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Abstract

An “odd-rule” cellular automaton (CA) is defined by specifying a neighborhood for each cell,
with the rule that a cell turns ON if it is in the neighborhood of an odd number of ON cells at
the previous generation, and otherwise turns OFF. We classify all the odd-rule CAs defined by
neighborhoods which are subsets of a 3× 3 grid of square cells. There are 86 different CAs modulo
trivial symmetries. When we consider only the different sequences giving the number of ON cells
after n generations, the number drops to 48, two of which are the Moore and von Neumann CAs.
This classification is carried out by using the “meta-algorithm” described in an earlier paper to
derive the generating functions for the 86 sequences, and then removing duplicates. The fastest-
growing of these CAs is neither the Fredkin nor von Neumann neighborhood, but instead is one
defined by “Odd-rule” 365, which turns ON almost 75% of all possible cells.

1 Introduction

As in [1, 2, 10], our goal is to study how fast activity spreads in cellular automata (CAs): more
precisely, if we start with a single ON cell, how many cells will be ON after n generations? For
additional background see [4, 5, 6, 7, 9, 11, 12, 13, 14].

Continuing the investigations begun in [2, 10], we consider “odd-rule” CAs, concentrating on
the two-dimensional rules defined by neighborhoods that are subsets of a 3 × 3 square grid. This
family of CAs includes two that were the main subject of [10], namely Fredkin’s Replicator, which is
based on the Moore neighborhood, and another which is based on the von Neumann neighborhood
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1

ar
X

iv
:1

50
3.

04
24

9v
2 

 [
m

at
h.

C
O

] 
 2

1 
M

ar
 2

01
5

mailto:njasloane@gmail.com
mailto:zeilberg@math.rutgers.edu


with a center cell. One of the goals of the present paper is to use the meta-algorithm from our paper
[2] to obtain generating functions, with proofs, for all these sequences. This provides alternative
(computer-generated) proofs of Theorems 4 and 5 of [10]. Another member of this family is the
CA defined by the one-dimensional Rule 150 in the Wolfram numbering scheme [9, 13, 14].

The Wolfram numbering scheme is not, however, particularly convenient for dealing with these
3 × 3 neighborhoods, and in §3 we introduce a simpler numbering scheme based on reading the
neighborhood as a triple of octal numbers.

Section 2 gives the definitions of an odd-rule cellular automaton and the run length transform,
and quotes two essential theorems from [10]. Section 3 classifies odd-rule CAs that are defined by
neighborhoods that are subsets of the 3×3 grid: if we ignore trivial differences there are 86 different
CAs (Theorem 3), shown in Figs. 1, 2, 3 and Tables 1, 2, 3. In Section 4 we define two CAs to
be “combinatorially equivalent” if the numbers of ON cells after n generations are the same for all
n. Up to combinatorial equivalence there are 48 different CAs (Theorem 4), shown in Tables 1, 2,
3. In Section 5 we discuss three further topics: which CA has the greatest growth rate (§5.1 – the
answer is unexpected), which has the slowest growth rate (§5.2), and the question of explaining
why certain pairs of CAs turn out to have the same generating function (§5.3). The 48 distinct
generating functions are given in an Appendix.

2 Odd-rule CAs

We consider cellular automata whose cells are centered at the points of the 2-dimensional square
lattice Z2. Each cell is either ON or OFF, and an ON cell with center at the lattice point (i, j) ∈ Z2

will be identified with the monomial xiyj , which we regard as an element of the ring of Laurent
polynomials R := GF(2)[x, x−1, y, y−1] with mod 2 coefficients. The state of the CA is specified by
giving the formal sum S of all its ON cells. As long as only finitely many cells are ON, S is indeed
an element of R.

An “odd-rule” CA (this name was introduced in [10], although of course the concept has been
known for as long as people have been studying CAs) is defined by first specifying a neighborhood
of the cell at the origin, given by an element F ∈ R listing the cells in the neighborhood. A typical
example is the Moore neighborhood, which consists of the eight cells surrounding the cell at the
origin (see Odd-rule 757 in Fig. 3), and is specified by

F :=
1

xy
+

1

y
+

x

y
+

1

x
+ x +

y

x
+ y + xy

=

(
1

x
+ 1 + x

)(
1

y
+ 1 + y

)
− 1 ∈ R (1)

The neighborhood of an arbitrary cell xrys is obtained by shifting F so it is centered at that cell,
that is, by the product xrysF ∈ R. Given F , the corresponding odd-rule CA is defined by the rule
that a cell xrys is ON at generation n + 1 if it is the neighbor of an odd number of cells that were
ON at generation n, and is otherwise OFF.

Our goal is to find an(F ), the number of ON cells at the nth generation when the CA is started
in generation 0 with a single ON cell at the origin. For odd-rule CAs there is a simple formula for
an(F ). The number of nonzero terms in an element P ∈ R will be denoted by |P |.

Theorem 1. [10] For an odd-rule CA with neighborhood F , the state at generation n is equal to
Fn, and an(F ) = |Fn|.

2



The sequences [an(F ), n ≥ 0] are most easily described using the “run length transform”, an
operation on number sequences also introduced in [10]. For an integer n ≥ 0, let L(n) denote the list
of the lengths of the maximal runs of 1s in the binary expansion of n. For example, since the binary
expansion of 55 is 110111, containing runs of 1s of lengths 2 and 3, L(55) = [2, 3]. L(0) is the empty
list, and L(n) for n = 1, . . . , 12 is respectively [1], [1], [2], [1], [1, 1], [2], [3], [1], [1, 1], [1, 1], [1, 2], [2]
(A2455622).

