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Abstract

The subject of this thesis is the coupling of quantum fields to a classical gravi-
tational background in a semiclassical fashion. It contains a thorough introduction
into quantum field theory on curved spacetime with a focus on the stress-energy
tensor and the semiclassical Einstein equation. Basic notions of differential geometry,
topology, functional and microlocal analysis, causality and general relativity will be
summarised, and the algebraic approach to quantum field theory on curved spacetime
will be reviewed. The latter part contains an introduction to the framework of locally
covariant quantum field theory and relevant quantum states: Hadamard states and,
on cosmological spacetimes, adiabatic states. Apart from these foundations, the
original research of the author and his collaborators will be presented:

Together with Fewster, the author studied the up and down structure of circular
and linear permutations using their decomposition into so-called atomic permutations.
The relevance of these results to this thesis is their application in the calculation of
the moments of quadratic quantum fields in the quest to determine their probability
distribution.

In a work with Pinamonti, the author showed the local and global existence
of solutions to the semiclassical Einstein equation in flat cosmological spacetimes
coupled to a massive conformally coupled scalar field by solving simultaneously
for the quantum state and the Hubble function in an integral-functional equation.
The theorem is proved with the Banach fixed-point theorem using the continuous
functional differentiability and boundedness of the integral kernel of the integral-
functional equation.

Since the semiclassical Einstein equation neglects the quantum nature of the
stress-energy tensor by ignoring its fluctuations, the author proposed in another work
with Pinamonti an extension of the semiclassical Einstein equations which couples
the moments of a stochastic Einstein tensor to the moments of the quantum stress-
energy tensor. In a toy model of a Newtonianly perturbed exponentially expanding
spacetime it is shown that the quantum fluctuations of the stress-energy tensor induce
an almost-scale-invariant power spectrum for the perturbation potential and that
non-Gaussianties arise naturally.
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Introduction

The subject of this thesis is the interplay between quantum matter and gravity, i.e., the
coupling of quantum fields to a classical gravitational background in a semiclassical
fashion. Semiclassical gravity describes physics midway between the classical regime
covered by the Einstein equation and a full-fledged quantum gravity. However, while
no theory of quantum gravity is universally accepted, quantum field theory on curved
spacetimes offers an approach to the ‘low’-energy and ‘small’-curvature regime based
on the firm foundation of quantum field theory and Lorentzian geometry. Despite of
the employed approximation, it has made several successful and relevant predictions
like the Fulling-Davies-Unruh effect [67, 105, 214], the Hawking effect [100, 118],
cosmological particle creation [171] and the generation of curvature fluctuations
during inflation [108, 120, 161, 202]. It is generally expected that a successful theory
of quantum gravity also describes these phenomena and, in fact, they are used as
criteria to select candidate theories.

Although quantum gravity is one motivation for studying quantum field theory
on curved spacetime, it is not the only reason. While quantum field theory is typically
formulated on a Minkowski background, the Universe appears well-described by a
curved spacetime and Minkowski spacetime provides only a local approximation.
However, even the slightest gravitational interaction causes many of the basic as-
sumptions of ‘standard’ quantum field theory on Minkowski spacetime to fail and in
important situations, like inflation, the departure from a flat background is not small
but causes important effects that cannot be neglected. From this point of view it
would be conceptually very unsatisfying if it was not possible to successfully formulate
quantum field theory on a curved spacetime in such a way that it reduces to standard
QFT in the case of a flat background.

Attempts to formalize quantum field theory in a mathematically exact manner
have led to many significant insights into the structure of quantum fields: the CPT
theorem, the spin-statistics connection, and superselection sectors to name a few,
see e.g. [110, 206]. By studying aspects of semiclassical gravity and quantum field
theory on curved spacetimes in the rigorous framework of algebraic quantum field
theory, one hopes to gain deep and novel insights into the subtle nature of quantum
fields on curved spacetimes and at the same time often prove theorems that have
also a purely mathematical value. Moreover, as a consequence of the correspondence
principle, it is highly plausible that a careful investigation of the semiclassical theory
gives us further hints about the structure of an eventual theory of quantum gravity.
In particular, one can expect that observations in cosmology are already described to
high precision within semiclassical Einstein gravity and that tight limits can be placed
on the creation of extreme objects such as wormholes in generic spacetimes.

In the formulation of quantum field theory on Minkowski spacetime one usually
starts the with the unique Poincaré-invariant vacuum state as the ground state in
a Fock space motivated by the particle interpretation. On a generic spacetime, due
to the absence of any symmetries, no such distinguished state can exist and, as
illustrated in the Unruh and the Hawking effect, no unique particle interpretation is
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available. This suggests that the starting point for a quantum field theory on curved
spacetimes should be a formulation that does not require a preferred state. For
this reason, rigorous quantum field theory on curved spacetimes is often discussed
within the algebraic approach to quantum field theory [109-111]. In the algebraic
approach one begins by considering an abstract algebra of quantum fields, which
respects conditions of locality (quantum fields only depend on the local structure of
the spacetime) and causality (causally separated quantum fields (anti)commute).

A modern formulation of QFT on curved spacetimes is the framework of locally
covariant quantum field theory [46]. It helped the development of several important
contributions to QFT on curved spacetimes like renormalization and perturbative
algebraic quantum field theory [43, 101, 102], superselection sectors on curved
spacetimes [47], abstract and concrete results on gauge theories [30-32, 59, 86, 194]
and many other results. In this framework one considers quantum field theories as
covariant functors from a category of background structures to a category of physical
systems. In most simple examples the background structure is given by a category of
globally hyperbolic spacetimes with so-called hyperbolic embeddings as morphisms,
but the background structure can be replaced by anything reasonable that allows
for a categorical formulation, see [2, 177] for examples of alternative choices. A
suitable category representing physical systems for algebraic quantum field theory
is a category of *-algebras so that a quantum field theory maps a spacetime to an
algebra of observables in that spacetime.

However, while states, viz., positive linear functionals on a *-algebra, are not
necessary for the formulation of the theory, they are indispensable if one wants to
make quantitative predictions. Given a state it is possible to return to a Hilbert
space picture as a representation of the *-algebra of observables via the Gel’fand—
Naimark-Segal theorem. Not all possible states on the algebra of quantum fields
are of equal physical importance. Physically and mathematically preferred states
are the so-called Hadamard states, which have an ultraviolet behaviour analogous
to that of the Minkowski vacuum. Hadamard states are for example required for a
reasonable semiclassical Einstein equation; otherwise the fluctuations of the quantum
stress-energy tensor are not even distributions and the semiclassical Einstein equation
becomes physically meaningless, because we equate a quantity with a probabilistic
interpretation and ‘diverging’ fluctuations with a classical non-fluctuating quantity.
Major advances in quantum field theory on curved spacetime were achieved after it
was realized in [181] that all Hadamard states satisfy a constraint on the wavefront
set of the n-point functions of the state. This constraint was called microlocal
spectrum condition in allusion to the condition from Wightman quantum field theory
on Minkowski spacetime. In particular, this discovery led to the formulation of a
rigorous theory of renormalization and a concept of normal ordering on curved
spacetimes [44, 45, 123, 124].

The developments of quantum field theory on curved spacetimes were often
driven by problems related to the semiclassical Einstein equation. In the semiclassical
Einstein equation contains instead of a classical stress-energy tensor the expectation
value of a quantum stress-energy tensor :T,;: in a certain state cw:

8nG
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The quantum stress-energy tensor may be obtained by replacing the products of
classical fields in the classical stress-energy tensor by normally ordered products of
quantum fields. This requires the notion of normal ordering on curved spacetimes
mentioned above. The resulting quantum stress-energy is not uniquely fixed but, due
to the non-uniqueness of the normal ordering prescription, subject to a renormaliza-
tion freedom, which is a polynomial of local geometric quantities, whose coefficients
are called renormalization constants.

Quantum field theory on curved spacetimes is best understood in a few special
cases of highly symmetric spacetimes. In particular quantum fields on Friedmann-
Lemaitre-Robertson-Walker spacetimes are well-studied as they are important in
quantum cosmology. Nevertheless, already in this simplified case many interesting
effects occur, for example the creation of particles in an expanding spacetime [171].
Due to the developments discussed above, in recent years computations of quantum
field theoretic effects in cosmological spacetimes and their backreaction to the space-
time via the semiclassical Einstein equation have come into the reach of the algebraic
approach to QFT on curved spacetimes.

A first step towards doing cosmology in algebraic QFT on curved spacetimes is
often the construction of appropriate states. Noteworthy recent works are the holo-
graphic (or bulk-to-boundary) construction [57, 61-65, 1, 157, 159] and the states
of low energy [165, 210] (see also [70, 71]) which are a Bogoliubov transformation
of adiabatic states [134, 146, 172]. Given a state, one can study the semiclassical
Einstein equation to study the backreaction effects of quantum matter fields; this
has been done, for example, in [56, 66, 112, 114]. Going one step further, one can
attempt to solve this semiclassical Einstein equation, i.e., finding a spacetime and a
state on that spacetime so that the equation holds. This problem was analyzed for
cosmological spacetimes in [83, 178, 3]. Other works studied linearized gravity [92,
113], inflation [81] (see also [4] for a non-standard approach) and other cosmologi-
cal models [221] in the algebraic framework. Furthermore, several researches have
studied thermal aspects of quantum fields on curved spacetime, [49, 82, 196, 197] to
name a few, which are arguably of importance to quantum cosmology.

In this thesis several aspects of the works cited above will be summarized and,
when necessary, developed further. To give this work a clearer structure, it is divided
into three parts.

The first part is mostly intended to lay the foundations of the remaining two parts.
In Chap. 1 a rapid summary of subjects from differential geometry relevant to QFT
on curved spacetimes is presented but it also contains a few sections and remarks on
subjects which are usually not covered in standard text books on differential geometry,
e.g. bitensors. Chap. 2 focuses on the particular case of Lorentzian geometry including
notions of causality, the classical Einstein equation and cosmology. Analysis, in the
broadest sense, will be the subject of Chap. 3 and in that chapter various results on
topology, *-algebras, functional derivatives and their relation to the Banach fixed-
point theorem, microlocal analysis and wave equations will be summarised. In favour
of not jumping back and forth between different subjects in these three sections I
chose a rather unpedagogical order and the reader should be aware that there are
many interrelations between the various sections. This should, however, not be a too
large an obstacle for the reader. Chap. 4 concerns the enumerative combinatorics
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of permutations and appears somewhat unrelated to most of this thesis. However,
combinatorics is very important in many applications of quantum field theory and the
results presented in this chapter are important in the moment problem for quadratic
quantum fields [90]. The contents of this last chapter represent work by the author
in collaboration with Fewster and were published in [95].

In the second part of this thesis several aspects of quantum field theory on
curved spacetimes will be discussed. It begins with an introduction to the categorical
framework of locally covariant quantum field theory with an emphasize on the field
algebra of Klein—Gordon-like quantum fields in Chap. 5. In Chap. 6 we discuss
quantum states and in particular the construction of adiabatic states of cosmological
spacetimes and the holographic construction of Hadamard states on asymptotically
flat spacetimes.

The third and last part of this thesis represents the largest portion of novel research
done during the authors Ph.D. studies; here the semiclassical Einstein equation will
be analyzed in detail. The basic notions including the stress-energy tensor for the
scalar field and its renormalization will be introduced in Chap. 7. In Chap. 8 the
proof of the author and Pinamonti [3] on the local and global existence of solutions
to the semiclassical Einstein equation will be presented. Finally, in the last chapter of
this thesis (Chap. 9), the fluctuations of the stress-energy tensor will be analyzed and
how their backreaction to the metric may be accounted for; this work in collaboration
with Pinamonti was already presented in [4].

This thesis will be concluded with some final remarks on the research presented
above in the conclusions. Following this the cited references may be found in the
bibliography, starting with the works (co)authored by the present author.



Foundations

Zudem ist es ein Irrtum zu glauben, dafs die Strenge in der Beweisfiihrung
die Feindin der Einfachheit wdre. An zahlreichen Beispielen finden wir im
Gegenteil bestdtigt, dafs die strenge Methode auch zugleich die einfachere
und leichter fafsliche ist. Das Streben nach Strenge zwingt uns eben zur
Auffindung einfacherer Schlufsweisen; auch bahnt es uns hdufig den Weg
zu Methoden, die entwickelungsfdhiger sind als die alten Methoden von
geringerer Strenge.
— David Hilbert, “Mathematische Probleme” (1900), p. 257.






Differential geometry

Summary

This chapter is mostly a summary of some common definitions and standard results
on differential geometry and most of its content can be safely skipped by a reader
well acquainted with the topic. Proofs are omitted everywhere except in the last
section and may be found in any text book on differential geometry. Nevertheless,
the author has attempted to present the material in such a way that many statements
should become self-evident, although, as always, care should be taken.

In the first section (Sect. 1.1) the basic theory of differentiable manifolds and
vector bundles is summarized. Here the notions of coordinates, maps between
manifolds, vector bundles and sections, the (co)tangent bundle, (co)vectors and
(co)vector fields, curves, tensor and exterior tensor product bundles, bundle metrics,
frames, differential operators, and the index notation are explained. The second
section (Sect. 1.2) is concerned with the definition of connections on vector bundles
and the objects that follow from this. That is, it discusses the notions of curvature,
geodesics, and the slightly unrelated concept of Killing vector fields. Differential
forms and integration are introduced in the third section (Sect. 1.3). In particular we
will introduce the de Rham cohomology, the Hodge star and the dual of the exterior
derivative, the codifferential, which leads to the definition of the Laplace-de Rham
operator, and close with a short discussion of integral manifolds.

In the presentation of these three sections the author follows partially that of [ 142]
and also [6], but these standard definitions may be found in many places in the
literature.

The fourth and last section (Sect. 1.4) treats a more obscure topic: bitensors.
Bitensors are already introduced in an abstract manner in Sect. 1.1.6; a simple, yet
important, example are biscalars: functions on the product M x M of a manifold M.
In this last section concrete and important cases of bitensors such as Synge’s world
function and the van Vleck-Morette determinant are discussed. It will also form the
foundation for the discussion of the Hadamard coefficients in Sect. 6.1.3. An excellent
resource on bitensors is the review article [179], which contains most of the first
part of this section. The second part of this section is concerned with computational
methods that help the calculation of coincidence limits of bitensors. Here we will
discuss the semi-recursive Avramidi method developed in [169]. We close this section
with a recursive method to calculate the coefficients of an asymptotic expansion of
Synge’s world function in coordinate separation. To the authors knowledge, this
simple and efficient method has never been fully developed but traces of it may be
found in [168].
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Figure 1.1. Two overlapping charts and their transition map.
1.1 Differentiable manifolds and vector bundles

A topological manifold of dimension n is a second-countable Hausdorff space M that
is locally homeomorphic to R" (i.e., each point of M has a neighbourhood that is
homeomorphic to an open subset of R™). We often omit the dimension of the manifold
and simply say: M is a topological manifold.

Since a topological manifold M is locally homeomorphic to R", we can assign
coordinates to points of M in each open neighbourhood U € M: A (coordinate) chart
of M is a pair (U, ) which gives exactly such a homeomorphism

¢:U—oU)CRY

we call U its coordinate neighbourhood. The component functions (x!,...,x") = ¢
are called (local) coordinates on U.

An atlas A of M is a family of charts (U, ¢;);ey Which cover M. If any two over-
lapping charts (U, ¢), (V,4) in an atlas are smoothly compatible, viz., the transition
map

Yo lipUNV)—y(UNV)

is a smooth, bijective map with a smooth inverse (Fig. 1.1), we say that the atlas is
smooth. We further say that a smooth atlas A on M is maximal if it is not properly
contained in any larger smooth atlas so that any chart which is smoothly compatible
with the charts of A is already contained in A.

Finally, a smooth manifold is a pair (M,A), where M is a topological manifold
and A a maximal smooth atlas. A maximal smooth atlas might not exist and, if it exists,
it is not necessarily unique as shown, e.g., by the existence of exotic R*. Nevertheless,
usually a canonical smooth atlas is understood from context. Then we omit the
explicit mention of the maximal smooth atlas A and say: M is a smooth manifold.
One can replace the requirement of the transition maps in an atlas to be smooth
by requiring that the transition maps are C¥, (real-)analytic or complex-analytic (if
dim M = 2n, we have R*" ~ C") thus arriving at the notions of ck, (real-)analytic
and complex-analytic manifolds.
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<

Figure 1.2. A map between two manifolds.

1.1.1  Smooth maps

A real-valued function f : M — R on a smooth manifold M is a CX, smooth or analytic
function if there exists a chart (U, ) containing x at every x € M such that the
composition f o ¢! is CX, smooth or analytic on the image ((U); the spaces of these
function are denoted CX(M), C*(M) and C®(M) respectively.

More generally, a map f : M — N between two smooth manifolds M and N is C¥,
smooth or analytic, if there exist charts (U, ¢) at x € M and (V,)) at f(x) € N such
that the composition

Yofop lip(U)—y(V)

is C k, smooth or analytic (Fig. 1.2). If M and N have equal dimension and f is a
homeomorphism such that f and its inverse f ! are smooth, we call f : M — N
a diffeomorphism. Whenever there exists such a diffeomorphism between, they are
diffeomorphic; in symbols M ~ N.

1.1.2 Vector bundles

A (smooth) K-vector' bundle of dimension n

n:E—-M

consists of two smooth manifolds E, the total space, and M, the base (space), and
a smooth surjection 7, the bundle projection, that associates to every x € M a n-
dimensional K-vector space E, = m~'({x}), the fibre of E at x (Fig. 1.3). Moreover,
we require that around every x there exists an open neighbourhood U € M and a
diffeomorphism ¢ : 771(U) — U x E, such that its projection to the first factor gives
the bundle projection: pr; o ¢ = m; ¢ is called local trivialization of the vector bundle.
A trivialization of a vector bundle over its whole base is called a global trivialization.

A smooth map f : E — F between two K-vector bundles ny; : E — M and 7ty :
F — N is a (vector) bundle homomorphism if there exists a smooth map g: M — N

1K will always be either R or C. In particular, K is a field of characteristic 0.
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such that Ty of = gomy, and the restriction of the map to each fibre f [y : E, — Fg(y)
is K-linear. In other words we require that the diagram

E F
TEMJ lTCN
M —N

8

f

_

commutes and that f is K-linear map on each fibre. By definition, if f is a bundle
homomorphism, then g is given by g =ty o f o 7'51;11.

Given an open subset U C M, we can restrict 7w : E — M to a vector bundle 7t :
E; — U by setting E; = n~1(U) and 7;; = nt[,. More generally, a subset E’ C E such
that 7] : E' — M is a vector bundle and E’ N =~ !(x) is a vector subspace in 7~ (x)
for all x € M is called a vector subbundle of E. If each fibre of E/ has dimension k, we
say that E’ is a rank-k subbundle of E. For a subbundle n’ : E’ — M of E we define
the quotient bundle E/E’ as the disjoint union | |, ,, E,/E.. of the quotient spaces of
the fibres.

If M,N are smooth manifolds with a smooth map ¢ : M — N and a vector-
bundle E — N, we can define on M the pullback bundle ¢*E as the bundle whose
fibres over M are given by (Y“E), = E(, for each x € M.

A section of a vector bundle E is a continuous map f : M — E such that mof =idy,
(Fig. 1.3); the space of sections of a vector bundle E is denoted by I'(E). We denote
by I'"(E) the space of C" sections (C™ maps f : M — E) of the vector bundle E, while
the spaces of compactly supported sections are indicated by a subscript 0, e.g., I';°(E).
Furthermore, a local section over an open subset U C M is a section of the vector
bundle Ej;.

If N is another smooth manifold with a vector-bundle F — N and there exists a
smooth map v : M — N, the pullback section Y*f € ¢*F of f € I'(F) is defined as
the section Y*f = f o). The opposite of the pullback is achieved by the pushforward
if 1 is a diffeomorphism. Namely, we will say that 1p,h = ho ™! is the pushforward

Figure 1.3. A vector bundle and a section.
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Figure 1.4. The tangent space of a manifold at a point and a tangent vector.

section of h € I'(E). If h is compactly supported in a region U C M, it suffices that v
is a diffeomorphism onto the image of U; outside of 1(U) we set ¢k identical to
zero.

1.1.3 Tangent bundle

Let M be a smooth manifold. A (tangent) vector at x € M is a linear map v : C*(M) —
R that satisfies the Leibniz ‘product’ rule

v(fg)=f(x)vg+g(x)vf

for all f,g € C*°(M). The set of all tangent vectors constitutes a vector space T,,M
called the tangent space to M at x; it has the same dimension as the base manifold M
for each x € M. Note that, if a smooth manifold M is also a vector space, then we
can identify it with its tangent space, i.e., M ~ T, M at each point x, which justifies
to the geometric visualization of the tangent space (Fig. 1.4).

The vector bundle TM — M with fibres T, M at x is the tangent bundle of M. In
the special situation where the n-dimensional smooth manifold M can be covered by
a single chart, TM is diffeomorphic to M x R".

The sections I'(T M) of the vector bundle are called vector fields. Applying a vector
field v € I'(TM) to a function f € C*°(M), we obtain a new function (vf)(x) — v, f,
viz., a vector field defines a linear automorphism on the smooth functions called a
derivation. This is exactly the Lie derivative £, f of a function f € C*(M) along a
vector field v: (2, f)(x) = (vf)(x). The Lie derivative &, w of a differentiable vector
field w with respect to another differentiable vector field v is another vector field
such that

Lw=[v,w]=vow—wov

when applied to smooth functions. It satisfies the Leibniz rule and the Jacobi identity
Z,(w) =& w+fLw, L lv,wl=[ZLy,w]l+[v,Z,w]
for all f € C*°(M) and vector fields u,v,w € '*(TM).

Given two smooth manifolds M, N and a smooth map F : M — N, we can define
at each point x € M the tangent map or differential of F at x as the linear map

T.F : T,M — Tp(N,
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Figure 1.5. The tangent map at a point.

see also Fig. 1.5, which is for every v € T, M and f € C*°(M) the derivation

T F)(f) =v(f o F).

The tangent maps of F at all points taken together form TF : TM — TN, the (global)
tangent map or differential of F. If N =K, i.e., F is a smooth function on a manifold,
we note that dF = TF is the usual differential.

If F is even a diffeomorphism, then TF defines a bijection between the vector
fields on M and N. In this case one can define the pushforward F,v of a vector field v
on M by F as the vector field on N given at each x € N by

(Fov)y = Tp10)F (VE-100)) -

Clearly, this is generally not well-defined if F is not a diffeomorphism. Using that F is
invertible, a pullback F*w of a vector field w on N can be defined as the inverse of
the pushforward, namely,

F'w=(F H,w.

The tangent map allows us to single out an important type of maps between
manifolds: Immersions are maps F : M — N such that TF is injective; if in addition
F is injective and a homeomorphisms onto its image, then it is called an embedding.
Consequently we say that a subset S C M is an immersed submanifold if it is a
topological manifold and the inclusion S «— M is an immersion; if the topology of S
is the subspace topology and the inclusion is an embedding, then S is called an
embedded submanifold. Observe that the tangent space T, S of a submanifold S ¢ M
is a subspace of T, M at every point x € S. We can then say that a vector field v is
tangent to S if v, € T,.S at every point x € S.

1.1.4 Curves

A parametrized curve on a smooth manifold M is a map y : I — M from a connected,
usually open, interval I C R into the manifold.

A curve y : [a,b) — M is called inextendible if there exists a sequence t, converg-
ing to b such that y(t,) does not converge. This notion readily extends to left-open
domains and open domains.

The velocity y(t) at t of a differentiable parametrized curve v : [ — M, where
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I C R is an interval, is the vector

o d
7(t) = TJ(ED €ET,»HM.

Working in the opposite direction, we can try to find a curve y, whose velocity at
every point is determined by a given vector field v:

7(£) =vy(0)- (1.1

Such a curve 7y is called an integral curve of v.

For a sufficiently small interval I around 0 a unique integral curve starting at
a point x € M can always be found by solving the differential equation (1.1) in a
coordinate neighbourhood of x. The domain of an integral curve cannot necessarily
be extended to the entire real line. We say that a vector field is complete if the domain
of all of its maximal integral curves, i.e., the integral curves whose domain cannot be
extended, is the entire real line.

The flow v, of a complete vector field v is

Y(x) = 7,(1),

where 7, is the maximal integral curve starting at x € M. This defines for every t
a diffeomorphism v, : M — M and the collection of all these diffeomorphisms is a
group {v;};cr With unit v, multiplication ), o ¢, =1, and inverse 1,[):1 =Y_,.
If v is not complete, then one can still define a local flow v, around a point x with
domain U, where U is a neighbourhood of x, and t € I is restricted to an interval
around 0.

1.1.5 Cotangent bundle

At each point x of a smooth manifold M, we define the cotangent space to M at x,
denoted T;M, as the dual space of tangent space at the same point, namely,

TIM = (T, M)".

The elements of the cotangent space T M are called (tangent) covectors; naturally
they are linear functionals on the tangent space. Taking the cotangent spaces at
each point as fibres, we obtain T*M, the cotangent bundle of M. The sections of
the cotangent bundle are called covector fields or one-forms (see Sect. 1.3). The
differentials (at a point) of functions discussed above are examples of covectors resp.
covector fields.

A smooth map F : M — N between smooth manifolds M, N induces at each point
x € M the map T, F : T,M — Tp(,)N between the tangent spaces. By duality one
can find the transpose map T;F : T, N — T M, called the cotangent map of F at x,

F(x)
between the cotangent spaces at F(x) and x, which is given for each v € T, M and
w € Ty N as

(T*F(0))(v) = o(T,F()).
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This map then gives the (global) cotangent map T*F : T*"N — T*M and thus facilitates
the definition of the pullback F*w of a covector field w on N by F as the covector
field on M given at each x € M by

(F*Cz))x = T;:F(C()F(x)).

Note that, different than the pushforward, the pullback is even defined if F is not a
diffeomorphism. However, if F is a diffeomorphism, we can define the pushforward
of a covector field as the pullback via the inverse F~!. That is,

Fon=(F 1),

where 1) is a covector field on M. The pushforward of a compactly supported covector
field can also be defined if F is an embedding and dim M = dim N by setting the F.n
to zero outside the image of F.

1.1.6 Tensors product bundles

Given two K-vector bundles = : E — M and p : F — M over the same smooth
manifold M, we can define the tensor product bundle t ® p : E® F — M, which is
just the fibrewise tensor product of vector spaces. Namely, the fibre of EQ F at x € M
is (E® F), = (18 p)"{({x}) = E, ®F,.
In particular, we denote by T, (E) the tensor bundle of type (p,q) of a vector
bundle E:
TP(E) = E®P ® (E)®4;

the tensor bundle of the (co)tangent bundle is simply denoted by Tf M instead
of T(f (TM). The sections of the tensor product bundle Té’ M are called tensor (fields),
if p = 0, we say that a tensor is covariant, while we say that it is contravariant if
q=0.

The Lie derivative defined in Sect. 1.1.3 generalizes to covariant tensor fields by
duality in the following way: Given a covariant tensor field S € FOO(T(?M ) and vector
fields v,wy,...,wq € I'**(TM), the £,S of S along v can be defined by

(Z,S)We,...,wy) =v(S(Wy,...,wy)) = S(Lywy,wa,...,w,)

== S(We, e Wiy, Lywy).
Note that it satisfies the Leibniz rule

L(S®T)=(£,S)®T+S®Z,T,

where T is any other differentiable covariant tensor field. Since the Lie derivative on
covariant tensor fields defines a Lie derivative on covector fields, this may be used to
define a Lie derivative on mixed tensor field.

The pullback or pushforward of a mixed tensor field S € I (T(f N)orTerl (T,f M)
by a diffeomorphism F : M — N, is defined as the (p + q)-fold tensor product of the
pullback or pushforward map for (co)vector fields. If S is covariant (i.e., p = 0), then
the pullback is also defined if F is not a diffeomorphism.



1.1. Differentiable manifolds and vector bundles 15

If F = E, we can define the symmetric and antisymmetric tensor product bundle
E ®E and E A E as the quotient bundles under the fibrewise equivalence relations
v®w ~ v ®w for all v,w € E,.. More generally, we denote by SP(E) and /\p(E) the
p-th (anti)symmetric tensor product bundle which satisfy fibrewise the relation

v(xq,. ..,xp) = V(Xo(l):~'>xcr(p)) or

V(x17 s 5xp) = (SgnO')V(xo-(l), . ')XO'(p))

forveEP andallo &,, the symmetric group of p elements, cf. Sect. 4.1.1. That
is, the fibres of SP(E) and /\"(E) are the p-th symmetric (resp. exterior) power of
the fibres of E. Maps Sym : Ty (E) — SP(E) and Alt : T} (E) — \"(E) extend from
the fibrewise maps

1
Sym (v(xy,...,x,)) = 17 Z V(Xg(1)s - Xo(p)) and

oE€G,

1
Alt (v(xq,...,xp)) = o1 Z (sgn oIV (Xp(1)s - > Xo(p))s

€6,

where v € Ef? P Moreover, fibrewise products ® : SP(E ), X SI(E), — SPTI(E), and
A NP(E) x NU(E), — /\p+q(E)x are defined as

(p+q)!
p!q!

vOow=Sym(v®w) and vAw= Alt(v @ w).
Another possibility to combine two vector bundles E and F is the exterior tensor
product ERKF — M x M. It is defined as the vector bundle over M x M with fibre

(ERF),=n'({x})®p ' ({x'N=E, ®Fy

over the point (x, x’). The sections of the exterior tensor product T(f MR T/M are
called bitensor (fields).

1.1.7 Metrics

Every vector bundle E has a dual bundle * : E* — M which has as its fibre E}, the
dual vector spaces of the fibres E,. We call the natural pairing f(v) of an element
f € E; in the dual fibre on an element v € E, in the corresponding fibre a contraction.
A canonical isomorphism between E and E* can be constructed if E carries a
(bundle) metric, i.e., a map
(,):ExyE—K

such that the restriction (-, ), to each fibre E, is a fibrewise non-degenerate bilinear
form; a (positive-definite) bundle metric can always be constructed. In other words,
a metric on E is a section in the tensor product bundle I'(E* ® E*). Thus a metric
induces a metric contraction between two elements of the same fibre E, .

The dual metric (-,-)* is the unique metric on E* such that

(w,M) =(,w) with w=(,"),n=Ww,)
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for all v,w € I'(E). Moreover, given metrics (-, ) and (-,)f onE and F, they induce
metrics on the tensor product bundle E ® F and the exterior tensor product bundle
E X F. For the tensor product bundle it is defined fibrewise for all v € E,,w € F,. by

vew,v® W)f;@F = (v, v)f;(w, w)i

and can be extended to arbitrary pairings by polarization and linearity; an analogous
construction works for the exterior tensor product.

In pseudo-Riemannian geometry we find the tangent bundle equipped with a
continuous symmetric metric usually denoted

g:TM Xy TM —- R

with dual metric g* on the cotangent bundle. The canonical isomorphism induced
by g between TM and T*M is given by the musical isomorphisms flat’ b : TM — T*M
and its inverse ‘sharp’fi: T*"M — TM:

vb i g(v) .)2 wﬂ i g(wJ ')’

A tuple (M, g) of a smooth manifold M with a metric g on its tangent bundle is called
a pseudo-Riemannian manifold.

The maximal dimension of subspaces of T, M where g, is negative-definite is
called the index Ind(g) of g; since g is continuous and non-degenerate, the index
constant over the manifold. We distinguish in particular two cases:

(a) If Ind(g) = 0 or, in other words, g is pointwise positive-definite, we say that g
is a Riemannian metric.

(b) If Ind(g) =1 (and the manifold at least two-dimensional), we say that g is a
2

Lorentzian metric.
We say that (M, g) is a Riemannian (Lorentzian) manifold if the metric g is Riemannian
(Lorentzian).

The two prototypical examples for a Riemannian and a Lorentzian manifold
are Euclidean space and Minkowski space(time): n-dimensional Euclidean space is
the smooth manifold over R" with a the global chart (R",id), coordinate functions
(x',...,x™) and with the Euclidean metric

§=) dx'®dx'.

n
i=1

In the conventions chosen here, (14 n)-dimensional Minkowski spacetime is a smooth
manifold modelled on R'*" with the single chart (R!™,id), coordinate functions
(t,x',...,x™) and with the Minkowski metric

n
n=-dt@dt+ Y dx'@dx' (1.2)

i=1

2This choice corresponds to the —+++ convention, which we will use. In particle physics one often
adopts the opposite convention +———, i.e., (M, g) is Lorentzian if Ind(g) = n — 1.
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in the coordinate frame. Occasionally one uses the shorthand M to denote four-
dimensional Minkowski space (R, ).

Let (M, gy) and (N, gy) be pseudo-Riemannian manifolds and ¢ : M — N a
diffeomorphism. The map v is called a conformal isometry if

Yrgy =gy

for some positive function 2 € C°(M). Conformal isometries preserve the angles
between vectors; in particular gy (v, w)y(x) Z 0 implies gy, (y*v, Y w)x) z 0 for
all v,w € I'(TN) and x € M. In the special case that {2 = 1, we say that v is
an isometry. These notions generalize straightforwardly to immersions and em-
beddings; and we call these maps conformal immersions/embeddings and isometric
immersions /embeddings.

1.1.8 Frames

Alocal frame of a vector bundle E on M is a set {e,,} of smooth local sections I"*(Ey)
on a domain U C M contained in a neighbourhood of a local trivialization such
that {e,,(x)} forms a basis for each fibre E, over U. The dual frame is the set {e"}
in I'*°(E};) that satisfies e/ (e, ) = 54, i.e., the e# are the dual basis to e,. Naturally,
given frames {e,(x)} and {f, (x)} of vector bundles E,F on M, they induce frames
{e,(x)® f,(x)} on the tensor product bundle E ® F; the generalization to the exterior
tensor product bundle E X F is immediate.

If E is equipped with a metric (-,-), we say that the frame {e,} is orthogonal
(K =R) or unitary (K = C) if it forms an orthonormal basis for each fibre over U,
ie., if

(ey,e,) =06,,6, with ¢, =(e,e,) ==l

Frames allow us to perform calculations in component form, viz., given a sec-
tion s € I'(E) its components in the frame {e,} on U are given via the dual frame {e"}
as s = s(e") such that s = s"e,,. This is the first instance where we used the summa-
tion convention: Unless otherwise noted, summation over balanced indices (one upper
and one lower) is always implied.

If s is the section of a (exterior) tensor product bundle and frames on the single
bundles are given, we use multiple indices to denote the sections. For example, if
g eI (T*™M ® T*M), we can write

g =gy dx’ ®@dx”

in terms of the coordinate covectors.

The atlas of a manifold induces natural local frames on the tangent and the
cotangent bundle. If (U, ) is a smooth chart on M in a neighbourhood of x, then
the coordinate vectors®

Bulx = (Te) ™ (Buloi)

30ften we will use the shorthand 0, for 3 /0x".
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define a basis on T, M because Ty : T,M — T, )R" ~ R" is an isomorphism.
Together with the coordinate functions these coordinate vectors at every point induce
natural coordinates on (TM)y. A local frame for (T*M)y; is then simply the dual
frame {dx*}.

Note that the coordinate vector fields {J,} associated to a coordinate chart {x"}
form a very special local frame of the tangent bundle. Whereas the commuta-
tor [0, 0,] vanishes, this is no longer true in every frame {e,}, where

[ewe,] =cF, e

uv-p

has in general non-vanishing commutation coefficients c” -

1.1.9 Differential operators

Given a vector bundle E — M of n-dimensional smooth manifold M, a linear differen-
tial operator of order m (with smooth coefficients) is a linear map P : '**(E) — I"*°(E)
which, in local coordinate {x*} on U, is given by

Ply= D a,(x)3%,

lal<m

where a = (ay,...,a,) are multi-indices with 0% = 31a1 -+ 8" and the coefficients
a, : I'°(E) — I'°(E) are linear maps.* That is, P is locally defined as a polynomial
in the partial derivatives {J,}.
The polynomial
p(x,8)= D a,(x)E%,
la|<m

where £* = ‘111 ... £;" and £ is a covector field with components & = & pdxt, is called
the total symbol of P. The leading term of p(x, &),

op(x,E) = Y. ay(x)E",
lal=m
is the principal part or principal symbol of P. While this is not true for the total symbol,
one can check that the principal symbol is covariantly defined as a function on the
cotangent bundle: op : I'*(S™(T*"M)® E) — I'°(E).
Suppose that (M, g) is a pseudo-Riemannian manifold. If the principal symbol op
of a differential operator P is given by the metric

O-P(x) g) = _gx(gn g) idEXJ

we say that P is normally hyperbolic or, alternatively, that it is a wave operator.
Normally hyperbolic operators on globally hyperbolic spacetime have a well-posed
Cauchy problem and therefore play an important role in quantum field theory on
curved spacetime.

Given a second differential operator Q on the same vector bundle E, the composi-
tion P o Q is also a differential operator and the principal symbol of the composed

“Although we will not explicitly state this, sometimes we will use differential operators with
non-smooth coefficients. In that case the coefficients map into C* sections.
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operator is given by the composition of the principal symbols: op.q = 0p 0 . We
say that P is pre-normally hyperbolic if there exists Q such that Po Q is normally hyper-
bolic. One can show that also Q o P is normally hyperbolic and thus Q is pre-normally
hyperbolic too [160].

1.1.10 Index notation

We just saw that in a frame {e,} of a vector bundle E — M we can calculate the
components of sections with respect to that frame. For example, given two vectors
fields v,w € I'(TM) on a pseudo-Riemannian manifold (M, g), we can write their
metric contraction in terms of their components with respect to the coordinate
(co)vector fields {J,} and {dx*"} in a coordinate neighbourhood:

glv,w) = g, viw".

Repeated indices imply summation by the Einstein summation convention as usual.

Usually the frame is not explicitly mentioned but instead implicitly given by a
selection of letters for the indices. Henceforth the small Greek letters u,v, A, p, o will
always be indices for a coordinate frame of the (co)tangent bundle in the concrete
index notation.

When calculating contractions between more complicated tensors the notation in
terms of indices is often over the abstract index-free notation which quickly becomes
unwieldy. Moreover, if the horizontal position of indices is kept fixed, we can use a
metric to lower and raise indices, e.g., returning to our example, we write

gv,w) =v,wh.

That is, we identify the components of the vector field v with the components of the
associated covector field g(v,-). Contracting a tensor S € I’ (leM ) with the vector
fields v, w, we see the advantage of this notation

S (g(v’ ), 8w, )) = gvpg}»crs,upoVHVVW7L = '5',uv}J’MVVW}L

The ‘natural’ position of the indices of the tensor S must, however, be agreed upon
beforehand.

Note that the formal aspects of this notation do not necessitate the existence of
a frame. This leads to Penrose’s abstract index notation. Even in the absence of a
concrete frame, we write for example

S (g(va ')’ g(W; )) = gbdgcesadevavbwc = Sabcvavbwc
Now, an index only labels a slot in the index-free expression and does not carry any
numerical value. In particular, Einstein summation convention does not apply to
abstract indices — it would not even make sense — and double indices only imply
(metric) contractions. We will often use the small Latin letters a, b, c,d, e as abstract
indices for the (co)tangent bundle.

Both for abstract and concrete index notation it is useful to introduce some
shorthands. Symmetrization and antisymmetrization of tensors are denoted by
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parentheses and brackets:
Stab) = %(Sab +Spa)s  Spap] = %(Sab — Spa)

with the obvious generalization to higher-order tensors. Partial and covariant deriva-
tives (see below) are sometimes indicated by comma and semicolon:

("'),aiaa(“'): ("');aiva("')

1.2 Connections and curvature

A (Koszul) connection VE on a m-dimensional K-vector bundle E — M is a K-linear
map VE : I'®°(E) — I'°(E ® T*M) that satisfies the Leibniz rule

VE(pf)=¢Vif+f®@dy

for all ¢ € C®(M) and f € I'°(E). Every vector bundle admits a connection.
Henceforth we will often drop the superscript indicating the vector bundle that the
connection acts on and simply denote it by V. Given a vector field v, the connection
V defines the covariant derivative along v as V,, : I''(E) — I'(E) with

V- =(V)).

If, in addition, the vector bundle E is equipped with a C* bundle metric (-, -), we say
that V is a metric connection if

v(f,h)=(V,f,h)+(f,V,h)

holds for all f,he I L(E). A connection V on E = TM is torsion-free if the Lie bracket
of two vector fields v, w is given by [v,w] =V, ,w —V v.

Let E, F be two vector bundles with connections V¥, V¥ and sections f € I'(E),
he''(F)and u € I'(E*). A connection on the the tensor product bundle E ® F is
defined by

VI (f@h) = (VEf)®h+f @ (Vih).

Moreover, a dual connection is obtained from
(VEW () =v(ulf) —u(VEf).

This can be used to extend a connection V on a vector bundle E to its dual bundle E*
and more generally to the tensor bundle T(f E.

If ¢ : M — N is a diffeomorphism between two manifolds and E — N a vector
bundle with a connection V¥, then we automatically find a unique connection 1*V
on the pullback bundle 1*E. The pullback connection is given by

WV, =9 (Vg f)

forall f € I''Y(E) and v € I'(TM).
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1.2.1 Levi-Civita connection

The Levi-Civita connection is the unique metric connection V on TM with C* metric g
that is torsion free. Therefore it satisfies the Koszul formula

2g(V,v,w)=ug(v,w)+vg(uw)—wg(u,v)

(1.3)
- g(u) [V)W]) - g(v: [u: W]) - g(W, [u3 V])

Usually we will call the covariant derivative associated to the Levi-Civita connection
of (M, g) simply the covariant derivative.
In a chart (U, ¢) of M, we have

V3uav = Fp,uv 8p

and we call I'* uv the Christoffel symbols® of the Levi-Civita connection V for the
chart (U, ¢). The Christoffel symbols are symmetric in their lower indices I'* w =
r*,, because [d,,d,] = 0. Given two vector fields v,w € I''(TM), written in the

coordinate basis as v = v*J, and w = w"J,, w has covariant derivative

P

v,w =y ow
v dxH

+r p;w WV) 9

along v. The Kozul formula (1.3) yields a formula for the Christoffel symbols

lgpl (8 Eun 4 O8va _ agw)

re =
w9 axV dx*  9x*

1.2.2 Curvature of a connection

Different from ordinary second derivatives, covariant second derivatives

(vzf)(va w)=V,V,f - VVVWf>

where v,w € I'(TM) and f € I'*(E), do not commute in general. The curvature
Fel(T'M ® T*M ® E ® E*) of a vector bundle E with connection V quantifies this
failure of the covariant second derivative to commute and we define it as

Fv,w)=V,V,, =V, V, = V[, 1.

We say that the connection is flat its curvature F vanishes. If E = TM and V is
the Levi-Civita connection of a pseudo-Riemannian manifold (M, g) with smooth
metric g, we denote the curvature by R(v, w) instead and call it Riemann curvature
(tensor) of (M, g).

