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ROOT GEOMETRY OF POLYNOMIAL SEQUENCES II:
TYPE (1, 0)

JONATHAN L. GROSS, TOUFIK MANSOUR, THOMAS W. TUCKER,
AND DAVID G.L. WANG

Abstract. We consider the sequence of polynomials Wn(x) defined by the
recursion Wn(x) = (ax+ b)Wn−1(x) + dWn−2(x), with initial values W0(x) = 1
and W1(x) = t(x − r), where a, b, d, t, r are real numbers, a, t > 0, and d <

0. We show that every polynomial Wn(x) is distinct-real-rooted, and that the
roots of the polynomial Wn(x) interlace the roots of the polynomial Wn−1(x).
We find that, as n → ∞, the sequence of smallest roots of the polynomials
Wn(x) converges decreasingly to a real number, and that the sequence of largest
roots converges increasingly to a real number. Moreover, by using the Dirichlet
approximation theorem, we prove that there is a number to which, for every
positive integer i ≥ 2, the sequence of ith smallest roots of the polynomials
Wn(x) converges. Similarly, there is a number to which, for every positive integer
i ≥ 2, the sequence of ith largest roots of the polynomials Wn(x) converges. It
turns out that these two convergence points are independent of the numbers t

and r, as well as i. We derive explicit expressions for these four limit points,
and we determine completely when some of these limit points coincide.
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1. Introduction

In [14], we initiated study of the root geometry of a recursively defined se-
quence {Wn(x)}n≥0 of polynomials. Originally motivated by the LCGD conjec-
ture from topological graph theory, which says that the genus polynomial of every
graph is log-concave, we are led to study the log-concavity of the polynomials in
{Wn(x)}n≥0; see [10, 12, 13, 15]. Extending our perspective from the arithmetic
property to algebraic structures, and following the spirit of Gian-Carlo Rota, we
study the distribution of the zero-sets of the polynomials {Wn(x)}n≥0. Such a dis-
tribution is called the root geometry of the sequence. General information for the
root geometry of collections of polynomials can be found in Marden [21], Rahman
and Schmeisser [27], and Prasolov [26].

As encountered naturally in biology, economics, computer sciences, combina-
torics, and other branches of mathematics, recurrence relations are among the
most familiar objects that mathematicians work on. Proceeding systematically,
we [14] introduced the concept of a polynomial sequence of type (k, l), which sat-
isfies a recursion of the form

Wn(x) = A(x)Wn−1(x) +B(x)Wn−2(x)

for n ≥ 2, where A(x) and B(x) are polynomials of degrees k and l, respectively,
and where W0(x) is a constant and W1(x) a linear polynomial. For the first non-
trivial case, namely, sequences of type (0, 1), we showed that subject to some
general conditions that hold for all graph genus polynomials, every polynomial is
distinct-real-rooted and that the zero-sets of the polynomials Wn+1(x) and Wn(x)
are interlacing. We also found a sharp bound for the union of all zero-sets over n.

This paper continues the study of root geometry of recursive polynomials, this
time for the second non-trivial case, namely, those of type (1, 0). We will confirm
the distinct-real-rootedness of such polynomials subject to similar general condi-
tions, and we determine the best bound for the union of all zero-sets. By using
Dirichlet’s approximation theorem, we calculate some limit points of the union.
Classical examples for this kind of recursive polynomials include Chebyshev poly-
nomials of the first and second kinds.

This paper is organized as follows. Section 2 contains the root geometry of
polynomial sequences of type (1, 0) as our main result, as well as some applications.
We show a particular case for Theorem 2.4 in Section 3, namely, Theorem 2.6, using
which we complete the proof of Theorem 2.4 in Section 4.
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2. Main Theorem

In this section we describe some information for the root geometry of a polyno-
mial sequence of type (1, 0) as the main result, and we present some applications
for illustration.

2.1. Main result. We begin with definitions and notation needed or the state-
ment of Theorem 2.4, which is our main result.

Definition 2.1. A polynomial is said to be distinct-real-rooted if all its roots are
distinct and real. The set of all its roots is called the zero-set of a polynomial.

Definition 2.2. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn−1} be ordered
sets of real numbers. We say that X interlaces Y , denoted X ⊲⊳ Y , if

x1 < y1 < x2 < y2 < · · · < xn−1 < yn−1 < xn.

A special case is that a singleton set {x} interlaces the empty set.

Notation 2.3. Let {xn}n≥0 be a sequence of real numbers. We write xn ց x if
the sequence converges to the number x decreasingly as n → ∞, and we write
xn ր x if it converges to x increasingly.

Our main result is as follows.

Theorem 2.4. Let {Wn(x)}n≥0 be the polynomial sequence defined recursively by

(2.1) Wn(x) = (ax+ b)Wn−1(x) + d·Wn−2(x),

with W0(x) = 1 and W1(x) = t(x − r), where a, t > 0, d < 0, and b, r ∈ R. Then
the polynomial Wn(x) has degree n and is distinct-real-rooted. Also, we define

r± = − b

a
± |a− 2t|

√
−d

at
,(2.2)

x±∆ =
−b± 2

√
−d

a
, and(2.3)

ξ± =















t(ar − b− 2rt)±
√

t2(ar + b)2 − 4dt(a− t)

2t(a− t)
, if a 6= t;

r − d

a(ar + b)
, if a = t and ar + b 6= 0.

(2.4)

Denote the zero-set of the polynomial Wn(x) by Rn = {ξn,1, ξn,2, . . . , ξn,n} in in-
creasing order. Then we have the interlacing property Rn+1 ⊲⊳ Rn, and the limits

(2.5) ξn,j ց x−∆ and ξn, n+1−j ր x+∆, for all j ≥ 2.

Moreover, we have the following cases of convergence results.

(i) If r ∈ [ r−, r+] and a ≤ 2t, then ξn,1 ց x−∆ and ξn,n ր x+∆.
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(ii) If r ∈ (r−, r+) and a > 2t, then ξn,1 ց ξ− and ξn,n ր ξ+.

(iii) If r = r− and a > 2t, or r < r−, then ξn,1 ց ξ− and ξn,n ր x+∆.

(iv) If r = r+ and a > 2t, or r > r+, then ξn,1 ց x−∆ and ξn,n ր ξ+.

Recall from [14] that the sequence of largest roots of a polynomial sequence
of type (0, 1) converges to a real number in an oscillating manner. In contrast,
for any polynomial sequence of type (1, 0), the sequence of ith smallest roots
converges decreasingly as n→ ∞, and the sequence of ith largest roots converges
increasingly.

Remark. The numbers ξ± are not defined when a = t and ar + b = 0. This is an
instance of Case (i) of Theorem 2.4.

To give a proof of Theorem 2.4, we state its normalized version as Theorem 2.6.
The following notion of (1, 0)-sequence of polynomials is the key object we will
study; see Section 3. As will be seen, Theorem 2.6 implies Theorem 2.4.

Definition 2.5. Let {Wn(x)}n≥0 be the polynomial sequence defined recursively
by

Wn(x) = (ax+ b)Wn−1(x) + dWn−2(x),

with W0(x) = 1 and W1(x) = x, where a > 0, b ≥ 0 and d < 0. In this context, we
say {Wn(x)}n≥0 is a normalized (1, 0)-sequence of polynomials, or a (1, 0)-sequence
for short. The following theorem concerns the particular case of Theorem 2.4 for
which t = 1, r = 0, and b ≥ 0.

Theorem 2.6. Let {Wn(x)}n≥0 be a (1, 0)-sequence. Then the polynomial Wn(x)
has degree n and is distinct-real-rooted. Let

b0 = |a− 2|
√
−d and(2.6)

x±g =















−b±
√

b2 − 4d(a− 1)

2(a− 1)
, if a 6= 1;

−d
b
, if a = 1 and b 6= 0.

(2.7)

Denote the zero-set of the polynomial Wn(x) by Rn = {ξn,1, ξn,2, . . . , ξn,n} in in-
creasing order. Then we have Rn+1 ⊲⊳ Rn and Result (2.5). Moreover, we have the
following.

(i) If a ≤ 2 and b ≤ b0, then ξn,1 ց x−∆ and ξn,n ր x+∆.

(ii) If a > 2 and b < b0, then ξn,1 ց x−g and ξn,n ր x+g .

(iii) Otherwise, we have ξn,1 ց x−∆ and ξn,n ր x+g .

We note that the limit points x±∆ are independent of the numbers t and r.
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2.2. Some examples. In this subsection, we present several applications of our
results.

Example 2.7. Let Wn(x) be the polynomials defined by the recursion

Wn(x) = 2xWn−1(x)−Wn−2(x),

with W0(x) = 1 and W1(x) linear. By Theorem 2.4, every polynomial Wn(x) is of
degree n and distinct-real-rooted. Moreover, we have

ξn,j ց −1 and ξn, n+1−j ր 1 for all j ≥ 2.

If W1(x) = x, then Theorem 2.4 (i) gives that

(2.8) ξn,1 ց −1 and ξn,n ր 1.

In fact, the polynomials Wn(x) are Chebyshev polynomials of the first kind, whose
zero-sets are known to be

Rn =

{

cos
(2j − 1)π

2n
: j ∈ [n]

}

.

If W1(x) = 2x, then Theorem 2.4 (i) also yields Result (2.8). In this case, the
polynomials Wn(x) are Chebyshev polynomials of the second kind, whose zero-sets
are known to be

Rn =

{

cos
jπ

n + 1
: j ∈ [n]

}

.

If W1(x) = x/2, then Theorem 2.4 (ii) implies

ξn,1 ց −2/
√
3 and ξn,n ր 2/

√
3.

If W1(x) = x+ 1, then Theorem 2.4 (iii) implies that

ξn,1 ց −
√
2 and ξn,n ր 1.

If W1(x) = x− 2, then Theorem 2.4 (iv) implies

ξn,1 ց −1 and ξn,n ր
√
5.

Example 2.8. Suppose that W0(x) = 1, W1(x) = x− 1, and

Wn(x) = xWn−1(x)−Wn−2(x).

2.4 (i) implies that ξn,j ց −2 and ξn, n+1−j ր 2 for all j ≥ 1. In fact, the zero-set
Rn of the polynomial Wn(x) is known [29, A130777] to be

Rn =

{

−2 cos
2jπ

2n + 1
: j ∈ [n]

}

.

Example 2.9. Suppose that W0(x) = 1, W1(x) = x+ 1, and

Wn(x) = (x+ 1)Wn−1(x)−Wn−2(x).

2.4 (i) implies that ξn,j ց −3 and ξn, n+1−j ր 1 for all j ≥ 1; see [29, A101950].
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Example 2.10. Suppose we have W0(x) = 1, W1(x) = x− 1, and

Wn(x) = (x− 1)Wn−1(x)−Wn−2(x).