Definition. The run length transform of a sequence [Sn, n ≥ 0] is the sequence [Tn, n ≥ 0] given
by

Tn =
∏

i∈L(n)

Si. (2)

Note that Tn depends only on the lengths of the runs of 1s in the binary expansion of n, not on the
order in which they appear. For example, since L(11) = [1, 2] and L(13) = [2, 1], T11 = T13 = S1S2.
Also T0 = 1 (the empty product), so the value of S0 is never used, and will usually be taken to
be 1. For further properties and additional examples of the run length transform see [10]. See
especially [10, Table 4], which shows how the transformed sequence has a natural division into
blocks of successive lengths 1, 1, 2, 4, 8, 16, 32, . . ..

Define the height ht(F ) of an element F ∈ R to be max{|i|, |j|} for any monomial xiyj in F . If
ht(F ) = h, the cells in F are a subset of the cells in a (2h+ 1)× (2h+ 1) array of squares centered
at the origin. In particular, if ht(F ) ≤ 1, we have the following:

Theorem 2. [10] If the neighborhood F is a subset of the 3 × 3 grid of cells centered at the
origin, then [an(F ), n ≥ 0] is the run length transform of the subsequence [bn(F ), n ≥ 0], where
bn(F ) := a2n−1(F ).

Figure 1: Up to trivial equivalence, there are 86 distinct height-one neighborhoods, shown in Figs.
1, 2, 3 together with their canonical Odd-rule numbers.

2Six-digit numbers prefixed by A refer to entries in [8].
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Figure 2: See caption to Fig. 1.

Figure 3: See caption to Fig. 1.

3 Trivially equivalent neighborhoods

From now on we assume that F has height at most one, i.e., is a subset of the 3 × 3 grid of cells
centered at the origin. In view of Theorem 1, an(F ) is unchanged if we multiply (or divide) F by
x or y (these operations simply translate the configuration of ON states in the (x, y)-plane).

We can also apply any of the eight symmetries of the square (rotations and/or reflections,
forming the dihedral group of order eight) to F without changing an(F ).

We therefore say that two neighborhoods F ∈ R, G ∈ R are trivially (or affinely) equivalent if
one can be translated into the other by repeated translations, rotations, and reflections.

Theorem 3. Up to trivial equivalence, there are 86 distinct height-one neighborhoods, as shown in
Figs. 1, 2, 3, and again in Tables 1, 2, 3.

Proof. Hand calculation, followed by computer verification.

Rather than use the Wolfram numbering scheme, which here could involve numbers as large

4



as 2512, we describe the neighborhood F by a three-digit octal number, the “Odd-rule” number,
obtained by reading the ON cells in the 3× 3 grid from left to right, top to bottom.

The canonical Odd-rule number for F is then the smallest of the Odd-rule numbers associated
with any neighborhood that is trivially equivalent to F .

For example, the neighborhood F = 1 + x ∈ R, consisting of two adjacent cells, can be shifted
or rotated into 12 different positions, described by the octal numbers 600, 300, 060, 030, 006, 003,
440, 044, 220, 022, 110, 011. The smallest of these is 003 (corresponding to 1/y + x/y), which is
therefore the canonical Odd-rule number for this F (see the the third figure in Fig. 1).

The Odd-rule number for Wolfram’s one-dimensional Rule 150 is 007. The two CAs that were
the main subject of [10], namely “Fredkin’s Replicator”, which is based on the Moore neighborhood,
and the CA based on the von Neumann neighborhood with a center cell, are Odd-rules 757 and
272, respectively. The von Neumann neighborhood without the center cell is Odd-rule 252, and the
full 3× 3 neighborhood is Odd-rule 777.

The canonical Odd-rule numbers for all 86 trivially inequivalent height-one neighborhoods are
shown in Figs. 1, 2, 3, which give graphical representations of the neighborhoods. These 86 neigh-
borhoods are also shown in Tables 1, 2, 3. The first column of these tables gives the canonical
Odd-rule number, the second column gives the number of cells in the neighborhood, the third
column gives the binary representation of the neighborhood, and the fourth column gives the cor-
responding Laurent polynomial F .

4 Combinatorially equivalent neighborhoods

Since we are mostly interested in the sequences that give the number of ON cells after n generations,
we shall say that two height-one neighborhoods F and G are combinatorially equivalent if an(F ) =
an(G) for all n ≥ 0. In view of Theorem 2, an equivalent condition is that bn(F ) = bn(G) for all
n ≥ 0.

Theorem 4. Up to combinatorial equivalence, there are 48 distinct height-one neighborhoods.

Proof. Using the Maple programs ARLT and GFsP described in [2] (available from [3]), we computed
the generating function for the bn(F ) sequence corresponding to each of the 86 neighborhoods listed
in Theorem 3. After removing duplicates, 48 remained (see the Appendix).

As representative for each equivalence class of neighborhoods we take the one with the smallest
Odd-rule number. These 48 combinatorially inequivalent neighborhoods can be seen in Tables 1,
2, 3, where they are distinguished by having the sequence numbers in [8] for the an(F ) and bn(F )
sequences in the final column of the tables. If the an(F ) and bn(F ) sequences are the same as those
for some earlier rule, this is indicated in the final column instead of the sequence numbers.

The generating functions for the 48 bn(F ) sequences, together with the corresponding sequence
numbers, are given in the Appendix. They are shown in such a way that they can be easily copied
into a computer algebra system (that is, they are given in a linear rather than two-dimensional
format).

