
 

First Families of Regular Polygons 

G.H. Hughes 

Introduction 

Every regular polygon can be regarded as a member of a well-defined 'family' of related regular 
polygons. These families arise naturally in the study of piecewise rotations such as outer 
billiards. In some cases they exist at all scales and can be used to define the fractal dimension of 
the 'singularity set'. This is well-documented for regular N-gons such as the pentagon, octagon 
and dodecagon, whose algebraic complexity is 'quadratic' (φ(N)/2 = 2 where φ is the Euler 
totient function). 

Recent evidence suggests that the geometry of these families is intrinsic to the 'parent' polygon 
and can be derived independently of any mapping. It is the purpose of this paper to show how the 
First Family for any regular polygon arises naturally from the geometry of the 'star polygons' 
first studied by Thomas Bradwardine (1290-1349). 

Any star polygon based on a regular N-gon should share the same algebraic complexity as the 
embedded N-gon. This complexity is traditionally defined to be the degree of the minimal 
polynomial of 2cos(2π/N) which is always φ(N)/2. We will show that there are advantages to 
basing this complexity on the tangent function, because when N has apothem 1, the vertices of 
the nested star polygons will have ‘real’ part sk = tan(kπ/N). Each of these ‘star points’ defines a 
scale and the star points and the scales together define the First Family.  

The sk with gcd(k,N) = 1 will be called ‘primitive’ because they play a role similar to the 
primitive roots of unity. Based on a 1949 result by Carl Siegel, communicated to Sarvadaman 
Chowla [Ch], these primitive star points and matching primitive scales are independent and form 
a basis for all the star points and scales. This implies that the algebraic ‘complexity’ of the star 
points and scales matches the complexity of N - and the First Family is a window on this 
complexity. 

In studies of piecewise rotations based on regular N-gons, the rotational parameters and scaling 
parameters typically lie in the maximal real subfield of the cyclotomic field N. This is the 
subfield of order φ(N)/2 which can be generated by 2cos(2π/N). We will show that the primitive 
scales are a unit basis for this subfield, so they are compatible with a wide range of investigations 
such as Chua [CL], Adler [AKT], Ashwin [A], Goetz [Go1], Lowenstein[L], Kahng [K], Vivaldi 
[LV] and Poggiaspalla [GP]. It is our hope that the results of this paper will help to unify studies 
of this kind. In the words of historian J. Stillwell [St2], “the tan function can be considered more 
fundamental than either cos or sin.” 



The First Families to be defined here are a natural extension of  the ‘parent’ polygon, so it is hard 
to explain why they have not been studied earlier. One explanation is that they are really a 
‘dynamic’ extension of the regular polygons, and this is an area that is still under development. 
Since these are dynamic issues, there is natural path toward recursion, and in some cases there 
are families at all scales. This is well-documented for the pentagon [T], heptagon [H2] and 
octagon [S2]. These extended ‘families’ and their symmetric counterparts can be seen below.  

   First Families and extended families for the regular pentagon, heptagon and octagon 
 

 

 

 

 

 
 

In 1978 Jurgen Moser [M2] suggested that the ‘outer billiards’ map for a convex polygon, could 
be used as a ‘toy model’ for the study of stability for ‘conservative’ systems such as the Solar 
System. This follows because the outer billiards map has properties similar to a discrete 
Hamiltonian system. One of the issues raised by Moser has already been settled – namely the 
existence of unbounded orbits. In the regular case, Vivaldi and Shaidenko [VS] showed in 1989 
that all orbits were bounded, but in 2006, Richard Schwartz [S1] showed that non-regular 
polygons can support unbounded orbits. See chronology for a history of the outer billiards map.  

Below are examples of the outer billiards map τ  for a non-regular polygon and for a regular 
pentagon. For an initial point p each iteration is a reflection (central symmetry) about one of two 
possible ‘support’ vertices (clockwise here), so the formula is τ(p) = 2c – p where c is the support  
vertex. 

                                 
There is a growing consensus that the outer billiards map and related piecewise affine maps on a 
polygon, can uncover geometric and algebraic relationships that are inherent in the polygon 
itself. In [H2 ] the author defines the First Family of a regular polygon as the  major ‘resonances’ 
of the outer billiards map – and it is the purpose of this paper to show that these families can be 
derived independently of the outer billiards map. This would give evidence that these structures 
are an inherent part of the geometry of any regular polygon. Algebraic evidence is presented in 
Section 4. 

http://www.dynamicsofpolygons.org/Chronology


Section 1: Star points and scales of regular polygons 

As a first step, we will look at the ‘star polygons’ first studied by Thomas Bradwardine (1290-
1349), and later by Johannes Kepler (1571-1630). 

The vertices of a regular n-gon can be specified by Table[{Cos[2πk/n],Sin[2πk/n]},{k,1,n}]. A 
‘star polygon’ {p,q} generalizes this by allowing n to be rational of the form p/q so the vertices 
are given by: 

{p,q} = Table[{Cos[2πkq/p],Sin[2πkq/p]},{k,1,p}]; 
 

Using the notation of H.S.Coxeter [Co] a regular heptagon can be written as {7,1} (or just {7}) 
and {7,3} is a ‘step-3’ heptagon formed by joining every third vertex of {7} so the exterior 
angles are 2π/(7/3) instead of 2π/7.  
 
By the definition above, {14,6} would be the same as {7,3}, but there are two heptagons 
embedded in N = 14 and a different starting vertex would yield another copy of {7,3} - so a 
common convention is to define {14,6} using both copies of {7,3} as shown below. This 
convention guarantees that all the star polygons for {N} will have N vertices.  
              
  {7,1} (a.k.a. N = 7)          {7,3}       {14,6}        {10,2} 

 

 

 

 

 

 

 

 

        
The number of ‘distinct’ star polygons for {N} is the number of integers less than N/2 – which 
we call ‘HalfN’ and write as 〈N/2〉. So for a regular N-gon, the ‘maximal’ star polygon is {N, 
〈N/2〉}. (Some authors would also allow the ‘boundary’ cases such as {14,0} and {14,7} – 
which are isolated points or ‘asterisks’.) 
 
Note: Our convention for the ‘parent’ N-gon will be height (apothem) equal to 1, and centered at 
the origin with ‘bottom’ edge horizontal, and the matching star polygons will be scaled and 
possibly rotated so that the embedded {N,1} is equal to N. 
 
Definition: The star points of a regular N-gon are the intersections of the edges of {N, 〈N/2〉} 
with a single extended edge of the N-gon (which will be assumed horizontal).  
 