From 2.4 (i) we infer that ξn,j ց −1 and ξn, n+1−j ր 3 for all j ≥ 1; see [29,
A104562].

We will prove Theorem 2.4 in the next two sections. In Section 3, we show it
for a particular kind of polynomial sequence of type (1, 0), in which W1(x) = x
and b ≥ 0. In Section 4, we complete the proof of Theorem 2.4 by translating and
scaling the roots, so as to drop these two conditions.

3. Proof of Theorem 2.6

We start by determining the degree and the leading coefficient of every polyno-
mial in a (1, 0)-sequence.

Lemma 3.1. Let {Wn(x)}n≥0 be a (1, 0)-sequence. Then every polynomial Wn(x)
has degree n and leading coefficient an−1.

Proof. This lemma follows from consideration of the contributions of the sum-
mands (ax+ b)Wn−1(x) and dWn−2(x) to the degree and to the leading coefficient
of the polynomial Wn(x). �

The next lemma is a cornerstone for studying the root geometry of polynomials
defined by recursions of order 2; see [14].

Lemma 3.2. Let A,B ∈ R such that A 6= 0. Define Wn = AWn−1 + BWn−2

recursively, with W0 = 1 and with some number W1. Writing ∆ = A2 + 4B and
g± = (2W1 −A±

√
∆)/2, we have

Wn =



















(

1 +
n(2W1 −A)

A

)(

A

2

)n

, if ∆ = 0;

g+(A+
√
∆)n − g−(A−

√
∆)n

2n
√
∆

, if ∆ 6= 0.

In particular, if the complex number A +
√
∆ has the polar representation Reiθ,

then we have

Wn =

(

R

2

)n(

cosnθ +
(2W1 −A) sinnθ√

−∆

)

, if ∆ < 0.
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3.1. The distinct-real-rootedness. In this subsection we prove the distinct-
real-rootedness of every polynomial in a (1, 0)-sequence. and we derive a bound
for the union of the zero-sets of these polynomials. Both of them will be shown
by applying an interlacing criterion, which we now develop.

Notation 3.3. For any integers m ≤ n, we denote the set {m, m+ 1, . . . , n} by
[m,n]. When m = 1, we denote the set [1, n] by [n]. All sets mentioned in this
paper are ordered sets, whose elements are arranged in increasing order.

Lemma 3.4. Let g(x) be a polynomial with zero-set Y . Let X = {x1, x2, . . . , xm+1}
be a set such that X ⊲⊳ Y . And let α and β be numbers such that

α < x1 < x2 < · · · < xm+1 < β.

Then for every i ∈ [m+ 1], we have

g(α)g(xi)(−1)i < 0, and(3.1)

g(xi)g(β)(−1)m−i < 0.(3.2)

Proof. By the premise X ⊲⊳ Y , the polynomial g(x) has no roots less than x1. In
particular, no root lies in the interval (α, x1). Hence, from the intermediate value
theorem, we infer that

(3.3) g(α)g(x1) > 0.

This confirms Ineq. (3.1) for i = 1.
From the premise X ⊲⊳ Y , we also know that the polynomial g(x) has exactly one

root in the interval (xi−1, xi) for each integer i ∈ [2, m+1]. Here, the intermediate
value theorem implies

−g(x1)g(x2) > 0 (i = 2),

−g(x2)g(x3) > 0 (i = 3),

...

−g(xm)g(xm+1) > 0 (i = m+ 1).

Multiplying the first i − 1 of these inequalities yields g(x1)g(xi)(−1)i−1 > 0, or
equivalently,

(3.4) g(x1)g(xi)(−1)i < 0.

Multiplying Ineq. (3.4) by Ineq. (3.3) yields Ineq. (3.1) for i ∈ [2, m+1]. Inequal-
ity (3.2) can be obtained similarly. �

The next lemma provides a way to bound the set of roots of the polynomials in
a (1, 0)-sequence. It serves as the induction step of the theorem that follows.



8 J.L. GROSS, T. MANSOUR, T.W. TUCKER, AND D.G.L. WANG

Lemma 3.5. Let {Wn(x)}n≥0 be a (1, 0)-sequence. Let m ≥ 0 and α, β ∈ R. Let
Rm denote the zero-set of the polynomial Wm(x). Suppose that

Wm(α)Wm+2(α) > 0 and(3.5)

Wm(β)Wm+2(β) > 0,(3.6)

and also that

(3.7) |Rm+1| = m+ 1, Rm+1 ⊂ (α, β), and Rm+1 ⊲⊳ Rm.

Then we have

(3.8) |Rm+2| = m+ 2, Rm+2 ⊂ (α, β), and Rm+2 ⊲⊳ Rm+1.

Proof. Since |Rm+1| = m+ 1 and Rm+1 ⊂ (α, β), we can write

Rm+1 = {x1, x2, . . . , xm+1},
where α < x1 < x2 < · · · < xm+1 < β. Since Rm+1 ⊲⊳ Rm, we can infer from
Lemma 3.4 that

Wm(α)Wm(xi)(−1)i < 0, and(3.9)

Wm(xi)Wm(β)(−1)m−i < 0,(3.10)

for every i ∈ [m+1]. On the other hand, setting x = xi in Recursion (2.1), we see
that

Wm+2(xi) = (axi + b)Wm+1(xi) + d·Wm(xi)

= d·Wm(xi) (since xi ∈ Rm+1),

or equivalently,

(3.11) Wm(xi) = Wm+2(xi)/d.

Since d < 0, substituting Eq. (3.11) into Ineq. (3.9), we see that

Wm(α)Wm+2(xi)(−1)i > 0.

Multiplying this by Ineq. (3.5) of the premises and canceling the square (which is
positive), we determine that

(3.12) Wm+2(α)Wm+2(xi)(−1)i > 0 for all i ∈ [m+ 1].

Inequality (3.5) implies that Wm+2(α) 6= 0.

Now define x0 = α. Then Ineq. (3.12) holds for i = 0 trivially. Consequently, we
can replace the index i in the above inequality by i−1 for each integer i ∈ [m+1],
which gives that

(3.13) Wm+2(α)Wm+2(xi−1)(−1)i−1 > 0.

Multiplying Ineqs. (3.12) and (3.13) produces

Wm+2(xi−1)Wm+2(xi) < 0.
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Therefore, by the intermediate value theorem, the polynomial Wm+2(x) has a root
in the interval (xi−1, xi). Let zi be such a root for each i ∈ [m+1]. Then we have
the iterated inequality

(3.14) α < z1 < x1 < z2 < x2 < · · · < zm < xm < zm+1 < xm+1.

On the other hand, substituting Eq. (3.11) into Ineq. (3.10) gives

Wm+2(xi)Wm(β)(−1)m−i > 0.

Multiplying this by Ineq. (3.6) (and canceling the square), we find that

Wm+2(xi)Wm+2(β)(−1)m−i > 0.

When i = m+ 1, this latter inequality becomes

Wm+2(xm+1)Wm+2(β) < 0.

Again by the intermediate value theorem, the polynomialWm+2(x) has a root zm+2

in the interval (xm+1, β). Combining with Relation (3.14), we obtain

α < z1 < x1 < z2 < x2 < · · · < zm+1 < xm+1 < zm+2 < β.

We now define T = {z1, z2, . . . , zm+2}. The ordering immediately above implies
that

|T | = m+ 2, T ⊂ (α, β), and T ⊲⊳ Rm+1.

Thus, to complete the proof, it suffices to show that T = Rm+2. In fact, by the
choice of the numbers zj , we have T ⊆ Rm+2. By Lemma 3.1, the polynomial
Wm+2(x) has degree m + 2. Thus, the zero-set Rm+2 has cardinality at most
m + 2. Since it contains the subset T with cardinality m + 2, we conclude that
Rm+2 = T . �

Using Lemma 3.5 as the induction step, we now establish a criterion for a bound
on the union ∪n≥1Rn of the zero-sets, which will be used in the proof of Theo-
rem 3.12.

Corollary 3.6. Let {Wn(x)}n≥0 be a (1, 0)-sequence, and let Rn denote the zero-set
of the polynomialWn(x). Suppose that there are numbers α and β, with α < 0 < β,
such that Ineqs. (3.5) and (3.6) hold for all m ≥ 0. Then we have the three relations
|Rn| = n, Rn ⊂ (α, β), and Rn ⊲⊳ Rn−1, for all n ≥ 1.

Proof. Since W1(x) = x, we have R1 = {0}. Thus the inequality α < 0 < β is
equivalent to the relation R1 ⊂ (α, β). Since W0(x) = 1, we have R0 = ∅. As
per Definition 2.2, the relation R1 ⊲⊳ R0 holds trivially. This proves the desired
relations for n = 1.

Now suppose that they are true for some index n = m + 1, where m ≥ 0. By
induction, all the three relations in (3.7) hold true. Since Ineqs. (3.5) and (3.6)
hold by the premise, by Lemma 3.5, we obtain the three relations in (3.8). In
other words, the desired relations hold for the index n = m + 2. This completes
the proof. �
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In order to establish the real-rootedness of every polynomial in a (1, 0)-sequence,
we will construct two real numbers α and β satisfying the premises of Corollary 3.6.
Inspired by Lemma 3.2, we employ the following notations.

Notation 3.7. Let {Wn(x)}n≥0 be a (1, 0)-sequence. We define

A(x) = ax+ b,

∆(x) = A2(x) + 4d,(3.15)

f(x) = 2W1(x)− A(x) = (2− a)x− b,(3.16)

g±(x) =
(

f(x)±
√

∆(x)
)

/2, and(3.17)

g(x) = g−(x)g+(x) = (1− a)x2 − bx− d.(3.18)

The roots x±∆ of the function ∆(x) are given in Definition (2.3), and the roots
x±g of the function g(x) are given in Definition (2.7). 3.8 collects some information

for the numbers x±∆.

Lemma 3.8. Let {Wn(x)}n≥0 be a (1, 0)-sequence. Let n ≥ 0. Then we have

A(x±∆) = ax±∆ + b = ±2
√
−d,(3.19)

f(x−∆) =
2

a

(

(a− 2)
√
−d− b

)

,(3.20)

f(x+∆) =
2

a

(

(2− a)
√
−d− b

)

, and(3.21)

Wn(x
±
∆) =

(

1 + n· f(x
±
∆)

A(x±∆)

)(

A(x±∆)

2

)n

.(3.22)

Consequently, we have the following.