In particular, the generating functions for the Fredkin and von Neumann-with-center CAs match
those derived in [10], and so provide an alternative proof for Theorems 4 and 5 of that paper.
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5 Further topics

5.1 The highest growth rate.

It is natural to ask which rule produces the greatest number of ON cells. We just consider the
number that are ON at generation 2n − 1, that is, the subsequence bn(F ) = a2n−1(F ), since by
Theorem 2 these are local maxima of the an(F ) sequence, and all other values of an(F ) are products
of these values.

The most fecund rule is somewhat of a surprise: it is Odd-rule 365, seen in the top left figure
in Fig. 3. This is the unique winner, well ahead of the more obvious candidates such as rules 252,
272, 525, 757, or 777.

For Odd-rule 365 the neighborhood is F = 1/(xy)+1/x+x/y+1+y+xy, bn(F ) = 3.4n−2.3n, n ≥
0, with generating function (1− x)/((1− 3x)(1− 4x)), recurrence bn+1 = 7bn − 12bn−1, and initial
values

1, 6, 30, 138, 606, 2586, 10830, 44778, 183486, 747066, 3027630, . . . (A255463)

Other rules do better at the start, but for n ≥ 4 Odd-rule 365 is the winner, and thus, for any
height-one odd-rule neighborhood F ,

bn(F ) ≤ 3.4n − 2.3n for all n ≥ 4. (3)

Equality holds in (3) if and only if F is trivially equivalent to Odd-rule 365.
After 2n − 1 generations of any odd-rule height-one CA that starts with a single ON cell at

generation 0, the ON cells are contained in the square of side 2n+1 − 1 centered at the origin.
Odd-rule 365 turns ON a fraction

3.4n − 2.3n

(2n+1 − 1)2
(4)

of these, which approaches 3/4 as n→∞.
Figure 4 shows generation 15 of this CA, containing a15(F ) = b4(F ) = 606 ON cells, and Fig.

6 (to be read from right to left, top to bottom) shows the evolution of this automaton up to this
point. The ON cells in all these figures are colored black.

From Theorem 3 of [10], the an(F ) sequence, which has initial terms

1, 6, 6, 30, 6, 36, 30, 138, 6, 36, 36, 180, 30, 180, 138, 606, 6, 36, 36, 180, . . . (A255462) ,

satisfies the recurrence a2t = at, a4t+1 = 6at, a4t+3 = 7a2t+1 − 12at for t > 0, with a0 = 1.
Incidentally, the runner-up is Odd-rule 537, for which the fraction of ON cells at generations

2n − 1 approaches 2/3.

5.2 The lowest growth rate.

Odd-rules 000, 001, 003, 007 have bn equal to 0, 1, 2n, and (2n+2 − (−1)n)/3, respectively. But
the slowest-growing properly two-dimensional rule is Odd-rule 013, for which bn = 3n. Figure 5
(drawn at the same scale as Fig. 4) shows generation 15, containing a mere a15 = b4 = 81 ON cells.

5.3 Explaining combinatorial equivalence.

In some cases it is easy to explain why two different neighborhoods have the same an (and bn)
sequences, i.e., are combinatorially equivalent. Let us denote combinatorial equivalence by ∼.

6

http://oeis.org/A255463
http://oeis.org/A255462


All five of the trivially inequivalent two-celled neighborhoods are combinatorially equivalent—for
example, rule 003, 1/y + x/y ∼ 1 + x ∼ 1/y + x, which is rule 012. To see that the four-celled
rules 033 (1 + x + 1/y + x/y) and 505 (y/x + xy + 1/(xy) + x/y) are equivalent, replace x by
x2 in the former, then divide by x, replace y by y2, and finally multiply by y. For other pairs,
such as the seven-celled rules 376 and 557, there does not seem to be a simple proof that they are
combinatorially equivalent, even though we know (by the theory developed in [2]) that this is true.

Figure 4: Odd-rule 365, the fastest-growing,
after 15 generations (see also Fig 6). There
are 606 ON cells.

Figure 5: Odd-rule 013, the slowest-growing,
after 15 generations (on the same scale).
There are 81 ON cells.
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Figure 6: Generations 0 to 15 of Odd-rule 365 (to be read from right to left, top to bottom).

8



Table 1: Tables 1, 2, 3 show the 86 trivially inequivalent neighborhoods and the 48 combinatorially
inequivalent ones. The asterisk denotes multiplication. See text for further details.

Rule Cells Neighborhood F an(F ), bn(F )

000 0 [0, 0, 0, 0, 0, 0, 0, 0, 0] 0 A000004, A000004

001 1 [0, 0, 0, 0, 0, 0, 0, 0, 1] x/y A000012, A000012

003 2 [0, 0, 0, 0, 0, 0, 0, 1, 1] 1/y + x/y A001316, A000079
005 2 [0, 0, 0, 0, 0, 0, 1, 0, 1] 1/(x ∗ y) + x/y = Odd-rule 003
012 2 [0, 0, 0, 0, 0, 1, 0, 1, 0] x + 1/y = Odd-rule 003
014 2 [0, 0, 0, 0, 0, 1, 1, 0, 0] x + 1/(x ∗ y) = Odd-rule 003
104 2 [0, 0, 1, 0, 0, 0, 1, 0, 0] x ∗ y + 1/(x ∗ y) = Odd-rule 003

