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Abstract

A set of non-negative integers is an additive basis with range n, if its sumset covers
all consecutive integers from 0 to n, but not n + 1. If the range is exactly twice the
largest element of the basis, the basis is restricted. Restricted bases have important
special properties that facilitate efficient searching. With the help of these properties,
we have previously listed the extremal restricted bases up to length k = 41. Here, with
a more prudent use of the properties, we present an improved search algorithm and
list all extremal restricted bases up to k = 47.

1 Introduction

Let
A = {a0 < a1 < · · · < ak}

be a set of k + 1 non-negative integers, and

2A := {a+ a′ : a, a′ ∈ A}

its sumset. If 2A contains the consecutive integers [0, n] := {0, 1, . . . , n}, but n + 1 /∈ 2A,
then A is an (additive) basis of length k and range n2(A) = n. Note that the smallest element
must be a0 = 0 (otherwise the sumset would not contain 0).

An additive basis A is admissible if n2(A) ≥ ak, and restricted if n2(A) = 2ak. Restricted
bases are admissible by definition. Also, A is restricted if and only if 2A = [0, 2ak].

Example. If A = {0, 1, 3, 4}, then 2A = [0, 8], and A is a restricted basis with range
n2(A) = 8 = 2ak.

Example. If A = {0, 1, 2, 4}, then 2A = [0, 6] ∪ {8}, and A is an admissible (but not
restricted) basis with range n2(A) = 6 < 2ak.
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The maximum range among all bases of length k is denoted by n2(k), and the maximum
among restricted bases is n∗

2(k). The bases that attain these maxima are called extremal bases

and extremal restricted bases, respectively [5, 8]. Searching for extremal bases is known in
the literature as the postage stamp problem. Searching for extremal restricted bases could
then be called the restricted postage stamp problem.

Restricted bases have important properties that facilitate efficient searching: mirroring
and lower bounds. Using them, we have previously presented a “meet-in-the-middle” algo-
rithm, and enumerated all extremal restricted bases up to length k = 41 [3, 7]. Here we
improve the algorithm by a more careful use of the properties, and enumerate all extremal
restricted bases up to k = 47.

2 Properties of restricted bases

Let us revisit some properties of restricted bases [3]. The mirroring property [3, Theorem 5]
is based on a reasoning similar to Rohrbach’s theorem for symmetric bases [6, Satz 1], but
holds for asymmetric restricted bases as well.

Theorem 1 (Mirroring). If A is a restricted basis with range n, then its mirror image

B = ak −A = {ak − a : a ∈ A}

is also a restricted basis with the same range.

Proof.

2B = {b+ b′ : b, b′ ∈ B} = {(ak − a) + (ak − a′) : a, a′ ∈ A}

= 2ak − 2A = n− [0, n] = [0, n].

Example. Let A = {0, 1, 2, 3, 7, 11, 15, 17, 20, 21, 22}. This is a restricted basis with range 44.
Its mirror image B = 22 − A = {0, 1, 2, 5, 7, 11, 15, 19, 20, 21, 22} is another restricted basis
with the same range.

If Ak = {a0 < a1 < · · · < ak}, we define its j-prefix as Aj = {a0, . . . , aj}, for any
0 ≤ j ≤ k. The following upper bounds hold for all admissible bases (including all restricted
bases). For restricted bases, the upper bounds can be mirrored to obtain lower bounds as
well.

Lemma 2. If Ak is an admissible basis, and 1 ≤ j ≤ k, then aj ≤ n2(Aj−1) + 1.

Proof. Represent Ak as a disjoint union Ak = Aj−1 ∪ R, where r ≥ aj for all r ∈ R. Now
2Ak = (2Aj−1) ∪ (R + Ak). All elements of (R + Ak) are greater or equal to aj , thus 2Aj−1

must cover the interval [0, aj − 1]. In other words n2(Aj−1) ≥ aj − 1.

Theorem 3 (Element-wise upper bound). If Ak is an admissible basis, and 1 ≤ j ≤ k, then
aj ≤ n2(j − 1) + 1.
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Proof. Follows from Lemma 2 because n2(Aj−1) ≤ n2(j − 1).