A(x−∆) < 0 < A(x+∆),(3.23)

f(x−∆) > 0 ⇐⇒ b < (a− 2)
√
−d, and(3.24)

f(x+∆) < 0 ⇐⇒ b > (2− a)
√
−d.(3.25)

We also have the implication

(3.26) f(x−∆) > 0 =⇒ a > 2 =⇒ f(x+∆) < 0.

Proof. From Notation 3.7, it is straightforward to compute Eqs. (3.19) — (3.21).
Since ∆(x±∆) = 0, 3.2 implies Eq. (3.22). Inequality (3.23) and Relations (3.24)
and (3.25) follow from Eqs. (3.19), (3.20) and (3.21), respectively. From Re-
lation (3.24), we see that the inequality f(x−∆) > 0 implies that a > 2, and
consequently, b ≥ 0 > (2 − a)

√
−d. Then, from Relation (3.25), we infer Re-

lation (3.26). �



11

Our direction is toward showing in Section 3.4 that the numbers x±∆ are limit
points of the union ∪n≥1Rn. As will be seen, Relation (3.26) plays a crucial role in
splitting cases in the statement of our main theorem, Theorem 2.4. In Lemma 3.9
and Lemma 3.10 we are collecting some information regarding the numbers x±g
that we defined in the statement of Theorem 2.6.

Lemma 3.9. Let {Wn(x)}n≥0 be a (1, 0)-sequence, and suppose that the numbers
x−g and x+g are both real. Then we have Wn(x

±
g ) = (x±g )

n. Moreover, we have the
following.

(i) If a ≤ 1, then 0 < x+g ≤ x−g , and Wn(x
±
g ) > 0.

(ii) If a > 1, then x−g < 0 < x+g , Wn(x
−
g )(−1)n > 0, and Wn(x

+
g ) > 0.

Proof. See Appendix A. �

We will show in Section 3.3 that, in some cases, the numbers x±g are also limit
points of the union ∪n≥1Rn. In order to give a bound for the union ∪n≥1Rn, we
need to be clear about the ordering among the numbers x±∆ and x±g . 3.10 collects
necessary information for this purpose.

Lemma 3.10. Suppose that f(x+∆) < 0, where the function f(x) is given by Defi-
nition (3.16). Then the numbers x±g are well-defined and real. Moreover, we have

x+g > x+∆. If additionally we have f(x−∆) > 0, then x−g < x−∆.

Proof. See Appendix B. �

We are now ready to define a suitable interval (α, β) to be used in applying
Corollary 3.6.

Notation 3.11. Let J∆ = (x−∆, x
+

∆). With the aid of Relation (3.26), we can
define the interval

(3.27) J0 =















(x−∆, x
+

∆), if f(x+∆) ≥ 0;

(x−g , x
+
g ), if f(x−∆) > 0;

(x−∆, x
+
g ), otherwise.

Note that x−∆ < x+∆. We see from Lemma 3.10 that J0 is a well-defined interval,
and that it contains J∆ as a non-empty subinterval, namely,

(3.28) J∆ ⊆ J0.

This has prepared us to establish the distinct-real-rootedness of the polynomials
Wn(x).

Theorem 3.12. Let {Wn(x)}n≥0 be a (1, 0)-sequence. Then each of the polyno-
mials Wn(x) is distinct-real-rooted. Moreover, we have Rn ⊂ J0 and Rn+1 ⊲⊳ Rn.
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Proof. Let (α, β) denote the interval J0. By Definition (3.27), we have

α =

{

x−g , if f(x−∆) > 0,

x−∆, if f(x−∆) ≤ 0;
and β =

{

x+g , if f(x+∆) < 0,

x+∆, if f(x+∆) ≥ 0.

To apply Corollary 3.6, we will first show that α < 0 and β > 0 and then that
Ineqs. (3.5) and (3.6) hold for all m ≥ 0.

First, we show that α < 0. If f(x−∆) > 0, then we have a > 2 from Re-
lation (3.26), which implies that x−g < 0, by Lemma 3.9 (ii). Alternatively, if

f(x−∆) ≤ 0, then it follows from Definition (2.3) of the number x−∆ as (−b−2
√
−d)/a

that x−∆ < 0, since a > 0 and b ≥ 0. This proves α < 0.
Second, we show that β > 0. If f(x+∆) < 0, then we have x+g > 0, by Lemma 3.9.

Alternatively, if f(x+∆) ≥ 0, we deduce from Relation (3.25) that b ≤ (2−a)
√
−d <

2
√
−d. Thus, from Definition (2.3) of the number x+∆ as (−b+2

√
−d)/a, if follows

that x+∆ > 0. This proves β > 0.
Now, for Ineqs. (3.5) and (3.6), we need to show that

(3.29) Wm(x)Wm+2(x) > 0, for all m ≥ 0, and for both x ∈ {α, β}.
Since {α, β} ⊆ {x±g , x±∆}, we have x ∈ {x±g , x±∆}.

When x ∈ {x±g }, we have from Lemma 3.9 that Wm(x)Wm+2(x) = x2m+2 ≥ 0.
3.9 also tells us x±g 6= 0. Thus we have Wm(x

±
g )Wm+2(x

±
g ) > 0.

When x ∈ {x±∆}, Eq. (3.22) implies that

Wm(x)Wm+2(x) =

(

1 +m· f(x)
A(x)

)(

1 + (m+ 2)· f(x)
A(x)

)(

A(x)

2

)2m+2

.

To show Ineq. (3.29), it suffices (sincem ≥ 0) to show that f(x)/A(x) ≥ 0. For x =
x−∆, we have x = α, with the additional condition f(x−∆) ≤ 0. From Ineq. (3.23),
we infer that f(x−∆)/A(x

−
∆) ≥ 0. If x = x+∆, we have x = β, with the additional

condition f(x+∆) ≥ 0. Again from Ineq. (3.23), we infer that f(x+∆)/A(x
+

∆) ≥ 0. �

We see from Theorem 3.12 that the union ∪n≥1Rn is contained within the in-
terval J0. We will show that the interval J0 is sharp as a bound of that union, by
establishing in the next three subsections that each of its endpoints is a limit point
of that union; see Theorem 3.16, Theorem 3.18, Theorem 3.22, and Theorem 3.26.
Before this, we highlight the important role of the subinterval J∆, by proving that
it contains almost all members of the union ∪n≥1Rn.

3.2. The quasi-bound J∆. By Theorem 3.12, each of the polynomials Wn(x)
is distinct-real-rooted. In order to describe the position of the smallest and the
largest roots clearly, we introduce the following notation.

Definition 3.13. A set {x1, x2, . . . , xn} of real numbers is said to be ordered or
in increasing order, if x1 < x2 < · · · < xn.
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The following theorem shows that the subinterval J∆ contains all except at most
two roots of each polynomial Wn(x).

Theorem 3.14. Let {Wn(x)}n≥0 be a (1, 0)-sequence, in which each polynomial
Wn(x) has the ordered zero-set Rn = {ξn,1, ξn,2, . . . , ξn,n}.
(i) When f(x−∆) > 0, we have the following.

• If n < −A(x−∆)/f(x−∆), then ξn,1 > x−∆.

• If n = −A(x−∆)/f(x−∆), then ξn,1 = x−∆.

• If n > −A(x−∆)/f(x−∆), then ξn,1 < x−∆. In this case, we have x−∆ < ξn,2 for
all n ≥ 2.

(ii) When f(x+∆) < 0, we have the following.

• If n < −A(x+∆)/f(x+∆), then ξn,n < x+∆.

• If n = −A(x+∆)/f(x+∆), then ξn,n = x+∆.

• If n > −A(x+∆)/f(x+∆), then ξn,n > x+∆. In this case, we have ξn, n−1 < x+∆
for all n ≥ 2.

Proof. We define

(3.30) n± = −A(x
±
∆)

f(x±∆)
.

Then Eq. (3.22) can be rewritten as

(3.31) Wn(x
±
∆) =

(

1− n

n±

)(

A(x±∆)

2

)n

.

We shall show (i) and (ii) individually.

(i) Suppose that

(3.32) f(x−∆) > 0.

From Ineq. (3.23), we see that

(3.33) A(x−∆) < 0.

Together with Ineq. (3.32), we can see from Definition (3.30) that

(3.34) n− > 0.

Now, in view of Eq. (3.31) and Ineqs. (3.33) and (3.34), we infer that

(3.35) (−1)n(n− n−)Wn(x
−
∆) = −(n− n−)2

n−

(−A(x−∆)
2

)n

≤ 0,

where the equality holds if and only if n = n−. On the other hand, Relation (3.26)
with Ineq. (3.32) tells us a > 2. Thus, we infer from Lemma 3.9 (ii) that

(3.36) Wn(x
−
g )(−1)n > 0.
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Multiplying Ineqs. (3.35) and (3.36), we find

(3.37) Wn(x
−
g )Wn(x

−
∆)(n− n−) ≤ 0,

where the equality holds if and only if n = n−.
According to Definition (3.27), we have J0 = (x−g , x

+
g ). From Relation (3.28),

we infer that

(3.38) x−g < x−∆ < x+∆ < x+g .

Thus we can define the interval

J− = (x−g , x
−
∆).

By Theorem 3.12, the roots of the polynomials Wn+1(x) and Wn(x) are interlacing
in the interval J0. Since the interval J

− is “a left part” of the interval J0, we infer
that in J−, the polynomial Wn+1(x) has the same number of roots or one more
root than the polynomial Wn(x). In notation, we let

(3.39) Nn = |Rn ∩ J−|.
Then the above argument can be expressed as

(3.40) Nn −Nn−1 ∈ {0, 1} for all n ≥ 1.

Below we show Result (i) by bootstrapping.

Case n < n−. Since the zero-set R0 is empty, we infer from Definition (3.39) that
N0 = 0. We claim that

Nn = 0, for all n < n−.

If n− ≤ 1, then the claim holds true trivially. Below we suppose that n− > 1.
We proceed by induction on n. Suppose that Nm−1 = 0 for some 1 ≤ m < n−.
From Relation (3.40), we infer that

(3.41) Nm ∈ {0, 1}.
Since n < n−, Ineq. (3.37) implies that Wn(x

−
g )Wn(x

−
∆) > 0. In other words, at

the ends of the interval J−, the continuous function Wn(x) admits the same sign.
Therefore, from the intermediate value theorem, we infer that Wn(x) has an even
number of roots in the interval J−, namely, the integer Nn is even as if n < n−.
In view of Eq. (3.41), we find that Nm = 0. This proves the claim.

The claim, in fact, states that the polynomial Wn(x) has no roots in the interval
J− = (x−g , x

−
∆). Recall from Theorem 3.12 that all roots ofWn(x) lie in the interval

J0 = (x−g , x
+
g ). Therefore, the bound of the roots of Wn(x) can be improved to

the interval [x−∆, x
+
g ). Moreover, it is easy to see that Wn(x

−
∆) 6= 0 from Eq. (3.31).

