1

bk(−1)k−1 t
k

k!
, (5.5)

with

b1 = γ(1 + δ),

b2 = 2γ(1 + δ)2,



Single-spin-flip dynamics of the Ising chain 27

b3 = γ(1 + δ)3(4 + γ2),

b4 = 2γ(1 + δ)3(4(1 + γ2)(1 + δ)− γ2), . . . (5.6)

It is striking to observe that there is no dependence in the irreversibility
parameter η before the 7th order. At this order, b7 contains a term of the form
8γ3(1 + δ)3δ2η2. Similarly, b8 contains a term of the form 24γ3(1 + δ)3(8 + δ)δ2η2,
while b9 contains one term in η2 and one term in η4. As it turns out, η2 is always
accompanied by δ2, as the correlation Cn(t) does not depend on the irreversibility
parameter η at all in the solvable case (δ = 0) (see section 3.2). A similar very weak
effect of the irreversibility on equal-time spin correlations has been observed both
numerically and by short-time expansions for the two-dimensional Ising model in its
high-temperature phase [12].

At high temperature, the full temporal behaviour of C1(t) can be derived as
follows. To first order in γ, the coefficients of the time series expansion (5.5) assume
the simple form bk ≈ 2k−1(1 + δ)kγ, irrespective of η. This has been checked up to
the 9th order. Hence

C1(t) ≈ γ

2

(
1− e−2(1+δ)t

)
. (5.7)

The asymptotic value C1 ≈ γ/2 agrees with the exact result, i.e., v, as γ ≈ 2v ≈ 2β
to leading order at high temperature. The above result suggests that the convergence
rate αE of the energy, such that

tanhβ − C1(t) ∼ e−αEt, (5.8)

takes the simple value

αE = 2(1 + δ) (5.9)

to leading order in the high-temperature regime. This result coincides with the
prefactor in the right-hand side of (5.4). It vanishes when δ = −1, as should be,
since this corresponds to the SEP point whose microcanonical dynamics conserves the
total energy. Finally, the rate αE is also mentioned in [23] as being one of the gaps
governing the low-temperature thermodynamics of the quantum XXZ model.

At finite temperature, we have no analytical prediction for αE in general, which
is expected to have a (weak) dependence on the irreversibility parameter η. In the
solvable case (δ = 0), we have αE = 2α1 = 2(1− γ), irrespective of η [3].

5.4. A special point on the reversibility line

The dynamics simplifies for the special point considered by Kimball [38] and by Deker
and Haake [39], where

δ =
γ

2− γ , (5.10)

yielding

wn =
1

2

(
1− γ

2− γ (σn(σn−1 + σn+1)− σn−1σn+1)

)
. (5.11)

In the δ–ε plane, this point is located at the intersection of the reversibility line
with the second bisectrix, and therefore obeys the condition δ = −εr. The KDH
point is alternatively characterised by the fact that three of the four rates coincide:
w++ = w+− = w−+, as can be seen on (5.11).
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For an arbitrary reversible dynamics, and an arbitrary magnetized initial state,
the evolution equation for the magnetization profile 〈σn〉 reads

d

dt
〈σn〉 = −〈σn〉 − εr(〈σn−1〉+ 〈σn+1〉)− δ 〈πn〉, (5.12)

where

πn = σn−1σnσn+1. (5.13)

The evolution equation of the latter quantity reads

d

dt
〈πn〉 = −3〈πn〉 − 2εr(〈σn−1〉+ 〈σn+1〉)− δ 〈σn〉+ 〈φn〉, (5.14)

where

φn = −εr(σn−2σnσn+1 + σn−1σnσn+2)− δ(σn−1σn+1σn+2 + σn−2σn−1σn+1). (5.15)

Consider a system of N sites with periodic boundary conditions. If εr = −δ, the
spatial sum of the φn vanishes identically. Defining

M(t) =
1

N

∑
n

〈σn〉, Π(t) =
1

N

∑
n

〈πn〉, (5.16)

we obtain from (5.12) and (5.14) two coupled linear equations for these quantities:

d

dt

(
M(t)
Π(t)

)
=

(
2δ − 1 −δ

3δ −3

)(
M(t)
Π(t)

)
. (5.17)

The corresponding decay rates are the opposites of the eigenvalues of the above matrix,
i.e. [38, 39, 40],

α± = 2− δ ±
√

1 + 2δ − 2δ2 =
4− 3γ ±

√
4− 3γ2

2− γ . (5.18)

For a ferromagnetic model, it is physically reasonable to assume that the spin
autocorrelation C(0, t) falls off at the same rate as the total magnetization M(t).
This line of thought yields the identity

α1 = α−. (5.19)

For γ = 4/5, the KDH point is at δ = 2/3 and (5.19) reads α1 = (4 −
√

13)/3 =
0.131482. This prediction, shown in figure 11 as a green symbol, agrees with our
numerical results.