007 3 [0, 0, 0, 0, 0, 0, 1, 1, 1] 1/(x ∗ y) + 1/y + x/y A071053, A001045
013 3 [0, 0, 0, 0, 0, 1, 0, 1, 1] x + 1/y + x/y A048883, A000244
015 3 [0, 0, 0, 0, 0, 1, 1, 0, 1] x + 1/(x ∗ y) + x/y = Odd-rule 013
016 3 [0, 0, 0, 0, 0, 1, 1, 1, 0] x + 1/(x ∗ y) + 1/y = Odd-rule 013
025 3 [0, 0, 0, 0, 1, 0, 1, 0, 1] 1 + 1/(x ∗ y) + x/y = Odd-rule 013
105 3 [0, 0, 1, 0, 0, 0, 1, 0, 1] x ∗ y + 1/(x ∗ y) + x/y = Odd-rule 013
106 3 [0, 0, 1, 0, 0, 0, 1, 1, 0] x ∗ y + 1/(x ∗ y) + 1/y = Odd-rule 013
124 3 [0, 0, 1, 0, 1, 0, 1, 0, 0] 1 + x ∗ y + 1/(x ∗ y) = Odd-rule 007
141 3 [0, 0, 1, 1, 0, 0, 0, 0, 1] x ∗ y + 1/x + x/y = Odd-rule 013
142 3 [0, 0, 1, 1, 0, 0, 0, 1, 0] x ∗ y + 1/x + 1/y = Odd-rule 013

017 4 [0, 0, 0, 0, 0, 1, 1, 1, 1] x + 1/(x ∗ y) + 1/y + x/y A253064, A087206
027 4 [0, 0, 0, 0, 1, 0, 1, 1, 1] 1 + 1/(x ∗ y) + 1/y + x/y = Odd-rule 017
033 4 [0, 0, 0, 0, 1, 1, 0, 1, 1] 1 + x + 1/y + x/y A102376, A000302
035 4 [0, 0, 0, 0, 1, 1, 1, 0, 1] 1 + x + 1/(x ∗ y) + x/y A255297, A027649
036 4 [0, 0, 0, 0, 1, 1, 1, 1, 0] 1 + x + 1/(x ∗ y) + 1/y = Odd-rule 033
055 4 [0, 0, 0, 1, 0, 1, 1, 0, 1] 1/x + x + 1/(x ∗ y) + x/y = Odd-rule 033
107 4 [0, 0, 1, 0, 0, 0, 1, 1, 1] x ∗ y + 1/(x ∗ y) + 1/y + x/y = Odd-rule 017
116 4 [0, 0, 1, 0, 0, 1, 1, 1, 0] x ∗ y + x + 1/(x ∗ y) + 1/y = Odd-rule 035
125 4 [0, 0, 1, 0, 1, 0, 1, 0, 1] 1 + x ∗ y + 1/(x ∗ y) + x/y = Odd-rule 017
126 4 [0, 0, 1, 0, 1, 0, 1, 1, 0] 1 + x ∗ y + 1/(x ∗ y) + 1/y = Odd-rule 017
143 4 [0, 0, 1, 1, 0, 0, 0, 1, 1] x ∗ y + 1/x + 1/y + x/y A255298, A255299
145 4 [0, 0, 1, 1, 0, 0, 1, 0, 1] x ∗ y + 1/x + 1/(x ∗ y) + x/y = Odd-rule 035
146 4 [0, 0, 1, 1, 0, 0, 1, 1, 0] x ∗ y + 1/x + 1/(x ∗ y) + 1/y A255302, A255303
151 4 [0, 0, 1, 1, 0, 1, 0, 0, 1] x ∗ y + 1/x + x + x/y = Odd-rule 017
152 4 [0, 0, 1, 1, 0, 1, 0, 1, 0] x ∗ y + 1/x + x + 1/y = Odd-rule 146
154 4 [0, 0, 1, 1, 0, 1, 1, 0, 0] x ∗ y + 1/x + x + 1/(x ∗ y) = Odd-rule 033
161 4 [0, 0, 1, 1, 1, 0, 0, 0, 1] 1 + x ∗ y + 1/x + x/y A255300, A255301
162 4 [0, 0, 1, 1, 1, 0, 0, 1, 0] 1 + x ∗ y + 1/x + 1/y = Odd-rule 033
252 4 [0, 1, 0, 1, 0, 1, 0, 1, 0] y + 1/x + x + 1/y = Odd-rule 033
505 4 [1, 0, 1, 0, 0, 0, 1, 0, 1] y/x + x ∗ y + 1/(x ∗ y) + x/y = Odd-rule 033
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Table 2: Tables 1, 2, 3 show the 86 trivially inequivalent neighborhoods and the 48 combinatorially
inequivalent ones. See text for further details.

Rule Cells Neighborhood F an(F ), bn(F )