Let u,v,w € I'*(TM) be vector fields and f € I'>(E) a section of E. By defi-
nition the curvature is skew-hermitian: F(v,w) = —F(w,v). If the connection V
is compatible with a metric (-,-) on E, then we also have that F is skew-adjoint,
(F(v,w)f,f)=—(f,F(v,w)f), and that it satisfies the first Bianchi identity

(V,F)v,w)+(V,F)(w,u)+ (V,F)(u,v) =0.

5 Note that V is not a tensor and thus the Christoffel symbols do not transform as tensors.
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Figure 1.6. The parallel transport of a vector along a closed path.

Furthermore, if E = TM and V the Levi-Civita connection, also the second Bianchi
identity
R(u,v)w +R(v,w)u+R(w,u)v =0

holds.

Several other curvature tensors can be derived from the Riemann curvature.
The Ricci curvature (tensor) is defined as the symmetric (0,2) tensor Ric(v,w) =
tr(u — R(v,u)(w)), where u,v,w € I'>(TM); if it vanishes, we say that (M, g) is
Ricci-flat. Furthermore, we obtain the Ricci scalar as the contraction of the Ricci
tensor Scal = tr, Ric = tr Ric?. Using the coordinate (co)vectors, we can express the
Riemann tensor in component form as:

R, =08,I%, —o,I%, +I°, ", —I% I"..

The Ricci tensor and Ricci scalar are then written as R, = —5§R‘7MM and R =
"Ry

1.2.3 Geodesics

Let y : I — M be a smooth curve parametrized by an interval I C R and f € I''(y*E)
a section in the pullback of the vector bundle E — M. The covariant derivative of f

along v is given by

Vi

Freie " Vi)f
i.e., it is a special case of a pullback connection. If the covariant derivative of f
vanishes along vy, we say that f is parallel to y. Therefore connections facilitate the
notion of parallel transport along curves (Fig. 1.6, see also Sect. 1.4.2). Namely, given
a sy € Ey(,) at the point y(t), the parallel transport of f;, along y is the unique
solution f of the ordinary differential equation V(y*f)/dt = 0 with initial condition
(f o ¥)(to) = fo.

Auto-parallel curves, i.e., curves that satisfy
Vo (t)=0
dt Y Y - Y

are called geodesics of the connection V. These are the usual geodesics (local min-
imizers of arc length if the metric is Riemannian) with respect to a metric g of a
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Figure 1.7. The exponential map applied to a vector.

pseudo-Riemannian manifold (M, g) if V is the Levi-Civita connection with respect
to g.

It follows from the theory of ordinary differential equations that, given a point x €
M and any vector v € T,.M, there exists a unique geodesic y,, such that y,(0) = x and
7,(0) = v. Let 1) be the set of vectors v at x that give an inextendible geodesic v,
defined (at least) on the interval [0,1]. We say that M is geodesically complete if
T, = T, M at every x € M. Nevertheless, if there is a vector v ¢ T, there exists ¢ € R
such that ev € 7.

The exponential map at x is defined as the map (Fig. 1.7)
exp, : 1y = M, v—y,(1).

That is, remembering that geodesics can be linearly reparametrized, the exponential
map exp, maps vectors at x to geodesics through x. For each x € M there exists
an open neighbourhood U’ C T, M of the origin on which exp, is a diffeomorphism
into an open neighbourhood U € M of x. If U’ is starshaped®, then we say that U is
geodesically starshaped (U is a normal neighbourhood) with respect to x. Moreover,
if U € M is geodesically starshaped with respect to all of its points, it is called
geodesically convex.

1.2.4 Killing vector fields

Given an n-dimensional pseudo-Riemannian manifold (M, g), a Killing vector field is
a vector field « such that

Z.g=0.
In terms of the Levi-Civita connection on (M, g), this equation may also be written as

V.Kp — Vpk, = 0 in the abstract index notation. More generally, a conformal Killing
vector field is a vector field k such that

2
.2 =wg with = —1tr(Vk).
n

®A starshaped neighbourhood S of a vector space V is an open neighbourhood S C V of the origin
such that tv € S forall t € [0,1] and v € S.
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An equivalent definition of the Lie derivative of a covariant tensor S € I 1(TQ?M )
along a differentiable vector field x is given by

o1
%S = lim — (7S = 5)

where 1, is the (local) flow of k. Therefore, a vector field « is (conformal) Killing
vector field if and only if the flow that it generates is a family of local (conformal)
isometries. In other words, k encodes a (conformal) symmetry of (M, g).

Now, if v is a geodesic and « a Killing vector field, then it holds that g(x,y) is
constant along y. That is, the geodesics of (M, g) correspond to conserved quantities
under the symmetry given by k. If k is a conformal Killing vector field, then g(x,y) is
constant only if g(y,y) = 0.

1.3 Differential forms and integration

As already noted above, sections of the cotangent bundle T*M are called (differential)
1-forms. More generally, sections of the p-th antisymmetric tensor bundle /\p (T™)

are called (differential) p-forms. The set of all smooth p-forms on M is usually denoted
QP(M) =N\ T*M).

1.3.1 Exterior derivative

The exterior derivative d : 2P(M) — QPT1(M) is the unique generalization of the
differential of functions such that:

(a) df for O-forms (i.e., functions) f € 2°(M) is the usual differential,
(b) dis a A-antiderivation, i.e., it satisfies the product rule

dlwAn)=dwAn+(—1)wAdn,

where w € 2°(M) and 1 € 2'(M),
() d2=dod=0,
(d) d commutes with pullbacks.

We say that a form w is closed if dew = 0 and exact if w = dn for some form 7. While
a closed form is in general not exact, the opposite is obviously always true. The
extend to which closed forms fail to be exact is measured by the de Rham cohomology
groups H gR(M ) of the smooth manifold M

{we 2P(M) | w closed}

p -
Hap(M) = {we 2P(M)| wexact}

Replacing p-forms with compactly supported forms in the definition above, we obtain
the related notion of the de Rham cohomology group with compact support HgR,O(M ).
It is not difficult to show that the de Rham cohomology is a homotopy invariant
and thus a topological invariant. This is quite astonishing considering that its defini-
tion relies on the smooth structure of the manifold. Note that, if M is contractible, i.e.,
homotopy equivalent to a point, then all its de Rham cohomology groups vanish.
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1.3.2 Integration

A smooth n-form u € 2"(M) on a smooth n-dimensional manifold M is called a
volume form if u(x) # 0 for all x € M. If such a volume form u exists, we say that
M is orientable because u assigns a consistent orientation to all of M. Here, we
say that a basis vy, ...,v, € T, M is positively (negatively) oriented at x with respect
to w € N'(M) if w(x)(v;®...®v,) 2 0. If M is an orientable smooth manifold
equipped with a metric tensor g, there exists a unique volume form u,, the g-volume,
which satisfies

(), ® - ®v,) = /gl = /Idetg, (v;, v;)]]

for a positively oriented basis v;,...,v, € T, M.

Once integration over R" is defined, i.e., given a domain U C R"

fv=f fdxl/\m/\dx”:f fdxl---dx®
U U U

for some f € C®(R™) such that v = f dx! A--- Adx™, we can use the a partition of
unity, local charts and linearity of the integral to extend the notion to general smooth
manifold. That is, if w € 2"(M) is a form of maximal degree on an orientable smooth
manifold M which is compactly supported in the chart (U, ¢), then

J w= :I:f Py,
M e (U)

where the sign depends on the orientation of the chart (U, () with respect to w. Thus
we obtained a method of integration on manifolds that is invariant under orientation-
preserving diffeomorphism invariant.

Integrating a metric (-,-) on a vector bundle E over an orientable pseudo-Rieman-

nian manifold (M, g), yields a natural inner product (-, -) on the sections of E: Given
f,he I'(E), we define

{f,h) ﬁf (f; W) g,
M

whenever the integral exists.

Arguably the most important result on integration on manifolds is Stokes’ theorem
— a generalization of the fundamental theorem of calculus. It states that the integral
of an exact form dw € 2"(M) over a relatively compact open subset U C M of a n-
dimensional oriented manifold M is given by the integral of w over the C!-boundary

ouU:
J dcozf Vo,
U au

where ¢ : dU — M denotes the inclusion map. Note that the classical theorems of
Gauss (also called the divergence theorem) and Green are special cases of Stokes’
theorem.
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1.3.3 Hodge star and codifferential

Let (M, g) be an oriented pseudo-Riemannian n-dimensional manifold for the remain-
der of this section.

We can now introduce a smooth bundle homomorphism * : /\p (T"™M) —
NP (T*M), the Hodge star (operator); it is the unique bijection such that

wAxn = g(w,n)u,
for all w,n € 2P(M). This implies the properties
L= pg g = (SO, o = (—1EO R0,

It also follows that we can rewrite the inner product (-, -) between differential forms
induced by the metric as

(e, n) =J w Ax1).
M

for all w,n € 2P(M) for which the integral is defined.

The formal adjoint of the exterior derivative with respect to this pairing is the
codifferential & : 2PTY(M) — 2P(M):

(w,0m) = (dw,n)

or, equivalently,

Sw = (—1)PHHdES) s dx 0,

The codifferential is not a derivation and thus it does not satisfy the Leibniz rule.
Note that for one-forms 7 the codifferential satisfies 51 = — divn, i.e., it is equal to
minus the divergence of the related vector field.

Analogously to the case of the exterior derivative, a form w is called coclosed if
ow = 0 and coexact if w = &1 for some form 1. As a consequence of the bijectivity of
the Hodge star one finds

{w e 2P(M) | w coclosed}
{w e 2P(M) | w coexact} ’

Hi ) =

and, in particular,
p ~ =P
HE, (M) = HIH ()

if HgR(M ) is finite-dimensional; the latter relation is a consequence of the Poincaré
duality theorem.

A normally hyperbolic differential operator generalizing the usual d’Alembert
operator, the Laplace-de Rham operator, can be obtained by composition of the
codifferential and exterior derivative; we define it as

O=dod+06o0od.
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In abstract tensor notation the Laplace-de Rham operator acting on a (smooth)
p-form w is given by the Weitzenbdck type formula [145, Eq. (10.2)]

_ b b b ¢
(O0)gya, = =V Vp@qpq) + D Rapp@ayelia) + D Ry pare@ayo e o

Consequently the Laplace-de Rham operator on scalar functions (0-forms), which we
will also call the d’Alembert operator, is defined as

O0=58d=-VV,,
which differs from the definition in some publications of the author [3, 4] by a sign.

1.3.4 Integral submanifolds

While a vector field can always be locally integrated to give an integral curve, it is
not true that to every rank k > 1 subbundle of the tangent bundle TM there exists a
m-dimensional submanifold of a smooth manifold M.

Let D C TM be a smooth rank-k subbundle, a plane field, and N C M an immersed
submanifold. N is an integral manifold of D if

T,N =D,

for every x € N and we say that D is integrable.

The plane field D is locally spanned by smooth vector fields vy,...,v, ie.,
each local frame around a point x € M is given by the vector fields v; such that
Vil --->Vi[y is @ basis of D,.. Frobenius’ theorem states that D is integrable if and
only if [v;,v;], € D, for all i, j at every point x.

A plane field D is equivalently locally specified in a neighbourhood U € M by a
collection of covector fields w1, ..., w,_; such that

D,=kerw [, N - Nkerw,_;l,

for every x € U. The dual to Frobenius theorem is then: D is integrable if and only if
there exist smooth covector fields {n; ; | i,j =1,...,n — k} such that

n—k
dwl- = Z CL)] A T)i,j)
j=1

in other words, D is involutive. For example, a smooth covector field w specifies a
codimension 1 integral manifold of M if and only if

dwAw=0.

A foliation of dimension k of a smooth manifold M is a collection ¥ = (N;) of
disjoint, connected, (non-empty) immersed k-dimensional submanifolds of M, the
leaves of the foliation, such that their union is the entire manifold M and each point
x € M has a chart (U, ¢) with coordinates (x;,...,x,) such that for every leaf N;
that intersects U the connected components of the image ¢ (U N N;) are given by the
equations X, = const,..., X, = COnst.
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If F is a foliation of M, then the tangent spaces of the leaves form a plane field
of M which is involutive. Conversely, the global Frobenius theorem states that the
maximal integral manifolds of an involutive plane field D on M form a foliation of M.

1.4 Bitensors

Let (M, g) be a pseudo-Riemannian n-dimensional manifold for the remainder of
this section. Henceforth we will use unprimed a, b, ... and primed a’, b’, ... abstract
indices to distinguish between objects that transform like tensors at x and x’ respec-
tively. For example, a bitensor T € I'(T{M R T{ M) can be denoted by Tabc, (x,x"),
where relative position of primed and unprimed indices is arbitrary. Note that T“bc,
transforms like a contravariant 2-tensor at x and as a covector at x’. While many of
the operations presented in this section generalize to sections of arbitrary exterior
tensor bundles, we limit the discussion to bitensors, i.e., sections of T(f MR T]/M, in
favour of concreteness rather than generality.

Taking covariant derivatives of bitensors, we further notice that derivatives with
respect to x and x’ commute with each other. That is, every (sufficiently regular)
bitensor T(x, x”) satisfies the identity

T;ab’ = T;b’a:

where we have suppressed any other indices (we will do the same in the next two
paragraphs). Partial derivatives commute as always.

Often one is interested in the limiting behaviour x’ — x. This limit is called the
coincidence or coinciding point limit and can be understood as a section of a tensor
bundle of M whenever the limit exists and is independent of the path x’ — x. If a
unique limit exists, we adopt Synge’s bracket notation [209, Chap. I11.2]

[T10x) = lim T(x,x").

An important result on coincidence limits of bitensors is Synge’s rule: Let T(x, x")
be a bitensor as above, then [179, Chap. 1.4.2]

[T];a = [T;a] + [T;a’] or [T;a’] = [T];a - [T;a] (1.4)

whenever the limits exist and are unique. The second equality is a useful tool to turn
unprimed derivatives into primed ones and vice-versa.

1.4.1 Synge’s world function

In a geodesically convex neighbourhood U we can define the geodesic distance between
two points x, x” € U as the arc length of the unique geodesic y joining x = y(t,) and
x" =y(ty). It is given by

ty
d(x,x") = J &, N2 de = (6 = t)g. (7, 1)
to
because the integrand is constant along the geodesic as a consequence of the geodesic
equation. A slightly more useful function is Synge’s world function, introduced in
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[186, 187, 208], which gives half the squared geodesic distance between two points
(thus it is sometimes also called the half, squared geodesic distance). Namely,

o(x,x") = 2d(x,x")* = 2(t1 — to) g (7, 7). (1.5)

In terms of the exponential map the geodesic distance and the world function can be
expressed as

d(x, x") = g, (exp; ' (x), exp; () /2
o(x,x")= %gx ( exp;l(x'), exp;l(x')).

Note that geodesic distance d and Synge’s world function o are invariant under
linear reparametrizations of the geodesic y. Furthermore, they are both examples of
bitensors — in fact, biscalars.

For the covariant derivatives of the world function it is common to write

O-al"'apbll'“b; = Val vapvbi vb;O',

i.e., we always omit the semicolon on the left-hand side. From (1.5) one can compute

Oa(x:x/) = (tl - to)gab}}b and O-a’(x’x/) = (tO - tl)ga’b’}}b/)

where the metric and the tangent vector are evaluated at x and x’ respectively.
Consequently we have [o,] =[o,] =0.
According to (1.5), the norm of these covectors is given by the fundamental
relation
c,0%=20= Ua/a“/. (1.6)

Therefore, o, and o, are nothing but tangent vectors at x and x’ to the geodesic
y with length equal to the geodesic distance between these points. Actually, (1.6)
together with the initial conditions

[c]=0 and [O-ab] = [Ga’b’] = 8ab (1.7)

can be taken as the definition of the world function. Coincidence limits for higher
derivatives of o can be obtained by repeated differentiation of (1.6) in combination
with Synge’s rule (1.4). In particular one finds [179]

[aabc] = [oabc’] = [Uab’c’] = [oa’b’c’] =0. (1.8)

An important biscalar that can be constructed from the world function is the van
Vleck—Morette determinant defined as [156]

A(x,x") = sgn(det g, )(det g, det g,,) "2 det ( — o gp(x,x")) > 0. (1.9)

The van Vleck—-Morette determinant expresses geodesic (de)focusing: A > 1 implies
that geodesics near x and x’ undergo focusing whereas A < 1 implies that these
geodesics undergo defocusing [179].

From (1.9) one can derive the transport equation

n=0%nA),+0% =0(InA) y +0%.

This, together with the initial condition [A] = 1, can also be used as an alternative
definition of the van Vleck—Morette determinant.
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1.4.2 Parallel propagator

Another important biscalar is the parallel propagator. It does exactly what its name
suggests: in a geodesically convex neighbourhood U it transports a vector of a fibre
at a point x’ € U to a vector at x € U along the unique geodesic y joining the two
points. We will denote it by the same symbol as the metric. Here we define it only for
the tangent bundle, where we write

with v¢ € T,M and v e T M.
The parallel propagator satisfies the transport equation

gab,;cac =0= g“b,;c,acl
because 0@ and 0@ are tangent to the geodesic y at x and x’ respectively. Together
with the initial condition

(g% 1=8% =0} (1.10)

this equation may be taken as the definition of the parallel propagator. With the
parallel propagator we can raise and lower the (un)primed index in g“,, with the
usual metric and use it to transport (un)primed indices of tensors to their opposite.

1.4.3 Covariant expansion

It is possible to generalize Taylor’s series expansion method to bitensors (and thereby
also to tensors). The covariant expansion was originally developed for ordinary
tensors [186, 187] but can be easily extended to bitensors, see for example [179,
Chap. 1.6].

While Taylor’s method is used to expand a function f(x’) around a point x in
terms of powers of the distance x” — x with series coefficients given by the derivatives
of f at x, the covariant expansion method replaces functions with bitensors, distance
with geodesic distance as given by o,(x,x”) and ordinary differentiation with the
covariant derivative. That is, given a bitensor T,(x,x’), where a =a; - - - a,,, is a list
of unprimed indices, we perform the expansion -

& (-1
T (x,x) =] Ttgbl...bk(x)abl o, (1.11)
k=0 :

We can then solve for the expansion coefficients by repeated covariant differentiation
and taking the coinciding point limit. Namely, it follows from (1.11) that

tg = [TQ]’ tﬂbl = [Tgibl] - t2§b1’ thlbz = [Tﬂ;blbz] - tﬂ;blbz - tgbl;bz - tﬂbz;bl’

etc. If T is a bitensor that also has primed indices, one first has to transport the primed
indices to unprimed ones using the parallel propagator g¢,,.

Of course, just like any other Taylor expansion, the covariant expansion of a
smooth bitensor does in general not converge and if it converges it is not guaranteed
to converge to the bitensor that is being expanded. Only if the bitensor and the
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metric are analytic, we will not encounter these difficulties. However, even then
the covariant expansion can be a very useful asymptotic expansion and we usually
truncate it after a finite number of terms. Therefore, in following we will work with
the covariant series in a formal way and whenever we write an infinite sum we
implicitly mean that the series is to be truncated and a finite remainder term is to be
added.

1.4.4 Semi-recursive Avramidi method

As described, e.g., in [69, 169], the ‘naive’ recursive approach to calculate the
expansion coefficients of a covariant expansion, as briefly sketched above, is inefficient
and does not scale well to higher orders in the expansion because the calculation
of coincidence limits becomes computationally prohibitive. An alternative, non-
recursive and elegant method for the calculation of these coefficient was proposed by
Avramidi [21, 22]. From the computational perspective, however, also this approach
is not necessarily optimal as it does not always make good use of intermediate result
leading to an algorithm which is space but not time efficient. A middle way, that we
will present here, was implemented in [169] using a ‘semi-recursive’ method.

Avramidi’s approach rests on the power series solution approach to solving dif-
ferential equations. Therefore it can only be applied where the bitensor solves a
differential equation, the transport equations.

With the transport operators

V,=0%, and V,=0%V,. (1.12)

the world function (1.6) can be expressed as (V —2)o =0 or (V/ —2)o =0. One
can construct additional transport equations by differentiating these equations and
commuting covariant derivatives at the cost of introducing curvature tensors. In
particular we find [169]

/ / / / / / /
V;gab/ = gab/ - gac/gcb/ _RaC/b/d/O.C O-d 1) (1133)
1 A1/2 _ 1 A1/2(, _ gd
vV, AV = 1AM (n— g9 ), (1.13b)
. / . / . .

where we have defined £, = 0}, to avoid confusion later on.
In the next step we take the formal covariant expansion of the bitensor and use
the transport equation to find relations between the expansion coefficients. Let us

again take a bitensor T,(x, x") with the expansion (1.11). Applying to it the transport
operator V, , we obtain formally

o (D"

V;Ta(x,x’) = Z Vé-tab b (X)O'b1 B
= : m| 281 m
m=
)
Sl by, b
= o Mlapy e, (X0,
m=1 ’

L.e., applying V/ to the m-th term is equivalent to multiplying it by m:

(V; T)(m) == kT(m).
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Contracting two bitensors S, (x, x") and Ty (x, x"), we further find

X (1) & (m
_ ¢ _ c d d
Uap = SacT = D | Sacdy i bds+dy @O
. m! pars k +
m= =

i.e., the m-th expansion coefficient of U is obtained from the lower order coefficients

of Sand T:
m m .
Uabom = D (k) Sac )T b m—k)-
k=0

Moreover, we follow Avramidi and introduce

a - pRa ... 5%m
Hpm) =R (lblepseze)® 7O
7/ 7/
so that we can write the covariant expansion of R%, Ve o as
(- 1)'”
g /gb d’G 0 Z (m 2)| b(m)'

These formal manipulations and definitions can now be applied to find the
covariant expansion coefficients of a bitensor. Here we will apply the method to & “Ib/
and A2 with their transport equations (1.13). It follows from (1.7) and (1.8) that
Eab(o) 03 and &° b(1) ™ 0. Then, for m > 2, we can easily find the relation

m—2

m
_(m + 1)€ab(0): Z (k) §ac(k)fcb(m_k) + m(m — 1)%(m)'

k=2
For the coefficients of the square-root of the van Vleck-Morette determinant one gets
AY2 — 1 from (1.7) and (1.10) and

©
AV2Z__ 1/2¢a
Ay = Z ( )A(k) & m)

for m > 0. Equivalent relations were found in [169] and implemented in the
Mathematica™ package CovariantSeries.

1.4.5 Coordinate expansion of the world function

Our aim in this section is to find an expansion of Synge’s world function o in a
coordinate neighbourhood. There are different ways to achieve this (see for example
[83] for an approach using Riemannian normal coordinates). Here we use a (formal)
power series Ansatz and write

[©9]

o(x,x")= Z %gul...um(x)ﬁx“l e §xtm,
m=0 """
where we denote by 6x* = (x’ — x)* the coordinate separation of the points x, x’ in
a chart.
The transport equation (1.6) can then be applied to obtain relations between the
coefficients ¢, ..., = G(u,..,,)- AS consequence of (1.7) and [o,] =0, the first three
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coefficients are

¢=0, guzo and Suv = uv-
This can be used to derive the relation

m—2

m
20 =m)gy, ., = Z (k) 8 P (Sl = Syt IS paps )~ St tim)p)
k=2
= 2MG (ot 1 t1m) (1.14)

for m > 2 after a cumbersome but straightforward calculation.

It is not difficult to implement (1.14) efficiently in a modern computer algebra
system; it involves multiplication, transposition and symmetrization of multidimen-
sional arrays and partial derivatives on the components of these arrays. Making use
of the symmetry of the coefficients, can reduce computation time and memory usage
for higher order coefficients, especially for ‘complicated’ metrics, significantly. Even
if these symmetries are not used, this method appears to be more efficient than the
method of [83], as it does not require to compute Riemann normal coordinates first.
In fact, because the Riemann normal coordinates are given by the derivative of the
world function, the coefficients ¢, .., can also be used to compute the expansion of
Riemann normal coordinates:

0,(x,x") = g, 6x" + %(gvp,u+gwp)5xv6xp +%(GVP;L,M+gmp,1)6xv5xp5xk+---

Again, this method appears more direct and faster than the one described in [40].

For example, for the Friedmann-Lemaitre-Robertson-Walker metric in cosmologi-
cal time (see Sect. 2.3.1 for more details),

g =—dt®dt+a(t)*5;;dx' ® dx/,
one finds with H = d/a

20(x,x") = —6t>+a*6%*(1+ H6t + 3(H* + H)6t* + $5a*H*6%°
+ 1—12(2HH +H)5¢3 + ﬁaZH(ZHz +H)6t 52

+ a5 (—4H* — 8H?H + 2H* + 6HH + 3H)5¢*

+ 55a’(48H" + 74H?H + 8H* + 9HH )5 15 2
+ 5550 " H?(4H? 4 3H)) 6% + 0(5x7)

in agreement with [83]. Above we denoted by a dot derivatives with respect to

cosmological time t and defined the coordinate separation 5t = (x’ — x)° and

5x% = 5;;(x" — x)i(x" — x)/. Transforming to conformal time, so that

g=a(t)*(—dr®dr+§;;dx' ®dx/),
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one finds with # = a’/a

20720 (x,x') = =572 + 6% — #6573 + H 515X — L(7H + 4757
+ (3702 + 29¢")5 72652 + Lo 255 — L(37° + 5%’ +9")57°
+ S H° +AHH + K575 + SH(H + A 5T %

- ﬁ(Bl%‘* +101%2%%" + 28%"% + 39K H" + 63" )5 T°

+ 5o (15%* + 6197 + 209> +30% " + 69" )57 52+

+ ﬁ(w%“ +37%2%% + 8% + 97 H') 51253t

+ 50 (% + 3% °%)5x° + 0(5x7),

where we denoted by a prime derivatives with respect to conformal time T and
defined §7 = (x’ — x)° and §x as above.

The method described above is sufficiently fast to be applied to more complicated
spacetimes such as Schwarzschild or Kerr spacetimes. Nevertheless, for such space-
times the expansions become so long, that they easily fill more than a page if printed
up to sixth order. Therefore we will omit them here and suggest that the interested
reader implements (1.14) in a computer algebra system.
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Summary

Around the turn of the 20th century it became clear that several physical phenomena
could not be satisfactorily described in the framework of Newtonian physics. After
insights by Lorentz, Poincaré and others, a solution to some of these problems was
found and published by Einstein in 1905 and coined special relativity. In its modern
form the changes introduced by Einstein can be seen to arise from to the union
of space and time in a single spacetime. In the absence of gravity or in the weak
gravitational limit our universe appears to be well described by Minkowski spacetime,
its causal structure and its symmetries.

The changes introduced by Minkwoski spacetime are generalized by the concept
of Lorentzian spacetimes. This class of pseudo-Riemannian manifolds forms the basis
of general relativity, introduced by Einstein in 1916, which takes the lessons learned
from special relativity to formulate a geometric theory of gravitation. In Einstein’s
theory of gravitation the geometrical background of the Universe is itself dynamical
and accounts for gravity via Einstein’s equation. The total lack of static background
with respect to which length and time measurements can be made, makes general
relativity significantly more difficult than Newton’s classical theory of gravitation.

Nevertheless, general relativity has made many predictions like gravitational
redshift, gravitational lensing and, in a sense, the Big Bang, that have been confirmed
with modern observations. It also forms the basis of modern cosmology which
attempts to describe the evolution of the Universe on large scales from the time of
the Big Bang until present times and predict its ‘fate’.

This chapter will give a short introduction to the causal structure of Lorentzian
spacetimes, to general relativity and to cosmology in three separate sections. The
aim of the first section (Sect. 2.1) is the definition of globally hyperbolic spacetimes
and Cauchy surfaces. Therefore it will define notions such as spacetimes, time
functions, the causal past and future of a set, causality conditions, and the splitting of
a spacetime into its temporal and spatial part. In the second section (Sect. 2.2) we
give an overview of general relativity including the stress-energy tensor, the classical
energy conditions, Einstein’s equation and its fluid formulation, and the special case
of de Sitter spacetime. Topics related to theoretical cosmology will be addressed in the
third section (Sect. 2.3), where we discuss Friedmann-Lemaitre-Robertson-Walker
spacetimes and perturbations around it.

As we are presenting standard material, we will again mostly refrain from giving
proofs or even sketching them. Excellent references for this chapter are the books
[27, 80, 167, 216]: While [167] and in particular [27] contain detailed discussions
of causal structure of Lorentzian spacetimes, [216] gives an good overall account
of general relativity. The recent book [80] is, as the title already suggests, mostly
focused on cosmology, and may be taken as a reference for the last section.



36 Chapter 2. Lorentzian geometry

2.1 Causality

2.1.1 Causal structure

The metric g of an arbitrary Lorentzian manifold (M, g) distinguishes three regions
in the tangent space: a nonzero v € T, M is

spacelike if g.(v,v)>0,
lightlike or null if g,(v,v)=0,
timelike if g,(v,v) <0,

causal if g,(v,v)<O0.

Furthermore, we define the zero vector v = 0 as spacelike, as e.g. in [167].
Given a time-orientation u on M, viz., a smooth unit timelike vector field such
that g(u,u) = —1, a causal vector v € T, M is

future-directed if g, (u(x),v) <0,
past-directed if g, (u(x),v) > 0.

One often chooses the time-orientation to be the velocity of a physical fluid. Not every
Lorentzian manifold can be given a time-orientation and we say that a Lorentzian
manifold is time-orientable is such a vector field exists.

All these notions extend naturally to the cotangent bundle T*M, sections of both
TM and T*M and curves. That is, as seen in Fig. 2.1, to each point x € M we can
draw a double cone inside M whose surface is generated by the lightlike curves
passing through x; points lying inside the double cone are lightlike to x, while points
lying outside are spacelike to x.

A continuous function t : M — R that is strictly increasing along every future-
directed causal curve is called a time function. Clearly, if t is a time function, then its
gradient yields a time-orientation which is orthogonal to the level surfaces

tH)={xeM|f(x)=c}, ceR.

These level surfaces give a foliation of the manifold such that each leaf is spacelike
and intersected at most once by every causal curve.

The chronological future I (U) (chronological past I~ (U)) of a subset U C M is
defined as the set of points which can be reached from U by future-directed (past-
directed) timelike curves. Similarly, the causal future J*(U) (causal past J~(U)) of
a subset U C M is defined as the set of points which can be reached from U by
future-directed (past-directed) causal curves; their union J(U) =J T (U)UJ~(U) is
the causal shadow of U. If the set U consists of only one point U = {x}, we write
I*(x) and J%(x). Note that I=(x) is always open, whereas J*(x) is not necessarily
closed.! We say that two subsets U and V are causally separated (in symbols: U X V)
if UNnJ(V) = 0. These definitions are illustrated in Fig. 2.2.

A world line or observer is a timelike future-directed curve T — y(7) such that
g(y,y) = —1 and the curve parameter 7 is called the proper time of y. The observer y

In globally hyperbolic spacetimes (to be defined below) J*(x) is always closed.
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Figure 2.1. Lightcone of a point in a three-dimensional Minkowski spacetime.

is said to be freely falling, i.e., moving only under the influence of gravity, if y is a
geodesic.

The causal structure of a Lorentzian manifold is physically significant because it
is used to imply that two events, i.e., two points on the manifold, can only influence
each other if one is in the lightcone of the other. In other words, the Lorentzian causal
structure encodes the finiteness of signalling speeds. This is distinctively different
from Newtonian physics, where one event at an absolute time ¢, influences all other
events at a later time t > t(, no matter the spatial separation.

2.1.2 Covariant splitting

Let (M, g) be a (1 4+ n)-dimensional Lorentzian manifold with a time-orientation u.
Observe that the integral curves of u can be understood to define a preferred direction
of motion. It is clear that the integral curves of u can be parametrized such that they
are world lines. A local frame such that the components of u are

u* =(1,0,...,0)

is called a comoving frame.
Orthogonal to u at each point are the rest spaces of the associated observer. An
induced Riemannian metric tensor for these n-spaces is given by the projected tensor

h=g+u @,

which has the following properties: h,,u® = 0, hachcb = hab, h,*=n.
By means of the projection h and the time-orientation u, we can decompose any
tensor into its temporal and spatial parts with respect to the observer. In particular,
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I (U),J (V)

time

I-(U),J~(U)
Figure 2.2. Causal past and future of a set and a causally separated set.

we can define the temporal and spatial covariant derivatives of any tensor S*”, by

§4,. =uV ST

VeS¥ . =h e h VL8P

Moreover, define the projected symmetric trace-free (PSTF) parts of a vector field v*
and a tensor S, by

VIO =ht VP Sy = (et = thaph™) Sy

The kinematics of the world lines given by u is characterized by Vu, which can
be decomposed as

Vbua = $bua - aaub = Wgp + @ab - uaub = Wgp + OTab + %@hab — uaub, (21)
with
Wah = 6[bua]’ Oab = g(aub): 6= @aa = vaua: @ab = 6(aub):

where w,; denotes the vorticity (twist) tensor, ©,;, the expansion tensor, © the
(volume) expansion scalar, o}, the shear tensor, and 11, the acceleration. The expansion
scalar measures the separation of neighbouring observers and can be used to introduce

a length scale a via the definition
a . KB ©
a n’
Furthermore, we shall define the magnitudes w and o of the vorticity and the shear
tensor by
w? = %wabwab, o?= %Gabaab.

Using the definition of the Ricci tensor, we find ZV[avb]uaub = R,puu® which,
together with (2.1), yields an equation describing the dynamics of world line

—Rypu'u’ =0+ 20%+2(0° - 0?) -, (2.2)

where R, uu? is sometimes called the Raychaudhuri scalar.

If the vorticity tensor vanishes, then, by Frobenius’ theorem, u will be orthogonal
to a foliation of the spacetime by n-dimensional Euclidean hypersurfaces > whose
metric is given by (the pullback of) h. If the manifold is also simply connected so
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(@ (b)

Figure 2.3. Sets on the two-dimensional Einstein cylinder: (a) is causally convex,
while (b) is not, as illustrated by the same causal curve in both figures.

that its first de Rham cohomology group vanishes, then there exists even a time
function.? Furthermore, in the case of vanishing vorticity, V can be directly identified
with the Levi-Civita connection on the spatial slices > with metric tensor h. Therefore
it can be used to derive relations between the Riemann curvature R,,.4 of (Z,h)
and the Riemann curvature R4 of the whole manifold (M, g). The Gauss—Codacci
equation [216, Chap. 10] is

Eabcd = haphbthrhds pqrs 2@a[c@d]b’ (2.3)

where we have expressed the extrinsic curvature via by the expansion tensor. Upon
contraction with the projection h the spatial Riemann tensor leads to the projected
Ricci tensor and Ricci scalar.

2.1.3 Cauchy surfaces

Although many results hold in greater generality, for physical reasons we will from
now restrict our attention to a subclass of four-dimensional Lorentzian manifolds:

Definition 2.1. A spacetime is a connected, oriented (positively or negatively oriented
with respect to the volume form induced by the metric) and time-oriented, four-dimen-
sional smooth® Lorentzian manifold (M, g,%,u). Usually we omit orientation and
time-orientation and identify a spacetime with the underlying Lorentzian manifold
(M, g); sometimes, when no confusion can arise, we will even drop the metric and say
that M is a spacetime.

Not all spacetimes are of physical significance because they admit features like
closed timelike curves (i.e., ‘time machines’) that are usually considered unphysical.
A spacetime that does not have any closed timelike curves (i.e., x ¢ I (x) for all
x € M) is said to satisfy the chronological condition; no compact spacetime satisfies
the chronological condition. A slightly stronger notion is the causality condition,
which forbids the existence of closed causal curves.

Given an open set U C M, it is called causally convex if the intersection of any
causal curve with U is a connected set (possibly the empty set). That is, a causal

2A local time function will always exist if the vorticity is vanishing because every manifold is locally
contractible.

30n some occasions we will work with spacetimes whose metric is not smooth. In all these cases
we will mention the regularity of the metric explicitly.
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curve intersecting U cannot leave the set and enter it again (Fig. 2.3). If for every
neighbourhood V of x € M there is a causally convex neighbourhood U C V of x,
then the strong causality condition holds at x. A spacetime (M, g) is called strongly
causal if it is strongly causal at every point. Finally, if (M, g) is strongly causal and
JT(x)NJ~(y) is compact for every pair x, y € M, it is called globally hyperbolic.

A Cauchy surface is a subset X € M which is intersected exactly once by every
inextendible timelike curve (and at least once by every inextendible causal curve).
Therefore, the causal shadow of a Cauchy surface is the entire spacetime. Note that a
Cauchy surface may be non-spacelike and non-smooth. Our ability to pose a Cauchy
problem on a spacetime requires the existence of Cauchy surfaces.

The existence of a Cauchy surface imposes strong conditions on the causality of
the spacetime. Given a spacetime, the following statements are equivalent [35, 167]:
the spacetime

(a) is globally hyperbolic,
(b) admits a Cauchy surface,
(c) admits a smooth time function compatible with the time-orientation.

Therefore we will be mostly interested in globally hyperbolic spacetimes in the
following. Every globally hyperbolic spacetime (M, g) is diffeomorphic to R x X,
where X is diffeomorphic to a smooth spacelike Cauchy surface of M [34]. If we
denote by t the time function on M, then the level sets of t are isometric to (X, g,),
where g, is a Riemannian metric on X depending smoothly on t. In fact, (M, g) is
isometric to R x X with the metric

—pdt®dt+ g;,

where f3 is a smooth function on M.

2.2 General relativity

Throughout this section let (M, g,+,u) be an arbitrary spacetime, unless otherwise
specified.

2.2.1 The stress-energy tensor

General relativity describes the interaction of classical matter with the geometrical
structure of the Universe. Giving a precise definition of matter is difficult if not
impossible. Mathematically matter is described in general relativity as a covariant or
contravariant symmetric 2-tensor field T,, or T%?, the energy-momentum or stress-
energy tensor which is covariantly conserved

vbT, =o0.
The physical content of the stress-energy tensor T,; becomes clearer once we
perform a covariant splitting relative to u and decompose T,; as

Tab = PUqlp +phab + 2q(aub) + Taps (2.4)
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with
. .1 . .
P = Tabuaub: p= §Tabhab: da = _T(a)bub: Tap = T(ab); (2.5)

where p denotes the energy density, p the pressure, q, the momentum density (viz.,
the dissipation relative to u®) and n,; the anisotropic stress. By definition of these
quantities, the trace of the stress-energy tensor is given by

T=T°%=-p+3p.

Instead of working with the stress-energy tensor it is thus possible to work with
these four quantities and the equations of state relating them. For example, in this
decomposition the conservation equation T4° , = 0 splits into the energy conservation
and the momentum conservation equation ’

p+(p+pO+nPoy +V,q% +20,q° =0, (2.6a)
= . b, =b .
Vap + (o +pitg + mgpit® +V map +qq + %@qa +(0gp + wap)g® =0, (2.6b)

which are the familiar equations for an inertial observer on Minkowski spacetime.
If the anisotropic terms in (2.4) vanish (q, = 0 = 7,;), the stress-energy takes
the perfect fluid form

Tap = puqup + phep = (p + plugly + p&ap 2.7)
and the conservation equations (2.6) reduce to

p+(p+p)O=0, (2.8a)
Vap+(p+pli, =0. (2.8b)

One further distinguishes between different forms of the general equation of state
p = p(p,s), where s is the medium’s specific entropy. Namely, if p = p(p), one speaks
of a barotropic fluid, and if p = 0, we have pressure-free matter, also called ‘dust’.

While general relativity imposes no a priori constraints on the form of the matter
content, many possibilities can be considered unphysical in classical physics. The
most common energy conditions are:

(NEC) null energy condition

T,,vv? >0  for all lightlike v,

i.e., no negative energy densities along any lightray;
(WEC) weak energy condition

T,,vv? >0 for all timelike v,

i.e., no observer detects negative energy densities;
(DEC) dominant energy condition

T,,viw? >0 for all future-pointing timelike v, w?,

i.e., the stress-energy flux is causal;
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(SEC) strong energy condition

T,pvev? — %T >0 for all unit timelike v,

i.e., gravity is attractive if A =0, see (2.13).

By continuity, WEC implies NEC and it is also not difficult to see that DEC implies
WEC. Moreover, the SEC does not imply the WEC but only the NEC. The reverse
implications are generally not true. Note that the strong energy condition is too
strong for many physically relevant scenarios.

A generic feature of quantum field theory is that none of the energy conditions
above will hold, even in an averaged sense, because of the Reeh—Schlieder theorem
[110, 192]. Instead one finds lower bounds on the averaged energy density, called
quantum energy inequalities, see [87, 88] for a review of the subject.

2.2.2 Einstein’s equation

Einstein’s equation with a cosmological constant are

1 . 8nG
Rab - ERgab + Agab = Gab + Agab = C_4Tab: 2.9
where G, is called the Einstein (curvature) tensor and A the cosmological constant.
The constants on the right-hand side are Newton’s gravitational constant G and the
speed of light c; we shall always choose units such that 8nG = ¢ = 1. Often we will
also work with the trace of (2.9):

—R+4A=T. (2.10)

Sometimes one absorbs the cosmological constant into the stress-energy tensor to
emphasize its non-geometric nature.
Note that Einstein’s tensor is covariantly conserved and symmetric, i.e.,

VPG =0 and Gy = Gap, (2.11)

so that the left-hand side of (2.9) is consistent with the right-hand side and gives a
second-order differential equation in the metric. In fact, we can derive (2.9) from
the assumption that the stress-energy tensor of a matter field should be the source of
a gravitational potential (the metric tensor) in a second-order differential equation.
Since the stress-energy tensor is conserved and symmetric, (2.9) is the only possibility.

Combining (2.9) with (2.10), Einstein’s equations can be recast into the equivalent
form R,y — Agup = Tap — %Tgab. Together with the imperfect fluid form (2.4) of the
stress-energy tensor this equation yields

Rab - Agab = %(P + 3p)uaub + %(P _p)hab + 2q(aub) + Tap-

Contractions with the time-orientation u® and the associated projector h,; to the
orthogonal surfaces then give the three equation

R puul = %(p +3p) — A, (2.12a)
Rych,"uf = —qq, (2.12b)
Rcdhachbd = %(p —p)hgp + Ahgp + Tgp- (2.12¢)
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The Raychaudhuri scalar (2.2) attains the physical meaning of the active grav-
itational energy by (2.12a) and thus we can state the Raychaudhuri equation as:

O+ 107 +2(0% — 0 — Vi — i 11" + 2(p +3p) — A=0. (2.13)

Hence we see that expansion, shear and matter (satisfying the strong energy con-
dition) promote gravitational collapse, whereas a positive cosmological constant,
vorticity and positive acceleration (due to non-gravitational forces inside the medium)
oppose gravitational collapse. One can also derive differential equations for the shear
and the vorticity [212].

2.2.3 De Sitter spacetime

A Lorentzian manifold (M, g) is called a vacuum solutions to Einstein’s equation (2.9)
if both T,; and A vanish globally. That is, such a solution satisfies

Rab =0.