By convention the star points are numbered from star[1] (a vertex of N) outwards to star[〈N/2〉] – 
which is a vertex of {N, 〈N/2〉}. So every star[k] is a vertex of {N,k} embedded in {N,〈N/2〉}. 
It would seem natural to define the star points to be on the ‘positive’ side of N, but over the years 
we have adopted a clockwise rotation for outer-billiards, which makes it convenient to use 
negative star points. The symmetry between these choices makes it irrelevant which one is used. 
 
 
 



Lemma 1: The star points of a regular N-gon are given by 
 

star[k] = {-sk,-1} where sk = tan(kπ/N)  for 1 ≤ k < N/2 
 

Proof: Since tan(kπ/N) = tan(2kπ/2N), the indices divide N into 2N segments centered at the 
origin with slopes given by sk. When the apothem is 1, these slopes define the star points.□ 
 
Example: The two star points of N = 6 are defined here using rotation by π/6. N = 6 and N = 12 
are shown here in ‘standard position’ so that the star polygons can be compared. 
 

             
Example: Below is the same comparison with N = 14 and N = 7 and now there is a perfect 
match between the ‘even’ star points of N = 14 and the three star points of N = 7. This will imply 
that N= 14 and N = 7 have equivalent cyclotomic fields. From the standpoint of the outer 
billiards map, the ‘rotationally equivalent’ star polygons will imply identical singularity sets, and 
‘conjugate’ dynamics. This cannot occur when N is twice-even, because <N/2>  will be odd. 
Therefore from the standpoint of outer billiards, N = 6 and N = 12 will have very different 
dynamics. 

                             
Since -sk = -tan(kπ/N) = tan(-kπ/N) the ‘positive’ star points can be treated as in the same fashion 
as the ‘negative’ star points by swapping k and -k. For the most part we will only assume that k 
is an integer, so the results will apply equally to all star points. We will sometimes refer to the sk 
as ‘star’ points. 
 
The set S = {sk: (k,N) = 1} will play an important part in what follows. These are called the 
‘primitive’ star points because they play a role similar to the primitive roots of unity for N. The 
scales formed from these primitive star points will form a unit basis for the maximal real subfield 
of N so they will have the same rank as the units in [N]. 
 
There is a long history of interest in trigonometric functions of rational multiples of π. In 1949  
C.L.Siegel (see chronology) communicated to S.Chowla [Ch] a proof that the primitive sk for the 
cotangent function are linearly independent. This was a non-trivial result in algebraic number 
theory and Siegel only proved it for prime N.  In 1970 Chowla generalized this result using 

http://www.dynamicsofpolygons.org/Chronology


character theory and Dirichlet’s -series, but the general tangent case was only settled recently 
in [G2] (1997). Therefore the set S = {sk = tan(kπ/N): 1 ≤ k < N/2 ,(k,N) = 1} is linearly 
independent and it follows (Lemma 9) that any non-primitive sk  must be a -linear combination 
of the primitive sk, although there may be no elementary formulas which yield the coefficients of 
these ‘degenerate’ sk. This means that there may be non-trivial relationships between the star 
points of many star polygons. All of this parallels traditional Galois theory - which is outlined in 
Section 4. 
 
We will define TN[x] = MinimalPolynomial[Tan[Pi/N]][x]. A portion of T14[x] and T7[x] are 
shown below in blue and red. Both are symmetric and order 6 but only T7[x] is monic because, 
tan(π/N) is monic iff  N  2pk. The six roots of N = 14 are shown in black and four of the six 
roots of N = 7 are shown in magenta. 
 
Both polynomials are needed to generate the full set of star points of N = 14, because each 
polynomial only generates the (positive and negative) primitive roots - so s1 is primitive with 
respect to N = 14 and s2 is degenerate, but s2 is primitive with respect to N = 7. 
 
The indices of the roots of N = 14 are k = 1, 3 and 5 with (k,14) = 1. By definition, these 
are the prime residue classes mod 14, so they can be used to define the Galois group G14. Each 
element k defines an automorphism on the cyclotomic field (14) given by k : 14 → 14

k with 
14 a primitive root of unity of N = 14. Therefore each k is in G14 and |G14| = [(14):] = 6. The 
indices {1, 2 and 3} of N = 7 define the same Galois group and in fact (7) ≈ (14) 
because (-7) will generate all of (14). This is only true for 2N,N pairs with N odd. 

                         
It is not obvious that the three primitive sk of N = 7 or N = 14 are linearly independent over . 
They are Galois conjugates but that clearly does not imply independence – however it does show 
that they share the same number field- (s1) (although s1 may not be in () unless 4|N). Since 
T14[x] and T7[x] are minimal and degree 6, the degree of (s1) is 6 for either s1, and one basis is 
{1,,2,..,5} where  = s1. (This basis is only integral for N = 7). These basis elements must be 
linearly independent but this does not imply that the primitive sk are linearly independent. In fact 
it is often easier to prove the ‘dual’ result about the cotangent function – although this does not 
directly imply the tangent result. 
 
Definition: The dual star points are ck = cot(kπ/N)  for 1 ≤ k < N/2 and the primitive dual star 
points satisfy k,N) = 1. 
 
Therefore if sk is a primitive star point (w/r tan),  ck = 1/sk is always primitive (w/r cot) because 
the primitive k indices do not change. This does not imply that 1/sk is always primitive (w/r to 
tan). For example, s5 for N = 14 has inverse s2 as shown in the illustration above.  
 



Since tan[π/2 – θ] = cot[θ],  if Mathematica is asked to list the star points for a regular N-gon  it 
will list the first ‘half’ using tangents and the second ‘half’ using cotangents. When N is even 
these two half-lists will match up perfectly (in reverse order) because symmetry demands that  

star[N] = Reverse[1/star[N]]. 
 
Definition: For a regular N-gon, scale[k] = s1/sk with the primitive scales satisfying (k,N) = 1 
 
So scale[1] is always 1 and the scales of any N-gon are strictly decreasing. Of course these scales 
are independent of size or orientation so they are fundamental parameters of any regular N-gon. 
Since the dual scales are just the inverse of the scales, there is a useful tan-cot duality. 
Scale[<N/2>] is the matching scale for GenStar[N] so it is called GenScale[N]. 
 