037 5 [0, 0, 0, 0, 1, 1, 1, 1, 1] 1 + x + 1/(x ∗ y) + 1/y + x/y A255445, A001834
057 5 [0, 0, 0, 1, 0, 1, 1, 1, 1] 1/x + x + 1/(x ∗ y) + 1/y + x/y A072272, A007483
117 5 [0, 0, 1, 0, 0, 1, 1, 1, 1] x ∗ y + x + 1/(x ∗ y) + 1/y + x/y A255304, A255442
127 5 [0, 0, 1, 0, 1, 0, 1, 1, 1] 1 + x ∗ y + 1/(x ∗ y) + 1/y + x/y = Odd-rule 117
136 5 [0, 0, 1, 0, 1, 1, 1, 1, 0] 1 + x ∗ y + x + 1/(x ∗ y) + 1/y = Odd-rule 037
147 5 [0, 0, 1, 1, 0, 0, 1, 1, 1] x ∗ y + 1/x + 1/(x ∗ y) + 1/y + x/y A255443, A255444
153 5 [0, 0, 1, 1, 0, 1, 0, 1, 1] x ∗ y + 1/x + x + 1/y + x/y A255454, A255455
155 5 [0, 0, 1, 1, 0, 1, 1, 0, 1] x ∗ y + 1/x + x + 1/(x ∗ y) + x/y = Odd-rule 037
156 5 [0, 0, 1, 1, 0, 1, 1, 1, 0] x ∗ y + 1/x + x + 1/(x ∗ y) + 1/y A255452, A255453
163 5 [0, 0, 1, 1, 1, 0, 0, 1, 1] 1 + x ∗ y + 1/x + 1/y + x/y A255456, A255457
165 5 [0, 0, 1, 1, 1, 0, 1, 0, 1] 1 + x ∗ y + 1/x + 1/(x ∗ y) + x/y A255446, A255447
166 5 [0, 0, 1, 1, 1, 0, 1, 1, 0] 1 + x ∗ y + 1/x + 1/(x ∗ y) + 1/y A255450, A255451
171 5 [0, 0, 1, 1, 1, 1, 0, 0, 1] 1 + x ∗ y + 1/x + x + x/y A253065, A253067
172 5 [0, 0, 1, 1, 1, 1, 0, 1, 0] 1 + x ∗ y + 1/x + x + 1/y = Odd-rule 166
174 5 [0, 0, 1, 1, 1, 1, 1, 0, 0] 1 + x ∗ y + 1/x + x + 1/(x ∗ y) = Odd-rule 057
253 5 [0, 1, 0, 1, 0, 1, 0, 1, 1] y + 1/x + x + 1/y + x/y = Odd-rule 156
255 5 [0, 1, 0, 1, 0, 1, 1, 0, 1] y + 1/x + x + 1/(x ∗ y) + x/y A255458, A255459
272 5 [0, 1, 0, 1, 1, 1, 0, 1, 0] 1 + y + 1/x + x + 1/y = Odd-rule 057
345 5 [0, 1, 1, 1, 0, 0, 1, 0, 1] y + x ∗ y + 1/x + 1/(x ∗ y) + x/y A255448, A255449
507 5 [1, 0, 1, 0, 0, 0, 1, 1, 1] y/x + x ∗ y + 1/(x ∗ y) + 1/y + x/y = Odd-rule 057
525 5 [1, 0, 1, 0, 1, 0, 1, 0, 1] 1 + y/x + x ∗ y + 1/(x ∗ y) + x/y = Odd-rule 057

077 6 [0, 0, 0, 1, 1, 1, 1, 1, 1] 1 + 1/x + x + 1/(x ∗ y) + 1/y + x/y A246037, A246036
137 6 [0, 0, 1, 0, 1, 1, 1, 1, 1] 1 + x ∗ y + x + 1/(x ∗ y) + 1/y + x/y A255464, A255465
157 6 [0, 0, 1, 1, 0, 1, 1, 1, 1] x ∗ y + 1/x + x + 1/(x ∗ y) + 1/y + x/y A255468, A255469
167 6 [0, 0, 1, 1, 1, 0, 1, 1, 1] 1 + x ∗ y + 1/x + 1/(x ∗ y) + 1/y + x/y A255466, A255467
173 6 [0, 0, 1, 1, 1, 1, 0, 1, 1] 1 + x ∗ y + 1/x + x + 1/y + x/y A255475, A255476
175 6 [0, 0, 1, 1, 1, 1, 1, 0, 1] 1 + x ∗ y + 1/x + x + 1/(x ∗ y) + x/y A253069, A253070
176 6 [0, 0, 1, 1, 1, 1, 1, 1, 0] 1 + x ∗ y + 1/x + x + 1/(x ∗ y) + 1/y A255470, A255471
257 6 [0, 1, 0, 1, 0, 1, 1, 1, 1] y + 1/x + x + 1/(x ∗ y) + 1/y + x/y A255473, A255474
273 6 [0, 1, 0, 1, 1, 1, 0, 1, 1] 1 + y + 1/x + x + 1/y + x/y = Odd-rule 176
275 6 [0, 1, 0, 1, 1, 1, 1, 0, 1] 1 + y + 1/x + x + 1/(x ∗ y) + x/y A253066, A253068
347 6 [0, 1, 1, 1, 0, 0, 1, 1, 1] y + x ∗ y + 1/x + 1/(x ∗ y) + 1/y + x/y A253100, A253101
356 6 [0, 1, 1, 1, 0, 1, 1, 1, 0] y + x ∗ y + 1/x + x + 1/(x ∗ y) + 1/y A247640, A164908
365 6 [0, 1, 1, 1, 1, 0, 1, 0, 1] 1 + y + x ∗ y + 1/x + 1/(x ∗ y) + x/y A255462, A255463
517 6 [1, 0, 1, 0, 0, 1, 1, 1, 1] y/x + x ∗ y + x + 1/(x ∗ y) + 1/y + x/y A255460, A255461
527 6 [1, 0, 1, 0, 1, 0, 1, 1, 1] 1 + y/x + x ∗ y + 1/(x ∗ y) + 1/y + x/y A255295, A255296
555 6 [1, 0, 1, 1, 0, 1, 1, 0, 1] y/x + x ∗ y + 1/x + x + 1/(x ∗ y) + x/y = Odd-rule 077
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Table 3: Tables 1, 2, 3 show the 86 trivially inequivalent neighborhoods and the 48 combinatorially
inequivalent ones. See text for further details.