The vacuum Einstein equation is the most studied special case of the Einstein equation
and many important and instructive examples fall into this class. The most basic
solution is Minkowski spacetime (M, n), see (1.2), which describes a featureless
empty universe. A rotation-symmetric vacuum solution is given by the famous
Schwarzschild solution.

If we also allow for a cosmological constant but keep T,;, = 0, we need to solve

Rab = Agab-

The maximally symmetric solutions of this equation fall into three classes depending
on the sign of A. We focus here on the case A > 0 called de Sitter spacetime; for A=0
one obtains Minkowski spacetime and for A < 0 the so-called anti-de Sitter spacetime.
Four-dimensional de Sitter spacetime is the hyperboloidal submanifold of five-
dimensional Minkowski spacetime with coordinates (y°, y!, ..., y*) that satisfies the
equation
O+ ()P4 + (N =H?, A=3H? (2.14)

where H > 0 is called the Hubble constant; thus de Sitter space is topologically R x S°.
The pullback of the Minkowski metric to this space yields a Lorentzian metric.
A global coordinate chart with coordinates (t, y, 8, ¢) can be defined by

y®=H 'sinh(Ht), y'=H 'cosh(Ht)z!,

where 2 =2'(y, 8, ), i =1,2,3,4, are the usual spherical coordinates on S* with
unit radius. In these coordinates the induced metric on de Sitter spacetime reads

g=-dt®dt+H 2cosh(Ht)(dy ® dy +sin’y (d0 ® d6 + sin?0 dy ® dy))
= —dt ®dt + H 2 cosh(Ht) g3,
where gg denotes the standard metric on the 3-sphere. It is clear, that de Sitter

spacetime is globally hyperbolic and the constant time hypersurfaces are Cauchy
surfaces.
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Another coordinate chart with coordinates (t,x?, x2, x3) is given by
y® =H 1'sinh(Ht) + %Hthrz,
yi =Mty
y*=H"1cosh(Ht) - %Hthrz,
where i = 1,2,3 and 2 = (x1)? + (x?)? + (x®)?. It covers only the half of de
Sitter spacetime which satisfies y° + y* > 0 and is called the cosmological patch or

cosmological chart; it is diffeomorphic to four-dimensional Euclidean space. Within
the cosmological chart, the metric reads

g=—-dt®dt+e*'5;;dx' @ dx’ = (H7)"*(—d7 ® d7 + §;; dx' ® dx/),

where we define the conformal time T € (0, 00] via

t— t(t) = —J a(t’)~tdt’.

Note that this metric is a special case of a Friedmann-Lemaitre-Robertson-Walker
metric, to be discussed in more generality in Sect. 2.3.

On de Sitter spacetime, Synge’s world function is known in closed form and is
closely related to the geodesic distance on five-dimensional Minkowski spacetime. In
fact, since the chord length between two points x, x” on de Sitter space considered as
the hyperboloid (2.14) is

Z(x,x") = H*ngpy(x)yP (1), (2.15)
Synge’s world function on de Sitter spacetime is given by

cos (Hy/20(x,x")) = Z(x,x") (2.16)

for |Z| < 1, i.e., for x’ are not timelike to x. Equation (2.16) can be analytically
continued to timelike separated points x, x’, whence we find

cosh (Hy/ —20(x,x")) = Z(x,x") for|Z|> 1.

The possible values for the chord length Z are illustrated in a conformal diagram of
de Sitter spacetime in Fig. 2.4. In the cosmological chart, the function Z attains the
simple form

Z(x x/)_ - (T—T’)Z _()—C»_f/)z B T2+T/2—(f—f/)2

e (2.17)

277!

where x = (7,x) and x’ = (7/,x¥’). Note that the fraction on the right-hand side is a
rescaling of Synge’s world function on Minkowski spacetime by —277’.

2.3 Cosmology

When studying cosmological problems on usually describes the Universe by a homoge-
neous and isotropic spacetime, i.e., one assumes the Friedmann-Lemaitre-Robertson-
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Figure 2.4. De Sitter spacetime conformally mapped to a cylinder. The cylinder is
unwrapped and the left and right dotted edges must be identified. x’ is any (fixed)
point of de Sitter spacetime and Z(x, x") is shown for all choices of x. The dotted
line represents Z = 0. See also [10, Fig. 2].

Walker model. This standard prescription underpins the so called standard model
of cosmology, the ACDM model of cold dark matter with a cosmological constant.
However, from the presence of structure in the Universe (e.g., galaxy clusters, galax-
ies, stars, etc.) we can directly deduce that the Universe is neither homogeneous
nor isotropic. Instead it is believed that one can describe the Universe as nearly
homogeneous and isotropic on cosmological scales so that observed Universe can be
modelled as a perturbation around a FLRW spacetime and homogeneity and isotropy
hold in an averaged sense.

The cosmic microwave background (CMB) and the galaxy distribution are often
believed to give a direct justification of this idea, but since all observations are
along the past light cone and do not measure an instantaneous spatial surface one
can only directly observe isotropy. The link to homogeneity is less clear but if all
observers measure an isotropic CMB, it can be shown that the spacetime is also
homogeneous. In this respect, the current cosmological model is heavily influenced
by the philosophical paradigm in cosmology, the Copernican principle, that we live in
no distinguished region of the Universe and that other observers would observe the
same. But even under this additional assumption it is not completely clear that near
homogeneity follows since the CMB is not exactly but only nearly isotropic; see [78,
80, 148, 205] for a discussion of this issue.

Ignoring these shortcomings, we follow the standard approach and assume that
we live in an ‘almost’-FLRW spacetime, i.e., a universe which is correctly described
by a perturbation around a FLRW background. Because such an assignment of a
background spacetime to the physical perturbed spacetime is not unique, one has to
deal with a gauge problem.

Accordingly, we will begin by introducing the FLRW model and its properties.
Then we will study the general gauge problem and its application in the case of a
perturbation around a FLRW spacetime.

2.3.1 Friedmann-Lemaitre-Robertson-Walker spacetimes

One of the simplest solutions of the Einstein equation is the Friedmann-Lemaitre-
Robertson-Walker (FLRW) solution, which describes a homogeneous and isotropic,
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expanding or contracting universe. Let (M, g) be a spacetime, which is still to be
determined, with a preferred flow (time-orientation) u. As a consequence of (spatial)
isotropy, i.e., the absence of any preferred (spatial) direction, vorticity, shear and
acceleration have to vanish:

(,l)ab:O, O'ab:O, aa=0.
Also the anisotropic terms of the stress-energy tensor have to vanish, i.e.,
qa = 0’ Tap = 0

so that the stress-energy tensor takes the perfect fluid form (2.7). Consequently the
FLRW model is completely determined by its energy density p, pressure p and the
expansion ©.

Since vorticity and acceleration vanish, the spacetime (M, g) is foliated by surfaces
X orthogonal to u, which are required to be homogeneous by assumption and thus
p, p and © are constant on these surfaces. For the same reason there exists locally
a time function t, called cosmological time, that measures proper time, defined up
to a constant shift, such that u, = —V,t. Henceforth we will always assume the
time function exists globally so that the resulting spacetime is stably causal and, in
particular, globally hyperbolic.

One can show that the projected Ricci tensor, i.e., the Ricci tensor for the spatial
slices X (cf. (2.3)), simplifies significantly to

=]

ab = %I_{hab = %(P +A- %ez)hczb'

We may recast this equation into the more familiar form of the first Friedmann
equation
2 _ 1 15
H _§(p+A_ER)' (218)

with the famous Hubble parameter or Hubble function H = ©/3 = d/a. The second
Friedmann equation is a special case of the Raychaudhuri equation (2.13) and reads

H+H*+2(p+3p)—3A=0. (2.19)

These two equations can be complemented with the energy conservation equation for
the perfect fluid (2.8a) to show that Ra? is a constant.

We define K = Ra?/3 and notice that the initial value for the scale factor a > 0 is
arbitrary so that we can restrict its value to K = —1,0,+1. The sign of K determines
the local geometry of the spatial sections: K = —1,0, 41 correspond respectively to a
hyperbolic, a flat and a elliptic geometry. The topology of the spatial sections is not
completely determined by K and, in fact, there are many possibilities. While K = +1
implies that the spatial sections are compact, both compact and non-compact spatial
section are possible for K = —1, 0.

Which of these three distinct values for K is realized depends on the energy
density contained in the universe. If the energy density takes on the critical value
P = p. = 3H? — A, the spatial surfaces will be flat, while p > p, leads to a spherical
and p < p. leads to a hyperbolical geometry. Furthermore, according to (2.19), an
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accelerating expansion (d > 0) occurs when p + 3p < 0 (assuming A = 0), i.e., when
the strong energy condition is violated.

A metric tensor realizing the FLRW universe in a local comoving coordinate frame
x#* =(t,r, 0, ¢) with respect to u® (i.e., u = J,) is given (locally) by the FLRW metric

g =—dt®dt +a(t)*(dr ® dr + fx(r)*(d6 ® d6 +sin* 0 d¢ ®d¢)),  (2.20)

where
sinr forK=+1

fx(r)=A+r forK =0
sinhr forK =—1.
Therefore, a spacetime is a FLRW spacetime if and only if its metric attains locally the

form (2.20) in some coordinate system and the time-orientation is given by dt.
Let us define conformal time 7 via dT = dt/a. That is we set

t t
(=179 — Ldt’ or 1(t)= ! dt' — =
i ° ), a®) alt) !

with arbitrary 7, T; and (possibly infinite) ty, t; such that the integral converges.
Rewriting (2.20) with respect to conformal time, we obtain the alternative metric
tensor, the conformal FLRW metric,

g=a(t)*(—dr®dr+dr®dr + fx(r)*(d0 ®d0 +sin* 6 dp ®d¢))  (2.21)

and thus we notice that a flat FLRW universe is locally conformally isometric to
Minkowski space.

Throughout this thesis we mostly work with flat FLRW universes and will fix
M =~ R* in that case. Therefore we can choose globally Cartesian coordinates for the
spatial sections so that we have

g=—-dt®dt +a(t)25ij dx' ® dx/ = a(r)*(—dr®dr + 6 dx' ® dx/),

where the coordinate functions x' range over the entire real line.

2.3.2 Gauge problem

The correspondence of a background spacetime (M, g,) to the physical spacetime (M, g)
is equivalent to the specification of a diffeomorphism 1) : M — M. Given any other
diffeomorphism 1)’ between the background spacetime and the physical spacetime,
we can construct ¢ =)' o)), For a tensor field S on M to be gauge invariant we
require that ¢*S = S. Then it holds that

5S=S—Y*'S=S—-y"S

and we say that the perturbation 6S is a gauge invariant quantity. Otherwise, the
perturbation &S is completely dependent on the mapping v and even if v is specified
it will not be an observable quantity unless the correspondence 1) itself has been
specified via an observational procedure (e.g. via an averaging approach, see the
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discussion in [79]). Therefore the only possibilities for a tensor field S to be gauge
invariant is that S is a constant scalar, a zero tensor or a product of Kronecker
deltas [204, Lem. 2.2]).

A slightly different picture which clarifies the perturbation aspect of the gauge
problem is sometimes more helpful. Since the local flow of any vector field v on M is
a diffeomorphism 1), : M — M, where ¢ is contained in a sufficiently small interval
around 0, we can describe the gauge problem alternatively in terms of vector fields.
Given a (differentiable) tensor field S, we have by definition

1
£,S =1lim =(y*S - )
e—0 ¢

or, in other words,
YES =S+ 62,5 +0(e?).

The gauge choice is now encoded in v, which is completely arbitrary, and we see that
S is gauge invariant to first order if only if £,S = 0 for all v. For S to be exactly gauge
invariant (as discussed above) it must hold that £'S = 0 for all n.

In the light of this discussion, two approaches to perturbations of FLRW spacetimes
seem expedient: Since any quantity describing the inhomogeneity or anisotropy of
the perturbation of the FLRW spacetime must vanish on the background, it will be
gauge-invariant. This leads to the “1 4 3 covariant and gauge-invariant” approach
of [79, 119, 147]. The alternative and more commonly used approach due to [25,
140] constructs gauge invariant quantities directly from the perturbed metric and
stress-energy tensor.

2.3.3 Decomposition of tensor fields

Before we can discuss metric perturbations, we need to investigate the decomposition
of vector and rank-2 tensor fields into their ‘scalar’, ‘vector’ and ‘tensor’ parts [203].

Consider a non-compact,* boundaryless, orientable 3-dimensional Riemannian
manifold (¥, y) with covariant derivative denoted by a vertical bar (e.g., ¢|;). Using
the Hodge decomposition theorem, we can uniquely decompose any sufficiently fast
decaying smooth one-form B as

Bi=¢i +S;, (2.22)

where ¢ is a scalar function and S; is divergence-free.
Any (0, 2) tensor field C can be decomposed as

kl
Cij = 5847 Cua + Crijy + Cip

i.e., into its trace, its antisymmetric part (equivalent to a vector field via the Hodge
operator *) and its trace-free symmetric part Cy;;). According to [53, Thm. 4.3], as a
consequence of the Fredholm alternative and an application of (2.22), a sufficiently
fast decaying C can be further uniquely decomposed so that

Ciijy = Py + Sapy) + hijs (2.23)

where ¢ and S are as before and h is a trace- and divergence-free (0, 2) tensor field.

#The decomposition works also for compact manifold but is non-unique in that case.
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2.3.4 Metric perturbations

As background spacetime we take (M, g,) with g, the flat FLRW metric in conformal
time, i.e.,
go=a*(—dr®dr + 5 dx' ® dx7),

which will be used throughout this section to raise and lower indices. Then we define
the perturbed FLRW metric

a?g=—-(142¢)dr ®dt +B; (dx' ® dt + d7 ® dx?)

. ) 2.24

where the scalar fields ¢, 1), the 3-vector field B and the trace-free 3-tensor field C
are considered ‘small’, i.e., (2.24) should be understand as a 1-parameter family of
metrics g, and each of the perturbation variables as multiplied with a small parameter
€. However, to avoid cluttering the equations unnecessarily, one usually omits the ¢.

The ten degrees of freedom encoded in these four quantities exhibit the full gauge
dependence. Before studying the behaviour of g under gauge transformations, let us
rewrite (2.24) using the decompositions (2.22) and (2.23):

1
Bi=B;—Si, Cy=Ei;+Fuy+tsh;

with two scalar fields E, B, two divergence-free 3-vector fields S, F and a trace-free,
transverse 3-tensor field h. Therefore,

a2g=—(1+2¢)dr®dr + (B;— S)(dx'®drt +dr ®dx!) +

. ) 2.25

This decomposition allows us to consider three types of perturbations separately,
namely, the scalar perturbations caused by ¢, ), E, B, the vector perturbations due to
S, F and the tensor perturbations caused by h. The inverse of the perturbed metric
(2.24) up to first order is

a’g ' =—(1-2¢)3,®3,+B(6;®0, + 3, ® )+ (1 +2v)57 —2C"Y) 5, ® ;.

Let us now determine the transformation behaviour of these perturbation variables
by calculating the gauge dependence of g up to linear order, i.e., the dependence
of Lrgap = 2V ((&py = 2°V(4&p) + O(e) on & = (£°,&" + &) with &', = 0, where
OV is the covariant derivative on the background spacetime. Hence we have the
transformations:

oo — 8oo — 2a°(EY + #&0),
8oi — 8oi + aZ(g’/i + g: - gO’i)’
8ij = &ij +2a%(& (i) + &1,y + #64;8°),

where we define the conformal Hubble parameter # = aH = a’/a and a prime denotes
a derivative with respect to the conformal time (e.g., a’ = d.a). It follows that the
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perturbation variables transform as

¢—p+EY+HE P — ) — HE°
B—B+¢& —&° E—E+&
S; =S —¢& Fi—>Fi+§&;

and h;; — hy;.

Constructing linear combinations of the perturbation variables, we can now
construct several first-order gauge invariant quantities. Two simple (first-order)
gauge-invariant functions characterizing the scalar perturbations are the Bardeen
potentials &, ¥ [25]

d=¢p —Ho -0, (2.26a)
W=+ KO (2.26b)

in terms of the shear potential o = E’ — B.
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Summary

The contents of the present chapter may be generously subsumed under “analysis”,
hence the title. We begin with a review of topological vector spaces (Sect. 3.1)
starting from the basics of topology and locally convex topological spaces with the
particular example of function spaces, and finishing with a discussion duality pairings
and tensor products. The material presented in this section is a excerpt of the results
found in the books [133, 137, 176, 195, 211]. As always, although we refer the
reader to the books cited above for proofs of the various statements, care has been
taken to present the material in a structured way so that no results should appear
surprising.

The second section (Sect. 3.2) concerns the theory of *-algebras and thus forms
the foundation of the algebraic approach to quantum field theory to be discussed
in the later chapters. Here we will discuss the general features of *-algebras and
C*-algebras, states with an emphasize on the Gel’fand-Naimark—Segal reconstruction
theorem, and the Weyl C*-algebra. For this section we refer the reader to the books
[99, 130]. Details on the Weyl algebra can be found in [24, 151, 158, 200].

Functional derivatives have always played an important role in physics but on
infinite dimensional spaces, which appear naturally in quantum field theory, they
are very subtle. We introduce two different notions of functional derivatives in the
third section (Sect. 3.3): the directional, or Gateaux, derivative and the Fréchet
derivative. We will show that the two derivatives are closely related. Proofs and more
information on the directional derivative can be found in [116, 163].

In the fourth section (Sect. 3.4) we will pick apart the Banach fixed-point theorem
and prove several statements on the existence and uniqueness of fixed-points and
their properties. These results will form the basis of the proof existence of solutions
to the semiclassical Eisntein equation to be presented in Chap. 8. Some of the results
presented in the fourth section are already shown in [3] by Pinamonti and the author.

The theory of distributions plays a fundamental role in quantum field theory:
quantum fields can be understood as distributions. Therefore, we will discuss in
detail distributions and microlocal analysis in the fifth section (Sect. 3.5). That is,
we will review the basic definition of distributions and distributional sections on
manifolds, the nuclearity property of the associated function spaces and the Schwartz
kernel theorem, the Fourier transform and Schwartz functions and distributions,
the wavefront set of distribution and distributional sections, including its behaviour
under various operations such as pullbacks, and finally the important propagation of
singularities theorem. Good references for this section are the books by Héormander
[125-128] and also [207, 211]. Several recent results on the properties of spaces of
distributions may be found in [54]. An excellent introduction to the wavefront set
with several examples is [41] by the same author.
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In the last section of this chapter (Sect. 3.6) we discuss wave equations. Since
bosonic quantum field typically satisfy a wave equation and the Dirac-type equations
satisfied by fermionic quantum fields are closely related, an understanding of the
solutions of these equations is very important. With some minor modifications we
mostly follow [23, 24] to introduce the advanced, retarded and causal propagators of
normally and pre-normally hyperbolic differential operators and their relation to the
Cauchy problem. Several extensions of the results in [23, 24], that are also partially
stated here, can be found in [160, 220].

3.1 Topological vector spaces

3.1.1 Topology

A topological space is a set X of points with a notion of neighbourhoods. More
concretely, besides X it consists of a collection T of subsets, the open sets, such that

(a) both @ and X are open,
(b) the union of any collection of open sets is open,
(c) any finite intersection of open sets is open.

We call the collection 7 the topology of X; examples are illustrated in Fig. 3.1.

There are two topologies that can be defined for every set. The discrete topology
of a set contains all its subsets, whereas the trivial topology consists only of the empty
set and the set itself.

Given two topologies T and 7’ on the same set, we can compare them: If T C 7/,
we say that 7’ is finer than T and that 7 is coarser than 7’. It follows that for any set
the trivial topology and the discrete topology are respectively the coarsest and finest
possible topology.

The complements of the open sets are the closed sets. By the de Morgan laws,
they have the following properties: both ) and X are close, the intersection of any
collection of closed sets is closed and any finite union of closed sets is closed. It is
possible for a set to be both closed and open or neither. If the only sets in X that are
both open and closed are @) and X, then X is connected.

The closure clU of a set U C X is the intersection of all closed set that contain U.
The subset U is called dense in X if its closure is X: clU = X.

A neighbourhood of a point x € X is an open set U € 1 that contains x. If
for each pair of distinct points x,y in a topological space X there exist disjoint
neighbourhoods U and V of x and y, then it is called a Hausdorff space (Fig. 3.1).
Obviously, endowing a set with the discrete topology turns it into a Hausdorff space.

A basis (or base) of a topological space X is a collection B of open sets in X
such that every open set in X can be written as the union of elements of 98; one
can say that the topology of X is generated by ‘B. If the basis of X is countable, we
say that X is second-countable. A local basis ®B(x) of a point x € X is defined as a
collection of neighbourhoods of x such that every neighbourhood of x is a superset
of an element of the local basis. The union of all local bases is a basis. If every point
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Figure 3.1. Collections of subsets of two points: (a) is a topology, (b) is not a topology
(the empty set and the whole set are missing), (c) is the discrete topology (thus a
Hausdorff topology).

has a countable basis, we say that X is first-countable. Clearly, a second-countable
space is first-countable but the implication cannot be reversed.

We say that a map f : X — Y between two topological spaces X,Y is continuous
if for all x € X and all neighbourhoods V of f(x) there is a neighbourhood U of x
such that f(U) C V. The space of all continuous maps between X and Y is denoted
C(X,Y) or C°(X,Y) and by C(X) = C°(X) if Y = R. A bijective map between two
topological spaces X,Y is a homeomorphism is both f and f ! are continuous. X and
Y are then called homeomorphic, i.e., they are topologically equivalent.

Let X be a set and Y;,i € I a family of topological spaces with topologies 7;. Given
maps f; : X — Y;, the initial topology on X is the coarsest topology such that the
f; are continuous. It is generated by the finite intersections of { fi_l(U) | U € 1;}.
Examples of the initial topology are the subspace topology, i.e., the topology induced
on a subspace X C Y by the inclusion map ¢ : X — Y, and the product topology, i.e.,
the topology induced on a product space X = ]_[l.el Y; by the projections «; : X — Y;.
Conversely, given maps f; : Y; — X, the final topology on X is the finest topology such
that each f; is continuous. It is given as

r={UcX|f'U)erViell.

Important examples are the quotient topology on a quotient space X =Y/ ~ with the
map given by the canonical projection Y — Y/ ~ and the direct sum topology on the
direct sum X = )., Y; given by the canonical injections ¥; — X.

Another application for the initial topology is the topology induced by a pseudo-
metric: A pseudometric on a set X is a map — d(-,-) : X x X — R such that for all
xX,y,2€X:

(a) d(x,x)=0,
(b) d(x,y)=d(y,x) (symmetry),
(c) d(x,2) <d(x,y)+d(y,x) (triangle inequality);

the set X together with d is a pseudometric space. If the pseudometric satisfies
d(x,y) > 0 (positivity) for all x # y, then it is a metric and X is a metric space. The
pseudometric on X induces the initial topology on X which is generated by the open
balls around each point:

B(y)={xeX|d(x,y)<r}.

A map f : X — Y between two pseudometric spaces with pseudometrics dy, dy is
called an isometry if dx(x,y) =dy(f(x), f(¥)) for all x,y € X.



54 Chapter 3. Analysis

Given a topological space X, a sequence of points (x,,) in X converges to a point x €
X if every neighbourhood U of x contains all but finitely many elements of the
sequence. If X is a pseudometric space, it is called complete if every Cauchy sequence
with respect to its pseudometric converges to a point in X. Every pseudometric
space X that is not complete can be completed. Namely, the completion of X is the
(essentially unique) complete pseudometric space X of which X is a dense isometric
subspace.

A topological (sub)space X is called compact if each of its open covers, viz., a
collection of subsets whose union contains X as a subset, has a finite subcollection
that also contains X. If X is compact, then every subset Y C X is also compact in the
subspace topology. The space X is locally compact if every point in X has a compact
neighbourhood. Furthermore, X is called o-compact if it is the union of countably
many compact subsets. Any compact space is locally compact and o-compact; the
converse is, however, false. One can also show that every second-countable and
locally compact Hausdorff space (thus, in particular, every topological manifold) is
o-compact. We say that a map f : X — Y between two topological spaces X,Y is
proper if the preimage of every compact set in Y is compact in X.

A related concept is that of boundedness. A subset U C X of a pseudometric
space X is bounded if for each x, y € U there exists a r such that d(x,y) <r.

3.1.2 Locally convex topological vector spaces

A topological vector space is a K-vector space X such that the vector space operations
of addition and scalar multiplication are (jointly) continuous with respect to the
topology of X. Since addition is continuous and the topology therefore translation-
invariant, the topology of X is completely determined by the local basis 23(0) at the
origin. For the same reason one can show that X is Hausdorff if and only if {0} is
closed. Note that in a Hausdorff topological vector space every complete subset is
also closed. The (topological) vector space X is called convex if x,y € X implies
Ax+(1—-A)yeX forall A €[0,1].

Let X,Y be topological vector spaces and W C X a subset. A mapping f : W —» Y
is uniformly continuous if to every neighbourhood V of zero in Y there exists a zero
neighbourhood U C X such that for all x,y e W

x—yelU = f(x)—f(y)eW.

Every uniformly continuous map is already continuous but the converse is not true.
However, if f is linear and also W is a vector subspace, then continuity also implies
uniform continuity. Moreover, if W is a dense subset, then to every uniformly
continuous map f : W — Y there exists a unique continuous map f : X — Y which
extends f. The extension of a linear map from a dense vector subspace is even
uniformly continuous and linear.

It is usually desirable to have topological vector spaces with additional structures:
A seminorm on a K-vector space X is a map ||| : X — R such that for all x,y € X
and A € K:

(@) ||x|| > 0 (positive-semidefiniteness),
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(b) ||Ax|| = |Alllx]| (absolute homogeneity),
© llx+yll <llxll + llyll (triangle inequality).

If the seminorm satisfies ||x|| > 0 (positivity) for all x # 0, then it is a norm and the
vector space is called normed space. Note that each (semi)norm induces a (translation-
invariant) (pseudo)metric d(x,y) = |lx — y||.

Analogously to the pseudometrics, given a family of seminorms {||-||;};c; on a
vector space X, they induce the initial topology on X. More explicitly, the topology is
generated by all finite intersections of {x € X | ||x||; < r}, the open balls around the
origin.! If I is countable, we can assume that I C N and the topology above is the
same topology as the one induced by the metric

o Yl

where the factors 27 may be replaced by the coefficients of any convergent series.

We say that a family of seminorms {|| - ||;} on a vector space X is separating if for
every nonzero x € X there exists an i such that ||x||; > 0. It is immediate that a vector
space with topology induced by a family of seminorms is Hausdorff if and only if the
seminorms are separating.

Let X be vector space endowed with a family of seminorms {|| - ||;};c;- Then we
can define the following topological vector spaces in order of generality:

1. if the family of seminorms is separating, then X is a locally convex (topological
vector) space;

2. if, in addition, I is countable and X is complete with respect to each of its
seminorms, then X is a Fréchet space;

3. if, in addition, the family of seminorms consists of only one norm, then X is a
Banach space.

Finally note that on all these spaces above the Hahn—-Banach theorem can be
applied. That is, given a K-vector space X with a seminorm || -|| and a linear form
f : U — K on a vector subspace U such that |f(x)| < ||x]|| for all x € U, there
exists a (generally non-unique) linear form f : X — K which extends f such that

£ GOl < [lx]l.

3.1.3 Topologies on function spaces

Important vector spaces are subspaces of the space of functions
YX={f: X >V}

between a set X and a topological space Y. Y* can be equipped with the topology
of pointwise convergence, which is just the product topology with the projections

!Conversely, given a basis of the origin it is possible to construct a family of seminorms from its
elements.
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7, :YX =Y, f — f(x). In this topology a sequence of functions (f,) converges to
some f if and only if each f,(x) converges to f(x) at all x.

If (Y, d) is a pseudometric space, the space of functions can be equipped another
topology, the topology of uniform convergence. In this case, a subspace Z C Y¥ can be
endowed with the pseudometric

d(f,g) =supd (f(x),g(x))
xeX

for all f,g € Z, which induces a topology for Z. Note, however, that Z with this
topology is not really a topological vector space because multiplication will fail
to be continuous unless Z is a subset of the bounded functions. A sequence of
functions (f,,) converges to some f if and only if for every € > 0 there exists a N such
that d(f,,f) <eforalln>N.

If X is a topological space, yet another topology on subspaces Z C Y¥ is the
compact-open topology. For all compact K C X and open U C Y it is generated by the
finite intersections of

{fez|fK)cU},

i.e., the set of functions that carry compact subsets into open subsets. The compact-
open topology is finer than the topology of pointwise convergence. If (Y,d) is a
pseudometric space, the compact-open topology is the initial topology induced by the
pseudometric on compact subsets, i.e., it is generated by the finite intersections of

{f €Z|sup,e d(f(x),0) <r}.

Therefore it is also called the topology of uniform convergence in compacta and, if X
is compact, it is the same as the topology of uniform convergence. It follows that a
sequence of functions (f,,) converges to some f if and only if for every £ > 0 and
compact K C X there exists a N such that d(f,(x), f(x)) < e foralln >N and x €K.

Again, suppose that X, Y are topological vector spaces and Z C YX. Z is called
equicontinuous if for every neighbourhood of the origin U C X there exists a neigh-
bourhood of the origin V € X such that f(U) c V for every f € Z. Equicontinuity for
a set of one element is of course the same as continuity.

3.1.4 Duality

A duality or dual pairing (Y,X) is a triple (X, Y, (-, -)) of two vector spaces X,Y and a
non-degenerate bilinear form (-,-) : Y x X - K, i.e.,

(y,x)=0for all y €Y implies x =0
(y,x) =0 for all x € X implies y = 0.

The standard example of a duality is that between a vector space X and its algebraic
dual X*, where the pairing is given by the canonical bilinear form

() 1 X" XX =K, (f,x) = (f,x) = f ().
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A more important example is that of the topological dual X’ C X* of a topological
space X, which consists of all continuous linear maps. Note that the pairing (X', X) is
not a proper duality unless X is Hausdorff because the restriction of the canonical
bilinear form to X’ X X is non-degenerate if and only if X is Hausdorff.

For each x € X the map x — (y, x) gives an injective map of X into Y* and an
analogous construction embeds Y into X*. In the following, the identification of X
with a subspace of Y* and Y with a subspace of X* will always be tacitly assumed
unless otherwise noted.

In particular, X is a subspace of K¥ and can therefore be equipped with pointwise
topology. This locally convex Hausdorff topology is called the weak topology on X
with respect to (Y, X); statements for weak topology will often be indicated by the
adjective “weakly”. The weak topology is the coarsest topology such that x — (y, x)
is continuous for all y € Y and one finds Y = X’ with respect to the weak topology
on X. Moreover, if Y is locally convex, the seminorms on Y yield dual seminorms
on X given by

lxll; = sup {|(y, x)| | ¥ € Y with [ly[l; < 1},

which also induce the weak topology.

The statements above can also be made with the role of X and Y interchanged
to introduce the weak topology on Y with respect to (Y, X). In particular, if Y =X’
and (-,-) the canonical bilinear form, then X’ with the weak topology is called the
weak dual. Furthermore, given a subset Y C X*, then the induced pairing between Y
and X is non-degenerate if and only if Y is weakly dense in X*. Thus any Y is weakly
complete if and only if Y = X*.

Another (locally convex Hausdorff) topology on X induced by a duality (Y, X)
with a locally convex space Y is the strong topology, which is the topology of uniform
convergence on the bounded subsets of Y; statements for strong topology will be
often be indicated by the adjective “strongly”. It is induced by the family of seminorms

llxllp = sup [{y, x)|
YEB

for each bounded set B C Y. Again, we can interchange the role of X and Y and call
X’ endowed with the strong topology induced by the canonical pairing the strong
dual.

If we equip X with the strong topology with respect to (Y,X), then the map
x — (y,x) will not be continuous for any y € Y. The finest topology on X such that
this map is continuous is called the Mackey topology but it will not concern us here
any further.

Finally, note that the dual of a Banach space is always a Banach space, but the
dual of a Fréchet space that is not Banach is never a Fréchet space.

3.1.5 Tensor products on locally convex spaces

Given two locally convex topological vector spaces X, Y there are many different ways
to define a family of seminorms for the space X ® Y. Therefore there is no natural
topology for X Y if X or Y is infinite-dimensional, whence one speaks of different
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topological tensor products. The most common topological tensor products are the
projective and injective tensor product introduced below.

The projective tensor product topology equips the algebraic tensor product X ® Y
with the finest topology such that ® : X X Y — X ® Y is jointly continuous. That is,
it is the final topology defined by the projections 7y : X =X Q®Y, ny : Y =X QY.
Equivalently, the topology is induced by the seminorms

lualyy = inf {3 ellllyally | u="Y", xc® e}

for all u € X ® Y and where the infimum runs over all representations of u. The
resulting locally convex space is usually denoted X ®, Y and its completion X ® , Y.

A coarser topology is defined by the injective tensor product topology; it is the
finest topology such that ® : X X Y — X ® Y is separately continuous. Let X', Y’ be
the weak duals of X, Y. Note that X ® Y can be embedded into the space of bilinear
separately continuous maps X’ x Y’ — K, denoted B(X,Y), with the topology of
uniform convergence U X V on all equicontinuous sets U C X and V C Y. That is,
the topology is generated for all U x V and open I C K by the finite intersections of

{f eBX,Y)|f(UxV)cCI}.

X ®Y can now be endowed with the corresponding subspace topology. Seminorms
that induce this topology are given by

lully; = sup{|(f ® @)W)| | f €X’,g € Y’ such that ||f|; = llgll; = 1}.

The space X ® Y equipped with the injective topology is usually denoted X ®, Y and

its completion is denoted X ®, Y. Observe that C(X,Y) ~ C(X)®, Y if Y is complete.
Locally convex spaces on which the injective and projective tensor product agree

are called nuclear. More precisely, we say that a locally convex space X is nuclear if

X®, Y=X®,Y orequivalently X®,Y=X®,Y

for every locally convex space? Y in which case we simply write X ® Y. If both X and
Y are nuclear, then also X ® Y is nuclear. Moreover, if a subspace of a nuclear space
is nuclear and the quotient space of a nuclear space by a closed subspace is nuclear.

A more useful characterisation of nuclear spaces is in terms of summable se-
quences. Denote by ¢;(X) the X-valued summable sequences, i.e., the set of sequences
(x,) in X such that all unordered partial sums ), ;. X, converge in X. Further,
denote by £, {X} the X-valued absolutely summable sequences, i.e., the set of sequences
(x,) in X such that Zn||xn||l- < oo for all seminorms || -||; of X. Then X is nuclear if
and only if

6 X)) =0,{X}

and hence, by the above observation, both sides are equal to {;®X = {1®,X ={;®.X.
In other words, X is nuclear if and only if every summable sequence in X is already
absolutely summable. Nuclear spaces are therefore very similar to finite-dimensional

2Actually it is sufficient to check equality for Y = £, see below.
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spaces and, while every finite-dimensional locally convex space is nuclear, no infinite-
dimensional normed space is.

We finish this section by stating what can be called the abstract kernel theorem for
Fréchet spaces:

X®Y)~X'®Y" and X®Y)~X'®Y’

for every X, Y such that X (or Y) is nuclear and where all duals are strong duals.

3.2 Topological *-algebras

A topological *-algebra is a topological algebra o over C, i.e., a topological C-vector
space with a separately continuous ring multiplication, together with a continuous
involution *. That is, there is an automorphism

rd—d, x— x¥,

which is antilinear and involutive such that
(@) (ax+by)* =ax*+by*
(b) (xy)*=y"x%,
(@ (x)=x

forall x,y € of and a, b € C. If, in addition, of has a multiplicative unit 1, we say that
d is a unital *-algebra. Elements x, y of the algebra o are called

adjoint if x" =y,
self-adjoint if x*=x,
normal if x*x =xx¥,

unitary if x*x=1=xx%,

where unitarity obviously requires the existence of a unit element. Note that 1 is
always self-adjoint.

A *-subalgebra . C o is called a left (right) *-ideal if yx (resp. xy) is in .¥ for all
y € ¥ and x € d. If the subalgebra is both a left and right *-ideal, it is just called a
(two-sided) *-ideal. It follows that an ideal .7 of o is a *-ideal if and only if ¥* = .7.

The homomorphisms that arise between *-algebras, called *-homomorphisms, are
those that preserve in addition to the multiplicative also the involutive structure,
ie., amap a : 9 — B is a *-homomorphisms if it is an algebra-homomorphism
and a(x™) = a(x)* for all x € d. If the *-algebras are unital, we also demand that
*-homomorphisms be unit-preserving.

Often one needs a *-algebra which also has the structure of a normed vector space.
In the case of *-algebras, it makes sense to require the norm to satisfy an additional
property: Anorm ||-|| : f — R is said to be a C*-norm if

2
llx x|l = 1]
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for all x € of. This differs from some definitions of C*-norms because, in fact, every
C*-norm is automatically a *-isomorphism and submultiplicative, i.e.,

lx* I =1lxIl and [lxyll < llxlllyl

forall x,y € o [199].

If a *-algebra o1 comes equipped with such a C*-norm ||-|| that turns ¢/ into a
Banach space, then it is called a C*-algebra. In a C*-algebra, ring multiplication
and inversion are continuous operations with respect to the norm; the continuity
of addition, scalar multiplication and involution are obvious. The condition for a
unital C*-algebra to have a C*-norm imposes such strong conditions on its algebraic
structure that the algebra uniquely determines the norm. Namely,

llx|1* = [|]x*x|| = sup {|A| | x*x — A1 is not invertible}

for every x € o. A *-homomorphism a : sf — % between two unital C*-algebras is
thus always norm-decreasing: [|a(x)|| < ||x]|.

3.2.1 States

Given a *-algebra o, one can consider its algebraic dual, the space of linear functionals
on d. A linear functional w € o* on a unital *-algebra o is positive if it satisfies

w(x*x)>0

for all x € d. If, o is unital and w(1) = 1, we say that w is normalized. A functional
w that is both positive and normalized is called a state. If the *-algebra o/ comes
equipped with a topology, we always assume that w is continuous, i.e., we consider
the topological dual o1’ instead of the algebraic one; an algebraic state on a C*-algebra
is automatically continuous with respect to the C*-norm.

Given positive w € o', it follows that for all x,y € o

w(x*y) = w(y*x),
lw(x*y)I?* < w(x*x)w(y*y),

where the second line is called the Cauchy—-Schwarz inequality. If of is unital, the first
equation implies that every positive w is hermitian: w(x™) = w(x).

A state w is pure if every other state 7) that is majorized by it, w(x*x) > n(x*x),
is of the form n = Aw with A € [0,1]. Consequently, a pure state cannot be written
as the convex sum of two other states. States that are not pure are called mixed.

The positive linear functionals equips of with a degenerate inner product via the
antilinear pairing (x, y) = w(x*y) which can be turned into a pre-Hilbert space by
taking the quotient by the degenerate elements. This is the essential content of the
famous Gel’fand—Naimark-Segal construction, usually abbreviated as GNS construction,
which we will state after the following definition.

A *-representation 1 of a *-algebra o is a *-homomorphism into the C*-algebra of
linear operators on a common dense (with respect to the norm ||-|| = (-, -)1/ 2 on the
Hilbert space) domain & of a Hilbert space #. Note that the *-representation 7 is
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continuous with respect to the uniform operator topology, i.e., the topology induced
by the operator norm

ITllop = sup {ITx]| | x €D with ||x|| < 1}.

Moreover, if the domain @ is complete in the graph topology induced by the family of
seminorms || - ||, = ||c(x)- ||, we say the the *-representation 7t is closed.

If there exists a vector 2 € % such that ()2 = {n(x)2 | x € o4} is dense
in #, then the *-representation is called cyclic and 2 cylic vector. If ()2 is even
dense in & in the graph topology, then 7 and 2 are called strongly cyclic. The state
w(x) = (n(x)$, 2) defined by a cyclic vector 2 of a cyclic *-representation 7 is pure
if and only if the only subspaces left invariant by 7t(A) are the trivial ones.

Theorem 3.1 (GNS construction). Let w be a state® on a unital topological *-algebra si.
Then there exists a closed (weakly continuous) strongly cyclic *-representation 1 of s on
a Hilbert space # with inner product (-, -) and strongly cyclic vector £2 such that

w(x*y) = (n(x)2, n(y)2)
for all x,y € dl. The representation 7 is unique up to unitary equivalence.

This is a standard theorem and a proof can be found in many places, e.g., in [180].
Working with general *-algebras, we have not excluded the case of *-representations
onto unbounded operators. For that reason it is not possible to uniquely extend
the representation to the whole Hilbert space, and hence self-adjoint elements of
the algebra might not be represented by self-adjoint operators but only symmetric
operators. These problems do not occur if one applies the GNS construction to
C*-algebras.

3.2.2 Weyl algebra

Set V to be a R-vector space and o : V x V — R an antisymmetric bilinear form (i.e.,
a pre-symplectic form).* A Weyl *-algebra W for (V, o) is a unital involutive algebra
generated by (nonzero) Weyl generators W, i.e., symbols W(-) labelled by the vectors
in V, which satisfy, for all v,w € V, the relations

(@ WH)W(w) =exp (%O’(V,W))W(V +w),
(b) W) =wW(-v).

Therefore the Weyl generators also have the following properties:
(© w()=1,

(@ WOy =w(-v)=wm,

3Actually it is enough for w to be a positive; the normalization is not necessary for the theorem to
hold.

“We follow [151] and will not assume that o is non-degenerate. In fact it is sufficient to assume
that o is linear in its first or second argument.
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(e) (W(v)),ey are linearly independent.

Since W is generated by unitaries, every *-representation is necessarily by bounded
operators. Moreover, between two Weyl *-algebras generated by Weyl generators W
and W' for (V, o) there exists a unique *-isomorphism a completely determined by
aoW =W’

One can endow % with a C*-norm, the minimal regular norm

llx|| = sup {e(x*x)1/2 | w is a state on W'}

for all x € W . If the bilinear form ¢ is non-degenerate, one can show that all C*-norm
over U are equal. We call the completion W of a Weyl *-algebra %, with respect
to the minimal regular norm, the Weyl C*-algebra. It is unique up to *-isomorphism
and, in particular, simple, viz., it has no non-trivial closed *-ideals, if and only if o is
non-degenerate [151].

The map R 3 A — W(Av) is not continuous in W, because ||W(v) — W(w)|| =
2 for all distinct v,w € V as a consequence of the spectral radius formula. A
*_representation 7t of W on a Hilbert space % is called regular if the one-parameter
unitary groups

A= (moW)(Av), vev,

are strongly continuous. If the *-representation induced by a state on ' is regular,
we also call the state regular. Invoking Stone’s theorem (7 o W)(Av), we can find a
family of self-adjoint operators F(-) on #, labelled by vectors in V, such that

(moW)(Av) =exp (iAF(v));

the map F is called the field operator and is generally unbounded.