It has been noticed in [40] that a similar construction works for the reversible
dynamics with

δ = − γ

2 + γ
. (5.20)

Let us point out that this choice corresponds to the Metropolis dynamics:

wn = min(1, e−β∆E)

=
2 + γ

2(1 + γ)

(
1− γ

2 + γ

(
σn(σn−1 + σn+1) + σn−1σn+1

))
. (5.21)

Here again, three of the four rates coincide: w+− = w−+ = w−−. The Metropolis point
is located at the intersection of the reversibility line with the first bisectrix (εr = δ).
For γ = 4/5, as in figure 11, we thus get δ = −2/7. At this point, unfortunately, the
quantities whose decay rates can be calculated by the above reduction technique are
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the staggered magnetization and the staggered three-spin product [40], which are not
relevant to the dynamics of local observables in a ferromagnetic model.

To close, let us notice that the quantum Hamiltonian (5.2) does not have any
special feature at the KDH and Metropolis points. In particular it seems to remain
non-integrable. Further considerations on the subtle relationship between partial
solvability and integrability in quantum chains and related matters can be found
in [41]. The explicit examples analyzed there correspond to cases of free fermions.
They are thus analogous to our solvable models.

6. Discussion

The present work contains a detailed investigation of the generic dynamics of the
ferromagnetic Ising chain introduced in [2, 3, 4]. This generic one-dimensional
kinetic Ising model extends the Glauber model [1] to a two-parameter space
corresponding to non-linearity and irreversibility, respectively measured by the
deformation parameters δ and η. While the introduction of the non-linearity
parameter δ is already present in [1], the introduction of the irreversibility parameter η
is a novelty. This generic dynamics is also the most general single-spin-flip
dynamics which fulfills, besides global balance with respect to the ferromagnetic
Hamiltonian (1.1), spin reversal symmetry and a spatially homogeneous dynamical
influence of nearest neighbours only.

The present study has the virtue of organizing many partial results which were
scattered in the literature concerning the role of the non-linearity parameter δ for the
reversible chain, and of unveiling novel features when the irreversibility parameter η
is simultaneously present. In view of the extensive body of knowledge on kinetic Ising
models, especially in one dimension, since Glauber’s seminal work in 1963 (see e.g. the
reviews in [42]), it may appear surprising that only recently has this generic kinetic
Ising model been considered.

At infinite temperature, where Glauber dynamics accounts for independent spins,
the presence of deformation parameters already has drastic consequences. The key
observable is the overlap C(0, t) between the initial spin configuration and the current
configuration at time t. Along the reversibility line, the non-linearity slows down the
dynamics. The dependence of the relaxation rate of C(0, t) on δ is given exactly. An
extreme non-linearity parameter (δ = −1) yields a microcanonical dynamics, where the
dynamics of domain walls is described by a SEP. The stretched exponential relaxation
of C(0, t) is also fully characterised. All along the reversibility line, an infinitesimal
amount η of irreversibility induces an oscillatory relaxation of C(0, t), with the period
of oscillations diverging as 1/|η|. With irreversibility, the SEP domain wall dynamics
becomes an ASEP dynamics, featuring a stretched exponential relaxation modulated
by oscillations. Investigating the spectrum of the Markov matrices of finite chains
directly yields a clear picture of the main features of the dynamics, such as reversibility
or integrability (see figures 8 to 10).

At finite temperature, the main novel feature is the occurrence of two successive
thresholds in the irreversibility parameter η. This phenomenon was first uncovered by
analytical means on the solvability line δ = 0 [3]. Beyond a first threshold (η = ±ηc),
a random and a thermalized initial states yield different spin relaxation times. This
threshold also marks the onset of a strong violation of the equilibrium fluctuation-
dissipation theorem. Beyond a second threshold (η = ±η0), all two-time correlation
functions exhibit an oscillatory relaxation. Figure 4 summarizes the phase diagram in
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the γ–η plane for these correlation functions. An analogous phase diagram is expected
to prevail for generic parameter values. In the present work we restricted the study
to the second threshold, whose presence was demonstrated by simulations.

The qualitative picture sketched above has been complemented by a good deal
of quantitative predictions, coming from a variety of approaches including numerical
simulations, time series expansions, and the spectra of Markov matrices and quantum
spin Hamiltonians.
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