Rule Cells Neighborhood F an(F ), bn(F )

177 7 [0, 0, 1, 1, 1, 1, 1, 1, 1] 1 + x ∗ y + 1/x + x + 1/(x ∗ y)
+1/y + x/y A255277, A255278

277 7 [0, 1, 0, 1, 1, 1, 1, 1, 1] 1 + y + 1/x + x + 1/(x ∗ y)
+1/y + x/y A255279, A255280

357 7 [0, 1, 1, 1, 0, 1, 1, 1, 1] y + x ∗ y + 1/x + x + 1/(x ∗ y)
+1/y + x/y A253071, A253072

367 7 [0, 1, 1, 1, 1, 0, 1, 1, 1] 1 + y + x ∗ y + 1/x + 1/(x ∗ y)
+1/y + x/y A255281, A255282

376 7 [0, 1, 1, 1, 1, 1, 1, 1, 0] 1 + y + x ∗ y + 1/x + x
+1/(x ∗ y) + 1/y A247666, A102900

537 7 [1, 0, 1, 0, 1, 1, 1, 1, 1] 1 + y/x + x ∗ y + x + 1/(x ∗ y)
+1/y + x/y A255283, A255284

557 7 [1, 0, 1, 1, 0, 1, 1, 1, 1] y/x + x ∗ y + 1/x + x
+1/(x ∗ y) + 1/y + x/y = Odd-rule 376

575 7 [1, 0, 1, 1, 1, 1, 1, 0, 1] 1 + y/x + x ∗ y + 1/x + x
+1/(x ∗ y) + x/y A246039, A246038

377 8 [0, 1, 1, 1, 1, 1, 1, 1, 1] 1 + y + x ∗ y + 1/x + x
+1/(x ∗ y) + 1/y + x/y A255275, A255276

577 8 [1, 0, 1, 1, 1, 1, 1, 1, 1] 1 + y/x + x ∗ y + 1/x + x
+1/(x ∗ y) + 1/y + x/y A253104, A253105

757 8 [1, 1, 1, 1, 0, 1, 1, 1, 1] y/x + y + x ∗ y + 1/x + x
+1/(x ∗ y) + 1/y + x/y A160239, A246030

777 9 [1, 1, 1, 1, 1, 1, 1, 1, 1] (1/x + 1 + x)
∗(1/y + 1 + y) A246035, A139818
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Appendix

For each of the 48 combinatorially inequivalent height-one neighborhoods (see Theorem 4 and
Tables 1, 2, 3) this Appendix gives the Odd-rule number, the number in [8] of the bn(F ) sequence,
and a generating function for that sequence. (In two or three cases, for example Odd-rule 007,
the sequence in [8] has an extra initial term compared with the bn(F ) sequence, so the generating
function given here is not exactly the same as the one in [8].)

Zero cells:

000: (A000004) 1

One cell:

001: (A000012) 1/(1-x)

Two cells:

003: (A000079) 1/(1-2*x)

Three cells:

007: (A001045) (1+2*x)/((1+x)*(1-2*x))

013: (A000244) 1/(1-3*x)

Four cells:

017: (A087206) (1+2*x)/(1-2*x-4*x^2)

033: (A000302) 1/(1-4*x)

035: (A027649) (1-x)/((1-2*x)*(1-3*x))

143: (A255299) (1-x)*(1-x+x^2-x^3-4*x^4+2*x^5-2*x^6)

/(1-6*x+10*x^2-4*x^3-3*x^4+12*x^5-20*x^6+10*x^7-4*x^8)

146: (A255303) (1-x+2*x^2+2*x^3)/((1-3*x-2*x^2)*(1-2*x+2*x^2))

161: (A255301) (1-x)*(1+x+2*x^2)/(1-4*x+x^2+2*x^3+4*x^4)

Five cells:

037: (A001834) (1+x)/(1-4*x+x^2)

057: (A007483) (1+2*x)/(1-3*x-2*x^2)

117: (A255442) (1+3*x)*(1-x)/((1-3*x)*(1-3*x^2))

147: (A255444) (1-x)*(1+2*x+7*x^4+4*x^5+2*x^6)

/(1-4*x-x^2+8*x^3+7*x^4-26*x^5+11*x^6+14*x^7+2*x^8-4*x^9)

153: (A255455) (1-x-5*x^2+9*x^3-12*x^4+14*x^5-4*x^6+8*x^7)

/(1-6*x+6*x^2+20*x^3-51*x^4+56*x^5-46*x^6+20*x^7-8*x^8)

156: (A255453) (1-x+2*x^2-4*x^3)/((1-x)*(1-5*x+6*x^2-4*x^3))

163: (A255457) (1-x)*(1+x-x^2+x^3)/(1-5*x+24*x^3-15*x^4-17*x^5)

165: (A255447) (1-x)*(1+x)*(1+x-x^2)/((1-x-x^2)*(1-3*x-5*x^2+11*x^3))

166: (A255451) (1+x)/(1-4*x-x^2+4*x^3+8*x^4)

171: (A253067) (1+2*x)*(1+2*x+3*x^2+4*x^3)/(1-x-5*x^2-13*x^3-6*x^4-8*x^5)

255: (A255459) (1-x+6*x^2)/((1-x)*(1-2*x)*(1-3*x))