A strongly regular state [23] is a regular state for which the operators F(v), v €V,
have a common dense domain @ C %, which is closed under the action of F, and for
which v — F(v)w is continuous for fixed w € V. For strongly regular states the field
operator is linear in its argument and thus a self-adjoint operator-valued distribution.

3.3 Derivatives

Various different notions of derivatives on topological vector spaces exist in the
literature, see [20] for a survey and history of the topic. On infinite-dimensional
spaces these derivatives are inequivalent and care must be taken to make precise
which derivative is meant. On Banach spaces there exists the notable example of the
Fréchet derivative. However, many spaces of interest in physics are not normed and
so one must work with derivatives on more general spaces. Below we will define a
directional derivative in the sense of Gateaux and later compare it with the Fréchet
derivative on Banach spaces.

3.3.1 The directional derivative

Let X,Y be two topological vector spaces and U C X open. The (directional) derivative
of a function f : U — Y at x € U in the direction h € X is defined as the map
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df :UxX—>Y,

1 d
dpf (x) =df (x;h) = liné—(f(X+€h)—f(X)) = —f(x+eh)| GB.D
£—0 € de £=0

if the limit exists. In particular, if f is a continuous linear function, then its derivative
is df (x;h) = f (h).

Note that the nomenclature here follows that of [116, 163] and differs from that
in [3], where Pinamonti and the author called the same derivative Gdteaux derivative.
The reason for this choice of a more neutral name is that the name “Gateaux derivative”
has sometimes been used for slightly different derivatives. However, all definitions
known to the author agree whenever the derivative is both linear and continuous in
the direction of the derivative.

It should be clear from the definition of the directional derivative, that the ordinary
and partial derivative are special cases of the directional derivative for functions from
Euclidean R" to R or C. Consequently the directional derivative is also closely related
to the local form of the covariant derivative given by a connection on a vector bundle.

The function f is called differentiable at x if the limit exists for all h € X and
simply differentiable if it is differentiable at every x € U. Moreover, f is continuously
differentiable or C' on U if the map df is continuous (in the induced topology
on U x X). Higher derivatives may be defined recursively by

. L1 -
dy, -+ dp, FOx) = hnf(x):?_l,%;(dz o flx+eh)—d!

..... N Looen

ic)

and we say that f is C™ if df is C"!; if f is C" for all n € N, then we say that f is
C™ or smooth.

Continuity of the derivative already implies many other properties if the involved
vector spaces are locally convex. Hence, let X,Y be locally convex spaces and
f :X DU —Y be continuously differentiable. Then it can be shown that [116, 163]:

(a) the fundamental theorem of calculus

1

fx+h)—f(x) :f df (x + th;h)dt
0
holds if x +[0,1]h C U,
(b) f islocally constant if and only if df =0,
(¢) the map h — df (x;h) is linear,

(d) f is continuous (not necessarily true if X, Y are not locally convex!),

(e) if f € C", the map (hy,...,h,) — d"f(x;hy,...,h,) is symmetric and multilin-
ear and we can use yet another notation

(d"f(x),hy ®---@hy) =d"f (x;hy,..., hy),
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() if f € ¢, Taylor’s formula

f(x+h)=f(x)+df(x;h)+---+%d"f(x;h,...,h)
1 (! .
+—f (1—o)"d" 1 f(x +th;h,...,h)
n! 0

holds for x + [0,1]h C U.

Moreover, given locally convex X, Y, Z, open subsets U C X, V C Y and C" maps
f:U—V,g:V — Z, the chain rule holds for the composition g o f, i.e., also the
composition g o f is C™ [116, 163].

In ordinary calculus one can show that a continuously differentiable function
function is locally Lipschitz. An analogous result holds for the directional derivative
on normed spaces (see also [3]):

Proposition 3.2. Let f : X — Y be a continuously differentiable map between the two
normed spaces (X, || - ||x) and (Y, || - |ly). Then f is locally Lipschitz, i.e., for every convex
neighbourhood U of x, € X there exists a K > 0 such that for all x,,x5 €U

If (x1) = fF(x)llw S K lxq — x3lly

Proof. Since the derivative df (x;h) is continuous and linear in h € X, there exists a
convex neighbourhood U of x; such that

lldf Ges Wlly < lldf GOllopllRllx < K lRllx

for all x € U. As Lipschitz constant K we can choose the supremum of x — [|df (x)l[op
in U. By the fundamental theorem of calculus we have for x;,x, € U

1

flxy) = fxz) = J df (xp+t (x7 — x3); X1 — x5) dt.

0

Hence, taking the norm on both sides, the previous equation yields

1
I Gen) = £ (xe)lly < f [df (e + £ Gey = x2)30 = x5) ||, At <K [lxg = xallx. O
0

Later on we will often encounter spaces of differentiable and smooth functions
and thus need an appropriate topology on these space: Let X,Y be a topological
vector space such that Y is locally convex and U € X open. We can equip the vector
space C"(U,Y) of all n-times continuously differentiable maps between X and Y with
the seminorms

£ i jexe = sup 1d* £ ()l op
x€K

for all f € C™(U,Y), every compact K C U and 0 < k < n. These seminorms
induce an initial topology on C"(U, Y) turning it into a locally convex space. This is
another example of a compact-open topology or topology of uniform convergence on
compacta. Note that, if Y is a Fréchet space and U is o-compact, C"(U,Y) becomes
a Fréchet space.
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3.3.2 The Fréchet derivative

On Banach spaces it is possible to define another directional derivative, the Fréchet
derivative. Given Banach spaces X,Y and an open subset U C X,amap f : U —» Y
is called Fréchet differentiable at x € U if there exists a bounded linear operator
Df(x):X — Y, the Fréchet derivative of f at x, such that

im [IRll* (f e +B) = £ () = Df (o)) = 0. (3.2)
The operator Df (x) is unique if it exists. In analogy to the directional derivatives that
we encountered so far, we also write Dy, f (x) =Df (x;h) = Df (x)h. We call f Fréchet
differentiable if the Fréchet derivative exists for all x € U. If the Fréchet derivative is
continuous in x, then f is continuously Fréchet differentiable.
The Fréchet derivative is closely related to the directional derivative defined above
(see also [3]):

Proposition 3.3. Let X,Y be Banach spaces, U C X openand f : U =Y amap. f is
Fréchet differentiable if and only if f is continuously differentiable. In that case the two
derivatives agree.

Proof. “=”: We can bring (3.2) into agreement with (3.1) by replacing h in (3.2)
by th, t € R, and take the limit ||th||, — O along the ray of h, i.e., by taking t to zero
while keeping h fixed. Moreover, Df (x) is clearly continuous because it is linear and
bounded.

“<”: As in proposition 3.2, since the derivative df () is a continuous linear
map, there exists a (convex) neighbourhood V of x where it is bounded. Using the
fundamental theorem of calculus again, we obtain for any y € V and sufficiently
small h € X

IfGe+h) = fx)=df (y;Plly < SEJPJIIdf(x + th) = df ()llopllhllx-
tel0,1
In particular this holds for x = y and thus f is Fréchet differentiable at x with

Df (x) = df (x). O

It follows that any statement on continuously differentiable maps also holds for
Fréchet differentiable maps.

Fréchet differentiability is a very strong notion of differentiability and many
theorems from ordinary calculus can be generalized to the Fréchet derivative but not
further to the directional derivative on arbitrary Fréchet spaces. An example is the
inverse function theorem for which holds for the Fréchet derivative on Banach spaces
but does not hold on general Fréchet spaces. On some Fréchet spaces one has instead
the Nash—-Moser theorem [116].

3.4 Fixed-point theorems

Let us start this section by stating the most elementary fixed-point theorem, the
Banach fixed-point theorem:
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Theorem 3.4 (Banach fixed-point theorem). Let f : X — X be a contraction on a (non-
empty) complete metric space X. Then f has a unique fixed-point x = f (x). Furthermore,
taking an arbitrary initial value x, € X, x is the limit of the sequence (x,) defined by
the iterative procedure x,,1 = f(x,).

We will not prove this theorem here; the proof is not difficult and can be found in
essentially any introductory book on (functional) analysis. Instead we will dissect,
specialize, generalize and finally prove various parts of this theorem separately.

3.4.1 Existence and uniqueness
Let us start with a useful lemma:

Lemma 3.5. Let --- C Vi, CVi_; C--- CV, be a decreasing sequence of sets. Suppose
there exists a functional f such that f : Vi — V}.q for every non-negative k < n. Any
fixed-point x = f(x) in V, is already in V,,.

Proof. Suppose that x € V, but x ¢ V,, is a fixed-point. Then there exists a k < n such
that x € V. and x ¢ Vi,,. Since x is a fixed-point of f, we have that x = f(x), but
f(x) € Viy; by the properties of f. O

This lemma has serval useful consequences. One example is the following: The
limit of a convergent sequence in a complete metric space is not necessarily as
regular as all the elements of the sequence; a priori the regularity of the limit is
only controlled by the topology induced by the metric. However, if the limit is the
fixed-point of a smoothing map, the situation is much better.

Corollary 3.6. Let X,Y be a topological vector spaces and U C X open. Further, let V. C
Ck(U,Y) for all k such that V;, C V,._;. Suppose there exists a smoothing functional f
such that f : Vi — Vi, for every non-negative k < n. Any fixed-point x = f(x) in C°
is already in C™. O

If one is interested only in existence of fixed-points but not their uniqueness, then
one can perform a straightforward generalization of the ‘existence’ part of Banach’s
fixed-point theorem:

Proposition 3.7. Let (X,d) be a non-empty complete metric space and f : X — X a map.
Assume that there exists a subset U C X such that f : U — U and f is a contraction
on U with Lipschitz constant K € [0,1), i.e., forall y,z € U

d(f(¥), f(2)) <Kd(y,=2).
Then there exists a fixed-point x = F(x) in X.

Proof. Define for an arbitrary x, € U the Picard sequence (x,) where x,,; = f (x,).
Using the contractivity of f on U, we get

d(xp41, %) S Kd(xp, xp—1) < K"'d(xq,x0).

One can then easily show that (x,,) is a Cauchy sequence and take the limit n — co in
Xne1 = f(x,) to see that there exists a limit x = f(x) in X. O
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This proposition does not guarantee uniqueness of the fixed-point because the
mapping is only required to be a contraction on a subset of a complete metric
space and the fixed-point is not necessarily contained in this subset. Nevertheless,
uniqueness holds if the mapping is of the form assumed in Lem. 3.5. Moreover, if the
mapping is smoothing as in Cor. 3.6 then the unique fixed-point is even C".

Proposition 3.8. Let (X, d) be a non-empty complete metric space and (V;.) be a decreas-
ing sequence of sets as in Lem. 3.5 such that V,; C X is closed. Suppose that f : V;. = V.1
for every non-negative k < n such that f is a contraction on V,. Then f has a unique

fixed-point x = f(x) € V,.

Proof. The existence of fixed-points in V|, that are contained in V, follows from
Lem. 3.5 and Prop. 3.7. Assume now that there exist two distinct fixed-points x, y.
Since f is a contraction on V,,, we have

dx,y)=d(f(x),f(¥)) <Kd(x,y),

where K € [0, 1) is the Lipschitz constant of f, and thus arrive at a contradiction. O

3.4.2 A Lipschitz continuity criterion

Next we will see that it is not necessary for a map to be a contraction for it to have
fixed points. In fact it is sufficient for the map to satisfy a certain Lipschitz continuity
condition:

Lemma 3.9. Let (X,d) be a non-empty complete metric space. Suppose there exists
K € R, such that f : X — X satisfies

Kn
d(f"G, () = —-dx,y)
forall x,y € X and n € N. Then f has a unique fixed-point.

Proof. Since n! grows faster than K", there exists a N such that f" is a contraction
for all n > N. If we set V}, = f¥(X), we can apply Prop. 3.8 and the thesis follows. [

The special bound assumed in Lem. 3.9 is in fact very natural if f is the intgral
functional

t
f:Cla,b] = Cla,b], f(x)(t)= fo(t) +J k(x)(s)ds, (3.3)
where f, € C[a, b] and with integral kernel k : C[a, b] — C[a, b]. Recall that space
of continuous functions C[a, b] in the interval [a, b] can be turned into a Banach
space by equipping it with with the uniform norm

IXllcra,p) = Xl = sup [X(E)],
tela,b]

where we will use [|X||¢(q,,] instead of the more common [|X||, to emphasize the
interval over which the supremum is taken.
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Proposition 3.10. Let f be of the form (3.3) with k continuously differentiable in
U C C[a, b] open such that f closes on a closed subset V. C U, i.e., f(V)C V. Then f
has a unique fixed-point in V.

Proof. We can show the statement using Lem. 3.9 and an inductive procedure.
Applying Prop. 3.2, we find that k is locally Lipschitz as a functional on U; denote
by L = sup,.yldkl|op its Lipschitz constant. Using the uniform norm on C[a, t], we
thus obtain

If )= fFWllera, < J Ik(x) = k(¥)llcra,cds < L(t = a)llx = yllcpq,b)-

Suppose now that

Ln t— n
IF7C) ~ £ O ey S o Dl = Yl (3.4

holds up to n and for arbitrary t € [a, b]. Then,
F@0) = ()] < J Itk o f")(x) = (ko f)Y)llcras ds

gLf|u%w—f%wmmﬂ$

a
LTH-I

t

< J(S—a)nﬂx—J’HC[a,b]dS
: a

Ln+1(t _ a)n+1

(n+1)! ||X—J’||c[a,b],

which implies that (3.4) holds also for n + 1, thus concluding the proof. |

3.4.3 Closed functionals

The last proposition contains an apparently minor but in fact very strong condition,
namely that the functional k closes within the set V. In any application of a fixed-
point theorem similar to Banach’s theorem, the crucial point to check is usually not
that the map is a contraction but that it is closed. In the given case of an integral
functional (3.3), however, we can always be assured that there exists an interval
I C [a, b] on which the functional closes [3]; this interval might be very small.

Proposition 3.11. Suppose that k is bounded on a set U C C[a, b] which also includes
a ball V around f, defined as V = {x | [|x — follc[q,p] < O} for some 6. Then there exists
t € (a, b] such that f satisfies f (U)I[q,;] € Ulq,-

Proof. Since k is bounded on U, it clearly satisfies

kOl e, < TkGllepap S K = Sugllk(}’)nc[a,b]
ye
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for all x € U. Then, taking the norm of (3.3) after subtracting f,,, one obtains
1f (x) = follera,ey < (£ = DlIk(x)llcpq,g < (t = a)K,

because V C U. For any 6 we can always find a t such that (t —a)K < & and therefore
FU)Ta,e] € Via,- The thesis follows because V C U. O

3.5 Microlocal analysis

3.5.1 Distributions

We will now define three important function spaces and their topological duals, which
will be called spaces of distributions.
To conform with standard notation we denote the space of smooth functions on an
open subset U C R" by
€(U)=C>(U,C).

As observed in Sect. 3.3.1, it is a Fréchet space with the compact-open topology. The

elements of the topological dual €’(U) are called compactly supported distributions.
The vector space of rapidly decreasing (or decaying) functions will be denoted by

S(U). We say that a smooth function f € €(U") is rapidly decreasing (decaying) if

1l = sup (1+ x|™)]|d™f ()]} < oo
xeygn

for all i,n,m. We equip S(U) with the topology induced by these seminorms and
see that it is a Fréchet space. The topological dual 8’(U) is the space of tempered
distributions or Schwartg distributions.

Another subspace of €(U) is the space of test functions, denoted by

P(U) = C(U,C).

We can equip this space with a topology similar but more complicated than that
of €(U). If K C U is compact, we can endow @(K) = €(K) with the subspace
topology. Then, taking a compact exhaustion Ky C Ky C -+ -, UiKi = U, the topology
on P(U) is the initial topology defined by the projections 7t; : D(K;) — D(U). This
topology is not Fréchet unless U is compact and €(U) is already Fréchet, in which
case D(U) = 8(U). The topological dual &’(U) is the space of distributions.

More generally, we define (U, X), with ¥ = 9,%€ or 8, as the spaces of functions
with values in a locally convex vector space X and by &' (U, X) the associated distribu-
tion spaces. The necessary generalizations to the definitions above are straightforward
but note that the resulting function spaces are not Fréchet unless V is already Fréchet.
Moreover, it is possible to define Y-valued distributions '(U,X,Y ), where Y is a
locally convex space.

Given a distribution u € @’(U), we can restrict it to a distribution u, on any open
V C U by setting

uy (f) =u(f) (3.5)
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for every f € @(V). A distribution is uniquely determined by its restrictions: If
(U;)ien is an open cover of U and u; € 9’(U;) such that u; = u; whenever U; N U; # 0,
then there exists a unique u € @’(U) such that u; is the restriction of u to U; for
every i.

The support suppu of a distribution u € @’(U) is the smallest closed set V C U
such that the restriction of u to U \ V vanishes. More precisely,

suppu = U\U{V CUopen|u(f)=0VYf e p(V)}.

It follows that u(f) = 0 if suppu Nsupp f = @ and that the space €’(U) is indeed the
space of compactly supported distributions.

3.5.2 Distributions on manifolds

The discussion above does not yet encompass the case of distributions on smooth
manifolds because manifolds are not vector spaces. However, manifolds are locally
homeomorphic to a vector space — Euclidean space.

Let M be a smooth manifold, E — M a smooth vector bundle and (U;);cy an open
cover of M such that (Uj;, ;) are coordinate charts and (U;, ;) local trivializations.
We define again the space of smooth sections

€(M,E)=T>(E)

as the space of functions f : M — E such that ;o f o api_l is smooth for each i, i.e.,
we require

Yiof ot €6(p:(U),Yi(Ey)).

A locally convex topology that turns (M, E) into a Fréchet spaces is the initial
topology induced by the product topology on the right-hand side of the injection

v (M, E) = | [8(0:(U), ¥i(Ey));
ieN
the topology is independent of the choice of the cover (U;);cy. The topological dual
of €(M, E) is the space of compactly supported distributional sections €' (M, E).
The space of compactly supported smooth sections, the test sections, is denoted

B(M, E) = I°(E).

Analogously to the vector space case we define an initial topology on @(M, E) induced
by that on €(K;, E), where (K;) form a compact exhaustion of M; whence the space
of test sections becomes a Fréchet space. The space of distributional sections @'(M, E)
is the topological dual of (M, E).

The restriction of distribution generalizes to distributions on manifolds in the
obvious way: Given a manifold M and an open subset U C M, every distribution
u € 9'(M, E) can be restricted to a distribution uy € @’(U, Ey;) by setting

uy(f) =u(f)
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for all f € (U, E). Also on a manifold a distribution is completely supported by its
restrictions.

It does not make sense to define a notion of rapidly decaying sections or tempered
distributional sections on manifolds. It is also clear, that the concept of distributions
can be further extended to objects such as Fréchet manifolds in very much the same
way as above for smooth manifolds.

3.5.3 Nuclearity and the Schwartz kernel theorem

All the function spaces but none of the distribution spaces defined in the previous two
sections are Fréchet. However, all the function and distribution spaces (with either
the weak or strong topology) are nuclear. For this reason, we have the isomorphisms

P(U,X)~D(U)BX, 9'(U,K,X)~D' (U)X,
U, X)~E(U)®X, €' (UK X)~€ (U)X,
S(R™, X) ~8(R™)®X, S'(R™ K, X) ~8'(R™) ®X

for a complete locally convex topological vector space X and an open set U C R™. As
another consequence we can specialize the abstract kernel theorem (cf. Sect. 3.1.5)
to these function spaces under which circumstances it is called the Schwartz kernel
theorem. One finds the following isomorphism (open subsets U € R™ and V C R"):

(U XxV)~E(U)®E (V)~L(B(U),€ (V)),
P'(UXxV)~D'(U)®D' (V) ~L(D(U),D'(V)),
S/ (R™™) ~ §'(R™) ® S'(R") ~ L(B(R™), €' (R")),

where L(X,Y) denotes the space of continuous linear maps between topological vector
spaces X and Y with the topology of uniform convergence. Analogous isomorphisms
(at least for € and @) exist for both sets of isomorphisms also for functions and
distributions on manifolds.

As a consequence of these isomorphisms, there exists for every distribution
K € 9'(U x V) a unique linear operator K : @(U) — 9’(V) and, conversely, to every
linear operator K a unique distribution. Let f € @(U) and g € (V) be test functions.
Formally we can write

K(f®g)= f K(x,y)f (x)g(x)d™xd"y

UxV

for the distribution with distributional kernel K(x,y) and

Kf)(y) =f

K(x, y)f (x)d™x, (tKg)(X)=J K(x,y)g(y)d"y,
U

14
for the associated operator and its transpose.

The operator K is called semiregular if it continuously® maps @ (U) into €(V) and,
analogously, the transpose ‘K is called semiregular if it continuously maps < (V) into

>Continuity is meant with respect to the usual topology of €(V) and not the subspace topology of
D'(V).



72 Chapter 3. Analysis

€(U). In the case that 'K is semiregular, we can uniquely extend K to an operator
acting on compactly supported distributions €’(U) by duality:

(Ku)(g) = ("Kg)(w)

for allu € €(U) and g € '(V).

If both K and ‘K are semiregular, we say that K regular. Moreover, it is called
properly supported if the projections from suppK C U X V onto each factor are proper
maps. A properly supported operator K maps 9(U) to €’(V) and can therefore
be extended to an operator 9(U) — €’(V). Since linear differential operators are
properly supported and regular, they can be uniquely extended to distributions and
they can also be composed.

3.5.4 Fourier transformation and convolution

Let us denote by LP(IR") the L? spaces of functions on R" with values in C. That is,
LP(RR™) is the space of functions for which the Lebesgue integrals

1/p
Wfll, = (J If GolP d”X)
Rn

exist and where we identify functions which are equal almost everywhere so that the
LP spaces become Banach spaces. L' functions are called Lebesgue integrable, while
L? are called square-integrable.

On the space of Lebesgue integrable functions L!(R"), the Fourier transform is
defined as the automorphism

F:fx)=F(f)E) = (2ﬂ)_nf f(x)e ™ dmy,
Rn

where - denotes the Euclidean dot product. The Fourier transform satisfies

FHf)x) = 2m)"f (—x)

and the inverse Fourier transform is therefore given by

FH) = f f(&)eEde.
R

When no confusion can arise, we usually denote the Fourier transform of a function f
by f instead of F(f).

By the Riemann-Lebesgue lemma, it is clear that f(g )— 0 as |&] — oo. In fact,
the Fourier transform is a linear isomorphism from the subspace of rapidly decaying
functions S(R") into itself. Since the space of rapidly decreasing functions is stable
under differentiation and multiplication by polynomials, one finds for f € S(R")

FOf)E) =E,f (&) and F(x,f)E)=3,f(&). (3.6)
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Moreover, given also g € S(R"), the Plancherel-Parseval identities are

f FOORC)d"x = (2m) ™" [ FIEZE)AE, (3.7)
R?

R"

f |f(x)|2d“x=(2n>—“f F (&) dre.
R" R"

As a consequence, the Fourier transform can be extended to an isomorphism of L2(R")
into itself.

The Plancherel-Parseval formula (3.7) guides us to extend the Fourier transfor-
mation F further to the space of tempered distributions §’(R") by

-~

(W f) = (u,f)

for allu € 8'(R") and f € S(R™), i.e., it is the transpose of the Fourier transformation
on rapidly decreasing functions. It follows that % is a linear isomorphism from §’(R")
(with the weak topology) into itself and analogues of the relations (3.6) hold also for
tempered distributions u € §’'(R™):

F(9uu)(&) =& u(€) and F(x,u)(&)=—9,u(&).

If we restrict to the space of compactly supported distributions, the Fourier
transform of u € €'(R") is equivalently given as the smooth function

&)= (u, f : x — e X€),

The Fourier transform @ can be directly extended to C" as an entire analytic function.
The convolution of two Lebesgue integrable functions f, g € L}(R") is defined as

(f xg)(x) = f f(y)glx—y)d"y.
-

The product thus defined is dual to the usual product with respect to Fourier transfor-
mation. To wit, the identities

F(f+xg)=fg and F(fg)=2n)™"(f*g)

hold and are the result of the convolution theorem. Note that for distributions u €
S’(R™) and v € €’(R™), the convolution u * v is a well-defined tempered distribution
and its Fourier transform satisfies %(u * v) = UV as in the convolution theorem. If
also the product uv is well-defined as a (tempered) distribution, c¢f Sect. 3.5.7), then
other statement of the convolution theorem holds and F(uv) = (2n) (U * V)

3.5.5 Singularities and the wavefront set

Every locally Lebesgue integrable function u € Llloc(]R”) can be identified with a
distribution in 9’(R"), denoted by the same symbol, via

u(f)=(u,f)=f

R

u(x)f (x)d" x
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for all f € D(R™). We say that a distribution u € @’(R") is smooth, if it is induced
from a smooth function via this duality pairing. More specifically, every smooth
function corresponds to a distribution in this way and in fact &(IR") is isomorphic
to a dense subset of @’(R™). Therefore this pairing uniquely extends to a pairing
between @(R") and @'(R™). Using the Plancherel-Parseval identity (3.7), it can be
written explicitly as

u(f) = (zm—"f 7U(e)f (&) d"g, (3.8)
e

where u € @'(R") and y € @(R) such that y = 1 on a compact neighbourhood of
the support of f € &(R"). This pairing may be considered the motivation of the
wavefront set to be defined below.

The singular support singsuppu of a distribution u € @’(R") is then defined as
the complement of the union of all open sets on which u is smooth in the sense of
the pairing above. In other words, it is the smallest closed subset U € R" such that
ugny € (R \ U).

The Fourier transform, introduced in the previous section, can be used to give
a condition on the smoothness of a compactly supported distribution u € &€’(R").
Namely, u is smooth if and only if for each n € N; there exists a constant C, such that

(&) < C,(1+1ED™"

for all £ € R".

Checking this condition for certain &, a regular direction of a compactly supported
distribution u € €’(R") is a vector £ € R™\ {0} such that there exists an open conical®
neighbourhood I" of £ and such that

sup (1 + [¢])"[u({)] < oo
Ler

for all n € N. Conversely, a & is called a singular direction of u if it is not a regular
direction. The (closed) set of all singular directions of u is

Zw) = {&£ R\ {0} \ € is not a regular direction of u},

i.e., the complement of all regular directions.

We can localize the notion of singular directions and say that & is a singular
direction of u € @’(U) at x € U, where U C R" is open, if there exists a n € N, such
that

sup (1 +[ZD"F(xw(Q
Ler

is not bounded for all y € @(U) localized at x (i.e., y(x) # 0). That is, the set of
singular directions at x is the closed set

W) = () =(yw),
X

A cone in R" is a subset I' € R" such that AI" = I" for all A > 0.
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where the intersection is over all y € @(U) such that y(x) # 0.
This leads to the definition of the wavefront set as the set of the singular directions
at all points:

WF(u) = {(x; &) € U x (R"\ {0}) | £ € =, (w)}.

Thus the wavefront set is a refinement of the notion of singular support. Moreover, it
can be used as a practical tool for calculating the singular support because singsupp u
is the projection of WF(u) onto the first component. The wavefront set has the
following properties:

(@) WF(yu) c WE(w),

(b) WF(u+ v) € WF(u) UWF(v),

(c) WF(Pu) C WF(u)
for all distributions u, v € @’(U), localizing functions y € @(U) and linear differential
operators P (with smooth coefficients).
3.5.6  Wavefront set in cones

Let U Cc R" be open and I C U x (R™\ {0}) a closed cone, where we have extended
the definition of a cone to sets for which the projection to the second component at
each point is a cone. We define distributions with wavefront set contained in the
cone I as

D(U) = {u e D'(U) |WFw) c I'},

which is not empty for any cone I". The normal topology’ turns P7-(U) into a complete
nuclear space [54]. It is induced by the seminorms

lullp = suplu(f)l and [lull,y,, =sup(1+|EN"|F(xu)(E)I,
feB Eev

for all bounded sets B € @(U), n € Ny, localizing functions y € @(U) and closed
cones V C R™\ {0} such that supp(y) xV CI.
Given a closed cone I' as above, define the open cone

A=) ={(x;8) € Ux R\ {0} | (x; =&) ¢ T'}
as the complement of the reflection of I and
ELRY) = {v € €'(R") | WF(v) C A}
as the space of compactly supported distributions with wavefront set contained in A.

Then one can find an analogue to the pairing (3.8) for all u € @7.(R") and v € €/, (R")
given by [54]

(u,v) ﬁ@ﬂ)‘"f xu(EW(=£)d"E,
-

"The normal topology [54] is finer than the often emplyed Hérmander topology for these spaces.
Nuclearity also holds for the Hérmander topology but not completeness.
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for any y € @(R) such that y =1 on a compact neighbourhood of suppv. €/, (R")
thus becomes the topological dual of @.(R") (with the normal topology) and
(equipped with the strong topology) it is also nuclear but not complete unless A is
also closed [54].

3.5.7 Pullback of distributions

Let U,V be open subsets of R" and ¢ : U — V a diffeomorphism. The pullback ¢*u of
a distribution u € @’(V) is (uniquely) defined for every f € &(U) as the transpose of
the pushforward (up to the Jacobian determinant)

(u, f) = (u, 0. f [detdu])

or, equivalently, as the continuous extension of the pullback on smooth function.
Consequently; for any closed cone I' € V x (R" \ {0}), one obtains

D (V) =D (U), T ={(xTh(E) | (W(x);E) ery (3.9)

and hence WF(t*u) = *WF(u).

Trying to generalize this result to cases where ¢ : U — V is not a diffeomorphism
but an embedding of an open subset of R" into an open subset of R™ can fail if there
are (x; &) such that T;t(&) = 0. It follows that a distribution u € %’(V) can only be
pulled back to a distribution «*u if WF(u) NN = 0, where

N ={(u(x);&) er]Rm|x€U,T;:L(§)=O}

is the set of conormals of t.
Given two distributions u € @’(U) and v € @'(V), where U C R" and V ¢ R™
are open, the tensor product

u®v:f ®h—u(f)v(h)

is a distribution in @'(U x V) ~ %'(U) ® @'(V) via Schwartz’s kernel theorem. One
can show that its wavefront set satisfies

WF(u®v) c (WF(u) x WE(v)) U ((suppu x {0}) x WE(v))
U (WF(u) x (suppv x {0})).

It is possible to pullback the tensor product u ® v of two distributions over the
same space (i.e., U = V) with the diagonal map

A:UxU—-U,(x,x)—x

if WF(u ® v) NN, = 0, where N, is the set of conormals with respect to the map A,
which gives the (unique) product uv of the two distributions. This requirement of the
wavefront set implies that it is possible to multiply two distributions if and only if

(x,£) e WF(u) = (x,—&) € WE(v) (3.10)
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and then wavefront set of the product is bounded by

WF(uv) € {(x; & + ) ) (x; &) € WE(w), (x;¢) € WE(v)}

(3.11)
UWF(u) UWE(v).

Note that for u, v that do not satisfy (3.10), the singular directions would add up to
zero in the first term on the right-hand side of (3.11).

3.5.8 Wavefront set of distributional sections

The wavefront set can be extended to distributions on vector-valued functions
component-wise, i.e., using @'(U,K™) ~ @'(U) ® K™ ~ 9'(U)®™. Namely, one
defines for u € &'(U,K™)

m
WE(u) = |_JWF(w,),
i=1
where u; € 9'(U) are the components of u. This definition is invariant under a
change of basis because such a change only implies a multiplication of (u;) by a
matrix with smooth components.

Moreover, the wavefront set being a local concept, it generalizes to manifolds
and distributional sections in a coordinate neighbourhood via local trivializations.
However, to be meaningful, it needs to transform covariantly under diffeomorphisms.

Let (U;);ey be an open cover of a smooth n-manifold M such that (U;, ;) are
coordinate charts and (U;,;) are local trivializations of the vector bundle E — M.
Given a distribution u € 9'(M, E) with restrictions u; to U;, the wavefront set for
every u; given by

WF(u;) = {(x; Ty (&) € Uy x (R*\ {0}) | (¢(x);&) € WF(yp; 00 071}

and transforms as a conical subset of the cotangent bundles T*U; as seen by (3.9). In
particular, WF(u;) N T(U; N U;) = WE(u;) N TH(U; N U;) for all i, j.

The wavefront set of distributional sections u is then defined as the union of all
WEF(u;). In other words, it is the set of points

(x;8) e T"M =T'M \ {(y;0) € T*M},

the cotangent bundle with the zero section removed, such that (x; &) € WF(uy),
where U is a coordinate and trivialization neighbourhood of E.

3.5.9 Some distributions and their wavefront set

For any f € €(R), Dirac’s 6-distribution is
6(f)=f(0)

and it follows that & has support only at the origin. There it does not decay in any
direction because & = 1 so that WF(6) = {0} x (R \ {0}). Consequently powers of the
6-distribution cannot be defined.
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The Dirac 6-distribution can be decomposed into two distributions

5.(p)=tim | 94

e—0T X:f:l

for all f € S(R), such that —2mié = &, + &_, where WF(6.) = {0} x Ry. Now,
powers of either 6. are well-defined but the distribution 6. 6_ does not exist.

The wavefront set of 6, (and analogously that of 6 ) can be calculated as follows:
Using the residue theorem, the Fourier transform of 1/(x + ie) for £ > 0 is®

—ix&
J ¢ —dx = —2mif(E) e
g X T1€

Taking the limit ¢ — 07, this gives 5 +(&) =—2mifB(&). Then, applying the convolu-
tion theorem, one obtains the Fourier transform of y 6, for all y € @(R) as

1. - ¢
°J~(x§+):£(x>k5+)=—if Flk)dk.

Since this decays rapidly as £ — —oo and does not decay as £ — 0o, we get the
expected wavefront set.

Related to the diagonal map A : (x,x) — x, we can define for all f € ®(R?) a
diagonal distribution

A(f) if f(x,x)dx.
R
It is clear that the wavefront set of A is
WF(A) =N, = {(x,x;&,-&) € R*\ {0}}.

Given instead two functions f7, f, € D(R), we can write

Alf1® f2) = f (f1 % 8)(x)f2(x)dx
R

Splitting the §-distribution into its positive and negative frequency components as
above, we can therefore define

SOuy) ,y)
AL(f) = hm f :|:18

which in the case f = f; ® f, can be written as

AL(f1®fr)= J (f1 % 6.4)(x)f(x) dx.
R
It is not a difficult exercise to show that [5, Exmpl. 1.4]
WF(AL) = {(x,x;§,—&) € R*\ {0} | & > 0}.

Moreover, using the Plancherel-Parseval identities it is possible to show that A_ is
well-defined for all fi, f, € L?(R).

89 denotes the Heaviside step-function.
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3.5.10 Propagation of singularities

In Sect. 3.5.5 we already noticed that WF(Pu) € WF(u). That is, knowing the
wavefront set of the distribution u, we can deduce information about the wavefront
set of Pu, where P is a differential operator. The theorem on the propagation of
singularities gives us information in the opposite direction. Namely, WF(Pu) and the
form of P, tell us a lot about WF(u).

Let P:€(M,E) — €(M, E) be a differential operator acting on sections of a vector
bundle E — M. Its characteristic set is the cone

charP = {(x;&) e T'M | detop(x,&) =0}

on which the principal symbol op of P cannot be inverted.® An integral curve of op
in charP is called a bicharacteristic strip, its projection onto M a bicharacteristic.

Theorem 3.12 (Propagation of singularities). Suppose that P is a differential operator
with real homogeneous principal symbol such that no complete bicharacterstic stays in
a compact set of M (i.e., P is of real principal type) and let u, f € 9'(M, E) such that
Pu=f. Then

WEF(u) C charP UWF(f)

and, if (x; &) € WF(u) \ WE(f), it follows that (x’;&") € WF(u) for all (x';&") on the
bicharacteristic strip passing through (x;&).

3.6 Wave equations

Both classical and quantum fields usually satisfy an equation of motion given by a
wave equation
Pu=f, (3.12)

where P is a normally hyperbolic differential operator, u is the field and f and an
external source. On globally hyperbolic manifolds the wave equation can be solved,
i.e., the Cauchy problem for (3.12) is well-posed.

3.6.1 Retarded and advanced propagators

Let (M, g) be a spacetime and P : €(M,E) — €(M,E) a differential operator on
sections of a vector bundle E — M. A linear operator G,, : @(M, E) — (M, E) such
that for all f € (M, E)

PG,f =f and G Pf =7,
i.e., G, is a left- and right-inverse of P, and

supp(Gy f) € J*(supp f)

°If the principal symbol of P is invertible, we say that P is elliptic. Example of elliptic operators are
the Laplace operator and the Cauchy-Riemann operator.
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is called a retarded propagator or retarded Green’s operator for P. Similarly, a linear
operator G,, which is a two-sided inverse of P and satisfies

supp(G,f) € J ™ (supp f)

for all test sections f, is called a advanced propagator or advanced Green’s opera-
tor.'° We say that P is Green-hyperbolic if it admits unique retarded and advanced
propagators when restricted to a globally hyperbolic region.

Given a linear differential operator Q such that PoQ = QoP, i.e., Q commutes
with P, then it also commutes with the propagators of P. That is, one finds

G,Qf =QG,f and G,Qf =QG,f

for all f € (M, E).

If P is Green-hyperbolic, then the transpose operator ‘P on sections of the dual
bundle E* is also Green-hyperbolic; we denote its propagators by G, and G' . They
are closely related to the propagators of P and one finds

G,='G}) and G,="'G)).

Since the propagators are regular, they can be uniquely extended to operators
€'(M,E) - 9'(M, E). Although the propagators are not properly supported, they can
also be defined for some non-compactly supported sections. The geometry of (M, g)
enables us to define further types of ‘compact’ support: We say that a (distributional)
section u is future or past compact if there exists a Cauchy surface X such that

suppu CJT(XZ) or suppucJ (X)),

respectively. Denote by the subscripts ‘fc’ and ‘pc’ the subsets of (distributional)
sections of future and past compact support. Via the transpose propagators G!,, G,
we can then uniquely extend the retarded propagator to &; (M, E) — 9'(M, E) and
the advanced propagator to %;C(M ,E) > 9'(M,E).

Let E be endowed with a bundle metric (-,-). The formal adjoint P* of P with

respect to (-, -) is given by

J (Pf,h)ug=f (f, P'h) pg
M M

for all f,h € €(M, E) such that supp f Nsupph is compact. If P* = P, the operator is
called formally self-adjoint. In that case, it follows from the last paragraph that

f (Gvf)h).u‘g = f (f; G/\h).u'g
M M

As indicated above, wave operators on globally hyperbolic manifolds play an
important role and, in fact, they are particularly well-behaved [24, 103]:

ONote that our definition of the support of the retarded and advanced propagators is exactly opposite
to that in [23, 24] and also [72].
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Theorem 3.13. Any normally hyperbolic operator P on a globally hyperbolic manifold
admits unique retarded G,, and advanced propagators G .

It is not difficult to extend this result to pre-normally hyperbolic operators on
globally hyperbolic spacetimes. Namely, given pre-normally hyperbolic operators P
and Q such that P o Q is normally hyperbolic, P possesses unique retarded and
advanced propagators

EVZQOGV and G,=QoG,,

where G, G, are the propagators for the composite operator P o Q.

3.6.2 Causal propagator

The causal propagator is defined as the difference of the retarded and advanced
propagator

G=G,—G,.

From the support properties of the retarded and advanced propagator it is clear that
supp(Gf)=J(suppf) for all f € D(M, E). In Sect. 5.3.2 we will see that the causal
propagator, or rather the associated distribution via Schwartz’s kernel theorem, may
also be called the commutator distribution or Pauli-Jordan distribution.

By the regularity of the retarded and advanced propagators, it is clear that G
extends to an operator €'(M,E) — 9'(M,E). Noting the support property of G,
this statement can be strengthened to extend the causal propagator to %, (M,E) —
9'(M,E). Here we have denoted by a subscript ‘tc’ the space of (distributional)
sections of timelike compact support, i.e., the sections u such that

suppu C JH(Z) NI (2,)

for two Cauchy surfaces X, X,.

Every smooth and spacelike compact solution of the homogeneous differential
equation Pu = 0 propagating on a globally hyperbolic spacetime (M, g) with Green-
hyperbolic operator P can be obtained by applying G to a test section f. In fact, if we
denote by é,.(M, E) the smooth sections of E with spacelike compact support, then
we find the exact sequence

{0} — D(M, E) — D(M, E) —> €..(M, E) — %,.(M, E).

This sequence also entails the fact that the kernel of G is given by P& (M, E). In other
words, f — f’/ =Ph for some f, f',h € (M, E) implies that Gf = Gf’.

Closely related to the existence of a causal propagator is the question whether
the Cauchy problem is well-posed. The Cauchy problem for the wave equation Pu =0
on a globally hyperbolic manifold (M, g) is the following:
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Given a Cauchy surface t : X — M with normal vector field n, does there exist a
unique section u € (M, E) such that

Pu=0,
'u = uy,
UVu =1y

and the solution u depends continuously on the data uy,u; € €(X,.*E).

This question can be answered in the positive for normally hyperbolic operators P
on globally hyperbolic spacetimes. With the appropriate modifications, the Cauchy
problem can also be formulated for pre-normally hyperbolic operators. Also in that
case Cauchy problem is well-posed [220]. For general Green-hyperbolic operators
the Cauchy problem is more complicated and it is not obvious whether the Cauchy
problem is well-posed.



Enumerative combinatorics

Summary

In this chapter we discuss the results obtained by Fewster and the author in [95] on
the enumeration of the run structures of permutations. Some of the results stated
here will can be applied in the study of the moment problem in quantum field theory
and the connection will be discussed briefly in Sect. 4.4.

The first section (Sect. 4.1) gives a summary of the elementary definitions for
(linear) permutations and circular permutations. Then, the subsections of the second
section (Sects. 4.2.1 to 4.2.3) deal, respectively, with the enumeration of the run
structure of atomic, circular and linear permutations. Using a suitable decomposition,
this is accomplished in each case by reducing the enumeration problem to that for
atomic permutations. In the third section (Sect. 4.3) we apply and extend the methods
developed in the preceeding sections to enumerate the valleys of permutations,
thereby reproducing a result of Kitaev [138]. Finally, in the last section (Sect. 4.4),
we discuss the original motivation of the work [95] and other possible applications.

41 Permutations

Let us adopt the following notation for integer intervals: [a..b] = [a,b] NN =
{a,a+1,..., b} with the special case [n] =[1..n].

4.1.1 Linear permutations

Given a set S, a (linear) permutation of S is a bijection o : S — S. In the two-line
notation of the permutation of a finite set is written as

a b c .-
o= ( 0@ o) o) - )
where a, b, c,... €S. Itis clear that the order of elements in the first line is irrelevant
as long as the second line is ordered accordingly.

The set of all bijection on S forms the (linear) permutation group Gg of S; the
group operation is the composition o of functions. There are n! permutations in Sg
if S is a set of n elements. In the special case that S = [n], one writes &, = &,;.