Hence, we obtain that Rn ⊂ (x−∆, x
+
g ). In particular, we have

(3.42) ξn,1 > x−∆ for all n < n−.
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Case n = n−. From Eq. (3.31), we see that

Wn(x
−
∆) =

(

1− n

n−

)(

A(x−∆)

2

)n

= 0.

In other words, the number x−∆ is a root of the polynomial Wn(x). We shall show
that x−∆ is the smallest root of Wn(x).

If n = 1, then the polynomialWn(x) = W1(x) = x has only one root. Therefore,
the root x−∆ has to be the smallest root. When n ≥ 2, the interlacing property
Rn ⊲⊳ Rn−1 implies that ξn,2 > ξn−1, 1. From Result (3.42), we infer that ξn−1, 1 >
x−∆. It follows that ξn,2 > x−∆. In other words, the second smallest root of the
polynomial Wn(x) is larger than the root x−∆. It turns out immediately that the
root x−∆ is the smallest one, namely,

(3.43) ξn,1 = x−∆, if n = n−.

Case n > n−. In this case, Ineq. (3.37) reads that Wn(x
−
g )Wn(x

−
∆) < 0. As in

the case n < n−, we can deduce by using the intermediate value theorem that the
integer Nn is odd. In particular, we have Nn ≥ 1.

We claim that

(3.44) Nn = 1 for all n > n−.

Combining Results (3.42) and (3.43), we see that for any m ≤ n−, the smallest
root of the polynomialWm(x) is at least x

−
∆. It follows that Nm = 0. In particular,

we have N⌊n−⌋ = 0. Thus, by Relation (3.40), we have

N⌊n−⌋+1 ∈ {0, 1}.
Since ⌊n−⌋+1 > n−, the integer N⌊n−⌋+1 is odd. Thus N⌊n−⌋+1 = 1. Proceeding by
induction, we can suppose that Nn = 1 for some n > n−. By Relation (3.40), we
infer that Nn+1 ∈ {1, 2}. Since the integer Nn+1 is odd, we deduce that Nn+1 = 1.
This confirms the claim.

By Definition (3.39) of the number Nn as |Rn ∩ (x−g , x
−
∆)|, Result (3.44) implies

that ξn,1 < x−∆ if n > n−. From Eq. (3.31), we see that Wn(x
−
∆) 6= 0. Together

with Result (3.44), we obtain that ξn,2 > x−∆ as if n > n− and n ≥ 2.
This completes the proof of (i).

(ii) Suppose that f(x+∆) < 0. Analogous to Ineq. (3.37), one may show that

(3.45) Wn(x
+

∆)Wn(x
+
g )(n− n+) ≤ 0,

where the equality holds if and only if n = n+.
According to Definition (3.27), we have J0 = (x−g , x

+
g ) or J0 = (x−∆, x

+
g ). From

Relation (3.28), we can define

N+
n = |Rn ∩ (x+∆, x

+
g )|.



16 J.L. GROSS, T. MANSOUR, T.W. TUCKER, AND D.G.L. WANG

Since the interval (x+∆, x
+
g ) is “a right part” of the interval J0, the interlacing

property implies that

(3.46) N+
n −N+

n−1 ∈ {0, 1} for all n ≥ 1.

Similar to (i), by using the intermediate value theorem, the parity arguments, with
the aids of Ineq. (3.45) and Relation (3.46), we can show the desired results in (ii).

This completes the proof of Theorem 3.14. �

3.3. The numbers x±g can be limit points. From Theorem 3.14, we see that

when f(x−∆) > 0, the smallest roots are eventually less than the number x−∆. 3.16
shows that they converge to the number x−g . Similarly, when f(x+∆) < 0, the largest

roots are eventually larger than the number x+∆. 3.18 shows that they converge
to the number x+g in that case.

In the proofs of these two theorems, we will use Formula (3.47), which is obtained
from Lemma 3.2 straightforwardly.

Proposition 3.15. If ∆(x0) > 0, then

(3.47) Wn(x0) =

(

A(x0)+
√

∆(x0)
)n

2n
√

∆(x0)

[

g+(x0)− g−(x0)

(

A(x0)−
√

∆(x0)

A(x0) +
√

∆(x0)

)n
]

.

Theorem 3.16. Let {Wn(x)}n≥0 be a (1, 0)-sequence. If f(x−∆) > 0, then ξn,1 ց
x−g .

Proof. Suppose that f(x−∆) > 0. Then a > 2 by Relation (3.26).
By Theorem 3.14 (i), we have ξn,1 ∈ (x−g , x

−
∆) for large n. The property Rn+1 ⊲⊳

Rn obtained in Theorem 3.12 implies that the sequence ξn,1 decreases. Therefore,
there exists a number ξ− ∈ [x−g , x

−
∆) such that limn→∞ ξn,1 = ξ−. Suppose, to the

contrary, that ξ− 6= x−g . Let x0 ∈ (x−g , ξ
−). Then

(3.48) x−g < x0 < ξ− < x−∆ < −b/a.
We claim that

(3.49) g−(x0) ≤ 0.

Since the interval (x−g , ξ
−) contains no roots of any polynomial Wn(x), by the

intermediate value theorem, we infer that

Wn(x
−
g )Wn(x0) > 0.

Since a > 2, by Lemma 3.9 (ii), we have Wn(x
−
g )(−1)n > 0. Together with the

above inequality, we derive that Wn(x0)(−1)n > 0. In particular, we have

(3.50) Wn(x0) > 0 for all positive even integers n.
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On the other hand, since a > 0, the function A(x) = ax + b is increasing. From
Relation (3.48), we see that x0 < −b/a, and thus, A(x0) < A(−b/a) = 0. Since
d < 0, from Definition (3.15), we deduce that

A(x0)−
√

∆(x0) < A(x0) +
√

∆(x0) = A(x0) +
√

A2(x0) + 4d < 0.

Therefore, we have

(3.51)
A(x0)−

√

∆(x0)

A(x0) +
√

∆(x0)
> 1.

Set n to be a large even integer. By Definition (2.3), the function ∆(x) =
(ax+ b)2 + 4d is a quadratic polynomial with a positive leading coefficient. From
Relation (3.48), we see that x0 < x−∆, and thus, ∆(x0) > 0. By Ineq. (3.50), the
right hand side of Formula (3.47) is positive. In view of Ineq. (3.51), we deduce
that g−(x0) ≤ 0. This confirms the claim.

Since a > 2, by Definition (3.16), the function f(x) = (2−a)x− b is decreasing.
Since x0 < x−∆, we infer that f(x0) > f(x−∆) > 0. Thus, by Definition (3.17), we

obtain that g+(x0) = (f(x0) +
√

∆(x0))/2 > 0. Together with Ineq. (3.49), we
derive that

(3.52) g(x0) = g−(x0)g
+(x0) ≤ 0.

From Definition (3.18), we see that g(x) = (1−a)x2−bx−d is a quadratic polyno-
mial with negative leading coefficient. Thus we have g(x) > 0 for all x ∈ (x−g , x

+
g ).

By Lemma 3.10, we have x−g < x−∆ < x+∆ < x+g . Together with Relation (3.48), we
deduce that x0 ∈ (x−g , x

+
g ), and thus, g(x0) > 0, contradicting Ineq. (3.52). This

completes the proof. �

To show that the number x+g can be a limit point, we need the following lemma.

Lemma 3.17. If f(x+∆) < 0, then f(x) < 0 for all x ∈ (x+∆, x
+
g ).

Proof. See Appendix C. �

The proof of the limit point x+g is similar to the proof of the limit point x−g .

Theorem 3.18. Let {Wn(x)}n≥0 be a (1, 0)-sequence. If f(x+∆) < 0, then ξn,n ր
x+g .

Proof. Suppose that f(x+∆) < 0. Suppose, by way of contradiction, that the con-
vergent point of the largest roots is not the number x+g . Then, there exists a

number x0 ∈ (x+∆, x
+
g ) such that Wn(x0)Wn(x

+
g ) > 0, that is,

(3.53) Wn(x0) > 0.

Similar to the proof of Theorem 3.16, we can show that A(x0) > 0, ∆(x0) > 0,
and

A(x0) +
√

∆(x0) > A(x0)−
√

∆(x0) = A(x0)−
√

A2(x0) + 4d > 0.
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Therefore, we have

(3.54)
A(x0)−

√

∆(x0)

A(x0) +
√

∆(x0)
∈ (0, 1).

Set n to be a large even integer. By Ineq. (3.53), the right hand side of For-
mula (3.47) is positive. In view of Relation (3.54), we infer that

(3.55) g+(x0) ≥ 0.

By Lemma 3.17, we have f(x0) < 0. Therefore, g−(x0) = f(x0) −
√

∆(x0) < 0,
and thus,

g(x0) = g−(x0)g
+(x0) ≤ 0.

Below, we show that g(x0) > 0, which implies an immediate contradiction. Recall
from Definition (3.18) that g(x) = (1− a)x2 − bx− d.

• When a < 1, the quadratic function g(x) has a positive leading coefficient.
On the other hand, by Lemma 3.9 (i), the number x+g is the smaller root
of the function g(x). Therefore, we have g(x) > 0 for all x < x+g . In
particular, we have g(x0) > 0.

• When a = 1, we have g(x) = −bx − d. If b = 0, then g(x) = −d > 0 for
all x ∈ R. Otherwise b > 0, then the function g(x) is decreasing. Thus, for
any x < x+g , we have g(x) > g(x+g ) = 0. In particular, we have g(x0) > 0.

• When a > 1, the leading coefficient of the quadratic function g(x) is neg-
ative. On the other hand, by Lemma 3.9 (ii), the number x+g is the larger
root of the function g(x). Therefore, we have g(x) > 0 for all x ∈ (x−g , x

+
g ).

In particular, we have g(x0) > 0, by Lemma 3.10.

This completes the proof. �

3.4. The numbers x±∆ are limit points. In this subsection, we will show that
the numbers x±∆ are limit points of the union ∪n≥1Rn. For proof convenience, we
will adopt the polar coordinate system.

Definition 3.19. Let θ ∈ R. We define the principal value of the number θ,
denote by pv(θ), to be the unique number θ′ ∈ [ 0, 2π) such that the difference
θ − θ′ is an integral multiple of the number 2π. In the polar coordinate system,
we adopt the wording

• the angle θ, to mean the angle of size θ;

• the ray θ, to mean the ray starting from the origin with the incline angle
pv(θ); and

• the line θ, to mean the line on which lies the ray θ.