345: (A255449) (1-x)*(1-x^2-2*x^3-6*x^4)/(1-6*x+10*x^2-8*x^3+15*x^4-10*x^5-10*x^6)

Six cells:

077: (A246036) (1+4*x)/((1+2*x)*(1-4*x))
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137: (A255465) (1+3*x)/((1+x)*(1-4*x))

157: (A255469) (1+x-9*x^2+15*x^3+2*x^4-34*x^5+20*x^6-16*x^7-8*x^8)

/(1-5*x+x^2+25*x^3-44*x^4+2*x^5+56*x^6-40*x^7+24*x^8+16*x^9)

167: (A255467) (1+2*x)*(1-x)/((1-4*x)*(1-2*x)*(1+x))

173: (A255476) (1+2*x)*(1+x-2*x^2-x^3-5*x^4-7*x^5+2*x^6-7*x^7+6*x^8)

/(1-3*x-6*x^2+9*x^3+9*x^4+7*x^5-2*x^6-15*x^7+4*x^8+8*x^9+8*x^10)

175: (A253070) (1+2*x)*(1+x-x^2+x^3+2*x^5)

/(1-3*x-3*x^2+x^3+6*x^4-10*x^5+8*x^6-8*x^7)

176: (A255471) (1+3*x)/((1-x)*(1+2*x)*(1-4*x))

257: (A255474) (1-8*x^2-16*x^3)/((1-4*x)*(1-2*x-4*x^2))

275: (A253068) (1+3*x+4*x^2)/((1-x)*(1+2*x)*(1-4*x))

347: (A253101) (1-3*x^2+4*x^3)/((1-2*x)*(1-4*x+x^2))

356: (A164908) (1+2*x)/(1-4*x)

365: (A255463) (1-x)/((1-3*x)*(1-4*x))

517: (A255461) (1-x)*(1+2*x-3*x^2-6*x^3-2*x^4+4*x^5)

/((1+x)*(1-2*x)*(1-4*x+x^2+2*x^4-4*x^5))

555: (A255296) (1+2*x)*(1-x)/((1-2*x)*(1-3*x-2*x^2))

Seven cells:

177: (A255278) (1+4*x-3*x^3+6*x^4-6*x^5-12*x^6-12*x^7)

/((1+x)*(1-4*x-2*x^2+9*x^3+2*x^4+2*x^5-8*x^6+12*x^7))

277: (A255280) (1+2*x-7*x^2+12*x^3-16*x^5-16*x^6)

/(1-5*x+3*x^2+9*x^3-16*x^4+16*x^6+16*x^7)

357: (A253072) (1+x-16*x^2+28*x^3-8*x^4)/(1-6*x+5*x^2+24*x^3-44*x^4+8*x^5)

367: (A255282) (1+2*x-4*x^2-7*x^3+5*x^4-2*x^5+9*x^7-2*x^8+6*x^9)

/(1-5*x+21*x^3-18*x^4-3*x^5+24*x^6-31*x^7+11*x^8-22*x^9-10*x^10)

376: (A102900) (1+4*x)/((1+x)*(1-4*x))

537: (A255284) (1+4*x)*(1-x)/((1-4*x)*(1-7*x^2))

575: (A246038) (1+2*x)*(1+2*x+4*x^2)/(1-3*x-8*x^3-8*x^4)

Eight cells:

377: (A255276) (1-20*x^2+56*x^3-49*x^4-36*x^5+128*x^6-128*x^7)

/(1-8*x+16*x^2+24*x^3-145*x^4+236*x^5-164*x^6+24*x^7+32*x^8)

577: (A253105) (1+4*x+6*x^3+x^4+8*x^5-4*x^6)

/(1-4*x-6*x^3+29*x^4-12*x^5-8*x^6+8*x^7)

757: (A246030) (1+6*x)/((1+2*x)*(1-4*x))

Nine cells:

777: (A139818) (1+6*x-8*x^2)/((1-x)*(1+2*x)*(1-4*x))

References

[1] D. Applegate, O. E. Pol, and N. J. A. Sloane, The toothpick sequence and other sequences
from cellular automata, Congress. Numerant., 206 (2010), 157–191; http://arxiv.org/abs/
1004.3036.

13

http://arxiv.org/abs/1004.3036
http://arxiv.org/abs/1004.3036


[2] S. B. Ekhad, N. J. A. Sloane, and D. Zeilberger, A meta-algorithm for creating fast algorithms
for counting ON cells in odd-rule cellular automata, 2015; http://arxiv.org/abs/1503.

01796.

[3] S. B. Ekhad, N. J. A. Sloane, and D. Zeilberger, A meta-algorithm for creating fast algorithms
for counting ON cells in odd-rule cellular automata (Maple package), 2015; http://www.math.
rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html.

[4] D. Eppstein, Growth and decay in Life-like cellular automata, 2009; http://arxiv.org/abs/
0911.2890.

[5] E. Fredkin, Digital Mechanics (Working Draft), 2000; http://64.78.31.152/wp-content/

uploads/2012/08/digital_mechanics_book.pdf.

[6] J. Kari, Theory of cellular automata: a survey, Theoret. Comput. Sci., 334 (2005), 3-33.

[7] O. Martin, A. M. Odlyzko, and S. Wolfram, Algebraic properties of cellular automata, Comm.
Math. Phys., 93 (1984), 219–258.

[8] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences; https://oeis.
org.

[9] N. H. Packard and S. Wolfram, Two-dimensional cellular automata, J. Statist. Phys., 38 (1985),
901–946.