For N-gon scaling, any of the basic trig functions would work, but clearly tan(π/N) mediates 
height/side, while cos(π/N) gives height/radius, and sin(π/N) yields side/radius. We will show 
that there are many advantages to using tan as the primary function. One reason why J. Stillwell 
[St2] felt that the “ tan function can be considered  more fundamental than either cos or sin.” is 
because of the ‘half-angle’ formulas below that express cos and sin as rational functions of tan: 
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These relationships are based on the work of Diophantus in about 250 AD as part of his quest to 
find rational points on curves - in this case the unit circle. Geometrically they are based on the 
same ‘half-angle’ diagram used above to illustrate the star points of N = 6. This diagram is 
repeated here with N = 6 scaled to have radius 1. 
                              

 

 Given any , /2 pair such as the one 
shown  here, the projection of the y-axis on 
the circle yields coordinates of the 
intersection point as {(1-t2)/(1+t2), 2t/(1+ 
t2)} where t is the slope of  the /2 line.  
 
In this example, the slope t is tan(π/6), and 
 
 (1-tan2(π/6))/(1+tan2(π/6)) = cos(π/3) = ½ 
 
 2tan(π/6)/(1+tan2(π/6)) = sin(π/3) = √3

2
 

 
Parameters such as λN = 2cos(2π/N) are traditionally used for algebraic investigations in the 
context of the cyclotomic field N, because λN is an algebraic integer and generates the maximal 
real subfield, N

+. Based on the half angle formula above, s1
2 = tan2(π/N) can also serve as a 

generator of N
+. By symmetry, tan2(π/N) is GenScale[N] when N is even, but as noted above, 

when N is twice-odd, tan2(π/N) is no longer an algebraic integer – but GenScale[N/2] can be 
used instead. We will see that in all cases either GenScale[N] or GenScale[N/2] can serve as 
integral generators for N

+ and in fact they are units – while λN fails to be a unit when 4|N. Also 
the independence results of Siegel and Chowla fail for sin and cos.  



Below is the First Family for N = 14 showing a magenta copy scaled by GenScale[7] = 
tan(π/7)/tan(3π/7) ≈ .109916. Note that the new family fits perfectly on a side of N = 14. This is 
called ‘generation’ scaling and it is an invitation for recursion. Such families are not unusual for 
the outer billiards map – but they are often ‘broken’ families which are just a skeleton of the First 
Family. However hidden in these second generation ‘tiles’ for N = 14 are the seeds for a perfect 
third generation - scaled by GenScale[7]2. Click to see the outer-billiards web.     

                                 
When N is even, GenStar[N] = 1/star[1] so the scales inherit the symmetry of the star points: 
 
                              scales[N] = Reverse[GenScale[N]/scales[N]] 
 
Even though these scales are invariant, it is useful to temporarily assume that the polygons are in 
‘standard’ position with apothem 1 to facilitate comparison of scales. When an N-gon and M-gon 
are in standard position and share a star point, the two scales are clearly related by the ratio of 
their sides. 

                                  
 
Definition: For a regular N-gon and M-gon in ‘standard’ position with apothem 1, the ratio of 
the sides is tan(π/N)/tan(π/M) and this is known as ScaleSwap[N,M].  
 
This ratio of sides is the same as the ratio of any matching scales, so ScaleSwap[14,7] = 
GenScale[14]/GenScale[7] ≈ 0.4739524. These definitions and observations imply that the scales 
of any twice-odd N-gon are essentially the same as those of the matching N/2-gon.This will be 
made precise in the scaling lemmas of Section 3. Here is a summary of these results as they 
apply to N = 14 & N = 7: 
 
N = 14 (scale[6] = GenScale[14]) N = 7 (scale[3] = GenScale[7]) 

scale[6]  = scale[6]/scale[1] scale[3] = scale[6] (of N = 14)/ ScaleSwap[14,7] 
scale[5]  = scale[6]/scale[2] scale[2] = scale[4] (of N = 14)/ ScaleSwap[14,7] 
scale[4]  =  scale[6]/scale[3] scale[1] = scale[2](of N = 14)/ ScaleSwap[14,7] 
 
Lemma 2: GenScale[N] =  tan(π/N)2 if N is even and tan(π/N)tan(π/2N) if N is odd  
 
Proof: GenScale[N] is defined to be s1/s<N/2> . When N is even s<N/2> is 1/s1 by symmetry, so 
GenScale[N] = s1

2 = tan(π/N)2. When N is odd GenScale[N] = GenScale[2N]/ScaleSwap[N,2N] 
= tan(π/2N)2 tan(π/N)/tan(π/2N) = tan(π/N)tan(π/2N) □ 
 
 



In the next section we will use these scales to define the ‘First Family’ for every regular N-gon. 
The 11 members of the First Family for N = 14 are shown in cyan below.  

                         
These are sometimes called ‘tiles’. The largest tile in the First Family will be called DN or simply 
D – when N is understood. In the outer-billiards world, D is globally maximal among all tiles 
and there are unbroken rings of D tiles at all distances from the origin - which guarantees 
bounded dynamics. When N is even, we will see that DN is an identical copy of N and when N is 
odd, DN is a regular 2N-gon with the same side length as N. (It is easy to show that no tile can 
have more than 2N sides.) D14 shown here in cyan is clearly identical to N= 14.  We will define 
the magenta {14,6} on the right to be the ‘outer-dual’ of the blue {14,6}. (This looks like a 
simple rotation of the blue {14,6}, but there is an important scale change as well.) 
.                        
Finding the Centers 
 
Definition: For a regular N-gon, we will define cN, rN and hN to be the center, radius and 
‘height’ - where the ‘height’ is the apothem. 
 
The classic ‘dual’ of a polygon involves swapping edges and vertices. Since a regular N-gon is 
self-dual, we will define the ‘outer dual’ to be a circumscribed copy of N which is rotated by a 
half-turn. This will mimic the natural duality of the outer billiards map. 
 

OuterDual[x_, N_] := RotationTransform[-Pi/N][x*rN/hN] 
 

OuterDual[{14/6},14] is the magenta {14,6} on the right above. As such it is scaled by 
radius/height of N = 14 which is ≈1.025716863. This magenta {14,6} is the star polygon for a 
regular 14-gon which is circumscribed about N = 14 and rotated by a ‘half-turn’ (the ‘outer dual’ 
of N = 14). Therefore it is the outer-billiards orbit of the center of D, for N = 14. This is the 
single most important orbit for a regular polygon – because it can be used to define the 
parameters of all the remaining canonical resonances – which are the First Family tiles. 
 