Let ψ ∈ [ 0, π). We say that the angle θ lies

• to the left of the line ψ, if θ ∈ (ψ+2kπ, ψ+(2k+1)π) for some integer k;
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• to the right of the line ψ, if θ ∈ (ψ + (2k − 1)π, ψ + 2kπ) for some integer
k;

• on the line ψ, if the line θ coincides with the line ψ.

For example, when ψ ∈ [ 0, π/2) (resp., ψ ∈ (π/2, π)), the angle θ lies to the left
of the line ψ if and only if it is above (resp., below) the line ψ, intuitively.

To characterize the sign of the value Wn(x) for the real numbers x such that
∆(x) < 0, we need the following notation.

Notation 3.20. Let {Wn(x)}n≥0 be a (1, 0)-sequence. Let x ∈ R such that ∆(x) <
0. Define the angle θx ∈ (0, π) by

(3.56) tan θx =

√

−∆(x)

A(x)
.

Define the angle ψx ∈ (0, π) by

(3.57) tanψx =
−
√

−∆(x)

(2− a)x− b
.

Here is a characterization for the sign of the value Wn(x0).

Theorem 3.21. Let {Wn(x)}n≥0 be a (1, 0)-sequence. Let x ∈ R such that ∆(x) <
0. Then we have

• Wn(x) < 0 if and only if the angle nθx lies to the left of the line ψx;

• Wn(x) = 0 if and only if the angle nθx lies on the line ψx;

• Wn(x) > 0 if and only if the angle nθx lies to the right of the line ψx.

Proof. Since ∆(x) < 0, the complex number A(x)+
√

∆(x) has the real part A(x)

and the imaginary part
√

−∆(x). Therefore, by Definition (3.56) of the angle θx,
we have

A(x) +
√

∆(x) = Reiθx ,

where R =
√

A2(x)−∆(x). Let

h =
(

(2− a)x− b
)/

√

−∆(x), and F = cos(nθx) + h· sin(nθx).
Since ∆(x) < 0, by Lemma 3.2, we have

Wn(x) =

(

R

2

)n(

cos
(

nθx
)

+
(2− a)x− b
√

−∆(x)
· sin

(

nθx
)

)

=

(

R

2

)n

F.

Since R > 0, we have Wn(x) > 0 if and only if F > 0. On the other hand, in view
of Definition (3.57), the line ψx has slope −1/h.

If h = 0, we have ψx = π/2. In this case, we have F = cos(nθx), and thus, the
above sign relation reduces to that Wn(x) and cosψx have the same sign. In other
words, we have Wn(x) > 0 if and only if the angle nθx lies in the open right half-
plane; and Wn(x) < 0 if and only if the angle nθx lies in the left open half-plane.
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Consequently, we have Wn(x) = 0 if and only if the line nθx coincides with the
vertical line π/2. This proves the desired relations. Below we can suppose that
h 6= 0.

Assume that h > 0. From the definition of the function F , it is elementary to
deduce the following equivalence relation

F > 0 ⇐⇒ sin(nθx) > −1

h
cos(nθx)

⇐⇒















tan(nθx) > −1/h, if cos(nθx) > 0;

sin(nθx) > 0, if cos(nθx) = 0;

tan(nθx) < −1/h, if cos(nθx) < 0.

Therefore, we have Wn(x) > 0 if and only if the angle nθx belongs to the set
S1 ∪ S2 ∪ S3, where

S1 = {ψ ∈ R : cosψ > 0 and tanψ > −1/h} = ∪k∈Z(ψx − π + 2kπ, π/2 + 2kπ),

S2 = {ψ ∈ R : cosψ = 0 and sinψ > 0} = ∪k∈Z{π/2 + 2kπ},
S3 = {ψ ∈ R : cosψ < 0 and tanψ < −1/h} = ∪k∈Z(π/2 + 2kπ, ψx + 2kπ).

It is routine to deduce their union, which is

S1 ∪ S2 ∪ S3 = ∪k∈Z(ψx + (2k − 1)π, ψx + 2kπ).

From Definition 3.19, we see that Wn(x) > 0 if and only if the angle nθx lies to the
right of the line ψx. By symmetry, we have Wn(x) < 0 if and only if the angle nθx
lies to the left of the line ψx. It follows that Wn(x) = 0 if and only if the angle nθx
lies on the line ψx.

When h < 0, we have the following equivalence relation in the same vein:

F > 0 ⇐⇒















tan(nθx) < −1/h, if cos(nθx) > 0;

sin(nθx) < 0, if cos(nθx) = 0;

tan(nθx) > −1/h, if cos(nθx) < 0.

In the same way we can find the same desired relations. This completes the
proof. �

Now we are ready to show that the number x+
∆
is a limit point.

Theorem 3.22. Let {Wn(x)}n≥0 be a (1, 0)-sequence, with ordered zero-set

{ξn,1, ξn,2, . . . , ξn,n}.
Then we have ξn, n+1−i ր x+∆ as n → ∞, for all i ≥ 2 if f(x+∆) < 0, and for all
i ≥ 1 otherwise.
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Proof. Let i ≥ 1. From the property Rn+1 ⊲⊳ Rn obtained in Theorem 3.12, we
see that the sequence ξn, n+1−i (n ≥ i) increases as n → ∞. Since all the roots
are bounded by the interval J0, the sequence ξn, n+1−i converges. Suppose that
limn→∞ ξn, n+1−i = ℓi.

Suppose that f(x+∆) < 0 and i ≥ 2. From Theorem 3.14 (ii), we see that
ξn, n+1−i < x+∆ for large n, which implies that ℓi ≤ x+∆. Suppose, to the contrary,
that ℓi < x+∆. When n is large, the polynomial Wn(x) has exactly i − 2 distinct
roots in the interval (ℓi, x

+

∆), that is, the roots ξn, n+2−i, ξn, n+3−i, . . ., ξn,n−1. Thus,
by the intermediate value theorem, we infer that

Wn(ℓi)Wn(x
+

∆)(−1)i−2 > 0 for large n.

On the other hand, we have A(x+∆) > 0 by Ineq. (3.23). Since f(x+∆) < 0, by
Eq. (3.22), we infer that Wn(x

+

∆) < 0 for large n. Multiplying it with the above
inequality, we obtain that

(3.58) Wn(ℓi)(−1)i < 0 for large n.

Since ℓi ∈ J∆, we have ∆(ℓi) < 0. By Theorem 3.21, there is an integer M such
that for all integers n > M , the angle nθℓi lies on the same side of the line ψℓi .
This is impossible, because θℓi ∈ (0, π). Hence, we have ℓi = x+∆.

Now suppose that f(x+∆) ≥ 0 and i ≥ 1. From Theorem 3.12, we see that
Rn ⊂ J0 = J∆. Thus we have ξn, n+1−i < x+∆ for large n, which implies that
ℓi ≤ x+∆. Suppose, to the contrary, that ℓi < x+∆. The polynomial Wn(x) has
exactly i − 1 roots in the interval (ℓi, x

+

∆) for large n, that is, the roots ξn, n+2−i,
ξn, n+3−i, . . ., ξn, n. Thus, we get

Wn(ℓi)Wn(x
+

∆)(−1)i−1 > 0 for large n.

On the other hand, since A(x+∆) > 0 and f(x+∆) ≥ 0, we have Wn(x
+

∆) > 0 for all
n. Multiplying it with the above inequality, we obtain Eq. (3.58) again, which is
absurd for the same reason. This completes the proof. �

Applying the same idea to show that the number x−∆ is also a limit point, we
find that the angles nθℓi reside on both sides of the line ψℓi , but alternatively. This
leads us to show that the alternation is impossible. The next two lemmas serves for
this aim, depending on the rationality of the number θx. Let πQ = {qπ : q ∈ Q}.
Lemma 3.23. Let θ = qπ/p, where p is a positive integer, q is an integer, and
(p, q) = 1. Then the sequence {pv(nθ)}n≥1 is periodic, with the minimum period

(3.59) p0 =

{

p, if q is even;

2p, if q is odd.

Moreover, we have

(3.60) {pv(nθ) : n ∈ [p0]} = {2jπ/p0 : j ∈ [ 0, p0 − 1]}.
Proof. See Appendix D. �



22 J.L. GROSS, T. MANSOUR, T.W. TUCKER, AND D.G.L. WANG

Lemma 3.24. Let θ ∈ R\πQ. Then for any nonempty open interval I ⊂ (0, 2π),
there exists an arbitrarily large integer m such that pv(mθ) ∈ I.

Proof. See Appendix E for a proof by using Dirichlet’s approximation theorem. �

By using the above two lemmas, we can show the impossibility of the aforemen-
tioned alternation.

Lemma 3.25. Let x ∈ R such that ∆(x) < 0. Let M > 0. Suppose that the lines
nθx and ψx do not coincide with each other for all n > M . Then there exists an
arbitrarily large integer n such that the angles nθx and (n + 1)θx lie on the same
side of the line ψx.

Proof. Recall from Notation 3.20 that

(3.61) θx ∈ (0, π) and ψx ∈ (0, π).

Assume that θx /∈ πQ. Let I = (ψx, ψx + ǫ), where

ǫ = min((π − θx)/2, π − ψx/2) ∈ (0, π/2).

Using ǫ ≤ π − ψx/2, we deduce that I ⊂ (0, 2π). By Lemma 3.24 and using
ǫ ≤ (π − θx)/2, we infer that there is an arbitrarily large integer n such that

pv(nθx) ∈ I ⊆ (ψx, ψx + (π − θx)/2).

Together with Relation (3.61), we deduce that

pv(nθx) + θx ∈ (ψx, ψx + (π − θx)/2 + θx) ⊂ (ψx, ψx + π),

which implies that the angle (n+ 1)θx lies to the left of the line ψx. On the other
hand, by using ǫ ≤ π − ψx/2, we derive that pv(nθx) ∈ I ⊂ (ψx, ψx + π), which
implies that the angle nθx also lies to the left of the line ψx.

Now suppose that θx ∈ πQ. By Relation (3.61), we can denote θx = qπ/p, where
p ∈ Z+, q ∈ [p− 1], and (p, q) = 1. It follows that

(3.62) π/p0 + θx = π/p0 + qπ/p ≤ π/p0 + (p− 1)π/p ≤ π.

We will use the above inequality in the sequel.
In the polar coordinate system, the p0 rays 2jπ/p0 (j ∈ [ 0, p0 − 1]) partition

the full circle equally into p0 angles of size 2π/p0. Note that the lines nθx and ψx

do not coincide for n > M . By Eq. (3.60), the set {pv(nθx) : n ∈ Z} of lines is
finite, which does not contain the line ψx. Therefore, the minimum angle among
the angles formed by the line φx and one of the above rays is of size at most a half
of the size 2π/p0. In other words, there is an integer j0 ∈ [ 0, p0 − 1) such that

|2j0π/p0 − ψx| ∈ (0, π/p0].