Given a (strict) total order on a finite set S, i.e., a binary relation < that is
transitive and trichotomous, the first line will always be ordered in the natural order.
Since every finite ordered set S is isomorphic to a subset [n] of the natural numbers
with the standard ordering, this identification will tacitly be assumed henceforth.
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Therefore the first line can be disposed of and one can use instead the one-line
notation

a:(au) o(2) o(3) ~--).

We see that a permutation is equivalent to a change of the linear order of the set S.
Further condensing the one-line notation, the permutations of a finite ordered set
can be identified with words

0 =010203 """,

where the shorthand o; = 0(i), i € S, was used.

4.1.2 Circular permutations

Instead of considering different orderings of a set along a line, one can study different
arrangements of the elements of the set on an oriented circle (turning the circle over
produces in general a different permutation).

Let S be a set with a distinguished element e. The circular permutations of S are
the bijections 0 : S — S that preserve e, i.e., c(e) = e. The circular permutations of S
also form a group, the circular permutation group C; if S = [n], define €, = &[,;.
Clearly, € is a subgroup of S and its cardinality is (n — 1)! if that of S is n.

A cyclic order is a ternary relation [-,-,-] on a set S is a set of triples T  $*3 that
satisfies

(a) [a,b,c] €T implies [b,c,a] € T (cyclicity),

(b) [a,b,c] €T implies [c,b,a] ¢ T (asymmetry),

(¢) [a,b,c],[a,c,d] € T implies [a, b,d] € T (transitivity),

(d) a, b,c mutually distinct implies either [a,b,c] € T or [c,b,a] € T (totality).

Every (strict) total order < induces a cyclic order by setting [a, b,c] € T if and only if
a<b<corb<c<aorc<b <a. Conversely, every cyclic order induces different
possible linear orders. Namely, setting a < b if and only if [a, b, e] for fixed e € S
yields a total order on S\ {e} which can be extended to a linear order on S by defining
e as either the minimal or maximal element of the set. Consequently, the natural
choice for the distinguished element of a finite ordered set S in the construction above
is the minimal or maximal element of S; we will always choose the minimal element.

The different notations for linear permutations generalize straightforwardly to
circular permutations. Given a circular permutation ¢ of a finite ordered set S, write

o=(1 o2 o@ - ).

To distinguish circular permutations more clearly from linear ones and to highlight
the circular symmetry, we modify the word-notation in the case of a circular permuta-
tion o to

o=1o,05 &,
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in analogy with the notation for repeating decimals when representing rational
numbers. Moreover, for convenience we define o(n+ 1) = o(1) for all circular
permutations o of n-element sets.

4.1.3 Atomic permutations

Let us introduce a special subgroup of &g for a finite ordered set S with minimal
element e maximal element m.

Definition 4.1. Define the rising atomic permutations’ Ql;r C &g as those permutations
that satisfy oc(e) =e and c(m)=m forall o € Q(;f The falling atomic permutations
o €y are the reversed rising atomic permutations, i.e., o(e) = m and o(m) =e.

Naturally, the cardinality of Ql;c is (n —2)!. If S = [n], we write Ql: (2() and see
that it is the set of permutations of the form 1 ---n (n --- 1).

Let us discuss the significance of the atomic permutations. We say that a per-
mutation o € &g of S contains an atomic permutation m € Ay, T C S, if m can be
considered a subword of o. The atomic permutation 7 in ¢ is called inextendible if &
contains no other atomic permutation ' € 2, T’ C S, such that T & T".

In particular, any permutation o € &g of S with |S| > 2 contains an inextendible
atomic permutation © € & of a subset T C S that contains both the smallest and
the largest element of S. That is, if S = [n] and we consider ¢ as a word, it contains
a subword 7 of the form 1:--n or n--- 1. The permutation 7 will be called the
principal atom of o.

Proposition 4.2. Any permutation o € &g of a finite set S C N can be uniquely decom-

posed into a tuple (nt',..., %) of inextendible atomic permutations r' € Uy, T; CS
(non-empty) such that 7'c|‘Ti| = n‘1+1 foralli <k and U;T; =S. We call 7' the atoms of
o.

Proof. Existence: It is clear that any permutation of a set of 1 or 2 elements is
an atomic permutation. Suppose, for some n > 3, that all permutations of n — 1
elements or less can be decomposed into inextendible atomic permutations. Without
loss of generality, we show that any non-atomic permutation o € &, also has a
decomposition into inextendible atomic permutations. Regarding o as a word, we
can write 0 = a - n- w, where a and w are non-empty subwords. Notice that the
permutations a - n and n - w have a unique decomposition by assumption. Since
an atomic permutation begins or ends with the largest element, we find that a
decomposition of o into inextendible atomic permutations is given by the combination
of the decompositions of @ - n and n - w.

Uniqueness: This is clear from the definition of inextendibility. O

Because of this property, the atomic permutations will prove to be very useful.

I The rationale for this naming should become clear later when we see that arbitrary permutations
can be decomposed into atomic permutations, but no further.
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4.1.4 Mountaineering

Given a (linear or circular) permutation o of an ordered set S of cardinality n, a
position i < n is a descent of ¢ if 0(i) > o(i +1). Any i < n of a permutation o that
is not a descent is called an ascent of o. For example, the permutation 52364178
has the descents 1,4,5 and the ascents 2, 3,6, 7, whereas the circular permutation
14536782 has the descents 3, 7,8 and the ascents 1,2,4,5,6.

All the descents of a (linear or circular) permutation o can be collected in the
descent set

D(o)=1{i|iis adescent of o}.

It is an elementary exercise in enumerative combinatorics to count the number of
linear permutations of [n] whose descent set is given by a fixed S C [n — 1]. Let
S = {s1,89,...,5;} be an ordered subset of [n — 1], then [37, Thm. 1.4]

B(S)=|{oee, |D(a)=5}|=2(—1)'5-”( " )
= 51,89 — 81,83 —S9,..., N — Sk
This result can also be adapated to circular permutations.

Related to the notions of ascents and descents are the concepts of peaks and
valleys. A peak occurs at position i € [2..n — 1] of a linear permutation o if
o(i—1) < o(i) > o(i + 1), whereas a valley occurs in the opposite situation
o(i—1) > o(i) < o(i +1). Again, this notion can be generalized to circular
permutations, where, additionally, 1 is always a valley and n is a peak if and only if
o(n) > o(n — 1). In the example above, 4 is a peak 2,6 are valleys of 52364178,
whereas 3,7 are peaks and 1 is a valley for 14536782, see also Fig. 4.1.

4.2 Run structures

Definition 4.3. A run r of a (linear or circular) permutation ¢ is an interval [i..j]
such that o(i) 2 o(i+ 1) 2 --- 2 o(j) is a monotone sequence, either increasing or
decreasing, and so that it cannot be extended in either direction; its length is defined to
be j —1i. If o is a permutation of an n-element set, the collection of the lengths of all
runs gives a partition p of n — 1 (linear permutations) or n (circular permutations). The
partition p is called the run structure of .

It follows that a run starts and ends at peaks, valleys or at the outermost elements
of a permutation. For example, the permutation 52364178 has runs [1..2], [2..4],
[4..6], [6..8] with lengths 1,2,2, 2, whereas the circular permutation 14536782
has runs [1..3], [3..4], [4..7], [7..9], of lengths 2,1, 3, 2. Representing these runs
by their image under the permutation, they are more transparently written as 52,
236, 641, 178 and 145, 53, 3678, 821 respectively. The runs of permutations can
also be neatly represented as directed graphs as shown in Fig. 4.1. In these graphs
the peaks and valleys correspond to double sinks and double sources.

Motivated by a problem in mathematical physics [90] (see also Sect. 4.4), we are
interested in the following issue, which we have not found discussed in the literature.
By definition, the run structure associates each permutation o € ¢, with a partition p
of n. For example, 14536782 and 13452786 both correspond to the same partition
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O-2--O-D-D-0D-®

Figure 4.1. The two directed graphs representing the runs of the linear permutation
52364178 (left) and the circular permutation 14536782 (right). Peaks and valleys
are indicated by boldface numbers.

1+ 242+ 3 of 8. Our interest is in the inverse problem: given a partition p of n,
we ask for the number Z(p) of circular permutations whose run structure is given
by p. One may consider similar questions for other classes of permutations, with
slight changes; for example, note that the run structure of a permutation o € &, is a
partition of n — 1.

To put the research in [95] in perspective with the existing literature on the enu-
merative cominatorics of permutations, a short remark is in order: The enumeration
of permutations according to their run structure was already discussed by André [16]
for alternating permutations, i.e., permutations that alternate between ascents and
descents. In [42] the enumeration of linear permutations according to the order and
length of their runs was studied, so obtaining a map to compositions, rather than
partitions. In contrast to this approach, the method discussed in [95] was designed
to facilitate computation; for the application in [90] calculations were taken up to
65 runs using exact integer arithmetic in Maple™ [152].

4.2.1 Atomic permutations

We now begin the enumeration of atomic permutations according to their run struc-
ture. That is, for every partition p of n — 1 we aim to find the number Zy(p) of atomic
permutations QLf of length n.

Observe that any o € A can be extended to a permutation in Q(:H by replacing
n with n 4+ 1 and reinserting n in any position after the first and before the last.
Thus, 13425 can be extended to 153426, 135426, 134526 or 134256. Every
permutation in 2[: 4, arises in this way, as can be seen by reversing the procedure.
The effect on the run lengths can be described as follows.

Case 1: The length of one of the runs can be increased by one by inserting n either
at

1. the end of an increasing run if it does not end in n + 1, thereby increasing its
length (e.g., 13425 — 134526)

2. the penultimate position of an increasing run, thereby increasing its own length

ifitendsin n+1 (e.g.,, 13425 — 135426) or increasing the length of the
following decreasing run otherwise (e.g., 13425 — 134256)
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Case 2: Any run of length i 4+ j > 2 becomes three run of lengths 1, i and j if we
insert n either after

1. i elements of an increasing run (e.g., 13425 — 153426 exemplifies i = 1,
j=1

i+j i j
2. i+ 1 elements of a decreasing run (e.g., 14325 — 143526 fori=1,j=1)

O-0O=0-0 = O=0--0=@-0-0"

An analogous argument can be made for the falling atomic permutations (.
Notice that every partition of a positive integer n can be represented by monomials
in the ring of polynomials® Z[x;, X,,...,x,]. Namely, we can express a partition
p=p1+p2+-+Dprasx,x, X, (for example, the partition 1+2+2+3 of 8
is written as xlxgxg).
Now, let p be a partition and X the corresponding monomial. To this permutation
there correspond Zy(p) permutations in %f which can be extended to permutations in

Qlff 41 in the manner described above. Introducing the (formally defined) differential
operator
D=Dy+D, with D= leﬂ oo Da = ]Z:l XXX 5 4.1)

we can describe this extension in terms of the action of & on X. We say that 9, is
the degree-preserving part of &; it represents the case 1 of increasing the length of a
run: the differentiation & /d x; removes one of the runs of length i and replaces it by a
run of length i + 1, keeping account of the number of ways in which this can be done.
Similarly, case 2 of splitting a run into 3 parts is represented by the degree-increasing
part @, . For example, each of the 7 atomic permutations corresponding to the
partition 14 1 4 3 can be extended as

2. _ 2 4
DX]Xg = 2X1X9X3 + X]X4 + X X2,

i.e., each can be extended to two atomic permutations corresponding to the partitions
1+2+ 3, one correspondingto 1+1+4andoneto1+1+1+1+2.

Therefore, starting from the trivial partition 1 of 1, represented as x;, we can
construct a recurrence relation for polynomials A,, = A,,(x;, X4, ...,X,) which, at
every step n > 1, encode the number of atomic permutations Zy(p) of length n+ 1

2If one wants to encode also the order of the run (e.g., to obtain a map from permutations of
length n to the compositions of n), one can exchange the polynomial ring with a noncommutative
ring. Alternatively, if one wants to encode the direction of a run, one could study instead the ring
Z[X1,¥1,X2, Y2, --. ], where x; denotes an increasing run of length i and y; encodes a decreasing run of
length j.
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with run structure given by a partition p of n as the coefficients of the corresponding
monomial in A,,. The polynomial A,,, accordingly defined by

n

A= Za()] [x?, 4.2)

pkn i=1

where the sum is over all partitions p of n and p(i) denotes the multiplicity of i in
the partition p, can thus be computed from the recurrence relation

A]_ = X1, (433)
A =DA, ,, (n>2). (4.3b)

We say that the polynomials A,, enumerate the run structure of the atomic permuta-
tions.
We summarize these results in the following proposition:

Proposition 4.4. The number Zy(p) of rising or falling atomic permutations of length
n — 1 corresponding to a given run structure (i.e., a partition p of n), is determined by
the polynomial A,, via (4.2). The polynomials A,, satisfy the recurrence relation (4.3).

Note that atomic permutations always contain an odd number of runs and thus
Zy(p) is zero for even partitions p.
It will prove useful to combine all generating functions A,, into the formal series

) o0 An o0 An
A1) = ZOAHHH—! = Z()%”Aln—!,
n= n=

which can be expressed compactly as the exponential

A(A) = exp(AD)A;.

The first few A,, are given by

Ay =Xy

A3 =x3+ xf

Ag=x4+ 5x2xf

Ag = x5+ 7x3xf + 11x§x1 + 5xf

Ag = Xg+ 9x4xf + 11x§ + 38x3x9x7 + 61x2x?.

from which we can read off that there is 1 permutation in Qléc corresponding to the
trivial partition 5 = 5, 7 corresponding to the partition 5 = 1+1+3, 11 corresponding
to5=1+4+2+2and 5 correspondingto 5=1+4+1+ 1+ 1+ 1. As a check, we note
that 1+ 74 11 4+ 5 = 24, which is the total number of elements of Qlé‘; similarly, the
coefficients in the expression for A¢ sum to 120, the cardinality of Ql? A direct check
that the coefficients in A,, sum to (n — 1)! for all n will be given in the last paragraph
of Sect. 4.3.

The first degree term AEID of A, is x, as can be seen by a trivial induction using
Agll) = QBOA(Hl_)l, which follows from the recurrence relation (4.3). Therefore Zy(n) =
1.
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For A(nk) with k > 1 also the effect of & has to be taken into account, complicating
things considerably. Nevertheless, the general procedure is clear: once Ag:—z) is known
for all m < n, A(nk) can be obtained as

n—1
k k—2 —m— _
AP = oAl + 2, A0 = 3 ap AL,
m=k—1
Here one can make use of the following relation. Applying 9, repeatedly to any
monomial x; x;, --- x; of degree k yields, as a consequence of the Leibniz rule,

E n
n B [ i . L oeee . .
g)b()xilxiz xik - ( . . ) xll+]1xlz+]2 xlk-i-Jk- (4.4)
jl’jz,---,ijO -]1’]2)'~~,Jk

Jitjot+j=n

This observation provides the means to determine the third degree term Asf).
Applying &, to any AETP = X, with m > 2 produces x;x,x, with p + ¢ = m and
P,q = 1. Moreover, the repeated action of &, on x;x,x, is described by (4.4) and

thus
n—-p—q-—1
ASIS) = Z ( ) X147 XptsXg+e-

P,g;1s,t 20 rs,t
1+p+q+r+s+t=n

After some algebra this yields

Proposition 4.5. The third degree term Agf) of the polynomial A,,n > 3, is given by

k
() _ n—q-—1 n—q-—2 -
A= Z Z— (i—l,j—l,k—q XXX 4.5)

ijk=1qgm1t7497J
i+j+k=n

The equation (4.5) for the third degree term A(HB) can be rewritten into a formula
for Zy(p; + py + p3), i.e., the number of permutations of [n + 1] that start with 1,
end with n + 1 and have three runs of lengths pq, p,, p3, by changing the first sum to
a sum over i, j, k € {p;, pa, p3}. In particular, this gives rise to three integer series for
the special cases

Zoy(n+n+n), Zy(l+n+n), Zy(l+1+n),

with n € N.
The first series

n

3n—qg-—-1 3n—q—2
Zm(n—l—n—l—n)zz—q( q )

= 2n—gq n—1n—-1n-—q
=1,11,181,3499,73501, 1623467, ... (n>1)
gives the number of atomic permutations with three runs of equal length n. It does

not appear to be known in the literature nor can it be found in the OEIS [164] and
the existence of closed form expression is currently unkown. For the second series,
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however, a simple closed form can be found:

n 2n_q 2n—q—1 1 /2n
Zm(1+n+n)=Z(( )+( ))+_( )
= \\n-1 n—1 2\n
2n
=2( )_1=11,39:139550311847""’ (HZZ)
n

is the number of atomic permutations in Qlfn +o with two runs of length n. One may
understand this directly: there are (zn") permutations in which the length 1 run is

between the others and (Znn) — 1 in which it is either first or last. The third series,
Zy(14 1+ n), i.e., the number of atomic permutations in 91213 with two runs of
length 1, is given by the odd numbers bigger than 3:

Zu(1+14+n)=2n+1=5,7,9,11,13,15,..., (n>2).

Observe that terms of the form x] in A, encode alternating permutations, which
were already investigated by André in the 1880’s [17]. As a consequence of his
results, we find that the alternating atomic permutations are enumerated by the
secant numbers S, the coefficients of the Maclaurin series of secx = S, + S;x2/2! +
Sox* /A4l 4o

2n+1

ZQ(( Z 1) =S5,=1,1,5,61,1385,50521,... (n =0, OEIS series AO00364).
i=1

This is due to the fact that all alternating atomic permutations of [2n] can be

understood as the reverse alternating permutations of [2..2n — 1] with a prepended

1 and an appended 2n. Moreover, since any xf”“ can only be produced through an

2(n—1) 2(n—-1)
1

application of & on x,x , we also have Zy (24 >0 '1) =S,.

4.2.2 Circular permutations

The methods developed in the last section to enumerate atomic permutations can
also be applied to find the number of circular permutations Z,(p) with a given
run structure p. Indeed, any circular permutation in ¢,_; can be extended to a
permutation in €, by inserting n at any position after the first (e.g., 14532 can be
extended to 164532, 146532, 145632, 145362 or 145326). As in the case of
atomic permutations, this extension either increases the length of a run or splits a
run into three runs. Namely, we can increase the length of one run by inserting n
at the end or the penultimate position of an increasing run or we can split a run of
length i + j > 2 into three runs of lengths i, j and 1 by inserting n after i elements of
an increasing run or after i + 1 elements of a decreasing run.

We introduce polynomials C, representing the run structures of all elements of
¢,,, by analogy with the polynomials A,, in the previous section:

n

o= Ze()] [P (4.6)

pkn i=1

and we say that the polynomials C, enumerate the run structure of the circular
permutations. In the last paragraph we saw that we can use the differential operator
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9 introduced in (4.1) to find a recurrence relation similar to (4.3). Namely,

Cy = x2, (4.7a)
C,=9C,_q, (n>3) (4.7b)

giving in particular

C3 = 2Xx9X7

Cy= 2x§ + 2x3x1 + 2xf

C5 = 2x4x7 + 6x3X5 + 16x1 Xo

Ce = 2x5x7 + 8x4x5 + 6x3 + 62x%x§ + 26xfx3 + 16x?

from which we can read off that there are 2 permutations in €5 corresponding to
5 =441, 6 corresponding to the partition 5 = 3 4+ 2 and 16 corresponding to
5=241+1+1. As a check, we note that 6+ 16 + 2 = 24, which is the total number
of elements of €5; similarly, the coefficients in the expression for Cg sum to 120, the
cardinality of €. More on this can be found in the last paragraph of Sect. 4.3.

In summary, we have a result analogous to Prop. 4.4:

Proposition 4.6. The number Zy(p) of circular permutations of length n correspond-
ing to a given run structure p is determined by the polynomial C,, via (4.6). The
polynomials C,, satisfy the recurrence relation (4.7).

Note that circular permutations, exactly opposite to atomic permutations, always
contain an even number of runs and thus Z(p) is zero for odd partitions p.

The enumeration of circular and atomic permutations is closely related. In fact,
introducing a generating function € as the formal series

Ce(x)_ch+2 _Zgzs”cz _exp(ms)cz,

one can show the following:

Proposition 4.7. The formal power series € is the square of a formal series d; namely,
B(1) = sd(1)* = (exp(AD)A; )7, (4.8)

where A = x;.

Proof. This may be seen in various ways, but the most convenient is to study the
first-order partial differential equation (in infinitely many variables)

26
Fri P€ =0, €(0)=0C, (4.9)
satisfied by 6.
We can now apply the method of characteristics to this problem. Since it has no
inhomogeneous part, the p.d.e. (4.9) asserts that € is constant along its characteris-
tics. So, given A and xq, Xs, ..., let ¥;(u), ¥2(u), ... be solutions to the characteristic
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equations with y.(A) = x,, i.e., y;(u), xo(u), ... are the characteristic curves which
emanate from the point (A, x7, x5, ...). Then,

By, = B0l 0y = C2(11(0)) = x,(0).

Applying the same reasoning again to of, which obeys the same p.d.e. as 6 but with
initial condition 4(0) =A;,

Ay, = (0)],.0) = A1 (x1(0)) = x1(0).
Therefore, Prop. 4.7 follows by patching these two equations together. O

As a consequence also the polynomials A, and C,, are related via

— ((n—2
= | ) AnAn-m: (4.10)
m=1 m-—

It then follows that the second degree part of C,, is given by

n—1
n—2
6= 3 (n_3) #necn

m=1

gl

and, applying (4.5), that the fourth degree part can be written as

k
n—l—-q-1 n—2 n—l—q—2
CcW = Z 22 ( )( )x~x~xx.
n 1 71 . . _ itjrkrl
= l j\n—-1—-1)\i—-1,j—1,k—gq
i+j+k+1=m
Similar to the atomic permutations, we find that the alternating circular permuta-

tions satisfy (cf [16, §41])

2n

ZQ(Z 1) =T,=1,2,16,272,7936,353792,... (n> 1, OFIS series A000182)
i=1

and also Zg (2 + Zzn 3 1) = T, where T, are the tangent numbers, the coefficients

of the Maclaurin series of tanx = Tyx; + Tyx3/3! 4+ T3x5/5! + ---. Furthermore,

from (4.10) we find the relation

= (2n
Tn+1 = Z (Zm) Smsn—m’

m=0
which can be traced back to tan’ x = sec? x.

To conclude this section, we note that the argument of Prop. 4.7 proves rather
more: namely, that exp(A®) defines a ring homomorphism from the polynomial ring
C[xq,x5,...] to the ring of formal power series C[[x7, X5, ... ]]. This observation can
be used to accelerate computations: for example, the fact that A3 = x5 + xf implies
that

A”(A) = d(A)? + exp(AD)x3,

which reduces computation of A, 3 = 2"2x; to the computation of @"x;. Once o
is obtained, we may of course determine € by squaring.
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4.2.3 Linear permutations

In the last section we studied the run structures of circular permutations ¢, and
discovered that their run structures can be enumerated by the polynomials A,,. One
might ask, what the underlying reason for this is. Circular permutations of [n]
have the same run structure as the linear permutations of the multiset {1,1,2,...,n}
which begin and end with 1. These permutations can then be split into two atomic
permutations at the occurrence of their maximal element. For example, the circular
permutation 14532 can be split into the two atomic permutations 145 of {1, 4,5}
and 5321 of {1,2,3,5}. This also gives us the basis of a combinatorial argument for
the fact that € = of2. Similarly it is in principle possible to encode the run structures
of any subset of permutations using the polynomials A,. The goal of this section is to
show how this may be accomplished for &4 for any S C N.
As in Sects. 4.2.1 and 4.2.2, we want to find polynomials

n
Ln = Z ZG(p) l_[ Xf(i)
pkn i=1
that enumerate the run structure of the permutations &,,, ;. This may be achieved
in a two step procedure. Since every permutation has a unique decomposition
into inextendible atomic permutations, we can enumerate the set of permutations
according to this decomposition. The enumeration of permutations by their run
structure follows because the enumeration of atomic permutations has already been

achieved in Sect. 4.2.1.

The key to our procedure is to understand the factorisation of the run structure
into those of atomic permutations. Considering o € &,, as a word, we can write it as
the concatenation o = a - 7t - w, where 7 is the principal atom of o (see Sect. 4.1.3)
and a, w are (possibly empty) subwords of o. Since the decomposition of ¢ into its
atoms also decomposes its run structure, the complete runs of o are determined by
therunsof a-1, w and n- w if 7 is rising, or of @ - n, 7w and 1 - w if 7 is falling.

Let S,, be the set of letters in w and define p : S, — S, to be the involution
mapping the i’th smallest element of S, to the i’th largest, for all 1 <i <|S,,|. Then
the run structure of n - w is identical to that of 1 - p(w), where p(w) is obtained
by applying p letterwise to w. Furthermore, in the case 7 =1 --- n, the combined
run structures of a -1 and n - w are precisely the run structure of a - 1 - p(w), while,
if Tt =n---1, the combined run structures of @ -n and 1- w precisely form the
run structure of a-n- p(w). Wereferto a-1-p(w) or a-n- p(w) as the residual
permutation.

Summarising, the run structure of o may be partitioned into that of 7w and
either a-1- p(w) or a-n- p(w); accordingly, the monomial for o factorises into
that for the principal atom 7 and that for the residual permutation. Therefore, the
polynomial enumerating linear permutations by run structure can be given in terms
of the those enumerating atomic permutations of the same or shorter length and of
linear permutations of strictly shorter length.

This argument can be used to give a recursion relation for L,,, which enumerates
permutations of [n + 1] by their run structure. Taking into account that the principal
atom consists of m + 1 letters, where 1 < m < n, of which m — 1 may be chosen
freely from the set [2..n], and that it might be rising or falling, and that the residual
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permutation may be any linear permutation on a set of cardinality n —m 4+ 1, we
obtain the recursion relation

" (n-1
Ly=2) (m ~ 1)Aan_m, Lo=1.

m=1

Passing to the generating function,

o0 An
LA =D L
=0 n:

we may deduce that

e 4.11
7 = 252 ). (4.11)

Our main result in this section is:

Proposition 4.8. The run structure of all permutations in &, is enumerated by

Ipl

olpl rn
L, = A, Lo=1 12
n ;ordp (p)g e 0T @12

where the sum is over all partitions p = p; + py + -+ of n, |p| is the number of parts of
partition, ord p is the symmetry order of the parts of p (e.g., forp=14+1+2+3+4+3
we have ordp = 2!21) and (Z) is the multinomial with respect to the parts of p. The
generating function for the L, is

n A

.o, A
ZA) = ;)an = exp (ZJ;)

dA(u) d,u) . (4.13)

Proof. Equation (4.13) follows immediately from (4.11), as £(0) = 1, whereupon
Faa di Bruno’s formula [166, Eq. (1.4.13)] yields (4.12). O

To conclude this section, we remark that the first few L, are given by

Ly =24,

L, =4A% + 24,

Ly = 8A3 + 12A,A, + 24,

Ly = 16A} + 48A7A; + 12A5 4 16A,A;5 + 2A,

Ls = 32A3 + 160A3A, + 120A,A% + 80A2A; + 40A,A5 + 20A1A, + 2A5

Lg = 64A% + 480A%A, + 320A3A; + 720A2A3 + 120A3A, + 480A,A2A; + 12045
+ 24A,As + 60A,A4 + 40A% + 2A,.
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Expanding the A; and writing the L,, instead in terms of x;, we obtain from these

Li=2x;

Ly = 4x? 4 2x,

Ly =10x3 4 12x1x;5 + 2x3

Ly= 32xfr + 58xfx2 + 12x§ + 16x1x3 + 2x4

Ls= 122x11; + SOOx:{’xz + 142x1x§ + 94x%x3 + 40x9x3 + 20x1 X4 + 2X5

Le = 544x% + 1682x7x, + 568x3 x5 + 1284x7x5 + 138x7x,4 4 556 Xx,x3 + 142x3
+ 24x7 x5 + 60x5x4 + 40x§ + 2xe,

which show no obvious structure, thereby making Prop. 4.8 that much more remark-
able.

4.3 Enumeration of valleys

Instead of enumerating permutations by their run structure, we can count the number
of valleys of a given (circular) permutation. Taken together, the terms C, involving a
product of 2k of the x; relate precisely to the circular permutations ¢, with k valleys.
Since any circular permutation in €, can be understood as a permutation of [3..n+1]
with a prepended 1 and an appended 2 (cf. beginning of Sect. 4.2.3), C,, may also be
used to enumerate the valleys of ordinary permutations of [n — 1]. Namely, terms
of C,;1 with a product of 2(k 4 1) variables x; relate to the permutations of &,, with
k valleys (i.e., terms of L,,; which are a product of 2k of the x;).

Let V(n, k) count the number of permutations of n elements with k valleys. Then
we see that the generating function for V(n, k) for each fixed n > 1 is

n

K,(x) = Z KKV (n, k) = %CHH(\/E, e, VEK)

k=1
and we define Ky(x) = 1. The first few K, are

K]_(K) =1
Kz(K) =2
K;3(k) =4+ 2k

K4(x) =8+ 16k
Ks(x) = 16 + 88« + 16x>
Ko(x) = 32 + 416K + 272k2,

which coincide with the results in [183]. In particular, the constants are clearly the
powers of 2, the coefficients of k give the sequence A000431 of the OFEIS [164] and
the coefficients of k2 are given by the sequence A000487. Likewise, the coefficients
of k3 may be checked against the sequence A000517. In fact, the same polynomials
appear in André’s work, in which he obtained a generating function closely related to
(4.14) below; see [16, §158] (his final formula contains a number of sign errors, and
is given in a form in which all quantities are real for k near 0; there is also an offset,
because his polynomial A, (k) is our K,,_;(x)).
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Proposition 4.9. The bivariate generating function, i.e., the generating function for
arbitrary n, is

o yn 1 ("
H(v,x) = ZK”(K)F =1+ ;J R (7)) P—rY 7]
n=0 : 0

and is given in closed form by

1 Vvx-—-1
Hv,k)=1——+
K

tan (vy/k — 1 +arctan(1/vy/k — 1)). (4.14)

K

This result was found by Kitaev [138] and in the remainder of this section we will
show how it may be derived from the recurrence relation (4.7) of C,,.
To this end, we first note that C,,,; satisfies the useful scaling relation

7Ln+1Cn+1(x1, Xoyeees xn) = Cn+1(7Lx1, Az.X'Z, ey knxn).
Setting x; = x/A = /k for all i, this implies

A (VK. VE) = Cryg (X, A, .., AT 1x)

and we find, by inserting the recurrence relations (4.7) and applying the chain rule,
that with this choice of variables

ac ac
o+ x2— 4+ 2AC,.

1 _
X—Cnﬂ(x,kx,...,ln lx)=Ax I R

2
Hence, in turn, K, (k) = k" 1C, 1 (VX, ..., /&) satisfies the recurrence relation
K,(x) =2k(1 — kK, _,(x)+ (24 (n — 2)x)K,_1 (k) (4.15)

for n > 2. For the bivariate generating function ¥ this, together with Ky =K; =1,
implies the p.d.e.

oOXK oK
1-vk)—+2k(k—1)—+K-2)H=x—1,
ov ok

which is to be solved subject to the initial condition #(0,x) = 1.

The above equation may be solved as follows: first, we note that there is a
particular integral 1 — 1/, so it remains to solve the homogeneous equation. In turn,
using an integrating factor, the latter may be rewritten as

(1—1/1<)i KA +21<(1<—1)i KA =0, (4.16)
ov k-1 ok Vk—1
for which the characteristics obey
dv. 1-wvk
de  2x(xk—1)
Solving this equation, we find that
v+4/ k — 1+ arctan = const

K —
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along characteristics; as (4.16) asserts that k% /+/k — 1 is constant on characteristics,
this gives

57{(v,1<)=1—%+KT_lf(V\/K—1+arctan(1/\/;<—1))

for some function f. Imposing the condition ¥ (0, k) = 1, it is plain that f = tan, and
we recover Kitaev’s generating function (4.14).

To close this section, we note that (4.15) has the consequence that K,,(1) =
nK,_1(1) for all n > 2 and hence that C,,(1,...,1) = K,(1) = n! for such n, and
indeed all n > 1, because C,(1,1) = K;(1) = 1. The generating function obeys

o0 kn
EWlema =2 4 DS =027

for all non-negative A < 1 from which it also follows that
A= =1 =271 4.17)

(as A;(1) = 1, we must take the positive square root) and hence A, [, —; = (n —1)!
for all n > 1. This gives a consistency check on our results: the coefficients in the
expression for A, sum to (n — 1)!, the cardinality of Qlf 1o while those in C,, sum to
the cardinality of ¢,,. Furthermore, inserting (4.17) into the generating function £(A)
in (4.13), we find

n

X A
LMgm1= D La(Lo, D= = (1= 2)72,
n=0

n!

and thus L, 1(1,...,1) = n!, which is the cardinality of &,,.

4.4 Applications

The original motivation for this work arose in quantum field theory, in computations
related to the probability distribution of measurement outcomes for quantities such
as averaged energy densities [90]. One actually computes the cumulants x,, (n € N)
of the distribution: x; = 0, while for each n > 2, k, is given as a sum indexed by
circular permutations ¢ of [n] such that o(1) =1 and ¢(2) < o(n), in which each
permutation contributes a term that is a multiplicative function of its run structure:

Ky = &(0)

where ¢(0) is a product over the runs of o, with each run of length r contributing
a factor y,. Owing to the restriction o(2) < o(n), precisely half of the circular
permutations are admitted, and so k, = %Cn(_yl, Y2,--+>Yn). Thus the cumulant
generating function is

W(A)iix Ezl Ad (A —we(w)l
2 =g, u By, =y,

— 1 Ad A 2
) p (A —ws(uly -,
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and the moment generating function is exp W(A) in the usual way. This expression
makes sense a formal power series, but also as a convergent series within an appropri-
ate radius of convergence. The values of y,, depend on the physical quantity involved
and the way it is averaged. In one case of interest

n—1
Yn= 8HJ dky dkj - dk, kiky - k,exp |:—k1 - (Z |kiv1 — ki|) - kn:|
(RF)xn i=1
2 241, 2+ryn—1

ED DI 3 | (RS

rp—1=0r,_o=0 r;=0
=2,24,568,20256,966592, ... (n>1)
(the sums of products must be interpreted as an overall factor of unity in the case
n = 1). Numerical investigation leads to a remarkable identity

2
1-12A

A,y = (conjectured)

with exact agreement for all terms so far computed (checked up to n = 65). We
do not have a proof for this statement, but the conjecture seems fairly secure. For
example, we have shown above that A5 = x5 + 7x3xf + 11x§x1 + 5x3; substituting
for x,, the values of y, obtained above, we find A5 = 995328 which coincides with
the fourth order coefficient in the expansion

A2 A3 A4
=2+ 241+ 576E + 20736a + 995328Z +0(1>).

1-12A
In [90], this conjecture was used to deduce

exp (W(A)) = e 61— 122)71/72 (conjectured),

which is the moment generating function of a shifted Gamma distribution. The other
generating functions of interest, with these values for the x; are

B(A)ly, LMy,=y, =1 — 122)71/3 (conjectured).

=T A-122)%
For example, we have Cs = 2x4x; + 6x3x5 + 16xfx2 = 165888 and Lg = 122xf +
SOOxfxz + 142x1x§ + 94x%x3 +40x9x3 + 20x,x4 + 2x5 = 3727360, to be compared
with the terms of order A% and A°, respectively, in the expansions
2 2,3 4

A A
L - -~ ~ 5
=122 4+ 96A + 3456 o + 165888 30 + 995328 1 +0(1),

2 3 4 5
19313 — A A aal o 6
(1=122)71° = 1444+ 6457 +1792 471680 + 3727360 + 0(2°%).

A natural question is whether there are other sequences that can be substituted
for the x;, to produce generating functions with simple closed forms. To close, we give
three further examples, with the corresponding generating functions computed. The
first has already been encountered in Sect. 4.3 and corresponds to the case x; = 1 for
all k eN.
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The second utilizes the alternating Catalan numbers: setting

(—1)k (Zk

X+l = 17 k)’ (k>0), X =0, (k=>=1)

and thus A, = 0, we obtain, again experimentally,

BN =dN) =1, 2LA)=e* (conjectured)

with exact agreement checked up to permutations of length n = 65. For example, one
sees easily that with x; = 1, x3 = —1, x5 = 2 and x5, = x4 = 0, the expressions A;
and Cj given in Sects. 4.2.1 and 4.2.2 vanish for 2 < k < 6, and have A; =C; =1,
likewise, L, = 2K for 1 <k <6.

Third, André’s classical result on alternating permutations (cflast and penultimate
paragraph of Sects. 4.2.1 and 4.2.2 respectively) gives the following: setting

x;=1 and x;. =0, (k>2)

we have, using (4.8) and (4.13),

dA(A)=secA, B(A)=sec’?A, L(A)=(secA+tanr)>.

It seems highly likely to us that many other examples can be extracted from the
structures we have described.

Moreover, we remark that it is possible to implement a merge-type sorting algo-
rithm, called natural merge sort [139, Chap. 5.2.4], based upon splitting permutations
of an ordered set S into its runs, which are ordered (alternatingly in ascending and
descending order) sequences S; C S. Repeatedly merging these subsequences, one
ultimately obtains an ordered sequence. For example, first, we split the permutation
542368719 into 542, 368, 71 and 9. Then, we reverse every second sequence
(depending on whether the first or the second sequence is in ascending order): 542
— 245 and 71 — 17. Depending on the implementation of the merging in the
following step, this ‘reversal’ step can be avoided. Last, we merge similarly to the
standard merge sort: 245 vV 368 — 234568, 17 V 9 — 179 and finally 234568
VvV 179 — 123456789. Natural merge sort is a fast sorting algorithm for data with
preexisting order. Using the methods developed above to enumerate permutations
by their run structure, it is in principle possible to give average (instead of best- and
worst-case) complexity estimates for such an algorithm.



Quantum field theory

Is the purpose of theoretical physics to be no more than a cataloging of
all the things that can happen when particles interact with each other and
separate? Or is it to be an understanding at a deeper level in which there are
things that are not directly observable (as the underlying quantized fields
are) but in terms of which we shall have a more fundamental understanding?

— Julian S. Schwinger, “Quantum Mechanics” (2001), p. 24 f.

First, in order to achieve the greatest possible generality we continue our

total boycott of the canonical formalism |[...].
— Bryce S. DeWitt, J. Math. Phys. 3 (1962), p. 1073.






Locally covariant quantum field theory

Summary

In this chapter we will discuss the framework of locally covariant quantum field theory.
In its present form it was introduced in [46] but many of its central ideas can already
be found in earlier publications. It may be understood as a generalization of the
Haag-Kastler axioms [109, 110] to curved spacetimes but it also differs in some subtle
points because the Haag—Kastler axioms are ‘more global’ (see, for example, [30, 32]
on the problem of gauge theories in locally covariant QFT). A generalization of the
Haag—Kastler was performed by Dimock whose work [72-74] can be understood as
the foundation of modern algebraic QFT on curved spacetime. Building on the work
of Dimock, the paradigm of locally covariant quantum field theory should be seen a
culmination of work done by Brunetti, Fredenhagen, Hollands, Kay, Verch, Wald and
others on QFT on curved spacetimes, in particular renormalization, [44, 45, 123, 124,
135, 215] around the turn of the millennium after the discovery of the microlocal
spectrum condition [45, 181, 182].

After discussing some general considerations leading to algebraic and locally
covariant quantum field theory in the first section (Sect. 5.1), we will introduce the
the general framework of locally covariant quantum field theory in the second section
(Sect. 5.2). More details on the locally covariant framework may be found in the
original publication [46] or also [89, 190] among many others. This is followed
by an abstract study of the Borchers—Uhlmann algebra, the commutation relations
and the field equation, which will lead to the field algebra, and the Weyl algebra
in the third section (Sect. 5.3), we will discuss two free bosonic fields in the locally
covariant framework: the scalar field and the Proca field.

5.1 General considerations

Quantum field theory is a very complex subject which cannot easily be defined.
This is partly due to the fact that quantum field theory is not so much a physical
theory but rather a language to formulate theories and models. However, a more
important reason is that quantum field theory, even many decades after its inception,
has no clear interpretation, e.g., it is often not clear what the physical objects are.
Nevertheless, it can be considered one of the most successful scientific discoveries
ever conceived and some predictions made by quantum field theory have been tested
with astonishing precision. For example, the anomalous magnetic moment of the
electron has been measured in agreement with theoretical predictions in the parts in
a trillion range, see [18, 117].

The relation of QFT to other theories is schematically depicted in the diagram
Fig. 5.1. In particular, QFT may be considered as a Lorentz invariant quantum
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. Quantization -
Classical Mechanics | l Quantum Mechanics
N — o0 N — o0
Classical Field Theory } — { Quantum Field Theory
Quantization

Figure 5.1. The heuristic relation of quantum field theory with classical mechanics,
classical field theory and quantum mechanics.

mechanics in the case of infinitely many degrees of freedom. One can also argue that
a consistent reconciliation of quantum mechanics with special relativity (in particular
locality) leads invariably to QFT, i.e., fields and an infinite number of degrees of
freedom are necessary, see [149] and also [52].

5.1.1 Lagrangian QFT

Quantum field theory is usually formulated in the relatively heuristic approach of the
Lagrangian formalism, where, starting from a classical Lagrangian, one imposes the
canonical commutation relations between the quantized position and momentum vari-
ables. In analogy to the quantum mechanical harmonic oscillator these yield creation
and annihilation ‘operators’ on an abstract representing Hilbert space. Combining
the creation and annihilation operator, one furthermore defines the quantum field.
A specific Hilbert space is then selected by requiring that the annihilation operator
annihilates a particular vector in the Hilbert space, the vacuum, so that one obtains
the Fock space representation.

Apart from not being mathematically rigorous, the Lagrangian formalism has
several conceptual drawbacks. First, it neglects a priori the inequivalent irreducible
representations of the canonical commutation relations (as a consequence of the
failure of the Stone-von Neumann theorem in infinite dimensions) and instead selects
the convenient Fock space representation. However, it is not obvious what is physical
and whether the inequivalent representations are simply mathematical artefacts or
physically relevant. Indeed, the existence of superselection sectors shows that the
presence of inequivalent representations is certainly not irrelevant. A closely related
issue is described by Haag’s theorem [110, Chap. I1.1.1] which implies that the
standard Fock space representation of the free theory is inequivalent to the that of
the interacting theory.

Second, the fundamental entities in the Lagrangian formalism are ‘operators’
at a point and thus neither mathematically not physically meaningful. Physically,
because it would require an infinite amount of energy to localize a field a point.
Mathematically, because a field at a point is not an operator on a Hilbert space but
only an operator-valued distribution. Instead one should consider field which have
no sharp localization but are smeared out over a region of spacetime. That is, the
fundamental entities are quantum fields smeared with compactly supported test
functions.
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Third, the Lagrangian formalism contains global operators, like the particle
number operator, which are not operationally meaningful because they cannot be
reproduced by measurements in a bounded region of spacetime. In fact, due to the
Reeh-Schlieder theorem, also local number operators cannot exist [110, Thm. 5.3.2].
In this light the common interpretation of QFT in terms of localized particles is very
problematic. On curved spacetimes or for accelerated observers the situation is even
more problematic: as shown by the Unruh effect, the particle interpretation appears
to be context dependent.