Definition: For a regular N-gon, each star[k] and matching scale[k] defines a corresponding First 
Family member which we call S[k]. These S[k] tiles are regular 2N-gons or N-gons with centers 
given by cS[k] = OuterDual[star[k], n]. (So centers are dual to star points.) 
 
The constraints of the star polygons provide a simple geometric relationship between the star 
point, scales and the S[k] tiles. This is given in the Lemma below. We will use the maximal ‘D’ 
tile as a reference for scale because it is uniform across all regular ‘parent’ N-gons.  



Lemma 3: For every regular N-gon, the scales of the S[k] tiles are in direct proportion to 
Distance[cS[k],cS[0]] – where cS[0] is the star[1] vertex of N. Therefore hS[k] is always 
hDGenScale[N]/scale[k] and all tiles can be scaled relative to the maximal tile D. 
 
Example N = 14 (twice-odd). D is a clone of N so hD = 1 by convention. This is the only case 
where the S[k]’s alternate regular N-gons and regular N/2 – gons. 

 
 
Scales = Table[scale[k], {k, 1, 6}] ≈ {1., .4739, .2862, .1820, .0991, .05209} 
d = Table[Distance[cS[k], star[1]],{k, 1, 6}]; Table[d[[1]]/d[[k]],{k, 1, 6}] = Scales 

 
Example: N = 7 (odd).  D is a regular 14-gon with side the same as N = 7, so  
hD = ScaleSwap[7,14]. This means that D is just a different view of N = 7.  
 

 
Table[scale[k], {k,1,3}] ={1., 0.384043, 0.109916} 

 
Example: N = 16 (twice-even). D is a clone of N but now all the S[k] are regular N-gons) 

 
Table[scale[k],{k,1,7} = {1.,0.48021 ,0.29769, 0.19891, 0.13290, 0.082392, 0.039566} 
 



These definitions of star points, scales , centers and heights apply to any regular N-gon, but these 
examples make it clear that the First Families will be different depending on whether N is 1,2,3 
or 4 mod 4. The odd cases of 1 and 3 mod 4 can be treated together but we believe that there are 
important dynamical distinctions between 1 and 3 mod 4. Thus we will cover the three cases of 
odd, twice-odd and twice-even below – starting with the twice-odd case. 
 
Section 2:  Defining the First Family from centers and scales  
 
Case 1: N Twice-Odd. 
 
In all cases the nucleus of the First Family consists of the S[k] tiles. Based on Lemma 2 we know 
that hS[k] = GenScale[14]/scale[k] and since the centers are known, the only issue is whether the 
S[k] are N-gons or 2N-gons. The answer is easy – the ‘even’ tiles are N-gons and the ‘odds’ are 
N/2 gons and we will show why this is true: 
 
The default scaling is simply a scaled version of D, so the ‘even’ S[k] are the expected result. To 
explain the odd tiles, we will look at the familiar case of N = 14 – where hS[5] = 
GenScale[14]/scale[5]. Because N is even, GenScale[14]/scale[5] = scale[2] which is 
ScaleSwap[N,N/2]. When N is twice-odd , this will be GenScale[N]/GenScale[N/2] so s[5] is 
scaled (relative to D or N = 14) by GenScale[14]/GenScale[7] – which is by definition the scale 
that would convert a regular 14-gon to a regular 7-gon with the same side. Therefore hS[5] = 
tan(π/14)/tan(π//7) ≈.4739 . This tile will always have an ‘M-D’ relation with D (and N)  
 
The scaling of the other ‘odd’ tiles will be similar because GenScale[N]/scale[k] will always be 
an ‘even’ scale of N and these are exactly the scales shared by N and N/2. So for S[3] of N = 14, 
hS[3] = GenScale[14]/scale[3] = scale[4]. The table above (and the Scaling Lemma of Section 3) 
says that scale[4] of N = 14 is scale[2] (of N = 7)ScaleSwap[14,7], so S[3] is first scaled to 
match M and then scaled by scale[2] of N = 7. This makes S[2] part of a scaled version of the N 
= 7 First Family, which is embedded in the M= 14 First Family.  
 
The k = 1 case for N = 14 is very important, because hS[1] = GenScale[14]/scale[1] = scale[6] = 
scale[3] (of N = 7)*ScaleSwap[14,7]. Therefore S[1] is scaled by scale[3] relative to M,  but 
scale[3] of N = 7 is GenScale[7], so S[1] is a ‘second generation’ M tile as shown in the 
examples above. 
 
Therefore the odd tiles of N = 14 are actually scaled by N = 7 – and it is fair to say that 
dynamically N= 14 is just a ‘different view’ of N = 7. (The Twice-Odd conjecture of Section 3.) 
 
Any N-gon and N/2-gon pair such as M and N = 14 are called an M-D pair. We pointed out 
earlier the important role that D tiles play in outer billiards. Except when N is twice-even, the M 
tiles evolve from matching D tiles (as shown here) and conversely D tiles evolve from M tiles, so 
these M-D pairs are fundamental building blocks for extended families for N odd or twice-odd. 
 
 (In 1989 when the author met with Jurgen Moser at Stanford University to discuss these 
canonical tiles, the issue of boundedness for regular polygons had just been settled, but he agreed 
that a study of these ‘families’ would be an interesting exercise in ‘recreational mathematics’. 



That is exactly what it became – part of a whimsical ‘fairy-tale’ with M and D as matriarch and 
patriarch. But after all these years, there is still no theory for the extended families – except for 
the simple cases of N = 3, 4, 5, 6, 8,10 and 12. However the ‘gender issue’ between tiles with 
even or odd number of sides is still fundamental – because they have different dynamics relative 
to the outer billiards map. Maybe the astute reader can see why.) 
 
Definition: The First Family of a twice-odd N-gon is defined as follows: 
 
Assume N is centered at the origin with apothem 1 and lower edge  horizontal.  
 