By Eq. (3.60), we can suppose that pv(n0θx) = 2j0π/p0, where n0 ∈ [p0]. Then
the above range relation can be rewritten as

(3.63) |pv(n0θx)− ψx| ∈ (0, π/p0].
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If pv(n0θx)− ψx > 0, then the above range relation gives that

pv(n0θx) ∈ (ψx, ψx + π/p0] ⊂ (ψx, ψx + π),

which implies that the angle n0θx lies to the left of the line ψx. By the above
relation, and using Relation (3.61) and Ineq. (3.62), we infer that

pv(n0θx) + θx ∈ (ψx + θx, ψx + π/p0 + θx] ⊂ (ψx, ψx + π],

which implies that the angle (n0+1)θx lies to the left of the line ψx, or on the line
ψx. The latter possibility never occurs since the lines ψx and nθx do not coincide
for any n. Now, by the periodicity obtained in Lemma 3.23, we see that there is
an arbitrarily large integer n such that pv(nθx) = pv(n0θx), and thus, both the
angles nθx and (n + 1)θx lie to the left of the line ψx.

Otherwise pv(n0θx)− ψx < 0. Then Eq. (3.63) gives that

(3.64) pv(n0θx) ∈ [ψx − π/p0, ψx).

Since pv(ψ) ∈ [ 0, 2π) for all ψ ∈ R, the above relation implies that pv(n0θx) ∈
[ 0, ψx). By Definition 3.19, we infer that the angle n0θx lies to the right of the
line ψx. On the other hand, by Relation (3.64) and Ineq. (3.62), we infer that

pv(n0θx)− θx ∈ [ψx − π/p0 − θx, ψx − θx) ⊂ [ψx − π, ψx),

which implies that the angle (n0 − 1)θx lies to the right of the line ψx, or on the
line ψx. For the same reason, the second circumstance does not happen. Hence,
by the periodicity, there is an arbitrarily large integer n such that the angles nθx
and (n+ 1)θx lie to the right of the line ψx. This completes the proof. �

Now we are in a position to justify that the number x−∆ is a limit point.

Theorem 3.26. Let {Wn(x)}n≥0 be a (1, 0)-sequence, with ordered zero-set

{ξn,1, ξn,2, . . . , ξn,n}.
Then we have ξn,i ց x−∆ for all i ≥ 2 if f(x−∆) > 0, and for all i ≥ 1 otherwise.

Proof. Let i ≥ 1. From the property Rn+1 ⊲⊳ Rn obtained in Theorem 3.12, we
see that the sequence ξn,i (n ≥ i) decreases as n→ ∞. Since it is bounded by the
interval J0, the sequence ξn,i converges. Suppose that limn→∞ ξn,i = ℓi.

Suppose that f(x−∆) > 0 and i ≥ 2. From Theorem 3.14 (i), we see that ξn,i > x−∆
for n ≥ i, which implies that ℓi ≥ x−∆. Suppose, to the contrary, that ℓi > x−∆.
When n is large, the polynomial Wn(x) has exactly i − 2 roots in the interval
(x−∆, ℓi), that is, the roots ξn,2, ξn,3, . . . , ξn, i−1. Thus, by the intermediate value
theorem, we infer that

Wn(x
−
∆)Wn(ℓi)(−1)i−2 > 0 for large n.

On the other hand, we have A(x−∆) < 0 by Ineq. (3.23). Since f(x−∆) > 0, by
Eq. (3.22), we have Wn(x

−
∆)(−1)n+1 > 0 for large n. Multiplying it by the above
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inequality results in that

(3.65) Wn(ℓi)(−1)n+i < 0 for large n.

To wit, the sign of the value Wn(ℓi) alternates as n → ∞. By Theorem 3.21, the
angle nθℓi moves between the two sides of the line ψℓi alternatively for large n.
Since ℓi ∈ J∆, we infer that ∆(ℓi) < 0, which contradicts Lemma 3.25. This proves
that ℓi = x−∆.

Now, suppose that f(x−∆) ≤ 0, and that i ≥ 1. By Theorem 3.12, we have
ℓi ≥ x−∆. Suppose, to the contrary, that ℓi > x−∆. Along the same lines, we can
show that

Wn(x
−
∆)Wn(ℓi)(−1)i−1 > 0 for large n.

On the other hand, since A(x−∆) < 0 and f(x−∆) ≤ 0, we have Wn(x
−
∆)(−1)n > 0

for large n. Multiplying it by the above inequality gives Ineq. (3.65), which causes
the same contradiction. This completes the proof. �

Now we sum up the results obtained in this section to complete the proof of
Theorem 2.6. By Theorem 3.12, every polynomialWn(x) is real-rooted andRn+1 ⊲⊳
Rn. By Theorem 3.22 and Theorem 3.26, we have ξn,j ց x−∆ and ξn, n+1−j ր x+∆ for
all j ≥ 2. As will be seen in the following rearrangement, the limit of the smallest
roots ξn,1 depends on the sign of the number f(x−∆), while the limit of the largest
roots ξn,n depends on the sign of the number f(x+∆). Recall from Definition (2.6)

that b0 = |a− 2|
√
−d, and from Relations (3.24) and (3.25) that

f(x−∆) > 0 ⇐⇒ b < (a− 2)
√
−d, and

f(x+∆) < 0 ⇐⇒ b > (2− a)
√
−d.

We are ready to state the remaining limits according to the ranges of the numbers
a and b.

(i) When a ≤ 2 and b ≤ b0, we have f(x−∆) ≤ 0 and f(x+∆) < 0. Therefore,
Theorem 3.26 gives that ξn,1 ց x−∆, while Theorem 3.22 gives that ξn,n ր x+∆.

(ii) When a > 2 and b < b0, we have f(x−∆) > 0 and f(x+∆) < 0. Therefore,
Theorem 3.16 gives that ξn,1 ց x−g , while Theorem 3.18 gives that ξn,n ր x+g .

(iii) Otherwise, we have b > b0 or “b = b0 and a > 2”. In either case, we have
f(x−∆) ≤ 0 and f(x+∆) < 0. Therefore, Theorem 3.26 gives that ξn,1 ց x−∆, and
Theorem 3.18 gives that ξn,n ր x+g .

This completes the proof of Theorem 2.6.
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4. Proof of Theorem 2.4

In this section we derive Theorem 2.4 by using Theorem 2.6. The proof is divided
into two steps. First, we generalize Theorem 2.6 by dropping the restriction b ≥ 0;
see Proposition 4.1. Second, we extend Proposition 4.1 by allowing the polynomial
W1(x) = t(x− r), by translation and magnification.

Proposition 4.1 (allowing b < 0). Let Wn(x) be polynomials defined by Recur-
sion (2.1), where a > 0, d < 0, and b ∈ R, with W0(x) = 1 and W1(x) = x. Then
every polynomialWn(x) is real-rooted. Denote the zero-set of the polynomialWn(x)
by Rn = {ξn,1, ξn,2, . . . , ξn,n} in increasing order. Then we have Rn+1 ⊲⊳ Rn and
Result (2.5). Moreover, we have the following.

(i) If a ≤ 2 and |b| ≤ b0, then ξn,1 ց x−∆ and ξn,n ր x+∆.

(ii) If a > 2 and |b| < b0, then ξn,1 ց x−g and ξn,n ր x+g .

(iii) Otherwise, we have b 6= 0, and the following.

(iii)-1. If b < 0, then ξn,1 ց x−g and ξn,n ր x+∆.

(iii)-2. If b > 0, then ξn,1 ր x−∆ and ξn,n ր x+g .

Proof. See Appendix F. �

Now we are in a position to show Theorem 2.4. Suppose that all the hypotheses
in Theorem 2.4 hold true. Consider the sequence W̃n(x) defined by

(4.1) W̃n(x) =Wn(x/t + r).

Replacing x by x/t+ r in Recursion (2.1), we obtain that

W̃n(x) = (ãx+ b̃)W̃n−1(x) + d· W̃n−2(x),

where ã = a/t and b̃ = A(r), with W̃0(x) = 1, W̃1(x) = x. It follows that

ã > 0. By Proposition 4.1, every polynomial W̃n(x) is distinct-real-rooted. From
Definition (4.1), we see that every polynomial Wn(x) is real-rooted. Let

R̃n = {ξ̃n,1, ξ̃n,2, . . . , ξ̃n,n}

be the ordered zero-set of the polynomial W̃n(x). Then we have

(4.2) ξn,i = ξ̃n,i/t+ r.

It is clear that magnification and translation preserve the interlacing property.
Thus R̃n+1 ⊲⊳ R̃n implies that Rn+1 ⊲⊳ Rn.
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Regarding the numbers x±∆ = x±∆(a, b) as functions of a and b, we can define that

x±
∆̃
= x±∆(ã, b̃). Similarly, we define x±g̃ = x±g (ã, b̃), and b̃0 = b0(ã) Then we have

x±
∆̃

=
−b̃± 2

√
−d

ã
=

−A(r)± 2
√
−d

a/t
, and(4.3)

x±g̃ =



















−b̃±
√

b̃2 − 4d(ã− 1)

2(ã− 1)
, if ã 6= 1

−d
b̃
, if ã = 1 and b̃ 6= 0

=















−A(r)±
√

A(r)2 − 4d(a/t− 1)

2(a/t− 1)
, if a 6= t

− d

A(r)
, if a = t and A(r) 6= 0,

(4.4)

b̃0 = |ã− 2|
√
−d =

|a− 2t|
√
−d

t
.(4.5)

By Proposition 4.1, we have

ξ̃n,j ց x−
∆̃

and ξ̃n, n+1−j ր x+
∆̃

for all j ≥ 2.

By Eqs. (4.2) and (4.3), the above relations can be rewritten as

t(ξn,j − r) ց −A(r)− 2
√
−d

a/t
and t(ξn, n+1−j − r) ր −A(r) + 2

√
−d

a/t
,

namely, Result (2.5) got proved. The remaining cases are shown individually
below.

(i)When a ≤ 2t, we have ã ≤ 2. Suppose that r ∈ [r−, r+]. Then (r−r−)(r−r+) ≤
0. Substituting Definition (2.2) into it gives that

t2A(r)2 + d(a− 2t)2 ≤ 0.

By Eq. (4.5), the above inequality is equivalent to that |b̃| ≤ b̃0. By Proposition 4.1,
we have

ξ̃n,1 ց x−
∆̃

and ξ̃n,n ր x+
∆̃
.