5.1.2 Algebraic QFT and locality

In the algebraic approach to quantum field theory, developed by Haag and collab-
orators, the problems indicated above are addressed in a conceptually simple way:
Rather than taking as observables operators on a Hilbert space, in the algebraic
approach one discards the concrete representation of the operators and considers
only the algebraic relations satisfied between the operators. Indeed, the relations
between the observables already contain a large part of the physical content of the
theory.

The central pillar of algebraic quantum field theory is locality, better described
by the German word “Nahwirkungsprinzip”. Locality means that causally unrelated
events do not influence each other and it is implemented in the following way: To
every spacetime region U we can associate a local algebra of observables s4(U) which
can be measured within U. Consequently, we demand that map U — o/(U) forms an
inductive system, i.e., it satisfies the isotony condition

UcV = d(U) CcdAV)

or at least that there is an injective homomorphism #(U) — ¢(V); the correspondence
U — d(U) for all U is called the net of local algebras. Further, we require that the
local algebras of causally separated, causally convex regions (anti-)commute

UXV = [A(U),d(V)] = {0}.

In the next section it will become clear how these conditions can be consistently
imposed on different spacetimes.

Following the choice of words of Haag [110], in any concrete case, the smeared
quantum fields may be seen as a way to ‘coordinatize’ the local algebras. That is,
they provide a map from test functions supported a spacetime region, to the local
algebra supported in that region. From this point of view it seems clear that different
quantum fields can lead to equivalent algebras. The notion of quantum fields might
become clearer within the categorical framework to be introduced the next section.

5.2 Framework

5.2.1 Background structure

The physical Universe appears to be well-modelled by a connected, oriented and
time-oriented, four-dimensional Lorentzian manifold (M, g, +,u), i.e., a spacetime as
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Figure 5.2. Example of an hyperbolic embedding and a non-hyperbolic embedding;
see also Fig. 2.3.

defined in Sect. 2.1. Moreover, for every possible observer to carry out experiments
in a finite region of spacetime one has to require that J*(x)NJ~(y) is compact for
all x,y € M. If we further require that no closed causal curves exist so that time
travel is impossible, we have collected all necessary and sufficient conditions for a
globally hyperbolic spacetime. Accordingly we consider as physical spacetimes all
globally hyperbolic spacetimes. Of course we restrict ourselves to globally hyperbolic
spacetimes also for technical reasons. In particular, only on globally hyperbolic
spacetimes do we have a good understanding of the Cauchy problem for the wave
equation.

To implement simultaneously covariance and the principle of locality, i.e., an
observer can conduct experiments in a globally hyperbolic subregion of the Universe
and may remain ignorant about processes in the complement of that region, we
consider as morphisms between globally hyperbolic spacetimes M, N the isometric
embeddings ¢ : M — N that are orientation and time-orientation preserving and
whose image (M) is a causally convex region of N. We call these morphisms
hyperbolic embeddings; an example and a counter-example are shown in Fig. 5.2. If
the image of the hyperbolic embedding v contains a neighbourhood of a Cauchy
surface in N, we say that it is Cauchy.

The set of globally hyperbolic spacetimes as objects with the hyperbolic embed-
dings as morphisms forms a category denoted Loc. This category was introduced
in [46] and it is arguably the most fundamental but, as already mentioned in [46],
not the only possible choice to describe local theories. In fact, it has been altered in
the literature in various ways

e to accommodate more background structure by adding to the triple of manifold,
metric and time-orientation, which is each object, additional elements like
spin-structure [193], affine, principle and vector bundles [30-32] or external
currents [2];

e to account for additional symmetry by allowing for more general morphisms
like conformal isometries [1, 177, 5];

e to allow for the formulation of theories that are sensitive to the topology of the
manifold, e.g., by restricting the set of objects to manifolds that have certain de
Rahm cohomology groups [1, 5].

More recently, it was suggested by Fewster [85] to consider as objects triples which
instead of a metric have a global (co)frame; the morphisms are changed accordingly.
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Figure 5.3. An illustration of (a) two causally disjoint embeddings and (b) a Cauchy
embedding.

The resulting category is larger and encompasses the original setting via a forgetful
functor but the additional structure allows for an interesting discussion of the spin-
statistics theorem.

5.2.2 Observables

A theory in this categorical framework is a covariant functor from Loc into a category
whose objects describe physical systems and whose morphisms encode embeddings
of physical systems. In quantum field theory (on curved spacetimes) in the algebraic
formulation, physical systems are modelled by *-algebras or C*-algebras. Denote
by *Alg the category whose objects are unital topological *-algebras with morphisms
given by the unit-preserving *-monomorphisms and call a covariant functor o :
Loc — *Alg realizing such an algebra on each background in Loc a locally covariant
theory. The algebra &/(M) thus associated to each spacetime M € Loc is often called
the algebra of observables although in many cases it may contain elements that are
not actually physically accessible.

Given two hyperbolic embeddings v; : M; — N, i = 1,2, such that the im-
ages ¢;(M;) are causally disjoint in N (¢f. Fig. 5.3(a)), we say that & is causal
if

[527(1/)1)97(1\41), 37(1/)2)«97(1\42)] = {O}-

Causality of «f is closely related to its tensorial structure as discussed in [48].
The theory & obeys the timeslice axiom if

APl (M) = d(N)

for all Cauchy embeddings ¢ : M — N (c¢f. Fig. 5.3(b)). The timeslice axiom is a
prerequisite for the relative Cauchy evolution, which describes the response of the
physical system to a perturbation of the background structure.

More concretely, let (M, g,+,u) and (M [h], g + h, +,u;,) be globally hyperbolic
spacetimes such that h is a compactly supported symmetric tensor field and uy, is the
unique time-orientation that agrees with u outside the support of h.! Consequently
there exist neighbourhoods around two Cauchy surfaces in M [h], one in the past
of h and the other in the future. We can then find Cauchy morphisms +* and ¢ [h]*
from spacetimes M* € Obj(Loc) into M and M[h] as shown in Fig. 5.4. Together

!Note that a possible ‘perturbation’ is always M[0] but there exists also a neighbourhood U of 0 in
the set of compactly supported symmetric covariant two-tensor fields (with the test function topology)
such that (M [h], g + h) is globally hyperbolic for all h € U, see [27, Thm. 7.2].
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o+ MY
— s
.é rce[h] @
— -
L M- v~ [h]
M M[h]

Figure 5.4. Illustration of the morphisms in the relative Cauchy evolution with the
unperturbed background M on the left and the perturbed background M [h] on the
right.

these Cauchy morphisms make up the (*-algebra) homomorphism that is the relative
Cauchy evolution map

rce[h] = (7)o (t[h] ) Lot [h]T) o (7))L
It was shown in [46] that (in an appropriate topology, see [2, 98] for details),

d

—2i—rce[eh]A = [T(h),A]
de e=0

for any A € &/(M) and where T(h) € o/(M) is symmetric and conserved. Since T is

both symmetric and conserved it may be interpreted as a stress-energy tensor [46,

97, 98] and, in fact, in concrete models this interpretation is valid [28, 46, 93, 193].

5.3 Generalized Klein—Gordon fields

The Klein—Gordon field is usually the first field to be discussed when studying quantum
field theory. We will be no different although we will perform some straightforward
generalizations. Namely, we will quantize fields on natural vector bundles that satisfy
a normally hyperbolic equation of motion. The results below are a generalization
of those obtained in [46] for the scalar Klein—Gordon field. In principle, further
generalizations of the definitions and statements presented below are possible. For
example, one can replace compactly supported p-forms by compactly supported
sections of ‘natural’ vector bundles, i.e., vector bundles that, like the (co)tangent
bundle, are functorially constructed from the geometric structure of the manifold.
However, all these generalizations yield little insight and obfuscate some constructions.
Moreover, the requirements imposed by the usual locally covariant framework make
it difficult to find examples that do not just use a standard tensor bundle tensorized
with a vector bundle that is independent of the geometry of the spacetime.

5.3.1 Borcher-Uhlmann algebra

For every globally hyperbolic spacetime M, let & be a covariant functor from Loc
into the category of closed nuclear locally convex C-vector spaces such that 2(M) C
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.Qg (M, C) (for fixed p and with the subspace topology) and Z() = ,.
On each spacetime M we can define a straightforward generalization of the
Borchers—-Uhlmann algebra [38, 39, 213] as the unital topological *-algebra

w(M) = P 2(M)®"

neNy

with, i.e., the set of tuples (f;,)en, With f, € 2(M )@’" such that only a finite number
of f, is nonzero, together with

(a) addition and scalar multiplication is component-wise,
(b) multiplication given by the canonical isomorphic embedding
9(M)®m ® Q(M)én N Q(M)®(m+n)

and extends (anti-)linearly to all of (M) via the canonical embeddings of
these spaces into %(M),

(c) a *-operation that acts on (f,,) € Z(M) as (f,)* = (f,) and

f:(xli""xn):f_n(xn""’xl):

(d) a topology given by the direct sum topology of the test function topology on
each @(M)®" 2

Assigning to each globally hyperbolic spacetime the Borchers—-Uhlmann alge-
bra %(M), we obtain a covariant functor % : Loc — *Alg that maps each object to
the algebra and each morphism to the *-algebra morphism generated by the natural
pushforward ¢, i.e.,

UP) ) = (Pufn) with . fy = fro (1"

for all (f,,) € #(M).

Considering 2(M) as a topological *-algebra where the involution is complex con-
jugation, we can consider it as a functor from Loc to *Alg. The natural transformation
® : 9 - %, which for each M € Obj(Loc) is the canonical map

¢M:9(M)_>%(M); f’_)(onfaoa"'))
is called the (locally covariant) quantum field associated to %. Observe that every

element in % (M) is a limit of sums and products of &,, applied to test functions
because P, 2(M)®" is dense in %(M).

2with this topology the algebra is complete and nuclear, and the algebra product is separately
continuous.
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5.3.2 Field equation and commutator

The Borchers—Uhlmann algebra carries no dynamical information and may therefore
also be called the off-shell field algebra. In particular, the theory % is neither causal
nor does it satisfy the timeslice axiom. To obtain a causal theory that satisfies the
timeslice axiom, we need to implement a field equation (an equation of motion) that
induces a Cauchy evolution of the algebra elements and a commutator that ‘separates’
causally disjoint algebra elements.

Therefore, we assign now to every globally hyperbolic spacetime M a natural,
formally self-adjoint, Green-hyperbolic operator Py, : 2P(M,C) — 0P(M,C) such
that

Y0Py =Pyo,

for ever hyperbolic embedding v : M — N. Moreover, we define a functor & as in
the previous section.

As discussed in Sect. 3.6, associated to the Green-hyperbolic operator P,;, there
exists on each globally hyperbolic manifold a unique causal propagator Gy;.

The causal propagator is also called the commutator distribution or Pauli-Jordan
distribution (see also Sect. 3.6.2) because it facilitates the definition of a commutator
on the algebra %(M). Namely, let f,h € @(M) then we define on % (M)

(D0 (), Pp ()] = (iGy (f ® h),0,...). (5.1)

Due to the support properties of the causal propagator, this is exactly the right choice
if one wants to implement Einstein causality.

The commutator extends to arbitrary elements of % (M) in the following way:
First, we notice that the commutator ought to satisfy the Leibniz rule. Therefore it
may be seen as a map

9(M)®n ® 9(M)®m _ Q(M)®(n+m—2)

for n,m > 1, which can be extended (anti-)linearly to @,, 2(M)®", a dense subalge-
bra of (M). Finally, we can extend the resulting commutator continuously to the
whole algebra % (M). Thereby the algebra becomes a Lie algebra.

The commutator is of immense physical importance. Foremost, it implements
causality and manifests the principle of locality. Moreover, if the centre of the algebra
of observables with respect to the commutator is non-trivial, the algebra contains
unobservables and one cannot justify calling it ‘algebra of observables’. Nevertheless,
non-trivial centres in the ‘algebra of observables’ can lead to important non-local
observable effects under spacetime embeddings [194].

Note that the commutator (5.1) defined on %(M) is degenerate if (M) Nker Gy,
is non-trivial and thus it leads to an algebra with a non-trivial centre. This problem
will be addressed in the following section, where we introduce the so-called field
algebra.

5.3.3 Field algebra

Then, taking the wave operator and the commutator, we can define the (on shell)
field algebra & (M) as the unital topological *-algebra given for every M € Obj(Loc)
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by the quotient
FM)=%M)/I (M),

where ¥ (M) is the completion of the *-ideal finitely generated for all f,h € 2(M) by

(a) the wave equation
Py (P f) ~ Py (0)

(b) the commutator relation

Py (f )Py (h) = Sy (R)Py (f) ~ [P (f), Par(h)]

The topology of # (M) is the quotient topology with respect to %(M).
Like for the Borchers—Uhlmann algebra, & : Loc — *Alg defines a functor, where
F (M) is the field algebra and & (v) the *-algebra homomorphism

FW)[F] = [Y.F]

onall [F] € (M), which is naturally induced from % (1)) via the canonical projection
[-]:%(M)— F(M). That these assignments give indeed a covariant functor, relies
on the naturality of all involved operators. In particular,

Y. (Pyf)=Py(.f) and Gy(f ®h)=Gy(Y.f ®@Y.h)

forally : M — N and f,h € 2(M). Note that the field algebra is a Lie algebra,
where the bracket is simply

[[F],[H]] =[FH—-HF] = [[F,H]]

for all [F],[H] € %(M); the centre is trivial by construction. Moreover, we can
construct a quantum field ¢ for # as the natural transformation ¢ : 2 — %, which
is given for each M € Obj(Loc) by

u =[]0 by,

That is, ¢, is the map f — [(0, f,0,...)] for all test functions f € @(M).
The following is a standard result, see e.g. [190, Chap. 3.1]:

Proposition 5.1. The locally covariant theory %, given by the field algebra, satisfies
both causality and the timeslice axiom.

Proof. Since % (M) is the completion of the algebra generated by ¢,,, causality
follows immediately from the support properties of the causal propagator G;.

For the timeslice axiom we only need to show that the algebra in the whole
spacetime can be reconstructed from the algebra in a causally convex neighbourhood
N C M of a Cauchy surface; N may be considered as a spacetime in Loc with a
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Cauchy embedding into M. Set y € C*°(M) such that y =1 on J"(N)\ N and and
x =0onJ (N)\N. For every f € (M) there exists f’ € (M) given by

f'=Pu(xGuf)

such that supp f’ C N and

f=f"=Pu((=x)Gyuf + xGamf) EkerGy N2(M)

The statement follows again because % (M) is the completion of the algebra generated
by ¢ g

If w is a state on the Borchers—Uhlmann algebra % (M) for some spacetime M, it
induces a state for the field algebra & (M) if it also satisfies the commutation relation

w(FH)— w(HF) = w([F,H])

and the equation of motion

w((d® - ®Py ®-- ®id)F) =0

for all F,H € %(M). In that case, the state on % (M) is defined by the pushforward
of w by [-]. Conversely, a state on (M) always induces a state on % (M) by the
pullback via [ -].

5.3.4 Weyl algebra

The disadvantage of the Borchers—-Uhlmann algebra and the field algebra is that they
are only *-algebras and not C*-algebras and hence cannot generally be represented
by an algebra of bounded operators. However, heuristically speaking, we can expo-
nentiate the field algebra to produce a C*-algebra, the Weyl C*-algebra introduced in
Sect. 3.2.2.
In this section, set
D(M) = 25(M,C)/ ker Gy;.

2 extends to a functor from Loc into the category of closed nuclear locally convex
C vector spaces because Gy, is continuous (so that ker G, is closed) and transforms
covariantly under hyperbolic embeddings (cf. the previous section).

Then define on every spacetime M € Loc the Weyl C*-algebra %'(M) obtained
from the Weyl operators Wy, : (M) — % (M) with commutator relation

War([f DWy ([R]) = exp (3G ([f1® [R1)) Wy ([f +h])

for every [f],[h] € 2(M) and where we denoted also by G,; the well-defined
pushforward of G, to Z(M) via the canonical quotient map. Again, it may be shown
that 7 extends to a functor from Loc to *Alg by the covariance of the commutator
distribution.® The proof that 7 satisfies both causality and the timeslice axiom is
very similar to Prop. 5.1 and will not be repeated.

3To be precise, it is also necessary to show that the minimal regular norm behaves in a locally
covariant way. This follows from the Hahn-Banach theorem.



5.3. Generalized Klein—-Gordon fields 113

5.3.5 Scalar Klein—Gordon field

The (free, scalar) Klein—Gordon equation is
(O+ER+m?)p =0, (5.2)

where ¢ € (M) is the classical Klein—Gordon field and the parameters & and m > 0
are the curvature coupling and the mass.

One distinguishes in particular between two different curvature couplings: min-
imal coupling if £ = 0 and conformal coupling if & = 1/6. The reason for naming
& = 1/6 conformal coupling is that, in the massless case m = 0, (5.2) is invariant
under conformal isometries, see e.g. [64, 216]. Namely, given a conformal embedding
1) : M — N with ¢*h = 2°g, one finds

Y* (O+2R) ¢ = 2° (O+2R) 2o,

where ¢ € €(M). That is, if ¢ solves the massless conformally coupled Klein-Gordon
equation on (N,h), then 2 14*p solves the massless conformally coupled Klein—
Gordon equation on (M, g).

The field algebra for the Klein—-Gordon field can be constructed exactly as outlined
above, where we choose

Py =0+4+&R+m?> and 2,(M)=2(M,C),

and denote the resulting functor %, and the quantum field ¢. The Weyl algebra may
be constructed in a similar way. In case of conformal coupling, the Klein-Gordon field
can also be quantized as a conformally locally covariant theory [177, 5].

5.3.6 Proca field

The field equation for the classical Proca field Z € 2(M) of mass m > 0 is
(8d+m?)Z =0 (5.3)

and one can almost immediately see that it is not normally hyperbolic. However,
applying the codifferential to this equation we find that 8Z = 0 so that (5.3) is
equivalent to

(O+m?)Z =0

with the constraint §Z = 0.

There are two equivalent approaches to quantize this constrained system. Both
rely on the same fact that the exterior derivative d and the codifferential & commute
with (O + m?) and thus also with its causal propagator G, [94, 175].

For first approach [55, 94] we notice that (5.3) is pre-normally hyperbolic so that
we can construct the causal propagator

GM = GM o (m_2d6 +1d).
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Accordingly we can perform the construction of the field algebra discussed in
Sect. 5.3.3 with this propagator. More precisely, we set

Py =58d+m* and 9,(M)=02,(M,C)

and follow through with the construction of the field algebra, where we denote the
resulting locally covariant theory %, and the corresponding quantum field Z.

The second possibility, which is related to the framework developed in [115], is
to consider

Py =0+m> and 9,(M)={f €2}(M,C)|5f =0}

Since every section f € 2,(M) is coclosed, Gy, f solves the Proca equation (5.3).
We can then perform the usual construction for the field algebra and denote the
corresponding locally covariant theory .

Proposition 5.2. The locally covariant theories %, and %, are equivalent. That is,
F7(M) ~ F,(M) for every globally hyperbolic M.

Proof. For every f € &,(M)
m?Z(f)=Z(m’f - (8d+m*)f ) = ~Z(5df)
and thus Z(2;(M)) = Z(2}(M)). Then it is easy to check that
(8d+m*)f =(@+m*)f and Gyf =Gyf
for all f € 2, (M). 0

Similarly, two apparently different Weyl algebras can be constructed for the Proca
field and shown to be equivalent.



Quantum states

Summary

In Sect. 3.2.1 we already introduced some general features of states on *-algebras. In
this section we will discuss features important or specific to quantum field theory.

We begin our discussion with the introduction of the n-point distributions
(Sect. 6.1.1) associated to (some) states of the algebras defined above: the Borchers—
Uhlmann algebra, the field algebra and the Weyl algebra. Of particular importance
are states which satisfy the microlocal spectrum condition to be defined in Sect. 6.1.2.
States which satisfy this constraint on the wavefront set are the so-called Hadamard
states and their singular part is given by the Hadamard parametrix (Sect. 6.1.3).

After we introduced these general notions, we will discuss the construction of
quantum states on particular spacetimes. Due to their importance in cosmology and
their relative simplicity, we discuss adiabatic and Hadamard states on cosmological
spacetimes in Sect. 6.2.

6.1 Preliminaries

Let (M, g) be a globally hyperbolic spacetime and let us consider, as in 5.3, p-form
fields. It is important to notice that none of the results here are fundamentally
restricted to the assumption of p-form field and can be easily generalized.

6.1.1 n-Point distributions

Let % (M) be the Borchers-Uhlmann algebra of a quantum field theory on M which is
built on a test function space 2(M) C .Qg (M). Since

w(M) = P (M),

neN,

the topological dual is of the form

2= ]2 wn,
neNg
where we have used the kernel theorem. In other words, whereas any element of
2% (M) can be understood as a polynomial, %’(M) also contains power series. It
follows that the any state w on % (M) is uniquely defined by a family (w,),ex Of
n-point distributions (also called n-point functions or Wightman functions) w, €
2'(M )®”. If we denote by &), the quantum field associated to % (M), then the
n-point distributions satisfy

wn(fl ®"'®fn): C‘)(d)M(fl) 4)M(fn))
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forall fy,...,f, € 2(M)and n € N.

The connected or truncated n-point distributions wrf of a state w are defined by
the relation

wp(x1,...,X,) = Z l_[wlj;l(xr(l)’ e Xp(lrD))s (6.1)
Pe%, repP

where P, denotes the (ordered) partitions of the set {1,...,n}. Therefore, they can be
calculated recursively from the n-point distributions. The first two truncated n-point
distributions are

wlT(Xl) = wq(x1),

wg(xl,xz) = wy(x1,Xx9) — w1(x1)ws(x3)

and a general recursive formula is given by

co,f(xl, e Xg)=wa(xg, .., x,) — Z l_l co|Tr|(Xr(1), cees Xp(lr))-

PeP, repP
|P|>1
Thanks to the close relation of the Borchers—Uhlmann algebra and the field
algebra, see the last paragraph of Sect. 5.3.3, the space of states of the field algebra
is related to a subspace of the space of states for the Borchers—Uhlmann algebra and
a state w on the field algebra also has associated n-point distributions. These n-point
distributions naturally satisfy the commutation relations

(X1, e Xp) = @n(X1, oo, X1, Xy e v Xp)

+ Q)n_z(xl, .. .,3('\1',5(\1'_’_1, .. "Xn)GM(xi’Xi+1)a

where the hats denote omitted points, and are weak solutions of the equations of
motion
Py(xc)ew, (1,0, X550 .,x,) =0

for all i € [1..n]. Therefore, if we denote by &,, the quantum field associated to
F (M), the n-point distributions satisfy

wn(fl ®"'®fn): w(d)M(fl)d)M(fn))

independently of the chosen representatives fi,..., f, € D(M) of [f1],..., [f.l-

The definition of n-point distributions for a state on the Weyl algebra #' (M) is
slightly more involved. n-Point distributions in the algebraic sense only exist for
strongly regular states as defined in Sect. 3.2.2, see also [23]. In this case they are
defined by the relation

n

wn(f1®-®f)= (—i)nm

oWy (t1LAD -+ Wy (€, [f2]))
te=0
Clearly, the n-point distributions of a state on the Weyl algebra satisfy the commutation
relation and the equation of motion.
A state w is called quasi-free or Gaussian if all its truncated n-point distributions
vanish for n # 2, whence it is completely determined by its two-point distribution .
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For a quasi-free state, all odd n-point distributions vanish and all even n-point
distributions are given by

Wn(X1, 2 X)) = D 05X (1) Xo(2)) ** 02(Xo(nm1)s Xo(m):
(o2

where the sum is over all ordered pairings, i.e., over all permutations o € &,, such
thato(1)<o(3)<---<o(n—1)and o(1) < 0(2),...,0(n—1) < o(n).

6.1.2 Microlocal spectrum condition

A quasi-free state w satisfies the microlocal spectrum condition [45, 181, 189] if
WF(w,) € {(x,x";&,—E) € T*(M x M) | (x;€) ~ (x/;§) and E> 0}, (6.2)

or, in words, the wavefront set of w, is contained in the set of (x,x’;&,—&’) €
T*(M x M) such that x, x’ are connected by a lightlike geodesic y with cotangent &
at x and &’ is the parallel transport of & to x’ along y (in symbols: (x;&) ~ (x’;&’))
and & is future directed (in symbols: & > 0). That is, (x,x’; &, —&’) is contained in
the wavefront set if (x; &) and (x’; &) lie on the same future-directed bicharacteristic
strip generated by o(&) = —g(&,&).

The microlocal spectrum condition can also be generalized to states that are not
quasi-free [45, 191]. States that satisfy the microlocal spectrum condition are called
(generalized) Hadamard states.

Let P = O+ B, where B is a scalar function, the potential, and G(x, x’) its causal
propagator. If the kernel of the two-point distribution w, satisfies the commutator
relation (weakly)

W, (x,x") — w,(x’, x) =iG(x, x")

then equality of sets holds in (6.2). If, moreover, the two-point distribution is a
parametrix of Py, i.e.a weak bisolution up to smooth terms, then it attains the local'
Hadamard form in a geodesically convex neighbourhood U € M

(ox') = 1 1 [ ux,x) (e, )] o.(x,x") w(x)
@20 = I g2 o.(x,x") V6 X T X (6.3)
=% (x,x")+w(x,x’),

where we take the weak limit, x,x’ € U, A € R is arbitrary and the detailed form of
the coefficients v,w € I'( /\p (TM)RX /\p (TM)) will be discussed in the next section.
Above we used a ‘vectorized’ van Vleck—-Morette determinant

u(x, x") = AY2 (e, x) gl (e, x7) - -+ g1%I% (o, x7),

which is antisymmetrized in the indices a; and parallel transported along the geodesic
connecting x and x’, and the regularized world function

o (x,x") = o(x,x")+ie (t(x) — t(x")) + %6‘2

with t a smooth time function on (M, g) compatible with the time-orientation.

1Also a global Hadamard form can be formulated [136], but since the discovery of the microlocal
spectrum condition this global form has lost its importance. In fact, it was shown in [182] that a state
that is everywhere locally of Hadamard form is also globally a Hadamard state.
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6.1.3 The Hadamard parametrix

The coefficient functions
1 0 , / k
v(ix,x) = —ka(x,x’)(M) (6.4)

in (6.3) are called Hadamard coefficients and are another example of bitensors. Note
that the expansion above is an asymptotic expansion in terms of the world function o
and cannot be expected to converge unless the spacetime is analytic. Although it can
be turned into a convergent series by replacing the series (6.4) by [24, Chap. 2.5]

n o0
> vl x)o e x4 Y v x )z (a0 (x, x)*
k=0 k=n+1

for any n € N and some sequence (ay), o, € (0,1], where y € C°(R)is 1 in a
neighbourhood of 0 (note that we omitted the scale A), this will not concern us any
further because we will only ever need a finite number of terms.? Therefore, we also
define the truncated local Hadamard parametrix

1 ([ u(x,x) & , en 006, x")
—+ vi(x,xNo(x,x ) In ——— |.
G5 2o 00 te K In = )
One can show that there always exists a n € N such that

#,(x,x") = lim —
nl ) e—0+ 82

lim 9 (% (x, x") — %,(x,x")) =0

for all differential operators @ and n depends on the order of .
The coefficients v; can be recursively calculated by (formally) applying P to % ;
One then finds the so-called Hadamard recursion relations (cf. [69, 96, 169])

A*Pu=(2V, + 0% —2)v,, (6.52)
APy =2V, + 07, + 2k — kv, (6.5b)

where we have used the transport operators defined in (1.12). It can be shown
that the Hadamard coefficients are symmetric in their arguments [103, 155]. To-
gether with the first term in (6.3) the Hadamard coefficients make up the Hadamard
parametrix #(x,x"), which is therefore completely determined by the differential
operator P and the geometry of the spacetime.

The covariant expansion of the Hadamard coefficients can be efficiently cal-
culated using the Avramidi method described in Sect. 1.4.4 using the transport
equations (6.5). If one is only interested in the coincidence limits, one can directly
take the limit in (6.5) to find (omitting necessary Kronecker deltas originating from
coincidence limits of parallel propagators)

1 1 1
o) = 5Pl = 5 (B~ 2.

[vk] = [ka—1:|> k> 1.

1
2(1 —-k)k

2If we inserted this modification into (6.3), the two-point distribution would not be an exact (weak)
solution of P any more, but only up to a smooth biscalar, i.e., it would only be a parametrix.
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Note that [v,] vanishes for a conformally coupled massless scalar field. The coinci-
dence limit of v; cannot be found in this easy way and must be calculated directly.
After a lengthy calculation using pencil and paper or a (fast) calculation using a
tensor algebra software, one obtains (again omitting Kronecker deltas)

8[v;] = B>+ 10B — 1RB + -R* — =R pR™ + 5RopeqR — £OR. (6.6)

Different from v(x, x’), the symmetric bitensor w(x, x’) is not directly determined
by the geometry or a differential operator. Instead the term w(x, x’) reflects the
freedom in the choice of the state. Writing the asymptotic expansion

1 00 , / k
Wi, x') = ﬁ;wk(x,x’)(%) ,
=0

we notice that the freedom to choose a state is completely encoded in the first
coefficient w, and the remaining coefficients obey the recursion relation [69, 96]

A*Pwy = 2(k + 1)V owyy1 + 2k(k + Dwyy + (k+ Dwy 109,
+ 2V Vip1 — 22k + vy g + viey10°,.

A common choice is to set wy = 0 as in [219]. In any case, w, must be chosen such
that w is symmetric.

6.2 Construction of states on cosmological spacetimes

Explicit examples of quantum states are known only on a small class of highly
symmetric spacetimes. Below we will first discuss the so-called Bunch-Davies state
[10, 51, 198], which can be considered the vacuum state of de Sitter spacetime. Then
we study a construction of states on FLRW spacetimes due to Parker [172] called
adiabatic states. Although adiabatic states are in general not Hadamard, indeed only
adiabatic states of infinite order satisfy the microlocal spectrum condition [134],
they can be considered approximate Hadamard states and have proven to be very
useful thanks to their relatively straightforward construction. Since we will make
extensive use of adiabatic states when we discuss the semiclassical Einstein equation
on cosmological backgrounds in Chap. 8, they will be treated in some detail below.
Moreover, we will introduce the states of low energy by Olbermann [165], which are
constructed via a careful Bogoliubov transformation from adiabatic states.

6.2.1 Bunch—-Davies state

A distinguished Hadamard state for the (massive) scalar field on de Sitter spacetime
is the Bunch—Davies state [10, 51, 198]. It is the unique pure, quasi-free Hadamard
state invariant under the symmetries of de Sitter spacetime. Note that equations of
motion for the scalar field on de Sitter spacetime are

Oy + (12EH% +m?)p =0,

where H is the Hubble constant, m the mass of the scalar field and & the curvature
coupling, cf. Sect. 5.3.5. Therefore the curvature coupling & acts like a mass and
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we set M2 = 12£H? + m2. The Bunch-Davies state is also a Hadamard state in the
limit M = 0 but in that case it fails to be invariant under the symmetries of de Sitter
spacetime [10, 11]; below we assume M > 0.

Using the function Z defined in (2.15), the Bunch-Davies state is the quasifree
state given by the two-point distribution®

M?2 — 2H?

@y (3, x") = wy(Z(x,xN) = 8 cos(nv)

ZFl(V+,v_;2;%(1+Z)), (6.7)
where ,F; is the analytically continued hypergeometric function and with

.3 " J 19 M?
vi=—=xv and v=4{/-——.
T2 4 H2
We can rewrite (6.7) into a form which exhibits the Hadamard nature of the state
more clearly. In fact, using well-known transforms [166, Eq. (15.8.10)] of the
hypergeometric function ,F;, one can show

H? M? — 2H?

w0x2)= (-2 + (FEa-z)mEa-2)+w(ia-2))

2
for |Z| < 1 (spacelike separated points) with

V(z) = oF1(v4,v_;2;2),
o0

=3 %(Fm FI)+Fv- 0 = F(k+ 1) = £k +2)) 2,
where ¢ is the digamma-function.

In the cosmological chart of de Sitter spacetime the function Z attains the simple
form (2.17) and the spatial sections are flat. Therefore, one can represent w, as a
spatial Fourier transformation with respect to ¥ — X¥’. Indeed, using known integrals
of (modified) Bessel functions [107, §6.672], a lengthy calculation shows [198]
(omitting again the e-prescription)

HZ(TT/)B/Z

(Oz(x,xl) = 321_1:2

J e "MV HO(—kr)HO(—kt) R VAR, (6.8)
R3

where x = (1, %) and x’ = (7/, %) in the conformal coordinates and H®, H® are the
Hankel functions of first and second kind.

6.2.2 Homogeneous and isotropic states

It is usually reasonable to restrict ones attention to states that respect the symmetry
of the background spacetime. Under this assumption, a state on a FLRW spacetime
should be both homogeneous and isotropic. That is, if the state is also quasifree, its
two-point distribution needs to satisfy

wZ(XJ x/) = CL)Z(t, t/af - )?/) = wZ(T: T/:‘i! - )?/):

3More precisely, one should replace Z by Z +ig(t(x) — t(x")), where t is a smooth time function,
and take the limit ¢ — 0%. Note that ,F; has a branch cut from 1 to co.
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where x = (t,X) = (7,%) and x’ = (¢/,X’) = (7/, X¥') with respect to cosmological or
conformal time.

Under a certain relatively weak continuity assumption on the two-point distribu-
tion (such that they may be represented as bounded operators on a certain Hilbert
space and the Riesz representation theorem can be used [146]), it was shown in
[146, 196] that every quasifree, homogeneous and isotropic state for the scalar field is
of the form*

2m)3a(t)a(r’) Jgs (E008K(7)Sk(+") (6.9)

+(2(Kk) + 1S (v)S (7)) eF T 4R,

(,1)2(.)(, X/) =

where k = |k| and S(k) is a non-negative (almost everywhere), polynomially bounded
function in Ll(Rg); for pure states = = 0. Moreover, the modes S, are required to
satisfy the mode equation of motion

(02 + w)S (1) =0, wi=k*+(&—¢)a(v)’R+a(r)’m?, (6.10)
and the Wronski-determinant condition®
SkS,i—S;Sk =i, (6.11)

where both S, and S,’( are polynomially bounded in k. States constructed in this
manner are in general not of Hadamard type.

Two important examples of pure Hadamard states expressible in the mode form
above are the Minkowski vacuum state on Minkowski spacetime

1 1 e E(R)(t—t") eii?(f—f’) dl?,
(2m)? Jgs 2E(K)

with E(k)? = k? + m?, and the Bunch-Davies state on the cosmological patch of de
Sitter spacetime (6.8). Interesting examples of non-pure states are the approximate
KMS states at inverse temperature f3 for the conformally coupled scalar field [57]

1 Sk(T)Ek(T/) §k(7)5k(7/) ei;'{.(f,,?/) dr
2m)a(t)a(r’) Jgs \ efrr—1 1— e Fke

with kp = 1/ k? + a(7y)?>m? for some ‘freeze-out’ time 7. These states are KMS states
if the spacetime admits a global timelike Killing vector field which is a symmetry of
the state; they are Hadamard states if the pure state specified by the modes S is
already a Hadamard state [57].

Given fixed reference modes y; that satisfy (6.10) and (6.11), all other possible
mode solutions S can be constructed via a Bogoliubov transformation, i.e.,

Sk=Ax +BUOZ,  with  |AGOP ~ B> =1,

“Note that we omit here and below the necessary -regularization of the integral, where one
multiplies the integrand with e ** and considers the weak limit £ — 0*.

SImposing the Wronski-determinant condition guarantees that the imaginary part of the two-point
distribution is given by half the commutator distribution. It is sufficient to impose this condition at one
instance in time.
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where A(k) and B(k) are such that k — S, and k — S ,’( are (essentially) polynomially
bounded, measurable functions. Note that changing S; by a phase does not affect
the state and therefore B(k) can always be chosen to be real. The choice of A and B
thus corresponds to two degrees of freedom, e.g., the phase of A and the modulus
of B. If the reference modes y, specify a pure Hadamard state, one can show that
the modes S; with the mixing =(k) specify a Hadamard state as well if and only if
(in addition to the conditions above) k"B(k) and k"=(k) are in Ll(]Rg) forallneN
and ArgA — ArgB is measurable [178, 221]. An important example of a Bogoliubov
transformation of a Hadamard state that (clearly) does not give a Hadamard state are
the a-vacua associated to the Bunch-Davies state for which A = sinh @ and B = cosha
with a € R.

6.2.3 Adiabatic states

Any solution of (6.10) and (6.11) is of the form®

sk(r)=p"—g)e19k(” with 6, (7) = j pr(n)~2dn, (6.12)

where p, satisfies the differential equation

pii = (it = 0o = (62— 0}y 6.13)

Modes W, = oe¥k/+/2 of the form (6.12) with arbitrary o that do not satisfy the
differential equation (6.13) can be used to specify initial values for solutions S; of
the mode equation (6.10), i.e.,

Sk(To) = Wk(To), S;/{(To) = W;i(To)

at some initial time 7. Using an idea of Parker [172], it can be shown that the W,
yield the solution S;. via a Bogoliubov-like transformation

Sk(1) = A(TI)Wi(T) + B(T)W (1) (6.14)

with time-dependent coefficients given by
T
AT)=1- iJ G(n) (A(n) +B(n) e VM) dn, (6.15a)
To

T
B(t)= —J Al'(n)e?¥xm) dn (6.15b)
To

and 2G = O',:Z — wioz — akag , Where we have suppressed the k-dependence of A, B

and G in all four equations above. Applying arguments from the analysis of Volterra
integrals, it can be shown that 1 — A, A/, B and B’ have the same large k behaviour
as G (¢f [146, 165]). As a consequence, the modes S; and their derivatives have
(almost) the same asymptotic behaviour as the modes W, if o looks asymptotically

. -1/2.
like w,

The lower limit in the integration is arbitrary as it gives a constant phase.
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Proposition 6.1. Suppose 6Tlak = 8Tl (colzl/z) +0(k™%/2) for all 1 = 0, 1,2 such that
G = O(k™™) for some m > 3. The modulus p; of the modes S satisfies

pk:O'k+O(k_1/2_m), a:pk:a:O'k-FO(kg/Z_m)

foralln=0,1,2.
Proof. First note that the assumed bounds of o and o7, yield

2G = O'k —wio?—o0) =0(k?),

which is consistent with the assumption on G. Further, recall that 1 —A, A’, B and B’
are O(k™™), too. We then derive from (6.14) that

=|A+Be Mol =02 +0(k'™™)

and thus p, = o, + O(k~/2™"). Next we use that p; satisfies the differential
equation (6.13) to find

pi == (py* — )P — (07" — wp) o+ 2Go ! = 0 (k™)

whereby we obtain the estimate for p ’ and, after an integration in time, also that
for p;. O

In summary, the asymptotic behaviour of the initial values given by w; fixes the
asymptotic behaviour of the solutions w;.

We can now construct adiabatic states as in [146, 172] by specifying appropriate
initial values for (6.10) respectively (6.13): Making a WKB-like Ansatz, one finds the
adiabatic modes of Parker [172]. Namely, the adiabatic modes W, = Wk(”) of order n
are modes of the form (6.12) with o, = o?, given iteratively via’

(O

(o) =i+ with (o)™ = w?.

k
o®
The adiabatic modes Wk(”) are then used to specify initial values for the mode equa-
tion (6.10), e.g., by solving the integral equations (6.15).

A useful result on the asymptotic behaviour of the adiabatic modes is stated in
[146, Lem. 3.2]. Using the fact that co;( = 0(k™1), one can easily improve this lemma
to obtain for alln € Ny and m € N

0'21) — O(k_l/z), E]((n) — O(k—Z(TH-].))’
ﬁ U(n) O(k 5/2) ﬁ €,(<”) = O(k—Z(nH)) (6.16)
at™m

a m
as k — oo and where (o)™ = (o' "P)7*(1 + £"). The asymptotic behaviour of the
coefficients (6.15) for adiabatic states was analyzed in [146, 165]. It can be found,
using the improved bounds (6.16), that they satisfy

1-A(k,7)=0(k2"3), B(k,7)=0(k™2""3),
A(k,7)=0(k"2"3), B'(k,t)=0(k™?"3)

7The notation used here can be transformed into the usual one by setting a,((”) = (.Q,E“))’l/ 2,
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as k — oo.

These results can be seen as a starting point to show the relation between adiabatic
states of a certain order and Hadamard states. Indeed, one can show [134] that
adiabatic states of infinite order are Hadamard states and that adiabatic states of a
finite order satisfy a microlocal spectrum condition on a certain Sobolev wavefront
set® of the two-point distribution.

6.2.4 An adiabatic state for conformal coupling

Let study the construction of the (adiabatic) states already considered in [178, 3], see
also [14, 15]. For a (massive) conformally coupled scalar field (§ = 1/6) the initial
values for an adiabatic state of order zero can be taken to be
1. ko,
elkOTO’ XIZ(TO) — elkOTO’
\/ 2k \/ 2k
with k§ = (2)* = k* + a(7¢)*m®. Note that these initial values are essentially a
conformal transformation of the modes of the Minkowski vacuum.
It is possible solve the mode equation (6.10) with these initial values perturba-
tively. For this purpose, define the potential V(1) = m2(a(t)? — a(7,)?) and make
the recursive Ansatz y; (1) =Y, x(")(r) with the recurrence relation

Xk(TO) =

() + K2 P(r) = =V (TP (7) (6.17)

with initial condition

(0)( )= — ethoT, (6.18)
v/ 2k,

The mode equation (6.10) is then solved as described in the proof of the following
proposition:

Proposition 6.2. The recurrence relation (6.17) is solved iteratively (for T > 7,) by

x(r) = J Wv(n)x@ Y(n)dn 6.19)

and the sum y;(7t) =Y, () converges.

Proof. Consider for each k the retarded propagator of 83 + k(zJ given by

“sin (ko(t — 1))

Aret,k(f)(TO: T)= f kO

To

f(n)dn: T> TO:

for all f € C°(I), where I is the domain of the conformal time. Applying Arek
to (6.17), it can be solved as

(n)( )= J Wv(n)xm D("?)dﬂ

8Sobolev wavefront sets are very similar to the usual wavefront set, but instead of using smooth
functions at the foundation of the definition, one uses functions from a Sobolev set of a certain order.
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for T > 1.
The straightforward estimates

2 rT T
m
x| < k—f VP dn, [xPl<m? | (z—n) |[V)xl  (n)|dn

0 Jrg To
can be iterated using the initial value X;EO) = (2ko)~/? and the standard ‘trick’ of
extending the integration of a symmetric function over a time-ordered domain to an
integration over a symmetric domain by diving through the appropriate factorial (cf.
[178, Prop. 4.4]). Combining the two estimates, this gives

o<1 (Ml o [ e v(n)ld " 6.20
s —=——| ¢ [v)|dn | (m* | (z=m)|v(n)|dn (6.20)
On. Ty To

for any 0 <1 < n. Therefore the sum y;(7) =), x}(”)('z,') converges absolutely. 0O

Equivalent results can be found in [3, Sect. 2.1], [178, Prop. 4.4] and also [14]. It
is clear, that the recurrence relation can be solved in the same for T < 7, by applying
the advanced propagator.