(i) The 〈N/2〉 star points of N are star[n_]:= Table[{-Tan[k*Pi/n],-1},{k, 1, 〈𝐍/𝟐〉}] 
 
(ii) Each star point defines a scale using scale[k] = s1/sk (where sk = tan(kπ/N) 
 
(iii) The ‘centers’ are defined to be  

cS[k] = OuterDual[star[k]]= RotationTransform[-Pi/N][star[k]*rN] 
 

(iv) For k even, S[k] will be a regular N-gon with center cS[k] and hS[5] = GenScale[N]/scale[k] 
 
(v) For k odd, [k] will be a regular N/2-gon with center cS[k] and hS[k] = GenScale[N}/scale[k] 
 
(S[〈N/2〉] will be called D and  S[〈N/2〉-1] will be called M. N also be known as S[0]) 
 
(vi) Each S[k] defines a matching LeftS[k] (LS[k]) as follows: 
 

LS[k_]:=ReflectionTransform[{1,0},cM][S[k]]; 
 

(where the vector {1,0}specifies a ‘horizontal’ reflection about cM) 
 

FFRight[N_] :=Table[S[k],{k,0,〈N/2〉}]; FFLeft[N_] := Table[LS[k],{k,0, 〈𝐍/𝟐〉 }]; 
 

FirstFamily[N_] := Join[FFRight[N], FFLeft[N]]; 
 

Example: Graphics[poly/@FirstFamily[14]]  
 

                           
Note: To display these closed polygons in Mathematica using the Line command it is necessary 
to append a vertex to explicitly close the circuit. We use poly[M_]:=Line[Append[M, M[[1]]]]; 
 
 



Example: Graphics[poly/@FirstFamily[26]] (in black) 

         
As N increases, the central ‘M’ tile is further isolated  from the rest of the First Family. We have 
filled in the blanks above using a portion of the First Family for N = 13 – which will be defined 
next. The transformation is kToTwok[x_]:=TranslationTransform[cM][x*rM]. If we had 
imported the full First Family for N = 13 it would include M and all the tiles left of M – so M 
and D shown here, are a canonical M-D pair. By convention we refer to a combined plot like this 
as the ‘full’ First Family, so it is FFF[26] - and as such it contains a scaled copy of the First 
Family for N = 13 – by simply cutting it in half – as in Parent Trap. 
 
N = 13 (and N = 26) have ‘generations’ of families in a manner similar to N = 7 (and N = 14). In 
both cases, generation[k] is presided over by an M-D pair scaled (relative to the First Family) by 
GenScale[7]k and GenScale[13]k respectively – but the other ‘tiles’ in these families may be 
quite different from the S[k] tiles of the First Families. For N = 7, the difference is fairly minimal 
and all the even and odd generations appear to be self-similar, but N = 13 may have generations 
which never settle down to a recognizable pattern. The 4k+1 conjecture in [H2] predicts that all 
N-gons where N is prime of the form 4k+1 will have endless chains of generations. The twice-
even cases have no M-D pairs, but the canonical S[1] and S[2] tiles can serve as surrogates. For 
N = 12 and N = 16 there appear to be chains of such generations, but the rest of the twice-even 
family shows little sign of generation scaling. The issue is complicated by the mutations. 
 
Case 2: First Family for N-odd 
 
The star points and centers of N= 7 are shown below. They are defined the same for all N-gons 
so the magenta {7,3} is the OuterDual of the blue {7,3}. Since the blue {7,3} is one component 
of {14,6}, these star polygons have very similar First Families and each can generate the other.   

                                         
The S[k] are always scaled relative to the maximal D tile. When N is odd, D and N will share a 
side and form an M-D pair, so hD = ScaleSwap[N,2N] . Therefore hS[k] = ScaleSwap[N,2N] 
GenScale[N]/scale[k]. For N = 7 above the list of heights for S[1], S[2] and S[3] are 
{0.231914,0.603875,2.10992} with the last being hD. These are all 2N-gons by default. 



The outer billiards web and related star polygons have a natural duality which allows us to view 
the D tiles as if they were ‘generating’ N-gons at the origin, so the ‘First Family’ for D within N 
= 7 is a scaled (and reflected) version of the First Family for N = 14 described in Case 1. To see 
this connection, we will import the LS[k] for N = 14. These tiles are shown below in magenta. 
Within N = 7, the imported tiles will be called DS[k] because reflection in D is their true origin. 

                                   
 
All of these will be part of the First Family for N = 7. Of course these magenta tiles can also be  
generated within the context of N = 7, using D as a clone of N = 14. 
                                  
Definition: The First Family of an N-gon for N odd is defined as follows: 
Assume that N is centered at the origin with hN = 1 and lower edge horizontal. (Items (i),(ii),(ii) 
below are identical for all regular N-gons.) 
 
(i) The star points are: star[N_]:=  Table[{-Tan[k*Pi/n],-1},{k, 1, 〈𝐍/𝟐〉}] 
 
(ii) Each star point defines a scale using scale[k] = s1/sk 
 
(iii) The ‘centers’ are defined to be  

cS[k] = OuterDual[star[k]]= RotationTransform[-Pi/N][star[k]*rN] 
 

(iv) The S[k] tiles will by regular 2N-gons with center cS[k] and height hD*GenScale[7]/scale[k] 
= ScaleSwap[14]/scale[k]. 
 
(v) Import FFLeft[2N] - which consists of the LS[k] for {k,0, N-2}. Recall that LS[N-2] is called 
M. Scale each LS[k] using the scale that would ‘promote’ this M tile to match N, so scale by 
1/hM and translate cM to the origin. Call the scaled files DS[k] instead of LS[k] 
 

DS[k] = TwokTok[LS[k]] = TranslationTransform[{0,0}-cM][LS[k]]/hM; 
 
(vii) FirstFamily[N] = Join[Table[S[k],{k,0,〈N/2〉, Table[DS[k], {k,0, 〈𝐍/𝟐〉 }] 
 
Example: Graphics[poly/@FirstFamily[7]]   

                                    



The redundant names here are useful because they highlight the connection between D and N = 
7, which is the new ‘M’. Basically D is playing the part of N = 14 but on the left side, so it is no 
surprise that N = 7 is DS[5]. The only tile that was not part of the First Family for N = 14 is S[1], 
but this difference grows with N, as shown earlier with N = 13. 
 
Under the outer billiards map, the S[k] tiles of any First Family have orbits which skip k vertices 
on each iteration, so they have ‘step-k’ orbits. The DS[k] do not have constant step orbits around 
N = 7, but they are step-k relative to D.  It would be a simple matter to extend this family with a 
reflection about the origin to get the First Family for N = 14. In this scenario DS[6] would be 
called DRight (or N = 14). 
 