Theorem 4 (Element-wise lower bound). If Ak is a restricted basis, and 0 ≤ j ≤ k − 1,
then aj ≥ ak − n2(k − j − 1)− 1.

Proof. Let Bk = ak − Ak. By Theorem 1, Bk is a restricted basis, and thus admissible. Let
i = k − j. By Theorem 3 we have bi ≤ n2(i− 1) + 1, thus

aj = ak − bi ≥ ak − n2(k − j − 1)− 1.

Corollary 5 (Range lower bound). If Ak is a restricted basis, and 0 ≤ j ≤ k − 2, then
n2(Aj) ≥ ak − n2(k − j − 2)− 2.

Proof. Follows from the previous theorem since aj+1 ≤ n2(Aj) + 1.

3 Searching for restricted bases

The bounds are easily calculated if the corresponding n2 is known (sequence A001212 in
Sloane’s OEIS [7]). The element-wise bounds are quite narrow near the middle of a basis,
as seen in Figure 1. In the vast majority of admissible prefixes, the middle elements are far
below the lower bound (illustrated with random admissible prefixes in the figure).

Example. Search for a restricted basis of length k = 30 and range n = 316 (thus ak =
n/2 = 158). From Theorem 4 we have a15 ≥ 77. While there are 9 041 908 204 admissible
15-prefixes (A167809), only 201 of them meet the lower bound for a15, and are possible
prefixes for the restricted basis.

Alternatively, we could use the range bound at midpoint (j = ⌊k/2⌋): from Corollary 5
we obtain n2(A15) ≥ 84. Our previously presented algorithm [3, Algorithm 1] was built upon
this idea. Challis’s algorithm [1] was used to enumerate the admissible j-prefixes that meet
the range bound.

However, if prefixes are being built progressively (adding one element at a time), many
proposed prefixes can be rejected much before the midpoint (see Figure 1, top). It is straight-
forward to modify Challis’s algorithm to check for the lower bounds at each element, and to
reject a prefix as soon as any element violates the lower bound. This approach prunes the
search tree and speeds up the search tremendously.

Example. Searching for a restricted basis with k = 30 and n = 316, Algorithm 1 uses only
the range bound n2(A15) ≥ 84. During the search it visits about 4.0 × 108 prefixes, taking
about 30 CPU seconds on our system. It generates 791 possible 15-prefixes.

For elements a10, a11, . . . , a15 we have the lower bounds 17, 29, 41, 53, 65, and 77, respec-
tively. The modified search, which exploits these bounds, visits only about 1.9×106 prefixes
(200 times fewer than Algorithm 1), runs in about 0.1 CPU seconds, and generates only 16
possible 15-prefixes.
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Figure 1: Element-wise bounds for restricted bases. Top: k = 30 and n = 316. Bottom:
k = 45 and n = 674. Thick blue line: a restricted basis. Thin red lines: ten randomly
generated admissible prefixes.

With large values of k, a further complication is that n2 is known only up to length 24 [4].
For example, if k = 45, the element-wise lower bounds are known for j ≥ 20 (see Figure 1,
bottom). In order to use Theorem 4 for j = 19, we would need n2(k − 19 − 1) = n2(25),
which is not known. This is a serious limitation: in the search for possible prefixes, the
known element-wise bounds kick in at j = 20. If the bounds were known, it seems plausible
that most prefixes could be rejected earlier, perhaps around j = 17.

What we can do, with large k, is to use the range bound as early as possible. For k = 45,
n = 674, Corollary 5 gives the bound n2(A19) ≥ 123. Using this as the target range in
Challis’s algorithm, we can first enumerate the possible 19-prefixes and then extend them
by continuing the algorithm (checking for element-wise bounds at every step). With the
range bound, the so-called gaps test in Challis’s algorithm rejects many prefixes even before
j = 19.
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4 Results

With the method described in the previous section, we computed all extremal restricted bases
of lengths k = 42, . . . , 47. The prefix computations are illustrated in Table 1. Extending the
prefixes and joining them with suffixes (as in our previous algorithm [3, Algorithm 1]) into
complete bases was then a matter of a few seconds or minutes at most. Since n∗

2 is a priori

unknown, we started with the range n set to its upper bound [3, Corollary 8] and decreased
in steps of 2, until a restricted basis was found.