Remark 6.3. The partial modes XIE") can be computed as in Prop. 6.2 even if the metric
(equivalently the scale factor) is not smooth. If the scale factor is C°, the resulting
mode x will be at least C2. This relies crucially on the fact that the curvature, which is
not well-defined if a is not at least C?, does not enter the mode equation (6.10).

6.2.5 States of low energy

Let us define the (unregularized) energy density per mode S;. as

_ 1 _ _
0(S1,S;) = —(S,S) + (6 —1)aH(S,S,)
ko 2k 2a4( K7k Kk 6.21)

+ (K2 +a’m? - (65 — 1)a’H?)S, 5, ).

For now, we will not interpret this quantity in any way and leave its derivation to
Sect. 7.3.

Given reference modes y; and Bogoliubov coefficients A, B, the energy density
per mode S, = Ay + By is related to the energy density per reference mode y; by

1(p(Sk.51) = pUrio 76)) = 1B (ke 1) + Re (4B 6 (11 11)) (6.22)

One can now attempt to minimize the energy density per mode by varying the
Bogoliubov coefficients and we find that:

Proposition 6.4. The energy density per mode at a fixed instance of time is minimal if
and only if the Bogoliubov coefficients are given by (up to unitary equivalence)®

ArgA(k) = m — Arg (6 (i, x1)), (6.23a)
. — 1/2
B(k) = ( 116 T% 1)) B 1) (6.23b)
2v/0 (o 210 = 16 (o 22 2

°Recall that, without loss of generality, we can always choose B to be real and positive such that A
is completely determined by its phase.
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and p(xi, 21)% > 10 (i xi)|?. The inequality is satisfied for all k > 0 if and only if

4m?2
L4 o £12 12 o H=0, (6.24)

i.e., in particular whenever 0 < £ <1/6.

Proof. For fixed B > 0, (6.22) is minimized by ArgA = m—Arg (6 (xx, xx)) so that the
second summand is maximally negative. Therefore, minimizing (6.22) is equivalent
to finding the minima of

B26 (x> Z1) + Re (ABP (xi» x)) = B0 (i 1) — V1 + B2BIp (s 1)l

Differentiating this expression by B, one finds that an extremum exists on the positive
real axis only if 5(xx, 7x)? > |6(xx, xx)|? and that its locus is given by (6.23b); it is
easy to see that this is indeed an minimum.

Inserting the definition (6.21) into the condition p(xx, 7x)? > |6 (xr, xi)|%, we
find that it is equivalent to

k? +a*(m?+6(1 — 65)EH?) > 0.
If this conditions is to hold for all k > 0, then (6.24) must be satisfied. O

Instead of trying to minimize the energy density per mode at an instant, states
of low energy are constructed by minimizing the smeared energy density per mode.
That is, by minimizing

1 9¢ — - _

2 F()*(6(Sk,Sk) — P (e 7)) d
I (6.25)

= Jf(7)2(|3|2f?()(k,7k) +Re (Aﬁﬁ(lblk))) dr
1

for a fixed smearing function f € C;°(I), where I C R is the domain of the conformal
time coordinate.

This minimization was performed for minimally coupled scalar fields in [165] to
find the so-called states of low energy. It can be shown that the states of low energy
satisfy the microlocal spectrum condition and thus they are Hadamard states. The
arguments presented in [165] can be straightforwardly repeated for the conformally
coupled scalar field to find states of low energy, which are Hadamard states too. In
both cases the Bogoliubov coefficients are given as in (6.23) with the replacements

ﬁ(%k,fk)—’Jf(T)Zﬁ(Xk,Yk)dT and ﬁ(lk:lk)_’Jf(T)Zﬁ(Xk:Xk)dT-
1 I

There are good reasons to believe the following:

Conjecture 6.5. States of low energy for arbitrary smearing function, mass and scale
factor exist only in the curvature coupling range 0 < £ < 1/6. For all such & the state
satisfies the microlocal spectrum condition.
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The crucial point in proving this conjecture is to show that (6.25) has a minimum.
This can be shown similar to [165] for the minimally coupled case and the conformally
coupled case. For other values of & the proof is more difficult, but by continuity it is
clear from Prop. 6.4 that for some smearing functions states of low energy exist in
the interval £ € [0,1/6] but not outside that range. Namely, if (f,,) is a sequence of
functions such that fn2 converges weakly to the delta distribution, then there exists N
such that a state of low energy exists for all f,,, m > N because a minimum exists for

2 = 5 by Prop. 6.4. Once existence is show, one can expect that the state satisfies

the microlocal spectrum condition using proofs analogous to those in [165].

6.3 Holographic construction of Hadamard states

In the absence of a global timelike Killing field on a generic globally hyperbolic
spacetime it is difficult to find physically well-motivated quantum states. Therefore,
in recent years, a lot of effort was put into the construction of proper Hadamard
states on non-trivial spacetimes. A promising method is the ‘holographic’ construction
of Hadamard states on characteristic surfaces introduced in [64, 157, 159]. The holo-
graphic method has been applied to construct Hadamard states for the conformally
coupled, massless scalar field [64, 157, 159], the Weyl (massless Dirac) field [58,
112], the vector potential [1, 5] and linearized gravity [29] on asymptotically flat
spacetimes and cosmological backgrounds [61, 62]. It was also used to construct
local Hadamard states in lightcones in [65].

Forgetting for a moment the application of the bulk-to-boundary construction to
asymptotically flat spacetimes and limiting ourselves to the scalar field, it may be
roughly sketched as follows (see also [106]). Let (M, g) be a globally manifold with
a distinguished point p such that the future lightcone of p satisfies some technical
conditions. The it is possible to construct on the lightcone (without the tip and as
a manifold on its own) a positive bidistribution A on all functions on the lightcone
that are compactly supported to the future and falls off sufficiently fast to the past,
such that the antisymmetric part of A agrees with the pullback of the commutator
distribution on the whole spacetime, and the wavefront set of A is of positive frequency
with respect to the future-directed lightlike geodesics through p. This bidistribution
has all the necessary properties to define a state for a quantum field theory on the
lightcone. Moreover, taking any compactly supported function in the interior of the
lightcone of p, it can be mapped to a function on the lightcone using the advanced
propagator and a pullback such that the resulting function on the lightcone is compact
towards the future and has good fall-off properties towards the past of the lightcone.
This way one obtains the so-called bulk-to-boundary (projection) map. Pulling back
all functions in the interior of the lightcone to the boundary of the lightcone using
this map, one thus finds a state for the scalar field restricted to the interior of the
lightcone. Applying the propagation of singularities theorem it is possible to show
that the resulting state satisfies the microlocal spectrum condition.

In a second step, on may construct Hadamard states for conformally invariant
scalar field on asymptotically flat spacetimes with globally hyperbolic unphysical
spacetimes. First, one notices that boundary of the conformal completion of an
asymptotically flat spacetime in the unphysical spacetimes satisfies all the necessary
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technical conditions. Then one can compose the bulk-to-boundary map inside the
unphysical spacetime with the (non-unique) conformal transformation associated
with the asymptotically flat spacetime, to find a state for the conformally invariant
scalar field. Since conformal transformation leave lightlike geodesics invariant, also
this state is of Hadamard form.

In [1, 5] this construction was generalized to the electromagnetic vector potential.
Also in this more complicated case a bulk-to-boundary construction of Hadamard
states was be found, but it involves careful use of the gauge freedom of the vector
potential to construct a positive state. Otherwise, the construction remains largely
unchanged.



Semiclassical gravity

It is shown in a quite general manner that the quantization of a given
system implies also the quantization of any other system to which it can be
coupled. — Bryce S. DeWitt,
in “Gravitation: An Introduction to Current Research” (1962), p. 272

Oh gravity, thou art a heartless bitch.
— Sheldon Cooper, Season 1, Episode 2, The Big Bang Theory






The semiclassical Einstein equation

7.1 Introduction

The equation
Gap +A&ap = w(:Tab:) (7.1)

is called the semiclassical Einstein equation.' It is obtained from the ordinary Einstein
equation by replacing the classical stress-energy tensor with the (normal ordered)
expectation value of the stress-energy tensor of a quantum field in a suitable quan-
tum state w. Many developments in quantum field theory on curved spacetimes
were driven by problems related to the quantum stress-energy tensor. See also the
monographs [36, 104, 112, 217] for an overview of the subject.

The semiclassical Einstein equation is usually understood as an equation that
describes physics midway between the classical regime covered by the Einstein
equation (2.9) and a full-fledged, but still elusive, quantum gravity. Namely, in the
semiclassical Einstein equation one takes into account that the ‘matter’ content of the
universe is fundamentally of quantum nature as described by quantum field theory
on curved spacetimes, whereas the background structure which is the spacetime is
treated on a classical level and is not separately quantized.

On the right-hand side one usually considers only Hadamard states. The reason for
restricting to Hadamard states is that only for Hadamard states the higher moments

W(:Tep(x): 1 Tp(x):)  etc.

can be defined. This is due to the fact that the n-point distributions of a state are
distributions and thus they cannot simply be multiplied (cf. Sect. 3.5.7). Since the
two-point distributions of Hadamard states satisfy the microlocal spectrum condition,
their wavefront set is contained inside a convex cone in T*(M x M) and hence powers
of the n-point distribution are well-defined distributions. This will be discussed in
more detail in Chap. 9.

7.2 The stress-energy tensor

While the left-hand side of the semiclassical Einstein equation remains unchanged
with respect to the ordinary Einstein equation, the right-hand side changes quite
dramatically. Namely, the classical stress-energy tensor T, is replaced by a the
expectation value of a quantum observable :T,;: in a certain state w. For this
expression to be mathematically consistent, we need to require the conservation of
the quantum stress-energy tensor, i.e., V¢:T,: = 0.

'Remember that we chose units such that 8nG =c = 1.
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7.2.1 The stress-energy tensor of the Klein—Gordon field

We do not aim at discussing the semiclassical Einstein equation in all possible gener-
ality. Instead we restrict our discussion to the semiclassical Einstein equation sourced
by a scalar field. The classical stress-energy tensor of a Klein—-Gordon field ¢ with
equation of motion

Py =(0O+ER+m?)p=0

may be written as [122]
=1 241 2 _ 1 cd
Top = 2vavb(:0 + 4gabD(p PV Vo + Zgabg PV Vap (7.2)
+ g(Gab =V Vp = gabD) 2— %gabmz()oz'

It may be obtained by varying the classical action of the scalar field with respect
to the metric [216, App. E]. The quantum stress-energy tensor is obtained from the
classical expression (7.2) by replacing products of classical fields by Wick products of

quantum fields, i.e.,
Tap: = %Vavb3$23 + igabﬂﬁzi — 1OV Vo + %gabngIQchd@ 7.3)
+ <S(Gab - vavb - 8ab|:|)39523 - %gabmzzazz .

This expression is not obviously conserved as
VT = —:(V@)(PP):

is not necessarily vanishing even if the Wick square was a solution of the equations of
motion. Nevertheless, either by a judicious choice in the renormalization freedom of
:p?: and : 9V, V,p: [122] or, equivalently, by a redefinition of the quantum stress-
energy tensor [154], a conserved quantum stress-energy tensor can be found; here
we follow the approach of Hollands and Wald. While the renormalization freedom
can be used to find a conserved stress-energy tensor, it is not possible to impose the
equations of motions on a locally covariant normal ordering prescription [122].

7.2.2 Renormalization of the stress-energy tensor

The renormalization freedom of :%2: and :p V,V,@: is spanned by m? R and
gapm*, gapm*R, M*Rap, Vo VR, gapOOR, ORyp, gapR7,
RRab’ RacRCb: gabRcdRCd’ RCdRcadb’ gabRcdefRCdef'

We have to split this renormalization freedom into two classes: (a) combinations
of terms that are conserved and represent a true renormalization freedom, and (b)
combinations of terms that are not conserved and need to be fixed to produce a
conserved :T,p:.

Denote by I,;, and J,;, the two conserved curvature tensors of derivative order 4:

Iop = 2RRgp — 2V VR — %gab (Rz + 4DR) >
Jab = 2R%Reqqp — Vo VR — ORgp — 3 8ap (ReaR° +OR) .

The following is often stated in the form of a conjecture (e.g., in [219]):



7.2. The stress-energy tensor 133

Proposition 7.1. I, and J,;, span the whole space of conserved fourth order local
curvature tensors.

Proof. It is an easy task to confirm this statement by a direct computation along the
lines of [68]: Taking the linear span of all fourth order curvature tensors

VoVuR, gapTR, ORyp, €apR%, RRyp, RycRy,
gabRcdRCd > RCdRcad b> gabRcdefRCdEf >

one can show that any covariantly conserved combination C,; must be of the form
Cab =a1VeVpR —as8,p0R + 2((11 + aZ)DRab - %(al + Zaz)gasz
+ (@ + 205)RRyp + (@7 + @) gapReaR™ — 4(a; + a3)R% R qap,

i.e., one obtains (for general metrics) a two-dimensional solution space. For a; =
—2,a, = 2 and a; = —1,a, = 1/2 we recover the tensors I,; and J;, respec-
tively. a

Remark 7.2. In conformally flat spacetimes (e.g., FLRW spacetimes) the Weyl tensor
vanishes and thus the solution space reduces to one dimension as the two tensors become
proportional: I, = 3J,p. On the level of traces this proportionality holds for all metrics,
namely, 1¢, = 3J%, = —60R.

We therefore find that the conserved renormalization freedom of : T,;: is spanned
by m*g.p, m?Ggp, Iyp, Jap- The remaining terms renormalization parameters are
fixed by the requirement of :T,;: to be conserved.

7.2.3 Point-splitting regularization of the stress-energy tensor

Up to the renormalization freedom, a normal ordering prescription for the stress-
energy tensor is given by the Hadamard point-splitting method. Given two linear (pos-
sibly tensorial) differential operators &,, %,, the Hadamard point-splitting method
yields the expectation value of :(2,9)(2,%): by seperating points, regularizing and
then taking the coincidence limit, that is

o ((D19)(D9):) = x1’1£n>x D, Do (wo(x,x") = FH(x,x")) = [D, Dow],

where @, acts on x” and is (implicitly) parallel transported during the limit x" — x.
In the Hadamard point-splitting approach the stress-energy tensor in a state w of
sufficient regularity is thus calculated as

1 1
w(:Tgp:) = @(%b[w] +9,, V. Vaw]) + W[Vl]gab

+ cymgap + com®Gap, + c3lyp + Cadap,

where J; and I, ¢d are the differential operators acting, respectively, on :$2: and
oV, Vyp:in (7.3):

Tab = %vavb + Al‘gabEH_ g(Gab —ViVp = gabD) - %gabmzy

d - d 1 d
gabc __525b+§gabgc .
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Furthermore, c; are dimensionless (renormalization) constants fixed once for all
spacetimes? and the addition of the Hadamard coefficient [v;] (see (6.6) for an
explicit expression) makes the quantum stress-energy tensor conserved because

1
lim Vi P%(x,x") = —4—Va[v1].

xX'—x ’ﬂ'.2
Observe that c;m*g,;, can be interpreted as a renormalization of the cosmological
constant and c¢,m2G,;, corresponds to a renormalization of Newton’s gravitational
constant G; the remaining two terms have no classical interpretation.

7.2.4 Trace of the stress-energy tensor

Because of its simple form, a first step towards analyzing the stress-energy tensor of a
scalar field is often the study its trace, which is given by

T: = g% T, =—m?:5%: +3(% —&)O:9%: — :pPP:. (7.4)

It follows that the trace of the stress-energy tensor is calculated via point-splitting as

1
oGT) == (m* =3(; ~§)0) g5 Wl + 5Ty 75

+ 4c;m* — c;m®R — (6¢5 + 2¢4)0O0R,
where c; are the same constants as above and we used

3
xl/iinxP%(x,x’) = —m[vlj.

Equations (7.4) and (7.5) clearly show the so-called trace anomaly [219]. Namely,
because the normally ordered quantum field does not satisfy the equations of motion,
the massless, conformally coupled scalar field (m = 0 and £ = 1/6) has non-vanishing
trace of the stress-energy tensor although it is conformally invariant. It is not possible
to remove the trace anomaly by a judicious choice of the renormalization constants
because [v;] is not a polynomial of m*, m?R and OR. The trace anomaly is a distinct
feature of the quantum theory and does not appear in a classical theory because the
classical fields are solutions of the equation of motion.

7.3 The semiclassical Friedmann equations

On FLRW spacetimes (M, g) the classical Einstein equation (2.9) simplifies signif-
icantly to the first and second Friedmann equation (2.18) and (2.19). Since the
left-hand side remains unchanged when crossing over to the semiclassical Einstein
equation, also the semiclassical equations must simplify in an analogue way for every
state that satisfies the equation. Whence one obtains the semiclassical Friedmann
equations

6H2+R=2w(:p:)+2A, (7.6a)
6(H+H?)=—-w(:p: +3:p:)+2A=—w(:T: +2:p:) + 24, (7.6b)

2¢,, ¢, are due to the renormalization of :$2: and c,, ¢, correspond to the renormalization freedom
of :pV,V,p:
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where the quantum energy-density :p: and the quantum pressure :p: are constructed
out of the quantum stress-energy tensor just like their classical analogues are obtained
from the classical stress-energy tensor. Henceforth we will restrict again to flat
FLRW spacetimes but similar statements can also be made in the case of elliptic and
hyperbolic spatial sections.

States that satisfy the semiclassical Einstein equation need to respect the symme-
tries of the spacetime. Therefore, any candidate state for a solution of the semiclassical
Friedmann equations must be homogeneous and isotropic. That is, under reasonable
assumptions, it must be a state of the form discussed in Sect. 6.2.2. Important exam-
ples of homogeneous and isotropic states are the adiabatic states (Sect. 6.2.3) and
the states of low energy (Sect. 6.2.5).

7.3.1 Semiclassical Friedmann equations for the scalar field

For the scalar field, the energy density and pressure are obtained from (7.3) and they
read
pr = ( % - 5)8? — %{ —&)O+3EH?* + %mz) HOREES :@(ﬁtz - %EI)@:, (7.7)
3:p: = ((% —&)o2 + (% —28)0- E(6H +9H?) — 3m?):¢%: — : ¢ (82 + 30 &:
with respect to cosmological time t. The expressions for conformal time T are given by
the replacement , — a~19,. A short calculation shows that the difference 3:p: —:p:
agrees with (7.4).

The expectation values of :p: and :p: in a state w can again be calculated via
Hadamard point-splitting. For the energy density this approach yields:

1
w(:p:)=P[w] —xl,iglx [(82— %I:DW] — W[vl]

—cym* +3c,m?H? — 6(3¢5 + ¢, )(2HH — H? + 6H?H),

(7.8)

where we have used the differential operator
P = (5-8)07 - (5 - &)O+3EH? + Sm?

and the renormalization constants c; are again the same as in Sects. 7.2.3 and 7.2.4.
The coincidence limit of the Hadamard coefficient v; on FLRW spacetimes can be
obtain from (6.6):

2[n] = jm* = 3(g — &) (H + 2H*)m*+9(§ — )" (H* + 4HH® + 4H") (7.9)
— 35 (HH* + H*) + (3 — €)OR.

The point-split expression for w(:p:) will not concern us here and is left as an exercise
to the reader.

The next step is to replace the Hadamard point-splitting prescription with some-
thing a that is slightly more useful under the given circumstances.
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7.3.2 Adiabatic regularization

An effective means of regularizing in momentum space is provided by the adiabatic
regularization [50, 173], which is essentially equivalent to the Hadamard point-
splitting regularization discussed above. In the adiabatic regularization prescription
one subtracts from a homogeneous and isotropic state w the bidistribution specified
by the adiabatic modes Wk(”) of sufficiently high order n. The usefulness of this
prescription lies in the fact that the bidistributions constructed out of the adiabatic
modes satisfy the microlocal spectrum condition in the Sobolev sense up to a certain
order. Consequently, the two regularization prescriptions can only differ by local
curvature tensors because both the Hadamard parametrix and the adiabatic modes
are constructed from the local geometric structure of the spacetime.

It is therefore necessary to find the difference between point-splitting and adia-
batic regularization

x'—x

lim 9 (%n(x, x')— W ()W (") ek (F=%) dlz) (7.10)

2m)Y’a(t)a(t’) Jps
for various (bi)differential operators & on C*°(M x M) and the minimal orders n, m
depending on the order of &. Note that we omitted the necessary e-regularization in
the integrand.

It is helpful to note that the (truncated) Hadamard parametrix on FLRW is spatially
isotropic and homogeneous and therefore # (7, x;7’,X’) = # (7, 7’,|X — X'|). This
fact can simplify some computations because the coincidence limit can be taken in
two steps: first one takes the limit onto the equal time surface T = 7’ and then the
spatial coincidence limit ¥’ — X. Making efficient use of the equation of motion, this
has the advantage that we can replace any higher than first order time derivative
in @ by a spatial derivative and one needs to calculate the temporal coincidence limit
only with the differential operators ., 3/ and d_3.. A proof of this statement can be
found in [196, Chap. 5].

The computation (7.10) can be done in a general and efficent manner with a
computer algebra system by combining the method of Avramidi to calculate Hadamard
coefficients (Sect. 1.4.4), the coordinate expansion of the world function (Sect. 1.4.5)
and analytic Fourier transformation. See also [83] for a related approach or [196]
for a different method that makes more efficient use of the symmetries of FLRW
spacetimes.

The difference between point-splitting and adiabatic regularization for the Wick
square can be calculated in this way as

lim | %, (x,x") — ! ! el (F=3) ¢
x'—x oA (2’1‘[)3(12 R3 2w

(1-2r-m(2%B)) +

(7.11)

B R
~ 16m2 28872’

where we used the potential B = m? + (£ — %)R and y denotes Euler’s constant.

The exact form of the mode subtraction performed in the adiabatic regularization
is inessential as long as it has the right E-asymptotics (cf. [196, Chap. 5]). For example,
instead of subtracting the adiabatic modes of order zero in (7.11), one can perform
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the following subtraction (cf. [178, 3] and Sect. 8.1.4):

1 1 w?—w 2 2y on o
lim %’O(X,x/) . TJ ( %k k(?) ) el (F=3) g%
x/—x (2m)’a® Jgs \ 2wi(n) 4wi(n) (7.12)

B(n)a(n)? 2%a(n)*B(n) R
= - 2y +In ,
16m2a? 16m2 2a>? 288m2

where 7 is an arbitrary instant in conformal time. But this realization is much more
important once one attempts to calculate the adiabatic subtraction with several
derivatives such as the energy density, where higher order adiabatic modes need to be
subtracted. Here one generically finds that the adiabatic regularization involves terms
with higher derivatives of the metric that do not become singular in the coincidence
limit, i.e., terms which do not need to be subtracted to achieve the regularization.
To find an adiabatic subtraction for other components of the stress-energy tensor
one can follow the approach of Bunch [50] and take the second order adiabatic
modes but discard all (non-singular) terms involving higher than fourth order time-
derivatives of the metric. Comparing this subtraction scheme with the Hadamard
point-splitting regularization for the energy density, we find (see also [114])

2 )
xl/linm (%p a(t)a(t)H,(x,x") — ﬁ J;RB el (%) (% + " 6;5}( e
- mta® +12(6 - ImPa®H? +36(£ — 1*(6H°H — H? + 2HH)) dE)
16k3
1 H* a?\ m*
= —4?[\/1] - W—l— (2—2y+ln2—ﬂ)m

a? )) m2H?2 3(§ - %)ZHZR

1
+ (1+18(§—5)(2—2y+lnﬁ e T ez

1 -1l -1y 2
+ - - 2—-2y+In— ) |I,°, 7.13
(17280n2 e Tl Gk nz;w)) 0 (7.13)

where the (bi)differential operator

3

202, = a®(m? + (1 - 65)H*) Rid +2(65 — 1)aHd; Rid + 3, R 3, + Y 3, R Iy
i=1

can be derived from (7.7). In the case of conformal coupling it is in fact sufficient to

work with adiabatic modes of order zero for this computation and many of the terms

in the above formula drop out.

Observe that both the point-splitting regularization with the truncated Hadamard
parametrix and the adiabatic regularization do not depend on arbitrarily high deriva-
tives in the metric. Consequently, it is possible to perform both regularization schemes
in non-smooth spacetimes. This will be essential in Chap. 8.






Solutions of the semiclassical Einstein eq.

Introduction

If one wants to attach any physical meaning to the semiclassical Einstein equa-
tion (7.1), it is necessary that solutions of this equation exist and that it possesses a
well-posed initial value problem. It is not difficult to show that solutions do indeed ex-
ist at least in two very special scenarios: Minkowski spacetime and de Sitter spacetime.
In both cases the semiclassical Einstein equation (or, alternatively, the semiclassical
Friedmann equations) can be solved for a specific choice of the renormalization
constants.

Solutions of the semiclassical Friedmann equations were investigated already
numerically by Anderson in a series of four articles beginning with the massless
conformally coupled scalar field [12, 13] and later also considering the massive field
[14, 15]. Anderson discovered a complex landscape of solutions depending on the
choice of renormalization constants and studied in particular solutions which show
an asymptotically classical behaviour at late times.

More recently, Pinamonti discussed the local existence of solutions to the semi-
classical Friedmann equations in so-called null Big Bang (NBB) spacetimes [178],
where initial values are specified on the initial lightlike singularity.

In [3] the author and Pinamonti proved for the first time the existence of global
solutions to the semiclassical Einstein equation coupled to a massive, conformally
coupled scalar field in ‘non-trivial’ spacetimes. More precisely, it was shown that
the semiclassical Friedmann equations can solved simultaneously for the spacetime
metric (i.e., the scale factor or the Hubble function) and a quantum state from initial
values given at some Cauchy surface. This was achieved by showing existence and
uniqueness of local solutions for given initial values and subsequently extending local
solutions to a maximal solution that cannot be extended any further because it exists
either eternally or reaches a singularity. In this chapter, a slightly updated version of
the results of [3] will be presented and complemented with recent numerical results.

In more generality, solving the semiclassical Einstein equations for a given quan-
tum field means the following:

Given initial values for a spacetime metric and a quantum state prescribed on a three-
dimensional Riemannian manifold (X, h), do there exist a globally hyperbolic manifold
(M, g) of which (X, h) is a Cauchy surface and a state w (preferably a Hadamard state)
such that the semiclassical Einstein equation (7.1) is fulfilled?

In a concrete case this problem can be tackled by selecting a class of globally
hyperbolic spacetimes that are foliated by the same topological Cauchy surface and
a functional that associates to each spacetime in this class a unique states. For
this approach to succeed, it is expected that the mentioned functional must satisfy
some minimal regularity conditions with respect to the metric, e.g., continuous
differentiability.
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8.1 Preliminaries

8.1.1 The traced stress-energy tensor

Recall from Sect. 7.2.4 that the expectation value of the traced stress-energy tensor
for a massive, conformally coupled scalar field reads

1
w(:T:)= —mzw(:(ﬁz:)+4?[vl] — (6¢c3 + 2¢4)OR (8.1)

mZ

1
=32 [w] + o [v;] + 4cym* — com®R — (6¢5 + 2¢4)0R,

where the Hadamard coefficient [v;] is obtained from (7.9) with £ =1/6 as

H? 9 1 m*
[Vl] = —5(H+H )— %DR‘F ?
Working with the traced stress-energy tensor :T: simplifies calculations considerably
compared to the energy density :p: given by (7.8).

In order to find solutions of the semiclassical Friedmann equation with the
methods discussed here, it is necessary to fix the renormalization constants according
to the following rules:

We will choose c3, ¢4 in such a way as to cancel higher order derivatives of the
metric coming from [v;]. Following [218] and [217, Chap. 4.6], this is necessary
because we want to have a well-posed initial value problem for a second-order
differential equation. Removing the (JR term might not be suitable for describing the
physics close to the initial Big Bang singularity. In the Starobinsky model this term is
the single term which is considered to drive a phase of rapid expansion close to the
Big Bang, see the original paper of Starobinsky [201], its further development [141]
and also [112, 114] for a recent analysis. However, this is surely suitable to describe
the physics in the regime where OH < H*.

Furthermore, remember that changing c; corresponds to a renormalization of the
cosmological constant A, whereas a change of ¢, corresponds to a renormalization of
the Newton constant G (cf. Sect. 7.2.3). For this reason we choose c; in such a way
that no contribution proportional to m* is present in w(:T:) and we set c, in order to
cancel the terms proportional to m?R in w(:T:). All in all, we fix the renormalization
constants as

1 1 1
——, Cy= and 6cg+2cy=———.
32m2’ 27 288m2 37T 9880m2

4C1 ==

8.1.2 The semiclassical Friedmann equations

We can rewrite the semiclassical Friedmann equations to make use of the simplicity
of the traced stress-energy tensor for the conformally coupled scalar field: Adding
the equations (7.6) (for flat FLRW spacetimes) yields

—6(H +2H?) = w(:T:) — 4A. (8.2)
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Since :T: = 3:p: — :p:, this equation is equivalent to (7.6) if we also specify an
initial value py = w(:p:)(7) for the expectation value of the energy density at a
time 7g:

3HZ =3H(7)* = po + A (8.3)

We call (8.3) the constraint equation because it relates the initial value H,, for the
spacetime geometry with the initial value p, for its matter content; these values
cannot be fixed independently.

Inserting (8.1) into (8.2) and solving for H we thus find

. 1
H= 53— (H* —2H?H® - 2m* +240m(mPw(:¢%:) + 44)), (8.4)
C

which can integrated in conformal time to give

°oaln)
H(t)=Hy+ JTO —ch myTron

+240m%(m2ew(:32%:)(n) + 4A))dn,

(H(n)* = 2H?H(n)* — 2m*
(8.5)

where H CZ = 1440m2/(8mG) = 1807 /G. This integral equation will be our principal
tool to solve the semiclassical Einstein equation.

8.1.3 A choice of states

As discussed in the introduction, a possible approach to solving the semiclassical
Einstein equation is to select a class of candidate spacetimes and then for each of these
spacetimes a unique state. Here we restrict ourselves to the semiclassical Friedmann
equations as given by (8.2) and (8.3), viz., the candidate spacetimes are flat FLRW
spacetimes. It remains to find a functional that associates to each flat FLRW spacetime
a suitable state.

It would be desirable to associate to each spacetime a Hadamard state. In the
literature there are a few concrete examples of such states but unfortunately none
of them are suitable for our purposes. On FLRW spacetimes there is the notable
construction of states of low energy discussed in Sect. 6.2.5, which are also Hadamard.
But the employed construction is based on a smearing of the modes with respect to
an extended function of time and a priori we do not even know if a solution of (8.5)
exists in the future of the initial Cauchy surface. The holographic constructions of
Hadamard states, discussed in Sect. 6.3, requires that the spacetime has certain
asymptotic properties which are not under control for generic FLRW spacetimes.

Moreover, for technical reasons to be discussed later, we also have to consider
spacetimes with C! metrics. But on spacetimes with non-smooth metrics Hadamard
states cannot exist. Instead we will use the construction of adiabatic states of order
zero as presented in Sect. 6.2.4, which is also applicable to spacetimes with low
regularity. The price we have to pay for working with non-Hadamard states is that
the solutions of (8.5) are not be smooth spacetimes.

We recall, that the states constructed in Sect. 6.2.4 are of the form

(D) (t) R EF) gk (8.6)

wy (%, x7) = (2m)Pa(r)a(t’) Jgs
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with modes y; =Y. xl((“)(’r) given by

. " sin (ko(n — 1)
efo™ 4 W(r) = f (Ok—)V(n)x,E"‘D(n)dn,
- 0

0

20(0) =
2k,

where kg =k%+a(7y)?*m? and V(1) = m%(a(7)? — a(7y)?). Note that y; and w, can
be defined in this way even if the scale factor a is only C'. This may be confirmed by
taking a closer look at Prop. 6.2.

8.1.4 Adiabatic regularization of the Wick square

The integral equation (8.5) does not contain the two-point function but instead only
its smooth part w in the coincidence limit, i.e., Hadamard point-splitting has to
applied to (8.6).

The equation (8.5) that we seek to solve contains the Wick square :%?: in a
state w and thus (on a smooth spacetime) we would need to compute

w(:p%:) = xl/imx (wy(x,x") = H(x,x")) — 4cym* + c,m?R. (8.7)

Since we are on a FLRW spacetime, we can use the method of adiabatic regularization
instead (Sect. 7.3.2) to perform an equivalent subtraction on the level of modes. The
difference of the two approaches is given in (7.11) or, equivalently, (7.12). It is useful
to show directly that this regularization prescription indeed regularizes the two-point
distribution (8.6):

Proposition 8.1. The regularized two-point distribution

1 1 V(T 2 .
wZ(T,)_{ —_ _)?/) - llm ﬁ _ (_3) e1k~(x—x )e—b‘k dk,

e—0+ (2m)%a(7) RS 2k, 4K3
with w4 given by (8.6), converges in the coinciding point limit for all continuously

differentiable scale factors a.

Proof. We have to show that

li Ly |? ! + Y ) eekaR Ll ! + Y )4k (8.8)
im -—+—|e = -+ — .
e—071 R3 Xk Zko 4k8 R3 Xk 2k0 4’('8

is finite. To this end we expand the product | y;|* with y; = D Xpas

o0 n
=D k!

n=0 [=0
in terms of the order n. Inserting this expansion into (8.8), we can prove the statement
order by order:

Oth order. Since x,? 72 = (2ko)7}, the first term in the subtraction exactly cancels
the zeroth order term | ;(,?IZ in (8.8).
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1storder. Using an integration by parts, we can rewrite the first order terms as

1 T
7+ 1 T = 5 | it = 50 o5 o~ )V
0 J1g

_ 1y 2k V(n)d
=2 Tosm( o(n—1))V(n)dn

- +— cos (2k n T))V n dn
4k8 4’(8 7o 0

While the first summand V(T)(4k8)_1 in the last line is exactly cancelled by the
second term in the subtraction in (8.8), the second summand yields

1 T / o
J 3 (J cos (2ko(n — 7))V (n)dn) etk dk
RS 4k0 To

(CK2 (" , o
=mn = cos (2kg(n — 7)) V'(n)dn | e dk
Jo ko To
= [ ko'y/1—a’ky? (f cos (2ko(n — T))V’(n)dn) e~k dk,
Jagm To
= rT V/( > -1 _ —¢ek _
= ) ko cos (2kg(n — 7)) e **dkoy | dn —R(7) (8.9)

JTO om

for ¢ > 0. Here R is a finite remainder term since it contains terms in the kg-
integration which decay at least like k 3. Notice that, in the last equation of the
previous formula, thanks to the positivity of £ we have switched the order in which
the ky- and n-integration are taken. We would like to show that the weak limit
£ — 0™ can be taken before the n-integration in (8.9).

To this end it remains to be shown that the ky-integral in (8.9) converges in the
limit ¢ — 0% to an integrable function in [, 7]. First, note that the exponential
integral

0 e—xt 1 e X
El(x):F(O,x):Jl " dt:f0 mds (8.10)

converges for x # 0,Rex > 0. To show the identity, we used the substitution

t=—x"'In(1—-s)+1

involving a subtle but inconsequential change of the integration contour in the
complex plane if x is complex. Then we easily see that

T
£—0 om

lim J kg Let2ko(n=m=¢ko q o = E, (& 2iagm(n — 7)) (8.11)
a

converges for 1 # 7. This result is related with (8.9) via

[ee]

o0
81_i>r(r)1+f kg cos (2kg(n — 7)) e~ dko = Sl_i)r(r)1+f ky ! cos (2ko(n — 1)) e %o dk,
agm apgm
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where we have used the boundedness of k — (k% — a(z) m?)1/2 and (8.11). Finally, a
bound sufficient to see the n-integrability of the ky-integral in (8.9) can be obtained
from the identity in (8.10), namely,

|E1(ix)| =

1+\/1+x2)

1 1
f (ix —In(1 —s))_l ds| < J (x? +32)_1/2 ds=1In (
0 0 X

2nd order. For the second order we calculate

R T+ 2 Zx+ 20 TD(T)

1 T
:ﬁJ sin (ko(n — 7)) V(n)
0 J1g
n
< f sin (ko (£ — 7)) V(E) cos (ko( — 7)) dE
1 (7.
1 f sin (ko€ — 72)V(€)eos (ko(E —m) d€ )

1 (" n
= ﬁJ sin (ko(n — 1)) V(1) J sin (ko(26 =1 — 1)) V(E)dE | dn
0 J1g T

0
T n

1
= o sin (ko(n — 7)) V(n) (J cos (ko(25 —n —1))V'(&)dE
0 770 o (8.12)

— cos (Iko(1 - T))vm)) an,

where we have used integration by parts in the last equality. It is easy to obtain a
k-uniform estimate for the integral above and thus the integrability of the second
order follows from f =3 Ko *dk < o0.

Higher orders. For orders n > 2 it is sufficient to use the rough estimate from (6.20):

00 n Y T 3 T

S k! (r)siZz— if V()| dn f (T —n) |V(n)|dn
2k0 —3 n! ko 0 o

n=3[=0
T 3 T
4
= I (f |V(n)|dn) exp (2J (7 —n)|V(n)|dn) . (8.13)
0 To To

As above, the integrability of the higher orders follows from f RS ko 4dk < o0.

Note that none of the estimates above depends on higher derivatives of the
scale factor. Therefore, combining these partial results, we see that the thesis holds
true. O

n—3

It follows that we can consistently define the renormalized Wick square of the
state given by (8.6) at conformal time 7 for every FLRW spacetime with C! scale
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factor
o(:02)= —— | [ 1gele ) a
(2m)3a? R Xk 2ko  4k3

m’ (1_(&)2+21( ) +2In (erA))
T any a(7) "\ a0 7z ))

which coincides with (8.7) for smooth spacetimes. Moreover, we notice that, as a
consequence of the previous proposition, it is possible to obtain global estimates for
the renormalized Wick square:

(8.14)

Proposition 8.2. The renormalized Wick square is bounded on every a’ € C[7, 7]
with a > 0 in [7, T;] for every T, and with a(t,) = a,, namely,

1
\w(:{o\zz)(rl)| < C( sup a, sup a’,(7; —To),,—)

[70,71] [70,71] lnf[foffl] a

where C is a finite increasing function.

Proof. The proof of this proposition and the explicit value of C, can be obtained
combining (8.7) with (7.12) and then analyzing the adiabatic subtraction (8.8) order
by order as in the proof of the preceding proposition. O

8.1.5 Adiabatic regularization of the energy density

There is another nice feature about the states we have constructed above. Thanks
to the conformal coupling of the scalar field with the curvature, the energy density
computed in these states is finite even though these states are (on smooth spacetimes)
only adiabatic states of order zero. This is a crucial feature which permits us to solve
the constraint (8.3) as a first step towards solving the semiclassical Einstein equation.

Proposition 8.3. The energy density p in the state « defined by (8.6) at the initial time
T = T IS finite.

Proof. Following [114], in order to show that p(7) is finite, we just need to show
that the adiabatically regularized expression (see also (7.13) and the subsequent
remark)

o0
f (i + 0+ m2a®)l?) = (W' + (2 + m2a)|WO[*) ) K dk - (8.15)
0
does not diverge at T = 7. Evaluating the expression (8.15) at T = 7 gives

a() (a/)2 5
— k“dk < oo. O
f (k2 +m a2)5/2

Notice that the previous proposition only guarantees that the energy density is
well-defined at the initial time. Nevertheless, the conservation equation for the
stress-energy tensor permits to state that it is well-defined everywhere.
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The expression (8.15) coincides with the energy density p of the system up to
a conformal rescaling and up to the addition of some finite terms. Thus, since the
energy density p is finite in the considered state, the constraint (8.3) holds, provided
a suitable choice of H(7) and A is made. We stress that, if we do not want to alter
A, the same result can be achieved adding classical radiation to the energy density of
the universe in a suitable state.

We would like to conclude this section with a remark. In adiabatic states of
order zero the expectation values of local fields containing derivatives are usually
ill-defined. Despite this, in the case of conformal coupling and for our choice of initial
conditions (6.18), the energy density turns out to be well-defined. This is essentially
due to the fact that in the massless conformally coupled case the adiabatic modes of
order zero are solutions of the mode equation (6.10) and in that case the obtained
state is the well known conformal vacuum. Hence, the adiabatically regularized
energy density vanishes. In the massive case the states constructed above are not very
different than the conformal vacuum and, in particular, the energy density remains
finite under that perturbation.

8.2 Local solutions

Our aim is to show the existence and uniqueness of local solutions to the semiclassical
Friedmann equation. In particular, according to the discussion in the introduction,
we will analyze the uniqueness and existence of solutions of (8.5). Similar to the
Picard-Lindel6f theorem, we will use the Banach fixed-point theorem to achieve this
goal. Some results on functional derivatives and the Banach fixed-point theorem are
collected in Chap. 3, in particular Sect. 3.4.

Solving (8.5) is equivalent to finding fixed-points of the functional F defined by

rT
D)= Mo | Inﬂi(—f‘?lin)z(H(n)4 ~2HCHY - gm’ (8.162)
+240m*(m2w(:9%:)(H)(n) + 4A)) dn,
rT
iHO+J f(H)(n)dn. (8.16b)

Since w(:%?:)(H) is well-defined for continuous Hubble functions (see also (8.14)),
we select for the Banach space of candidate Hubble functions H the space' C[7,,7;],
Ty < T, equipped with the uniform norm

IXllcregr) = XMoo = sup  [X(7)].

T€[70,71]

However, once T and the initial condition ay = a(H)(7) > O are fixed, we find that

- -1
a(H)(t) = ay (1 — aof H(n)dn) s (8.17)

1Until fixed, we take both 7, and 7, as variable and thus consider a family of Banach spaces.
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as a functional of H, is not continuous on C[7, T1]. But we can find an open subset
U[To,T1] = {H € C[7q, T1] | I1Hlcpeg,z,1 < min{a(ty) (7] — TO)_I’HC}} (8.18)

on which a and thus also V = m?(a® — a2) depend smoothly on H. Indeed, we can
show the following:

Proposition 8.4. The functional

(H

f(H)= P% (H* = 2H?H? — 2m* + 240m°(m*w(: 3%:)(H) + 44))  (8.19)

is continuously differentiable on U [T, T1] for arbitrary but fixed T, T, and ay = a(7).