As indicated earlier, N = 7  has the potential for extended families on the edge of D – with DS[1] 
playing the part of the M[1] and DS[2] as D[1] and scale GenScale[7]. Using ‘virtual’ D[k] tiles 
inside of D (and matching real M[k] outside), this chain can theoretically be continued to obtain 
M[k]’s and D[k]’s scaled by GenScale[7]k converging to GenStar[7]. Even though N = 7 is not a 
4k+1 prime, there do appear to be such chains and the families alternate between two ‘templates’ 
– where the canonical FirstFamily[7] shown above is just the template for the ‘odd’ generations. 
This alternation may be due to the fact that N = 7 has two non-trivial scales – while N = 5, 8,10 
and 12 have only one non-trivial scale – and hence a well-defined fractal dimension.  
 
Example: Graphics[poly/@FirstFamily[9]]   

     
 
Since 9 is composite, the actual First Family that occurs in the outer billiards map may involve 
some ‘mutations’ of the S[k] or DS[k] tiles. This is due to shortened orbits of the center 
whenever (k,N) >1.  On the right above, the step-3 orbit of cS[3] only ‘sees’ the embedded 
regular triangle so it has period 3 instead of 9. These shortened orbits may lead to mutations in 
the DS[k] or S[k] tiles. S[3] would normally be a scaled version of N = 18, but in reality it 
consists of two nested regular hexagons, each with center cS[3] and slightly different radii. We 
call these ‘woven’ polygons. They preserve ‘half’ of the dihedral symmetry of the regular S[3] 
and their dynamics are of interest in their own right. We will return to N = 9 in Section 4. 
 
Case 3- N twice-even 
 
The First Family for N twice-even is defined below. This is the easiest case to define because all 
the family members are identical except for scale and there is lateral symmetry. Of course in 
reality, there may be ‘mutations’ based on the First Family tiles as ‘templates’.   
 
Definition: The First Family of an N-gon for N twice-even is defined as follows: 
Assume N is centered at the origin with height 1 and ‘bottom’ edge horizontal.   



(i) The star points are: star[n_]:= Table[{-Tan[k*Pi/n],-1},{k, 1, 〈𝐍/𝟐〉}] 
 
(ii) Each star point defines a scale using scale[k] = s1/sk 
 
(iii) The ‘centers’ are defined to be  

cS[k] = OuterDual[star[k]]= RotationTransform[-Pi/N][star[k]*rN] 
 

 (iv) Each S[k] will be a regular N-gon with center cS]k] and height GenScale[N]/scale[k]. 
(S〈N/2〉 will also be known as D and S[〈N/2〉-1] will be the ‘central’ tile in the First Family so 
we will call it C. By convention S[0] will be N) 

(v)  DS[k_]:=ReflectionTransform[{1,0},cC][S[k]]; 

(vi) FFRight[N_] :=Table[S[k],{k,0, 〈𝐍/𝟐〉}]; FFLeft[N_] := Table[DS[k],{k,0, 〈𝐍/𝟐〉}]; 
 

FirstFamily[N_] := Join[FFRight[N], FFLeft[N]]; 
 
Example: Graphics[poly/@FirstFamily[24]] 

             
We will return to N = 24 in Section 3 and Section 4- where we find relationships between the 
star points and scales.  
 
Summary: 
 
The extended edges of any regular N-gon can be used to define a unique family of nested ‘star-
polygons’. The intersections of these extended edges are called the ‘star points’ of N. By 
symmetry there are only <N/2> ‘distinct’ intersection – where <N/2> is the greatest integer less 
than N/2. If the N-gon is in ‘standard position’ at the origin with apothem 1, these ‘star points’ 
will be of the form { sk,-1} where sk = tan(kπ/N) for 1≤ k < N/2. Each sk defines a scale and the 
star points and scales define a regular polygon S[k]. These S[k] form the nucleus of the First 
Family – which can be constructed by the algorithms in Section 2. The Families are of the form: 
 

N odd N twice-odd N twice-even 
First Family size:〈N/2〉+N-3 First Family size: N-3 First Family size: N -3 

Example: N = 11

 

Example: N = 18 
 

 

Example: N = 12 
 

 



Section 3: Scaling for regular polygons 
 
For any piecewise affine map, the notion of scaling is fundamental – but very little is known 
about scaling under maps based on rational rotations. There may never be a uniform theory for 
scaling of regular polygons under the outer billiards map – because the scaling appears to be very 
sensitive to the algebraic complexity of N.  
 
However every regular N-gon has a well-defined First Family of tiles with their associated scales 
and it is our hope that these ‘canonical’ scales can serve as a geometric and algebraic ‘template’ 
for the general scaling. This is true for the ‘linear’ and ‘quadratic’ cases and in general we will 
show that the φ(N)/2 primitive scales serve as a basis for all the ‘canonical’ scales. The vector 
space determined by these primitive scales is actually a field – namely the maximal real subfield 
of the cyclotomic field N. This means that there is a structure to the canonical scales – which 
hopefully can be exploited to obtain results about the dynamics of N. 
 
The singularity set of a regular N-gon evolves in a recursive fashion and the star points (and 
associated S[k] tiles) define transitions in this evolution. Since the S[k] tiles have trivial ‘step-k’ 
dynamics, it may be possible to use this knowledge to study the evolution local to S[k].  
 
In [H3] we have attempted to do this for N = 7 - where there are only two non-trivial primitive 
scales. But these scales can interact in unpredictable ways – and this potential increases with 
each new ‘generation’. The 8th generation for N = 7 has regions with dynamics which appear to 
be unrelated to any previous dynamics – but there are still embedded invariant regions with 
‘canonical’ dynamics. For N = 11 these regions have almost vanished and there seems to be no 
correlation between the dynamics of ‘generations’. 
 
When N is composite, every divisor defines a ‘factor’ polygon and there are simple relations 
between the scales of N and the scales of these factors. These relations are described in the  
Scaling Lemma below. The factors can be considered inscribed or circumscribed as shown here 
for N = 24. The circumscribed form makes it clear that every factor will share its star points with 
N. These are classified as ‘degenerate’ star points of N= 24, since sk = tan(kπ/N) has (k,N) >1.   
  

                        
 
The external factors shown on the right are scaled to be in ‘standard position’ relative to N = 24, 
which means that they share the same horizontal ‘base’ edge and have the same height as N = 24. 



Since every factor shares certain edges with N = 24, they also share the corresponding star points 
and this implies that the corresponding scales are related by ScaleSwap. 
 