[10] N. J. A. Sloane, On the number of ON cells in cellular automata, to appear, 2015; http:

//arxiv.org/abs/1503.01168.

[11] S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, in
Mathematical Problems in the Biological Sciences, ed. R. E. Bellman, Proc. Sympos. Applied
Math., Vol. 14, Amer. Math. Soc., 1962, pp. 215–224.

[12] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601–644.

[13] S. Wolfram, Universality and complexity in cellular automata (Cellular Automata, Los Alamos,
1983), Physica D, 10 (1984, 1-35.

[14] S. Wolfram, A New Kind of Science, Wolfram Media, Champaign, IL, 2002.

2010 Mathematics Subject Classification: Primary 11B85, 37B15.
Keywords: cellular automaton, Moore neighborhood, von Neumann neighborhood, Odd-rule cel-
lular automaton, run length transform, Fredkin Replicator, Rule 110, Rule 150

(Concerned with sequences A000004, A000012, A000079, A000244, A000302, A001045, A001316,
A001834, A007483, A027649, A048883, A071053, A072272, A087206, A102376, A102900, A139818,
A160239, A164908, A245562., A246030, A246035, A246036, A246037, A246038, A246039, A247640,
A247666, A253064, A253065, A253066, A253067, A253068, A253069, A253070, A253071, A253072,
A253100, A253101, A253104, A253105, A255275, A255276, A255277, A255278, A255279, A255280,
A255281, A255282, A255283, A255284, A255295, A255296, A255297, A255298, A255299, A255300,
A255301, A255302, A255303, A255304, A255442, A255443, A255444, A255445, A255446, A255447,

14

http://arxiv.org/abs/1503.01796
http://arxiv.org/abs/1503.01796
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html
http://arxiv.org/abs/0911.2890
http://arxiv.org/abs/0911.2890
http://64.78.31.152/wp-content/uploads/2012/08/digital_mechanics_book.pdf
http://64.78.31.152/wp-content/uploads/2012/08/digital_mechanics_book.pdf
https://oeis.org
https://oeis.org
http://arxiv.org/abs/1503.01168
http://arxiv.org/abs/1503.01168
http://oeis.org/A000004
http://oeis.org/A000012
http://oeis.org/A000079
http://oeis.org/A000244
http://oeis.org/A000302
http://oeis.org/A001045
http://oeis.org/A001316
http://oeis.org/A001834
http://oeis.org/A007483
http://oeis.org/A027649
http://oeis.org/A048883
http://oeis.org/A071053
http://oeis.org/A072272
http://oeis.org/A087206
http://oeis.org/A102376
http://oeis.org/A102900
http://oeis.org/A139818
http://oeis.org/A160239
http://oeis.org/A164908
http://oeis.org/A245562.
http://oeis.org/A246030
http://oeis.org/A246035
http://oeis.org/A246036
http://oeis.org/A246037
http://oeis.org/A246038
http://oeis.org/A246039
http://oeis.org/A247640
http://oeis.org/A247666
http://oeis.org/A253064
http://oeis.org/A253065
http://oeis.org/A253066
http://oeis.org/A253067
http://oeis.org/A253068
http://oeis.org/A253069
http://oeis.org/A253070
http://oeis.org/A253071
http://oeis.org/A253072
http://oeis.org/A253100
http://oeis.org/A253101
http://oeis.org/A253104
http://oeis.org/A253105
http://oeis.org/A255275
http://oeis.org/A255276
http://oeis.org/A255277
http://oeis.org/A255278
http://oeis.org/A255279
http://oeis.org/A255280
http://oeis.org/A255281
http://oeis.org/A255282
http://oeis.org/A255283
http://oeis.org/A255284
http://oeis.org/A255295
http://oeis.org/A255296
http://oeis.org/A255297
http://oeis.org/A255298
http://oeis.org/A255299
http://oeis.org/A255300
http://oeis.org/A255301
http://oeis.org/A255302
http://oeis.org/A255303
http://oeis.org/A255304
http://oeis.org/A255442
http://oeis.org/A255443
http://oeis.org/A255444
http://oeis.org/A255445
http://oeis.org/A255446
http://oeis.org/A255447


A255448, A255449, A255450, A255451, A255452, A255453, A255454, A255455, A255456, A255457,
A255458, A255459, A255460, A255461, A255462, A255463, A255464, A255465, A255466, A255467,
A255468, A255469, A255470, A255471, A255473, A255474, A255475, A255476.)

15

http://oeis.org/A255448
http://oeis.org/A255449
http://oeis.org/A255450
http://oeis.org/A255451
http://oeis.org/A255452
http://oeis.org/A255453
http://oeis.org/A255454
http://oeis.org/A255455
http://oeis.org/A255456
http://oeis.org/A255457
http://oeis.org/A255458
http://oeis.org/A255459
http://oeis.org/A255460
http://oeis.org/A255461
http://oeis.org/A255462
http://oeis.org/A255463
http://oeis.org/A255464
http://oeis.org/A255465
http://oeis.org/A255466
http://oeis.org/A255467
http://oeis.org/A255468
http://oeis.org/A255469
http://oeis.org/A255470
http://oeis.org/A255471
http://oeis.org/A255473
http://oeis.org/A255474
http://oeis.org/A255475
http://oeis.org/A255476

	1 Introduction
	2 Odd-rule CAs
	3 Trivially equivalent neighborhoods
	4  Combinatorially equivalent neighborhoods 
	5  Further topics 
	5.1 The highest growth rate.
	5.2 The lowest growth rate.
	5.3 Explaining combinatorial equivalence.