Proof. Given (8.7), (7.12), Prop. 8.1 and Prop. 8.2, it is enough to show that a(H)
and (H Cz —H?)"! are bounded and that w(:p2:)(H)(7,) is continuously differentiable.
The former is assured by the condition ||H||¢[r, ,] < min{agl(fl —10)"%, H,} in the
definition of U [T, T;]. For the latter it remains to be shown that the renormalized
Wick square (8.14) is continuously differentiable on U [T, T1]:

We start by calculating the functional derivative of the scale factor

T
da(H;6H)(7) = a(H)(T)ZJ 6H(n)dn.

To
The functional derivatives for a2, Ina, V and V’ follow easily. In particular we
note that all these functions are continuously differentiable on U[ 7, T;] because
integration is a continuous operation and a depends smoothly on H in U[7y, T;].
Therefore it suffices to analyze the differentiability of the integral (8.8) appearing
in the regularized two-point distribution. Moreover, within y, only the potential
V is (smoothly on U[ 7y, T;]) dependent on H, thus simplifying the computations
considerably.? Continuing with the regularized two-point distribution order by order
as in Prop. 8.1, we have:

1st order. Since

a( 207+ BT+ — | 5E()
X X T Xp Xk 4k3 > )(T
0

1 T
T J cos (2ko(n — 7)) dV'(H; 6H)(n) dn,
0 J1g

we can proceed with the proof as in Prop. 8.1 with V’ replaced by dV’ and differen-
tiability follows.

2nd order.  As above, this part of the proof can be shown by replacing occurrences of
V and V' in (8.12) of Prop. 8.1 with dV and dV"’ respectively.

21f we were to work in cosmological time as in [178], we would also have to consider the functional
dependence of conformal time on the scale factor.
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Higher orders. For orders n > 2 we can again use an estimate similar to (6.20) to

obtain a result analogous to (8.13):
4 T
<— || |dvH;sH)(m)|dn
kO To

d (ZZMZ‘Z) (H; 6H)(7)
T 2 T
x U \V(n){dn) exp (2f (T—n)}V(n){dn)-

n=3 [=0
In this way we can conclude the proof of the present proposition. O

We can now formulate the main theorem of this chapter:

Theorem 8.5. Let (ay,Hy),ay, > 0,|Hy| < H,, be some initial conditions fixed at 7,
for (8.5). There is a non-empty interval [Ty, T,] and a closed subset U C C[7,T,] on
which a unique solution to (8.5) exists.

Proof. In Prop. 8.4 we showed that f is continuously differentiable on U[ 7, 7]
for any 7;. Using Prop. 3.11, we can thus find a 7; > 7, and a closed subset
U C U[Ty, T1] such that F(U) c U. It then follows from Prop. 3.10 that F has a
unique fixed point in U. O

Notice that the solution provided by the previous theorem is actually more regular,
it is at least differentiable. Thus the corresponding spacetime is C? and has well-
defined curvature tensors. The extra regularity is provided by (8.5) and can be
easily seen when it is written in its differential form (8.4). It might be surprising
that the solutions are not smooth, since the procedure to find the solution involves
repeated integration, but because the chosen adiabatic state is only guaranteed to be
continuous on every spacetime, H is only C'. Using Cor. 3.6, one can see that a more
regular state immediately improves also the regularity of the solution.

8.3 Global solutions

In this section we would like to show that it is always possible to extend a ‘regular’
local solution up to the point where either H? becomes bigger than H Cz or a diverges.®
To this end we start giving a definition we shall use below.

Definition 8.6. A continuous solution H, of (8.5) in the interval [T, T1] with initial
conditions

1
a(H,)(7o) = ao, H,(t¢)*= HCZ) =3 (p(to)+A)

will be called regular, if no singularity for either a, H, or H., is encountered in [7q, T1].
Namely, H, must satisfy the following conditions:

L. HH*(T)”C[TO,Tl] < HC’

2. qg f:o H,(m)dn < 1 forevery T in [Ty, T;].

3H? = H? corresponds to a singularity in the derivative of H in (8.4).
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We remark that a local solution obtained from Thm. 8.5 is a regular solution.
Henceforth, assume that we have a regular solution H, as described in the definition.
Notice that condition a) ensures that no singularity in H’, is met in [T, 7;]. Condition
b), on the other hand, ensures that a does not diverge in the interval [7(, T;].
Moreover, both a) and b) together imply that a is strictly positive, as can be seen
from (8.17).

We would like to prove that a regular solution can always be extended in C[ 7, 7]
for a sufficiently small 7, — 7, > 0. To this end, let us again consider the set

ULy, 7] = {H € Clr1, 72 | Hllcpe, o) < min fa7 (72— 7)™ He}

defined in (8.18) and where a; = a(H,)(7,) is the value assumed by the solution
a(H,) at 7. Now we can give a proposition similar to Prop. 8.4, namely:

Proposition 8.7. Let H, be a solution of (8.5) in C[7t, 7] which is also regular. The
functional f(H) of (8.19), when evaluated on regular extensions of H, in U[ T, T4], is
continuously differentiable for arbitrary T, > T;.

Proof. The proof of this proposition can be obtained exactly as the proof of Prop. 8.4.
However, the estimates we have obtained in Prop. 8.2 and the proof of Prop. 8.4
cannot be applied straightforwardly because the state w depends on the initial time 7,
and the initial datum a, through the construction described in Sect. 6.2.4. Moreover,
the estimates of Prop. 8.2 depend on the knowledge of a and a’ on the whole interval
[Tg,To]. Luckily enough, we know that the solution H, is regular in [7, T;], while
we know that the extension restricted to [T, 7] is in the set U[ T, T5]; thus we just
need to use the following estimates

lallcrzy,z,) = max {llallciz, 2,05 lallcrzy e 1 b

-1 _ -1 -1
”a“C[TO,Tz] - max{”a”[ﬁﬁz]’ ”a”C[To,ﬁ] }’

la'llcrzy,e, = max {lla’llcre, 2,05 10 lopzo,e,1}-

With this in mind, we can again use Prop. 8.2 to control the boundedness of w(:%?:).
Then, making the replacements 7y — 7,,7; — T, and a; — a; at the appropriate
places in Prop. 8.4, one can see that estimates are not substantially influenced and
that thesis still holds for U[ 7, T5]- O

Notice that it is always possible to fix 7, such that a;’ Y1y —1,)"! > H,, whereby
U[7T1,T,] becomes the set of all possible regular extensions of H,, in [T, T5]. This
guarantees that any extension in U [T, T,] is the unique regular extension.

We are now ready to state the main theorem of the present section which can be
proven exactly as Thm. 8.5.

Theorem 8.8. Consider a solution H,(7) in C[Ty, 7] of (8.5). If the solution is regular
in [Ty, T1], as defined in Def. 8.6, then it is possible to find a T4 > 7, such that, the
solution H, can be extended uniquely to C[7q, To] and the solution is regular therein.

Proof. Thanks to Prop. 8.7, f is continuously differentiable on all regular extensions
of H, in U[ 7y, 7,] for any 7, such that a;'(ty — 7,)~! > H,. With the remarks of
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the proof of Prop. 8.7 we can use Prop. 8.2 to estimate the boundedness of w(:3?:)
and apply Prop. 3.11 to find a 75 > 7, and a closed subset U C U[7;, T5] such that
F(U) C U. It then follows from Prop. 3.10 that F has a unique fixed pointin U. 0O

We study now all possible solutions of (8.5) which are defined on intervals of the
form [ 1, T), which are regular on any closed interval contained in their domain and
which enjoy the same initial values a, = a(7), Hy = H(7g).

Proposition 8.9. A maximal solutions exists; it is unique and regular.

Proof. Let 8 = {I,,H,},eca, With A C N some index set, be the set of all possible
regular solutions H, with domain I, for the same initial values. By the existence
of local solutions § is not empty. We then take the union I = [ J weala and define
H(t)=H,(7) for T € I, which is a well-defined regular solution by Prop. 8.7. Since
every I is a superset of every I, H is the unique maximal regular solution. O

As for the solution provided by theorem 8.5, also the maximal solution obtained
above correspond to a metric with C? regularity.

8.4 Numerical solutions

The first problem that one encounters when attempting to treat the semiclassical
Einstein equation in a numerical fashion, is the construction of states. Here, the mode
equation (6.10), which describes an oscillator with a time-dependent ‘resonance
frequency’ wi = k% + a®m?, has to be solved. Standard numerical solvers, like
the Runge—Kutta method, rely on differentiation and their error scales like a (high-
order) derivative of the solution. However, each derivative of an oscillating function
increases the amplitude by a power of the frequency, thus ultimately leading to large
errors for quickly oscillating differential equations after a short time span. This
problem can be partially counteracted by choosing ever smaller step sizes in time,
but eventually one will encounter a computational barrier. Another possibility is
to look for a non-standard approach to solve the mode equation. Such methods
replace differentiation with integration, but, since the numerical integration of highly
oscillatory functions is also a non-trivial problem, this is still an active area of research,
see for example [84, 131, 132, 143, 144].

One might say, that the large frequency behaviour of the modes is of no relevance
when solving the semiclassical Einstein equation because it involves the state only
after regularization, i.e., after the terms that contribute for large w; have been
subtracted. While this response is, to some degree, certainly true, numerical errors in
the solution before the regularization and in the subtraction itself can still accumulate.
Therefore, the issue of the high frequency modes and their regularization has to be
carefully addressed in a numeric approach.

Although the perturbative construction of the state used in this chapter (see also
Sect. 6.2.4), the functional (8.5) and the use of the Banach fixed-point theorem in
the proof of Thm. 8.5 were not developed with a numerical application in mind, there
are reasons why they might be useful also for numerics: The mode solution are found
recursively from (6.19), an integral equation which avoids the differentiation problem
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discussed above. Moreover, as seen in Prop. 8.1, only the first two partial modes x,((o)
and x,il) are affected by the regularization in a well-understood way, so that also the
numerical difficulty in the regularization can circumvented. Nevertheless, also this
approach is not without its problems as it involves repeated numerical integration
of oscillating functions and therefore it is very slow if naively implemented as a
Riemann sum, because it requires small time steps. The other feature of the proof of
existence that allows a translation to numerics is the use of the Banach fixed-point
theorem. Namely, we can be assured that an iterated recursive application of (8.5)
will converge to a solution, even though we do not know how quickly convergence
occurs.

8.5 Outlook

In this chapter we have studied the backreaction of a quantum massive scalar field
conformally coupled with gravity to cosmological spacetimes. We have given initial
conditions at finite time 7 = 7, and we have shown that a unique maximal solution
exists. The maximal solution either lasts forever or until a spacetime singularity is
reached.

In order to obtain this result, we have used a state which looks as much as possible
like the vacuum at the initial time. Notice that it is possible to choose other classes of
states without significantly altering the results obtained in this chapter. In particular,
if we restrict ourself to Gaussians pure state which are homogeneous and isotropic,
their two-point function takes the form

Je—ek dlz,

En(ty Ty) 7o o
@y(x,y) = lim 3 E(m) STy el (X=¥
e—0+ (21) B3 a(ty) a(Ty)
where &, are solutions of (6.10) which enjoy the Wronskian condition (6.11). These

% can then be written as a Bogoliubov transformation of the modes y; studied earlier
in this chapter, namely;

Ex = A xx + B(K) 7«

for suitable functions A and B. Then, because of the constraint |JA]> — |B|*> = 1, the
difference

&(:0%:) — w(:3%:) = lim

1 2 B ) )
e—07 (2/]'[)3 a2 J , (|B|2Xka +Re (ABXka)) e~k dk
R

can be easily controlled employing (6.20) if |B| is sufficiently regular (e.g., if B(k) is
in L2 N L').* With this observation it is possible to obtain again all the estimates used
in the proofs of Thms. 8.5 and 8.8.

In the future, it would be desirable to study the semiclassical equations in more
general cases, namely for more general fields, abandoning for example the conformal
coupling, and for more general background geometries. The results presented here
cannot straightforwardly be extended to fields which are not conformally coupled
to curvature or to spacetimes that are not conformally flat because in that case

“A detailed analysis of this problem is present in [221].
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fourth order derivatives of the metric originating in the conformal anomaly cannot
be cancelled by a judicious choice of renormalization parameters, i.e., Wald’s fifth
axiom [218] cannot be satisfied. To still solve the semiclassical Einstein equation
with methods similar to those presented here, a deeper analysis of the states is
required, in particular, one needs states of higher regularity. A preliminary study
in this direction can be found in a paper of Eltzner and Gottschalk [83], where
the semiclassical Einstein equation on a FLRW background with non-conformally
coupled scalar field is discussed. The case of backgrounds which are only spherically
symmetric is interesting from many perspectives. Its analysis could give new hints
on the problem of semiclassical black hole evaporation and confirm the nice two-
dimensional results obtained in [19]. Finally, the limit of validity of the employed
equation needs to be carefully addressed in the future.



Induced semiclassical fluctuations

Introduction

As described in Chap. 7, in semiclassical Einstein gravity one equates a classical
quantity, the Einstein tensor, with the expectation value of a quantum observable,
the quantum stress-energy tensor, i.e., a quantity with a probabilistic interpretation.
Such a system could make sense only when the fluctuations of the quantum stress-
energy tensor can be neglected. Unfortunately, as also noticed in [178], the variance
of quantum unsmeared stress-energy tensor is always divergent even when proper
regularization methods are considered. The situation is slightly better when a smeared
stress-energy tensor is analyzed. In that way, however, the covariance of (7.1) gets
lost. A possible way out is to allow for fluctuations also on the left-hand side of (7.1).
This is the point of view we shall assume within this chapter, which is based on an
article [4] in collaboration with Pinamonti.

More precisely, we interpret the Einstein tensor as a stochastic field and equate
its n-point distributions with the symmetrized n-point distributions of the quantum
stress-energy tensor. As an application of this (toy) model, we analyze the metric
fluctuations induced by a massive, conformally coupled scalar field via the (quantum)
stress-energy tensor in the simplest non-trivial spacetime — de Sitter spacetime. We
find that the potential in a Newtonianly perturbed FLRW spacetime has a almost
scale-invariant power spectrum.

These results encourage a comparison with the observation of anisotropies in
the cosmic microwave background and their theoretical explanations. Anisotropies
in the angular temperature distribution were predicted by Sachs and Wolfe [188]
shortly after the discovery of the cosmic microwave background (CMB) by Penzias
and Wilson [174]. In their famous paper they discuss what was later coined the
Sachs—-Wolfe effect: The redshift in the microwave radiation caused by fluctuations
in the gravitational field and the corresponding matter density fluctuations. In the
standard model of inflationary cosmology the fluctuations imprinted upon the CMB
are seeded by quantum fluctuations during inflation [161, 162], see also the reviews
in [76, 80].

The usual computation of the power spectrum of the initial fluctuations produced
by single-field inflation can be sketched as follows [26, 76, 80]: First, one introduces
a (perturbed) classical scalar field ¢ + 6, the inflaton field, which is coupled to a
(perturbed) expanding spacetime g + 6g. Then, taking the Einstein equation and the
Klein—Gordon equation at first order in the perturbation variables, one constructs an
equation of motion for the Mukhanov-Sasaki variable Q = 5 + ¢ H™'®, where & is
the Bardeen potential [25] and H the Hubble constant. Q is then quantized® (in the
slow-roll approximation) and one chooses as the state of the associated quantum field

1A recent discussion about the quantization of a such system can be found in [81].
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a Bunch-Davies-like state. Last, one evaluates the power spectrum Py(k) of Q, i.e., the
Fourier-transformed two-point distribution of the quantum state, in the super-Hubble
regime k < aH and obtains an expression of the form?

Aq [ k\*71
Po(k) = P (k_o) , 9.1

where A, is the amplitude of the fluctuations, k, a pivot scale and n; the spectral
index. Notice the factor of k=2 in (9.1) which gives the spectrum the ‘scale-invariant’
Harrison—Zel’'dovich form if n, = 1. Depending on the details of model, n; < 1 and
there is also a possibility for a scale dependence of n; — the ‘running’ of the spectral
index n, = n (k).

This result can then be related to the power spectrum of the comoving curvature
perturbation &, which is proportional to Q, and can be compared with observational
data. Assuming adiabatic and Gaussian initial perturbations, the WMAP collaboration
finds n; = 0.960840.0080 (at k, = 0.002 Mpc 1) in a model without running spectral
index and gravitational waves, excluding a scale-invariant spectrum at 5¢ [121].
Furthermore, the data of WMAP and other experiments can be used to constrain the
deviations from a pure Gaussian spectrum, the so called non-Gaussianities, that arise
in some inflationary models [26, 33, 150].

In [7-9, 170] concerns have been raised whether the calculation leading to (9.1)
and similar calculations are correct: The authors argue that the two-point distribution
of the curvature fluctuations has to be regularized and renormalized similarly to what
is done in semiclassical gravity. As a result the power spectrum is changed sufficiently
that previously observationally excluded inflation models become realistic again.
On the contrary the authors of [77, 153] argue that the adiabatic regularization
employed in [7-9, 170] is not appropriate for low momentum modes if evaluated
at the Horizon crossing and irrelevant for these modes if evaluated at the end of
inflation.

A slightly different approach to the calculation of the power spectrum based on
stochastic gravity can be found in [129, 184, 185]. In spirit similar to the approach
presented in this chapter, the authors equate fluctuations of the stress-energy tensor
with the correlation function of the Bardeen potential. In the super-Hubble regime
they obtain an almost scale-invariant power spectrum. Moreover, they discuss the
equivalence of their stochastic gravity approach with the usual approach of quantizing
metric perturbations.

Our approach here is strictly different from the standard one described above.
Instead of quantizing a coupled system of linear inflaton and gravitational pertur-
bations, we aim at extending the semiclassical Einstein equation to describe metric
fluctuations via the fluctuations in the stress-energy tensor of a quantum field.

9.1 Fluctuations of the Einstein tensor

Consider now the Einstein tensor as a random field. Then we could imagine to equate
the probability distribution of the Einstein tensor with the probability distribution of

*An alternative definition of the power spectrum is P, (k) = (21)2k*P, (k).
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the stress-energy tensor. This suggestion, however, seems largely void without a pos-
sibility of actually computing the probability distributions of the stress-energy tensor
because, as discussed above, its moments of order larger than one are divergent.

Instead we may approach this idea by equating the hierarchy of n-point distribu-
tions of the Einstein tensor with that of the stress-energy tensor:

<Gab(x1)> = w(3Tab(x1)1), (9.2a)
(0Gqp(x1) 6Geg/(x5)) = %w(ifsTab(Xl)l 16 Tug(x5): + 16Ty (x9): :6Tap(x1):),
(9.2b)

and
(6G®") = w(Sym(:6T:®")), n>1, (9.2¢)

where w is a Hadamard state and we defined

0Gap =Gap —(Ggp) and 0T, = Tyt — w(:Typ)-

The symmetrization on the right-hand side is necessary because the classical quantity
on left-hand side is invariant under permutation.

We emphasize that we are equating singular objects in (9.2c¢). Having all the
n-point distributions of the Einstein stochastic tensor, we can easily construct an
equation for the moments of the smeared Einstein tensor which equals the moments
of a smeared stress-energy tensor by smearing both sides of (9.2) with tensor products
of a smooth compactly supported function. This smearing also automatically accounts
for the symmetrization in (9.2).

Furthermore we stress that equating moments, obtained smearing both side
of (9.2), is not equivalent to equating probability distributions. Although it is also
possible to arrive at a description in terms of moments when coming from a probability
distribution, the inverse mapping is not necessarily well-defined. Successful attempts
to construct a probability distribution for smeared stress-energy tensors can be found
in [90, 91].

Consider now a quasi-free Hadamard state w of a conformally coupled scalar
field ¢ on a spacetime (M, g), the background spacetime. Our aim is to calculate the
perturbation of the background spacetime as specified by the correlation functions on
the left-hand side of (9.2) due to the fluctuations of the stress-energy in the quantum
state w as specified on the right-hand side of (9.2). In particular we will require that w
satisfies (9.2a) when we identify the Einstein tensor of the background spacetime G
with (G,p) (cf. Chap. 8 for a discussion of the solutions of the semiclassical Einstein
equation in cosmological spacetimes). Note that by choosing this Ansatz we are
completely ignoring any backreaction effects of the fluctuations to the background
metric and evaluate the stress-energy tensor on a state specified on the background
spacetime.

Later on we consider perturbations of the scalar curvature induced by a ‘Newtoni-
anly’ perturbed FLRW metric. For this reason it will be sufficient to work with the
trace of (9.2) (using the background metric) instead of the full equations. With the
definition

S= _EabGab:
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Figure 9.1. A few graphs illustrating (9.3c) forn =2, n=3 and n =5.

such that R = (S), the equations (9.2) simplify to

(s( )>—m2[] 1[]+ freed (9.32)
x1)) = g 5wl — 5[] +ren. freedom, .3a

(S(x1)S(x3)) — (S(x1)) (S(xy)) = m4(w§(x1:x2) + w%(xz,xl)), (9.3b)

and

r

((S = (S))®"(x1,...,x,)) = 2"m** Sym (Z]_[ M) (9.3¢)

Iy
r ij lij'

where the sum is over all directed graphs I" with n vertices 1,...,n with two arrows
at every vertex directed to a vertex with a larger label. kf.;. € {0, 1, 2} is the number of
arrows from i to j. If we perform the symmetrization in (9.3c), we see that the sum
is over all acyclical directed graphs with two arrows at every vertex. For illustration
some graphs are shown in Fig. 9.1.

To obtain (9.3b) and (9.3c), note that :(p2: — w(:(?:) does not depend on the
choice of normal ordering® and thus only (9.3a) needs to be renormalized. Therefore
we may choose normal ordering with respect to w, to see that the combinatorics
are equivalent to those in Minkowski space. Moreover, as w,, is a bisolution of the
Klein—Gordon equation, the term %:@ P{: which causes the trace anomaly in (9.3a)
(¢f Sect. 7.2.4) does not contribute to the higher moments.

9.2 Fluctuations around a de Sitter spacetime

We shall now specialize the general discussion presented above to Newtonianly
perturbed, exponentially expanding, flat FLRW universes. That is, the background

®Indeed this holds true if we replace ¢? with Ly?, for any linear operator L.
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spacetime (M, g) is given in conformal time T < 0 by the metric tensor

g =(Ht) *(—dt ®dt + 5;; dx' ® dx/)

and we consider fluctuations of the scalar curvature derived from metric perturbations
of the form

g=(HD)?(-(1+2¢)dr ®dt + (1 —29)5;;dx' ® dx/). (9.4)

The kind of fluctuations that we consider by choosing (9.4) resemble those that
are present in single-scalar field inflation in the longitudinal gauge, where there
are only ‘scalar fluctuations’ without anisotropic stress (so that the two Bardeen
potentials coincide) [80, 162]. Notice that, for classical metric perturbation, these
constraints descend from the linearized Einstein equation, however, a priori there
is no similar constraint in (9.2b). Despite these facts, we proceed analyzing the
influence of quantum matter on this special kind of metric perturbations and we
also refrain from discussing the gauge problem associated to choosing a perturbed
spactime; the chosen perturbation potential ¢ is not gauge invariant.

We can now calculate the various perturbed curvature tensors and obtain in
particular

S =12H%(1 — 3¢) + 24H>73,¢ — 6H?7%92¢ + 2H*12 V2 & + 0(¢?)

for the trace of the perturbed Einstein tensor, where V? = 851 +0 xzz + 833 is the
ordinary Laplace operator. Dropping terms of higher than linear order, this can also
be written as

S—(S)=—-6H7*(0. — s V*)1 %9, (9.5)

where (S) = 12H? is nothing but the scalar curvature of the background spacetime.
Notice that, up to a rescaling, the operator on the right-hand side of (9.5) looks like a
wave operator with the characteristic velocity equal to 1/+/3 of the velocity of light.

We can now evaluate the influence of quantum matter fluctuations on the met-
ric fluctuations by inverting the previous hyperbolic operator by means of its re-
tarded fundamental solutions A, and applying it on both sides of (9.3b) and (9.3c).
From (9.3b) we can then (formally) obtain the two-point correlation functions of ¢
(per definition (¢) = 0):

<¢(X1)¢(X2)> =m* JJ Aret(xl,}’1)Aret(x2,J’2)(w§(J’1,}’2)
s 9.6)
+ wg(J’z,Jﬁ)) d*y;d%y,.

Employing the retarded fundamental solutions in the inversion without adding any
solution of (9.5), we are implicitly assuming that all the n-point distributions of the
perturbation potential ¢ are sourced by quantum fluctuations. Here we are only
interested in evaluating their effect.

9.2.1 The squared two-point distribution

In order to proceed with our analysis, we shall specify the quantum state w for the
matter theory. Following the Ansatz discussed in the preceding section, we choose a
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quasi-free Hadamard state which satisfies the semiclassical Einstein equation on the
background. In particular, we require that w solves (9.3a), namely

2

m
12H? = —[w] -

o i 2[v1]+4c1m —com?R

The right-hand side of the previous equation is characterized by three contributions:
The state dependent part [w], the anomaly part [v;], which takes the simple form (c¢f
Eq. (7.9))
H* m*

[vi]= —5 8’
and the renormalization freedom c;m* and c,m?R. Here we set ¢, = 0, because
we assume the point of view that we have already measured Newton’s gravitational
constant and do not wish to renormalize it (cf. Sect. 7.2.3). That is, we have
9 m? 1 (H* m* 4
12H = W[W] +@(E - 7) +4cim™.
For the semiclassical Einstein equation to hold, we therefore have to require that
[w] is a constant. Then, having fixed H and m (no matter their absolute value),
there is always a choice of ¢; for which the chosen metric g and w satisfy the
semiclassical Einstein equation. On a de Sitter spacetime these criteria are satisfied
by the Bunch-Davis state, ¢f Sect. 6.2.1.

In order to evaluate the influence of the quantum matter fluctuations on ¢ via
equation (9.6), we have to discuss the form of the two-point distribution of the chosen
state and its square. Any Hadamard state on (M, g) can be written is equal to the
Bunch-Davies state up to smooth terms. In particular, the two-point distribution w,
of every Hadamard state on de Sitter spacetime is of the form

2 TT/

w,(x,x") = lim + less singular terms,  (9.7)

e—0t 4m2 (x — x')? + 2ie(T — 1’) + €2
where we write (x — x)? = —(7 — 7/)? + (¥ — ¥')? and, as always, the limit £ — 0%
is a weak limit. It is no surprise that the leading singularity is conformally related
to the two-point distribution of a massless scalar field on Minkowski spacetime, we
denote it by wy,. Thus it is also clear that the less singular contributions vanish in the
limit of zero mass.

As can be seen in (9.3b), we need to compute the square of the two-point
distribution of the state in question. For our purposes it will be sufficient to compute
the square of the leading singularity in the Hadamard state.* The square of the
massless two-point distribution on Minkowski space is

1 1 2
N2 _
wy(x, x lim .
o, X' = e—0" (41‘[2 (X—X/)2+2i€(T—T/)+€2)

“Note that, in (spatial) momentum space, the leading singularity in (9.7) contributes the smallest
inverse power of the momentum k; the ‘less smgular terms’ correspond to higher inverse powers of k.
Accordingly, these terms fall off faster for large k. This is nothing but the usual relation ship between
high momenta and short distances.
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Writing wy in terms of its spatial Fourier transform, an expression for the spatial
Fourier transform of the square of the massless Minkowski vacuum can be obtained
as

wy(x,x)? = lim

o0
e—0+ 12810 L@ D J;( e I dk ©®

Later on we will use this expression in order to obtain the power spectrum of @.

9.2.2 Power spectrum of the metric perturbations

We want to compute the power spectrum P(7T, k) of the two-point correlation of ¢ at
the time 7. Since both the spacetime and the chosen state are invariant under spatial
translation, it can be defined as

- -/ . 1 - iE.(;g_,-(/) -
(8(7,X)8(7,X)) = —= | P(7,k)e dk.
(2/]-[) R3
To obtain P, we first need an expression for the retarded operator A, corresponding

to (9.5):

1 N oo ol 2 S
(Aretf)(T’ X) = (ZT)S f f Aret(T’ T1, k)f(Tb k)elk.x dTl dk’ with
R3 J -0

—~ - . 1 1243 .

Arer(T,71,k) = _@T_;‘T Si1 (k(T - T1)/\/§) >
where f is a compactly supported smooth function. We can then rewrite (9.6) in
Fourier space to obtain

P(1,k) = 2m4J J Ared(T, T, A (1,77, E)c:%\D(T, v/, k)drdr’.
—00 —0Q

Note that the symmetrization of the state is taken care of indirectly by the equal limits
of the two integrations.

As discussed above (see (9.7) and the following paragraph), we will compute the
contribution due to the leading singularity of the Hadamard state:

T T
Py(T,k) = 2H4m4J J Aver(T, T, K) Ay (1,77, K) Tzf’zwﬁﬂ(fl,f’,z) drdr’.
—00 —00

We emphasize at this point that, because of the form of (9.8) and of A, no infrared
(with respect to k) singularity appears in Py(T, k) at finite 7. Recall also that the error
we are committing, using Py(7, E) at the place of P(7, E), tends to vanish in the limit
of small masses. Inserting the spectrum of wﬁﬂ obtained in (9.8) and switching the
order in which the integrals are taken (for € > 0), we can write

f % ’A(T,k/\@,p)
k

4

S 2
Py(7,k) = lim e “Pdp, (9.9

e—0t 16m2

where we have introduced the auxiliary function

" okrt? .
A(T,K,p)if —sin (k (7 —7;)) e P71 d1y, (9.10)
T

—00 1
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which can also be written in closed form in terms of the generalized exponential
integral® E, as

A(t,x,p) =A(kT,pT) = % KT (Ez (ilp+x)7T) e*® — E, (i(p—x)7) e_i’”)

for p > k > 0 and by the complex conjugate of this expression if k > p,k > 0. In the
following study of the form of the power spectrum P, the auxiliary function A will be
instrumental.

Lemma 9.1. For |p| # k > 0, A(7,k, p) has the T-uniform bound

Al < 4 (9.11)
~ k= p? '
For large negative times it satisfies the limit
2
Tl_l)I_Iloo|A| = |K2——p2| 9.12)
Proof. Using the fact that
) d2 e—ipfl
e P = | — +x2 ,
dr,2 K2 — p2
we can perform two integrations by parts to obtain
2 .
AT, K,p) = —5— 7 (e7" +R(t,k,p)), with
f (4 6
R(t,x,p) = Tzf — cos (k (T —141)) + —sin(x(t — 7)) | e P71 dry.
—oo \ T3 KT]

It is now easy to obtain an upper bound for R which is uniform in conformal time,
namely |R| < 3, which then yields the bound (9.11).

For the second part of the proposition we perform a change of the integration
variable to x = 7,/7:

R(t,k,p) = —f
1

The contribution proportional to 1/7 in R is bounded by C(x)/|7| and thus vanishes
in the limit T — —o0. Moreover, since |p| # x and 1/x2 is L! on [1,00), we can apply
the Riemann-Lebesgue lemma and see that this contribution vanishes in the limit
T — —oo0. The remaining part of |A| is k2|k? — p2|~!, which is independent of 7, and
thus the limit (9.12) holds true. O

o0

KT x4

(% cos (kT (1—x)) + sin (k7 (1 —x))) e P™X dx.

Note that the bound for A obtained above is not optimal. Numerical integration
indicates that JA|? is monotonically decreasing in T and thus bounded by the limit
stated in (9.12) (see also Fig. 9.2). Nevertheless, we can use this lemma to derive
the following bounds and limits for Py:

SFor a definition and various properties of these special functions see e.g. [166, Chap. 8].
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Proposition 9.2. The leading contribution P, to the power spectrum of the potential
& induced by a conformally coupled massive scalar field in the Bunch-Davis state is
bounded by the Harrison—Zel’dovich spectrum uniformly in time, namely

16C L3 24/3 arccothy/3

> Cc= 4
|3 1922

m-,

|P0(T k)| <
and it tends to the Harrison—Zel'dovich spectrum for T — —o0, i.e.,

. - C
T1—1>I—noo PO(T, k) = W

Proof. The proof can be easily obtained using the 7-uniform estimate (9.11) obtained
in Lem. 9.1 and computing the integral

- m* [® 1 2 3 — 2+/3 arccoth+v/3 m*
PERsG | (spme) ¥ ne e

Having shown the first part of the proposition, let us now analyze the limit

. - m4 o0
TEI—nooPO(T’k) - 1612 J;( F ll>rnoo‘A (T k/\/_ p)’ dp,

where we have taken the 7-limit before the integral and already evaluated the e-limit

because |A]? is bounded by an integrable function uniformly in time. Inserting the

limit (9.12) from Lem. 9.1, we can compute the p-integral

- 3 —2+/3 arccothv/3 m*
li P , k) = 2 k2 -2 dp = —,
dm_Po(, k) ) 19272 i3
thus concluding the proof. O

We can complement the results of Prop. 9.2 with the following observation:

Proposition 9.3. The power spectrum P, has the form

o Pk
Po(7, %) °|(I.<',|3'”,

where 9P is a function of k|t only.

Proof. Noting that A(T,k, p) is a function of ¥ T and p T only and performing the
e-limit in (9.9) inside the integral, this can be seen by the substitution x = p T
in (9.9). O

We would like to improve the estimate of Py(, k) for 7 close to zero. Adhering to
our previous strategy, we shall first give a new estimate for A(7, k, p):

Lemma 9.4. The auxiliary function A(7, x, p) is bounded by

2

K*T
)A(T,K,p){S—ZbT, p#0, 7<O0.
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Figure 9.2. Logarithmic plot of the rescaled power spectrum Qbo(ll_c'lr), where C is
the same proportionality constant as in Prop. 9.2.

Proof. Recalling the form of A given in (9.10) and integrating by parts, where we use
that e %1 =ip~! 8T1e_ip“, we find

272 [° 1 2 .
A(T,Kk,p) = — cos (k (T —71)) + —5sin (x (7 —71)) | e P71 d1.
p T KT

—00 1 1

We then take the absolute value and estimate the trigonometric functions, which
gives us a bound on A, namely

k22 (7 (1 T—1T, K27
’A(T,K,p){ < |p| ?—2 73 dT1:—2|PT. O
—00 1 1

Performing the integration in p analogously to the second part of proposition
(9.2), the last lemma immediately leads to a corresponding bound for Py:

Proposition 9.5. The leading contribution P, of the power spectrum of the potential ¢
satisfies the inequality

~
N

T

k|

and therefore, in particular, Py(0, k) =0.

The rescaled power spectrum 950(|E|T) can be analyzed numerically and a plot
is shown in Fig. 9.2. It clearly exhibits the asymptotic behaviour of P, discussed in
Props. 9.2 and 9.5. Note that the horizontal axis is logarithmically scaled to highlight
the behavior of % for small |k|7, which would be concealed by the fast approach of
P, to its bound had we used a linear scaling.

In this section we have used the leading singularity® of the two-point function of
the Bunch-Davis state on a de Sitter universe to compute the influence of quantum

®Recall that considering only the leading singularity in the Bunch-Davis state also corresponds to
the limit of vanishing mass.
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matter on the power spectrum of the metric perturbation ¢. We have seen that this
results in an almost scale-invariant power spectrum. We stress that such a singularity
is not a special feature of the Bunch-Davis state but is common for every Hadamard
state. Moreover, although our analysis has been done on a de Sitter universe, similar
quantum states have been constructed on universes which are asymptotically de
Sitter spaces in the past [61, 62]. All these states tend to the Bunch-Davis state for
T — —oo and are of Hadamard form.

9.2.3 Non-Gaussianities of the metric perturbations

It follows from (9.3c) that the n-point correlation for ¢ will, in general, not vanish.
Also for odd n they will be different from zero and hence & is not a Gaussian random
field. As a first measure of the non-Gaussianity of ¢ one usually calculates its three-
point correlation function or the corresponding bispectrum B:

]. - — — — — —
<¢(T3 X—)l)é(’f, )?2)¢(T7J?3)> = (27)9 fJf 6(k1 + kZ + kS)B(T: kl) k2: k3)
R‘)

% ei(k1~x1+k2~x2+k3-x3) dk1 dkz dk3

Assuming nonzero I_c'l, Ez and Eg, we will derive the form of the bispectrum B
considering (as above) only the contribution due to the leading singularity of the
Bunch-Davis state, which we will denote by B,. We will follow the same steps that
lead us to the calculation of the power spectrum in the previous section. That is, we
apply the retarded propagator A, of (9.5) as in (9.6) to the right-hand side of (9.3c)
for n = 3 to obtain an equation for ¢ and insert for the two-point distribution the
conformally rescaled two-point distribution of the massless Minkowski vacuum. The
result can again be expressed in terms of the auxiliary function A defined in (9.10):

B(e b Faf)— I m J (e—e(wﬁt—ﬁl)+w§a?3)+|ﬁ|)
T,Kq1,K, = llm ———=-=- - =
OO 0 30 VERIZE Jua | wp(—kpwp(Re)Ip

X A(T, k1, 05(=k1) + B A(7, k3, —w5(ks) = [p])  9-13)
X A(7, Ko, wﬁ(E3) — o)ﬁ(—zl)) + permutations) dp,

where k; = |7_<'i|/\/§, wﬁ(E) = |E + p| and the sum is over all permutations of 1,2, 3.

We can apply the same bound on A which has been used in the previous section
to bound the power spectrum P, to produce a bound on the integrand of B, almost
everywhere.” Nevertheless, the singularity in the integrand in (9.13) is integrable,
i.e., By is bounded. As a consequence we can perform the limit ¢ — 0% inside the
integral.

’We cannot bound the integrand of B, everywhere using (9.11) because |E2| /3 # |wﬁ(E3) -
wﬁ(—k1)| (and permutations) does not hold everywhere.
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Proposition 9.6. The leading contribution B of the bispectrum of the metric perturba-
tion ® has the form

%O(qu'-) sz, kBT)

Rk

Bo(T,Eljzz,zs) =

where B, is a function of kT, ko7, and ka7 only and k; = |Kk;|.

Proof. Analogously to Prop. 9.3, we note that after a change of variables ¥ = 7 j the
integrand in (9.13) is a function of k; 7, k,7, and k57 only. O

To finish our discussion about non-Gaussianities, we notice that, although the
employed quantum field is a linear one, we obtained a three-point function for &
which is similar to the one obtained by Maldacena [150] who has quantized metric
perturbations outside the linear approximation.

9.3 COQutlook

In this chapter the influence of quantum matter fluctuations on metric perturbations
over de Sitter backgrounds were analyzed. We used techniques proper of quantum
field theory on curved spacetime to regularize the stress-energy tensor and to compute
its fluctuations. In particular, we interpreted the perturbations of the curvature tensors
as the realization of a stochastic field. We then obtained the n-point distributions of
such a stochastic field as induced by the n-point distributions of a quantum stress
tensor by means of semiclassical Einstein equations.

We also noticed that, while the expectation value of the stress-energy tensor
is characterized by renormalization ambiguities, this is no longer the case when
fluctuations are considered. Hence the obtained results are independent on the
particular regularization used to define the stress tensor.

In order to keep superficial contact with literature on inflation, we investigated
perturbations of the scalar curvature generated by a Newtonian metric perturbation,
which is related to the standard Bardeen potentials. However, the considered model
is certainly oversimplified to cover any real situation and is not gauge invariant.

Within this model it was possible to recover an almost-Harrison-Zel’dovich power
spectrum for the considered metric perturbation. Furthermore, the amplitude of such
a power spectrum depends on the field mass which is a free parameter in our model
and can be fixed independently of H. At the same time, since it does not depend on
the Hubble parameter of the background metric, this indicates that it is not a special
feature of de Sitter space. At least close to the initial singularity, the obtained result
depends only on the form of the most singular part of the two-point function of the
considered Bunch-Davis state. We thus argue that a similar feature is present in every
Hadamard state and for backgrounds which are only asymptotically de Sitter in the
past.

Finally we notice that, since the stress-energy tensor is not linear in the field,
its probability distribution cannot be of Gaussian nature. Thus we showed that
non-Gaussianities arise naturally in this picture.



Conclusions

In this thesis aspects of the backreaction of quantum matter fields on the curvature
of spacetime were discussed. The main results in this direction were discussed in
Chaps. 8 and 9: the existence of local and global solutions of the semiclassical Einstein
equation on cosmological spacetimes, and the a coupling the fluctuations of the
quantum matter field to a Newtonianly perturbed de Sitter spacetime. Further results
presented are the enumerative combinatorics of the run structure of permutations
in Chap. 4 with applications to the moment problem of the Wick square and the
stress-energy on Minkowski spacetime.

In each case the problems were not treated in all possible generality, mainly
due to the difficulty of constructing Hadamard states on general globally hyperbolic
spacetimes but also due to other factors. Nevertheless, we studied the effects of
quantum fields on cosmological spacetimes not only because of their relative simplicity
but also because of the relevance in cosmology. Therefore the first avenue is not
always the generalization of results to more general spacetimes, but also the better
understanding of possible effects on this restricted class of spacetimes. For example,
we already mentioned in Sect. 8.5 that the results are restricted to the conformally
coupled scalar field with a certain choice for the renormalization freedom as other
choices can lead to equations involving higher than second-order derivatives of
the metric and ask for slightly different approach. However, it would be desirable
to understand this problem also for non-conformal coupling and discuss the full
dependence of the solutions to the Einstein equation on the renormalization freedom.

In the case of results on the metric fluctuations induced by quantum matter
fluctuations as presented in Chap. 9, we were even more restrictive and the discussion
is mostly based on the special case of a Newtonianly perturbed de Sitter spacetime.
While straightforward generalization of this idea to asymptotically de Sitter space-
times are possible and were already published in [60], the next step should be to gain
a clearer physical and mathematical motivation of the used equations. A development
in this direction is [75], but also this work should only be seen as a first step. In any
case, as soon as one attempts to take into account the fluctuations of the stress-energy
tensor one is faced with the limitations of the semiclassical Einstein equation and
any attempts to generalize them, even if well-motivated, remains speculative in the
absence of an accepted theory of quantum gravity.

On one hand, when attempting to study quantum field theory in a mathematically
rigorous fashion one sees even clearer the non-uniqueness of many constructions and
one is confronted with many choices: Are all Hadamard states physically sensible?
What topology should be chosen for the algebra of quantum fields? What is the
appropriate gauge freedom for the electromagnetic potential on non-contractible
spacetimes? Is it reasonable to work with an algebra of unbouded operators such as
the field algebra or should one always use a C*-algebra? There are many more ques-
tions of this kind and they require further mathematical and physical investigations
but also intuition. Quantum field theory and the quest for a quantum gravity is and
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will continue to be not only a research effort and playground of physicists but also
one of mathematicians.

On the other hand, many aspects of quantum field theory are now conceptually
and mathematically very well understood but only a few models have been studied
in all their detail. In particular interacting quantum fields on curved spacetimes have
received relatively little attention given that already free fields are a complicated
matter. Investigations of physically interesting interacting models, using perturbative
techniques, are largely absent from the literature and deserve more attention.

For these reasons one can expect that the field of quantum field theory (on curved
spacetimes) will remain an interesting field of study for many more years to come.
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