Along the same lines for proving Result (2.5), we find ξn,1 ց x−∆ and ξn,n ր x+∆.

(ii) When a > 2t, we have ã > 2. Suppose that r ∈ (r−, r+). Same to the above

proof for (i), we obtain that |b̃| < b̃0. By Proposition 4.1, we have

ξ̃n,1 ց x−g̃ and ξ̃n,n ր x+g̃ .
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By Eqs. (4.2) and (4.4), the above relations can be recast as

t(ξn,1 − r) ց −A(r)−
√

A(r)2 − 4d(a/t− 1)

2(a/t− 1)
and

t(ξn,n − r) ր −A(r) +
√

A(r)2 − 4d(a/t− 1)

2(a/t− 1)
.

In view of Definition (2.4), the above relations reduce to ξn,1 ց ξ− and ξn,n ր ξ+

respectively.

(iii) Suppose that “r = r− and a > 2t”, or r < r−. Then we have r ≤ r−. By
using Definition (2.2), we infer that

b̃ = A(r) ≤ −|a− 2t|
√
−d/t ≤ 0.

Assume that b̃ = 0. Then we have a = 2t and thus get into Case (i), a contradic-

tion. Therefore, b̃ < 0. By Proposition 4.1 (iii)-1, we have

ξ̃n,1 ց x−g̃ and ξ̃n,n ր x+
∆̃
.

By Eqs. (4.2) — (4.4), the above relations can be rewritten as

t(ξn,1 − r) ց −A(r)−
√

A(r)2 − 4d(a/t− 1)

2(a/t− 1)
and

t(ξn,n − r) ր −A(r)± 2
√
−d

a/t
.

Same to the proofs of (i) and (ii), we deduce that ξn,1 ց ξ− and ξn,n ր x+∆.

(iv) It is highly similar to Case (iii), and we omit it. This completes the proof of
Theorem 2.4.

5. Concluding Remarks

This section explains why we set a > 0, d < 0, and t > 0 in Theorem 2.4.
First of all, the restriction adt 6= 0 is without loss of generality. In fact, the

sign restriction a 6= 0 comes from the type (1, 0) of recursive polynomials as the
topic of this paper. When d = 0, it is clear that Wn(x) = A(x)n−1W1(x) by
Recursion (2.1), and the root geometry problem becomes trivial. When t = 0, the
polynomial W1(x) = 0, and one may consider the sequence {Wn+2(x)/d}n≥0.

Second, with the assumption adt 6= 0 in hand, the real-rootedness for every
polynomial Wn(x) is still not true in general. In fact, consider the case b = 0,
t = 1, W0(x) = 1 and W1(x) = x.

• When ad > 0, the polynomial W2(x) = ax2 + d has no real roots since its
sign is same to the sign of the number d.

• When a < 0 < d, the polynomial W3(x) = x(a2x2 + d(a+ 1)) has non-real
roots as if a + 1 > 0.
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The remaining case except that we handled in this paper is that all the pa-
rameters a, d, and t are negative. In this case, by considering the sequence
{(−1)nWn(r − x/t)}n≥0 with the aid of Theorem 2.4, one may derive the real-
rootedness of every polynomial Wn(x), as well as the interlacing property and the
limit points of the union of the zero-sets. Yet in applications, it is not often to
meet such situation that all a, d, and t are negative.
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Appendix A. Proof of Lemma 3.9

Let x ∈ {x±g }. Then we have g(x) = 0. From Definition (3.18) of the func-
tion g(x) as g−(x)g+(x), we have either g−(x) = 0 or g+(x) = 0. To show that
Wn(x) = xn, we split into two cases.

Assume that g−(x) = 0. From Definition (3.17) of the function g−(x) as
(

f(x)−
√

∆(x)
)

/2, and from Definition (3.16) of the function f(x) as 2x−A(x), we have

(A.1) A(x) +
√

∆(x) = 2x.

It follows from Definition (3.17) of the function g+(x) that

(A.2) g+(x) =
2x− A(x) +

√

∆(x)

2
=

√

∆(x).

If ∆(x) 6= 0, then Lemma 3.2 gives that

(A.3) Wn(x) =
g+(x)(A(x) +

√

∆(x) )n − g−(x)(A(x)−
√

∆(x) )n

2n
√

∆(x)
.

Substituting the condition g−(x) = 0, Eqs. (A.1) and (A.2) into the above equa-
tion, we obtain that

Wn(x) =

√

∆(x) (2x)n − 0

2n
√

∆(x)
= xn.

Otherwise ∆(x) = 0, then Eq. (A.1) reduces to A(x) = 2x. Since W1(x) = x, by
Lemma 3.2, we deduce that

Wn(x) =

(

1 +
n(2W1(x)− A(x))

A(x)

)(

A(x)

2

)n

= xn.
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When g+(x) = 0, from Definition (3.17) of the function g+(x) as
(

f(x) +
√

∆(x)
)

/2, and from Definition (3.16), we have

(A.4) A(x)−
√

∆(x) = 2x.

It follows from Definition (3.17) that

(A.5) g−(x) =
2x− A(x)−

√

∆(x)

2
= −

√

∆(x).

If ∆(x) 6= 0, substituting the condition g+(x) = 0, Eqs. (A.4) and (A.5) into
Eq. (A.3), we obtain that

Wn(x) =
0− (−

√

∆(x) )(2x)n

2n
√

∆(x)
= xn.

This completes the proof of the identity Wn(x
±
g ) = (x±g )

n.
Below we show the results (i) and (ii) in Lemma 3.9.

(i) Suppose that a ≤ 1. If a < 1, from Definition (2.7) of the numbers x±g , the
desired inequalities 0 < x+g ≤ x−g can be rewritten as

0 <
−b+

√

b2 − 4d(a− 1)

2(a− 1)
≤ −b−

√

b2 − 4d(a− 1)

2(a− 1)
.

Since a < 1, the first inequality holds because d < 0, and the second inequality
holds trivially. Otherwise a = 1 and b 6= 0. By Definition (2.7), the desired
inequalities 0 < x+g ≤ x−g become

0 < −d/b ≤ −d/b,
which is also trivial since d < 0 < b. The remaining inequalitiesWn(x

±
g ) > 0 follow

immediately from the equations Wn(x
±
g ) = x±g and the inequalities x±g > 0.

(ii) Suppose that a > 1. From Definition (2.7) of the numbers x±g , the desired
inequalities x−g < 0 < x+g can be rewritten as

−b−
√

b2 − 4d(a− 1)

2(a− 1)
< 0 <

−b+
√

b2 − 4d(a− 1)

2(a− 1)
.

Both of them hold trivially since d < 0 ≤ b. Consequently, since Wn(x
±
g ) = (x±g )

n,
we have

Wn(x
−
g )(−1)n = (x−g )

n(−1)n > 0 and

Wn(x
+
g ) = (x+g )

n > 0.

This completes the proof of Lemma 3.9.
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Appendix B. Proof of Lemma 3.10

Suppose that

(B.1) f(x+∆) < 0.

Substituting Eq. (3.21) into Ineq. (B.1), and canceling the positive factor 2/a, we
obtain that

(B.2) b > (2− a)
√
−d.

When a = 1, Ineq. (B.2) reduces to b >
√
−d, which implies that b 6= 0. It follows

from Definition (2.7) that the numbers x±g are well-defined. We shall show that

(i) the numbers x±g are real;

(ii) we have x+g > x+∆;

(iii) if additionally we have f(x−∆) > 0, then x−g < x−∆.

For (i) and (ii), we split into the cases a = 1 and a 6= 1. The desired result (iii)
will be shown individually.

Assume that a = 1. From Definition (2.7) of the numbers x±g as the real number

−d/b identically, and from Definition (2.3) of the number x+∆ as −b+ 2
√
−d, it is

routine to compute that

x+g − x+∆ = −d
b
− (−b+ 2

√
−d) =

(b−
√
−d )2
b

> 0.

In other words, the desired results (i) and (ii) are true when a = 1.
Suppose that a 6= 1. From Definition (2.7), we have

x±g =
−b ±

√

∆g

2(a− 1)
, where ∆g = b2 − 4d(a− 1).

To show the realness of the numbers x±g , it suffices to prove that ∆g > 0. In fact,
when a > 1, one has ∆g > 0 since d < 0. When 0 < a < 1, squaring both sides of
Ineq. (B.2) gives that b2 > −d(2− a)2. Therefore, we infer that

∆g = b2 − 4d(a− 1) > −d(2− a)2 − 4d(a− 1) = −da2 > 0.

This confirms the desired result (i).
In order to show the desired result (ii) for a 6= 1, as well as the desired result (iii),

we make some preparations uniformly.
Definitions (3.17) and (3.18) imply that

(B.3) ∆(x±g ) = f 2(x±g )− 4g(x±g ) = f 2(x±g ) ≥ 0.

Since the function ∆(x) is a quadratic polynomial with positive leading coefficient,
whose roots are x±∆ with x−∆ < x+∆, we deduce that

either x−g ≤ x−∆ or x−g ≥ x+∆, and that(B.4)

either x+g ≤ x−∆ or x+g ≥ x+∆.(B.5)
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On the other hand, let X = (a− 2)b and Y = a
√

∆g. Since a > 0, we have

(B.6) Y > 0.

By Definition (2.7) of the numbers x±g , it is direct to calculate that

− b

a
− x±g =

X ± Y

2a(1− a)
, and(B.7)

X2 − Y 2 = 4(1− a)(b2 − a2d).(B.8)

Since d < 0 < a, we have b2 − a2d > 0. Since a 6= 1, Eq. (B.8) implies that

(B.9) (X + Y )(X − Y )(1− a) > 0.

Now we are in a position to show the desired result (ii) for a 6= 1. Suppose,
to the contrary, that x+g ≤ x+∆. Then, by Relation (B.5), we deduce that either

x+g = x+∆, or

x+g ≤ x−∆ =
−b − 2

√
−d

a
< − b

a
.

In the former case, we infer from Ineq. (B.3) that

f 2(x+∆) = f 2(x+g ) = ∆(x+g ) = ∆(x+∆) = 0.

It follows that f(x+∆) = 0, contradicting Ineq. (B.1). In the latter case, Eq. (B.7)
implies that

(B.10) (X + Y )(1− a) > 0.

Multiplying Ineq. (B.10) by Ineq. (B.9), we find that X − Y > 0. Together with
Ineq. (B.6), we conclude that

X > Y > 0.

On one hand, since X = (a − 2)b and X > 0, we obtain that a > 2. On the
other hand, since X > 0 and Y > 0, from Ineq. (B.10), we deduce that a < 1, a
contradiction. This proves (ii).

At last, let us show the desired result (iii). Suppose that

(B.11) f(x−∆) > 0.