Previously, with Algorithm 1, we used 120 CPU hours to find extremal restricted bases
for k = 41, which illustrates the strong effect of using the early lower bounds for pruning.

k n range bound work CPU hours prefixes generated
42 588 n2(A16) ≥ 80 9.6× 109 0.7 28 026 041
43 614 n2(A17) ≥ 93 7.2× 1010 2.0 4 375 029
44 644 n2(A18) ≥ 108 3.8× 1011 8.9 317 752
45 674 n2(A19) ≥ 123 1.5× 1012 35 44 187
46 704 n2(A20) ≥ 138 6.4× 1012 157 11 448
47 734 n2(A21) ≥ 153 3.2× 1013 812 4 020

Table 1: Computing possible prefixes for restricted bases of lengths k = 42, . . . , 47. Range

bound is from Corollary 5, with j as small as possible. Work is the number of prefixes visited
during the search. Prefixes generated is the number of prefixes that meet the range bound.

The complete bases are listed in Table 2. They are all symmetric (that is, Ak = ak−Ak),
which was not known nor enforced a priori. The bases are exactly those proposed by Challis
and Robinson’s preamble-amble construction [2, Table 2]. The result of our computation
here is that (1) these are indeed extremal restricted bases, and that (2) this is the complete

listing of extremal restricted bases of these lengths.

5 Discussion

As mentioned in Section 3, efficient searching for restricted additive bases with our method
depends crucially on the availability of element-wise lower bounds, which in turn depends
on the knowledge of extremal unrestricted ranges n2 (A001212). Roughly speaking, if n2

is known up to length k (currently 24), then it provides lower bounds that are useful for
computing of n∗

2 up to about length 2k.
To extend our knowledge of extremal restricted bases further, an obvious way would be

to compute first the unrestricted n2(k) for greater lengths, say, k = 25, and use them to
provide improved lower bounds for the restricted case.

A more interesting question is, can any connection be established between n2(k) and n∗

2(k)
(A001212 and A006638)? For example, can it be shown that n2(k) − n∗

2(k) ≤ d with some
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small value d? For lengths k ≤ 24, where both quantities are currently known, the difference
is always zero or two (the latter only with k = 10, where n2(10) = 46 and n∗

2(10) = 44).
If the difference could be bounded to be small, then n∗

2(k) + d could be used as an upper
bound for n2(k), providing in turn the lower bounds for computing n∗

2 for greater lengths.
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k n
∗

2(k) basis

42 588 0 1 2 5 7 10 11 19 21 22 25 29 30 · · · +13 · · · 264 265 269 272 273 275 283 284 287 289 292 293 294

43 614 0 1 2 5 7 10 11 19 21 22 25 29 30 · · · +13 · · · 277 278 282 285 286 288 296 297 300 302 305 306 307
43 614 0 1 2 5 6 8 9 13 19 22 27 29 33 40 41 · · · +15 · · · 266 267 274 278 280 285 288 294 298 299 301 302 305 306 307

44 644 0 1 2 5 6 8 9 13 19 22 27 29 33 40 41 · · · +15 · · · 281 282 289 293 295 300 303 309 313 314 316 317 320 321 322

45 674 0 1 2 5 6 8 9 13 19 22 27 29 33 40 41 · · · +15 · · · 296 297 304 308 310 315 318 324 328 329 331 332 335 336 337

46 704 0 1 2 5 6 8 9 13 19 22 27 29 33 40 41 · · · +15 · · · 311 312 319 323 325 330 333 339 343 344 346 347 350 351 352

47 734 0 1 2 5 6 8 9 13 19 22 27 29 33 40 41 · · · +15 · · · 326 327 334 338 340 345 348 354 358 359 361 362 365 366 367

Table 2: Extremal restricted bases of lengths k = 42, . . . , 47. The notation +c indicates several elements with a repeated
difference of c.
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