Lemma 4 (Scaling Lemma): Suppose N and M are regular polygons and N/k = M, then  
 
                                    scale[j] of N/k = scale[kj] /scale[k] of N 
 
Proof: N/k can be scaled relative to N so that it is an ‘external factor polygon in standard 
position’. To do this, center both N and N/k at the origin. N/k will have bottom edge horizontal 
and side s/ScaleSwap[N,N/k] where s is the side of N. The external angle of M is 2πk/N so in 
this position, every kth edge will coincide with an edge of N. Therefore it will share every kth 
star point with N and by definition the corresponding scales are related by the ratio of the sides 
of N and N/k, so scale[j] of N/k = (scale[kj] of N)/ScaleSwap[N,N/k]. In particular, scale[1] of M  
= 1 =  scale[k]/ScaleSwap[N,M], so scale[k] of N is ScaleSwap[N,M]. □ 
 
Example: Below is N = 24 showing the external factor polygon N = 8 which corresponds to k = 
3, so every third star point is aligned.    

                            
 
Therefore ScaleSwap[24,8] is scale[3] (of N = 24). GenScale[8] is scale[3] of N = 8 and this is 
equal to scale[9]/scale[3]. Because of the symmetry of the N = 8 family, scale[2] must be 
�scale[3], and this implies that scale[9] of N = 24 is scale[6]2/scale[3]. Because of the 
relationship between the scales of N = 8 and N = 24, the S[1], S[2] and S[3] tiles of  N = 8 are 
scaled versions of S[3], S[6] and S[9] for N = 24. However there is no natural way to extend this 
to the rest of the First Family for N = 24, so the families appear to have very different dynamics. 
 
Since φ(24) = 8, N = 24 has just 4 primitive scales, with indices {1,5,7,11} and we will see that 
all the scales are linear combinations of these 4 primitive scales. Alternatively scale[11] = 
GenScale[24] = tan2(π/24) will generate the scales because they are all in the maximal real 
subfield of  the cyclotomic field (N). (See Section 4.) 
 
NumberFieldSignature[GenScale[24]] = {4,0}, so the minimal polynomial for GenScale[24] 
has 4 real roots and this implies that every scale is of the form 2 3

0 1 2 3a a x a x a x+ + +  where x = 
GenScale[24] and the ai are rational. For example, scale[9] = s1/s9, and GenScale[24] = s1

2 so 
 
AlgebraicNumberPolynomial[ToNumberField[Tan[Pi/24]/Tan[9*Pi/24],Tan[Pi/24]^2],x] 

yields  
2 39 321 179 3

64 64 64 64
x x x

− + −  = tan(π/24)/tan(9π/24) =  scale[9] ≈ 0.0545323 when x = s1
2. 



The important special case of  the Scaling Lemma for k = 2 will be described below. Basically 
this N-even Scaling Lemma says that for any regular N-gon with N-even, the scales inherit the 
symmetry of N.  
 
Lemma 5: (N-even Scaling Lemma ) 
 
(i) In Section 1 we noted that when N is even, GenStar[N] = 1/star[1] so 
 
                            scales[N] = Reverse[GenScale[N]/scales[N]] 
 
Since GenScale[N], maps the scales to themselves in reverse order, the number of linearly 
independent scales cannot exceed N/4. We will show in Section 4 that the actual number of 
independent scales is always φ(N)/2, but here we are looking at the consequences of symmetry. 
 
(ii) For N twice-odd the total number of scales is N/2 -1 which is even, so the largest number of 
independent scales is Floor[N/4]. The ‘even’ or ‘odd’ scales are sufficient because they map to 
each other under GenScale: 
 

EvenScales[N] = Reverse[GenScale[N]/OddScales[N]] 
OddScales[N] = Reverse[GenScale[N]/EvenScales[N]] 

 
Therefore either the evens or the odds will generate the full list: 

Scales[N] = Riffle[OddScales,EvenScales] (Riffle interweaves them) 
 
(iii) For N twice-even the total number of scales is still N/2 – 1 but now it is odd, so the 
maximum number of independent scales is N/4. The first N/4 scales (or the last N/4) form a full 
list of candidates for independent scales, and these sets map to each other using GenScale[N] as: 
 
FirstHalf[N] = Table[scale[k], {k,1, N/4}];  SecondHalf[N]= GenScale[N]/FirstHalf[N] 

 Scales[N] = Join[FirstHalf[N], SecondHalf[N]] 
 
Since the ‘central’ S[N/4] tile of the First Family is in both lists, scale[N/4]  =�GenScale[N] . 
 
(iv) When N is even, the corresponding N/2 –gon can be scaled to become an ‘external factor 
polygon in standard position’ where it shares all of its star points with N – as in the Scaling 
Lemma. It follows that ScaleSwap[N,N/2] = scale[N/(N/2)] = scale[2]. Therefore the scales of 
N/2 can be derived from the even scales of N as: 
 

Scale[N/2] = EvenScales[N]/ScaleSwap[N,N/2]   □ 
 
Note: In the twice-odd case this equivalence of scales is significant because ScaleSwap[N,N/2] 
is GenScale[N]/GenScale[N/2] and this establishes a natural conjugacy between the First 
Families as shown below in Lemma 6. For N twice-even the central S[N/4] tile is an N-gon by 
default, so N/2 is not embedded in the First Family of N and there is no natural connection 
between the First Families or the dynamics of N and N/2. 
 



Lemma 6: (Twice-odd Lemma):When N is twice-odd, the scales of N/2 are related to the even 
scales of N by: 

GenScale[N/2]scale[k]=scale[2k]
GenScale[N]

 

Therefore scale[〈N/2〉-1] of N is GenScale[N/2]. 
 
Proof: When N is even, part (iv) of the Scaling Lemma says that the scales of N/2 can be derived 
from the even scales of N using scale[k] = scale[2k]/scale[2] where scale[2] of N is the ratio of 
the sides, which is ScaleSwap[N,N/2] = tan(π/N)/tan(2π/N). When N is twice-odd, Lemma 2 
shows that ScaleSwap[N,N/2] = GenScale[N]/GenScale[N/2]. 
 
Item (i) of the N-even Scaling Lemma says that GenScale[N]/scale[N/2-1] = scale[2] and  
scale[2] is GenScale[N]/GenScale[N/2]. Therefore scale[〈N/2〉-1] of N is GenScale[N/2]. □ 
 

The key issue in Lemma 6 is that when N is twice-odd, ScaleSwap is the ratio of the GenScales 
and this yields a perfect alignment of scales between N and N/2. This implies that the First 
Families are also related by a simple ScaleSwap as shown below.  