By Eq. (3.20), Ineq. (B.11) can be rewritten as b < (a− 2)
√
−d. Since b ≥ 0, we

have
a > 2.

Suppose, by way of contradiction, that x−g ≥ x−∆. Then, by Relation (B.4), we

deduce that either x−g = x−∆, or

x−g ≥ x+∆ =
−b+ 2

√
−d

a
> − b

a
.

In the former case, we infer from Ineq. (B.3) that

f 2(x−∆) = f 2(x−g ) = ∆(x−g ) = ∆(x−∆) = 0.
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It follows that f(x−∆) = 0, contradicting Ineq. (B.11). In the latter case, Eq. (B.7)
implies that (X − Y )(1 − a) < 0. Since a > 2, we infer that X > Y . Together
with Ineq. (B.6), we conclude that

X > Y > 0,

which contradicts Ineq. (B.9). This completes the proof of Lemma 3.10.

Appendix C. Proof of Lemma 3.17

Suppose that f(x+∆) < 0. Then we have Ineq. (B.2).
When a ≥ 2, from Definition (3.16), the function f(x) = (2−a)x− b is decreas-

ing. Together with Ineq. (B.1), we infer that f(x) < 0 for all x > x+∆.
Let 0 < a < 2 below. By the monotonicity of the function f(x), it suffices to

show that f(x+g ) < 0.

When a = 1, Ineq. (B.2) reduces to b >
√
−d, that is, b2 + d > 0. On the other

hand, from Definition (2.7) of the number x+g , we have x
+
g = −d/b. It follows that

f(x+g ) = x+g − b = −d+ b2

b
< 0.

When a 6= 1, recall that ∆g = b2−4d(a−1) is the discriminant of the quadratic
function polynomial g(x). By Definition (2.7) of the number x+g , it is direct to
compute that

2(1− a)f(x+g ) = (a− 2)
√

∆g + ab,

which implies the equivalence relation

(1− a)f(x+g ) > 0 ⇐⇒ ab > (2− a)
√

∆g.

Since a < 2, squaring both sides of the above rightmost inequality gives another
equivalence relation:

ab > (2− a)
√

∆g ⇐⇒ (1− a)(b2 + d(a− 2)2) < 0.

By Ineq. (B.2), we have b2 + d(a − 2)2 > 0. Therefore, transiting the above two
equivalence relations gives the following equivalence relation:

(1− a)f(x+g ) > 0 ⇐⇒ 1− a < 0.

Hence, we infer that f(x+g ) < 0. This completes the proof.

Appendix D. Proof of Lemma 3.23

Let p0 be the integer defined by Eq. (3.59). From Definition 3.19, we have
pv(θ + 2kπ) = pv(θ) for any θ ∈ R and k ∈ Z. Thus, we have

pv((p0 + j)θ) = pv(p0qπ/p+ jθ) = pv(jθ).

In other words, the sequence {pv(nθ)}n≥1 is periodic with a period p0.
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To show the minimality of the period p0, it suffices to show that the numbers
pv(nθ) for n ∈ [p0] are pairwise distinct. In fact, otherwise, there are three integers
j1, j2, and k, such that 1 ≤ j1 < j2 ≤ p0, and that (j2 − j1)θ = 2kπ, that is,
(j2 − j1)q = 2kp0. Since 1 ≤ j2 − j1 ≤ p0 − 1 and (p0, q) = 1, the left hand side
(j2 − j1)q is not divided by the factor p0 of the right hand side, which is absurd.

Let L (resp., R) denote the set on the left (resp., right) hand side of Eq. (3.60).
We have just proved that the set L has cardinality p0, as same as the set R.
Therefore, to justify L = R as sets, it suffices to show that the set L is contained
in the set R. In fact, we have

pv(nθ) = pv(nqπ/p) =

{

pv(2(nq/2)π/p0), if q is even;

pv(2nqπ/p0), if q is odd.

Since pv(ψ) ∈ [ 0, 2π) for any angle ψ, the rightmost expression in the above
formula implies that the number pv(nθ) has the form 2jπ/p0, where j ∈ [ 0, p0−1].
Namely, we have L ⊆ R. This completes the proof.

Appendix E. Proof of Lemma 3.24

We will need Dirichlet’s approximation theorem.

Theorem E.1 (Dirichlet’s approximation theorem). For any real number µ and
any positive integer N , there exist integers p and q such that q ∈ [N ] and |qµ−p| ≤
1/(N + 1).

For the sake of proving Lemma 3.24, we show the following stronger proposition.

Proposition E.2. Let θ ∈ R such that θ 6∈ πQ. Then for any positive integer M ,
and for any nonempty open interval I ⊂ (0, 2π), there exist positive integers m
and q such that

pv((m+ j)qθ) ∈ I for all j ∈ [M ].

Proof. Let M be a positive integer. Let I = (u, v) be an open interval such that
0 < u < v < 2π. Let

ǫ =
v − u

M + 1
.

Take an integer N such that 2π/(N + 1) < ǫ. By Dirichlet’s approximation
theorem, there exist integers p and q′ such that q′ ∈ [N ] and |q′θ/(2π) − p| <
1/(N + 1). Therefore, we have

|q′θ − 2pπ| < 2π

N + 1
< ǫ.

In other words, we have either pv(q′θ) ∈ [ 0, ǫ) or 2π − pv(q′θ) ∈ [ 0, ǫ). Since
θ 6∈ πQ, the principal value pv(q′θ) does not vanish, that is, either pv(q′θ) ∈ (0, ǫ)
or pv(q′θ) ∈ (2π − ǫ, 2π). For the latter case, there is a positive integer k such
that pv(kq′θ) ∈ (0, ǫ), and we define q = kq′. In the former case, we define q = q′.
In summary, we obtain a positive integer q such that pv(qθ) ∈ (0, ǫ).
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Now, let m be the minimum positive integer such that

(E.1) (m+ 1)pv(qθ) > u.

Since pv(qθ) < ǫ = (v−u)/(M +1), we have Mpv(qθ) < v−u−pv(qθ). It follows
that

(E.2) (m+M)pv(qθ) < u+ v − u− pv(qθ) < v.

Hence, by Ineqs. (E.1) and (E.2), we conclude that

u < (m+ 1)pv(qθ) < (m+ 2)pv(qθ) < · · · < (m+M)pv(qθ) < v.

Let j ∈ [M ]. Since (m+ j)pv(qθ) ∈ (u, v) ⊂ (0, 2π), we infer that pv((m+ j)qθ) =
(m + j)pv(qθ), which implies the desired relation. This completes the proof of
Proposition E.2. �

Appendix F. Proof of Proposition 4.1

Since Case (iii) is the exclusive case of (i) and (ii), we have either |b| > b0,
or “|b| = b0 and a > 2”. Assume that b = 0, then the former possibility is
impossible, and the latter possibility |b| = b0 implies that b0 = 0 and thus a = 2,
a contradiction. Thus we have b 6= 0 for Case (iii).

The results for b ≥ 0 are exactly those in Theorem 2.6. Let b < 0. Define

(F.1) W̃n(x) = (−1)nWn(−x).

The the polynomials W̃n(x) satisfy the recursion

W̃n(x) = (ax− b)W̃n−1(x) + dW̃n−2(x).

with same initiations W̃0(x) = 1 and W̃1(x) = x. By Theorem 2.6, every polyno-

mial W̃n(x) is distinct-real-rooted. Let

R̃n = {ξ̃n,1, ξ̃n,2, . . . , ξ̃n,n}

be the ordered zero-set of the polynomial W̃n(x). From Definition (F.1), we see that
the roots of the polynomial Wn(x) are the opposites of the roots of the polynomial
W̃n(x). It follows that every polynomial Wn(x) is real-rooted, with the ordered
zero-set

Rn = {−ξ̃n,n, −ξ̃n, n−1, . . . , −ξ̃n,1}.
In other words, we have

(F.2) ξn,i = −ξ̃n, n+1−i, for all i ∈ [n].

Since R̃n+1 ⊲⊳ R̃n, we infer that Rn+1 ⊲⊳ Rn.
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Regarding the numbers x±∆ = x±∆(b) as a functions in b, we can define the
numbers x±

∆̃
= x±∆(−b). Similarly, we define x±g̃ = x±g (−b). Then we have

x±
∆̃

=
−(−b)± 2

√
−d

a
= −−b ∓ 2

√
−d

a
= −x∓∆, and(F.3)

x±g̃ =















−(−b) ±
√

(−b)2 − 4d(a− 1)

2(a− 1)
, if a 6= 1,

− d

−b , if a = 1 and b 6= 0,

=















−−b∓
√

b2 − 4d(a− 1)

2(a− 1)
, if a 6= 1,

−
(

−d
b

)

, if a = 1 and b 6= 0,

= −x∓g .(F.4)

By Theorem 2.6, we have

ξ̃n,j ց x−
∆̃

and ξ̃n, n+1−j ր x+
∆̃

for all j ≥ 2.

By Eqs. (F.2) and (F.3), the above relations can be rewritten as

−ξn, n+1−j ց −x+∆ and − ξn, j ր −x−∆,
namely, Relation (2.5) got proved. The remaining cases are shown individually
below.

(i) When a ≤ 2 and |b| ≤ b0, we have −b ≤ b0. By Theorem 2.6 (i), we have

ξ̃n,1 ց x−
∆̃

and ξ̃n,n ր x+
∆̃
.

By using Eqs. (F.2) and (F.3), the above limits can be rewritten as

−ξn,n ց −x+∆ and − ξn,1 ր −x−∆,
that is the desired limits ξn,1 ց x−∆ and ξn,n ր x+∆.

(ii) When a > 2 and |b| < b0, we have −b < b0. By Theorem 2.6 (ii), we have

ξ̃n,1 ց x−g̃ and ξ̃n,n ր x+g̃ .

By using Eqs. (F.2) and (F.4), the above limits can be rewritten as

−ξn,n ց −x+g and − ξn,1 ր −x−g ,

that is the desired limits ξn,1 ց x−g and ξn,n ր x+g .
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(iii) Otherwise, we have either |b| > b0 or “|b| = b0 and a > 2”. Since b < 0, we
only need to show (iii)-1. In this case, we have either −b > b0 or “−b = b0 and
a > 2”. By Theorem 2.6 (iii), we have

ξ̃n,1 ց x−
∆̃

and ξ̃n,n ր x+g̃ .

By using Eqs. (F.2) — (F.4), the above limits can be rewritten as

−ξn,n ց −x+∆ and − ξn,1 ր −x−g ,
that is the desired limits ξn,1 ց x−g and ξn,n ր x+∆. This completes the proof of
Proposition 4.1.
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