Corollary: For N twice-odd, the First Families of  N and N/2 are related by: 

       T[x_] := TranslationTransform[{0,0}-cS[N/2-2]][x]*ScaleSwap[N/2,N] 

        

The ‘half-rhombi’ shown here are called the First Family ‘templates’ – where we have filled in 
the symmetric tiles for N = 14 and N = 7. It is possible to reduce all the dynamics of the outer 
billiards map to just these templates when N is even. This is done in Appendix B using the 
Digital Filter map. This  implies that for N twice odd, the singularity sets of N and N/2 are 
related by a simple ScaleSwap and many studies of N = 7 have been done using N = 14. 
ScaleSwap[N/2,N] will be an algebraic integer when N is odd, so there is no loss of information. 
However this equivalence of ‘webs’ does not imply equivalent dynamics and our conjecture is 
that there is a conjugacy between the dynamics. Below is a comparison of the invariant regions.    

                                                         



Section 4: Algebraic complexity of star points and scales 
 
Since the vertices of a regular n-gon with radius 1 satisfy the cyclotomic equation zn = 1, they are 
algebraic and not transcendental. There are always n (complex) solutions which can be written as  
{k : 1 k  n} where  = exp(2πi/n). The primitive roots of the cyclotomic equation are those 
where (k,n) = 1, so there are φ(n) such roots. 
 
Definition: Let   be the field of rational numbers. The nth cyclotomic field is the extension 
field (n) where n is a primitive root of zn = 1 – which we usually take to be  = exp(2πi/n). 
 
Since  is an algebraic number,() is a number field. It is called the ‘splitting field’ of zn = 1.All 
of the primitive roots share the same minimal polynomial, so they are called Galois conjugates. 
This minimal polynomial is defined below: 
 
Definition: The nth cyclotomic polynomial is defined to be 

Φn(x) = 
1 , ( , ) 1( ) k

k n k n x ζ
≤ ≤ =

−∏  

This polynomial has degree φ(n) and can be shown to be irreducible, so () has dimension φ(n) 
over . Φn(x) will be monic over ℤ and have all integer coefficients, so each primitive root is an 
algebraic integer and the set {1, ,2,.., φ(n)-1} forms an integral basis. So () = [] since 
every element   () is a linear combination of the primitive k with coefficients . If the 
coefficients are restricted to integers, then   [] – the ring of integers.  
 
For any field F and extension K, the set of all automorphisms of K that leave F fixed, form a 
group known as Aut(K/F). When K is the splitting field of a separable polynomial, it is called a 
Galois extension and Aut(K/F) is called the Galois group of K/F and written Gal(K/F). Any 
automorphism of () which fixes , will map the roots to themselves so Gal(()/) is {k:  
→ k: (k,n) = 1}. We will write this as Gn. Therefore |Gn|  =  φ(n) and it is isomorphic to x

n - the 
integers mod n under multiplication. x

n consists of the ‘units’ of ℤn – where ℤn is the additive 
group of integers mod n. 
 
For a Galois extension E/F, the fundamental theorem of Galois theory says that there is a 1-1 
correspondence between the subgroups H of Gal(E/F) and the subfields K of  E (which are 
Galois by default). Moreover the degree of E over K, [E:K], is equal to |H|. For example if K is 
an intermediate extension   K  (), it will also be Galois. Then |GK| = [(): K] and since 
[():K][K:] = [():] = φ(n), this will yield the degree of K over . Therefore to find the 
degree of K over , it is sufficient to determine GK -which consists of the  k that leave K fixed.  
 
There are three extensions K of immediate interest – corresponding to cos(2πk/n), sin(2πk/n) and 
tan(2πk/n).  
 
(i) Cos(2kπ/n) = (k

 + -k)/2  whenever (k,N) = 1, so each primitive  can be grouped with its 
complex conjugate  to obtain a real result in (). Setting ξc =  + -1, Kc = (ξc)  (). 



Complex conjugation in () is always an automorphism of order 2, so |G | = [(): (ξc)] = 2 
and since [() :(ξc)] [(ξc), ]  =  [():] = φ(n),  [(ξc):] = φ(n)/2. Therefore the 
minimal polynomial for cos(2kπ/n) has degree φ(n)/2 over  whenever (k,N) = 1.  
 
(ii) Sin(2πk/n) = (k – -k)/2i whenever (k,N) = 1, so the matching extension field is Ks = (ξs) 
where ξs =  – -1 . Clearly (ξs)  (). To find the dimension of Ks over (), note that 1 is 
the only possible automorphism when n is not divisible by 4, so |GK| = 1. But when n is divisible 
by 4, i () and the extra symmetry allows for |GK|  =  2 when n = 0 mod 8 and |GK|  =  4 when 
n = 4 mod 8. This last case occurs because i (ξs) iff n = 4 mod 8. This yields the three distinct 
dimensions over  in the theorem below. 
 
(iii) Tan(2πk/n) = (k- -k)/( k + -k)i  whenever (k,N) = 1 so the matching extension field is 
Kt = (ξt) where ξt =  – -1/(  + -1) .The Galois group of Kt depends on n just like sin. When n 
is not divisible by 4,  |GK| is again 1, but now the extra symmetry of n divisible by 4 yields |GK|  
=  2 when n = 4 mod 8 and |GK|  =  4 when n = 0 mod 8. This last case occurs because now i 
(ξt) iff  n = 0 mod 8.  
 
Complexity Theorem  ([R],[Ca]) Suppose n > 2 and (k,n) = 1. In the sine and tangent cases 
assume n4. Then the algebraic degree over  of  

(i) cos(2kπ/n) is φ(n)/2 

(ii) sin(2kπ/n) is   
  φ(n)  if  4 does not divide n

    φ(n)/2   if  n  = 0 mod 8      
φ(n)/4  if  n  = 4 mod  8

 
 
 
 
 

 

(iii) tan(2kπ/n) is  
  φ(n)  if  4 does not divide n

    φ(n)/2   if  n  = 4 mod 8      
φ(n)/4  if  n  = 0 mod  8

 
 
 
 
 

 

 
The case of sin(2kπ/N) is credited to Lehmer [L] (1933), but he based his derivation on the 
cosine case using the identity sin(2πk/n) = cos(2π(4k-n)/4n). Lehmer noted that since (k,n) = 1, 
the fraction (4k-n)/4n is either in lowest terms or “may be reduced to an equal fraction in its 
lowest terms with the denominator 2n or n”. However when n is 4 mod 8, the reduced 
denominator will be (n/2). Setting k = 1 and n = 8m + 4, (4 - n)/4n = - m/(n/2) so when n = 12, 
(4-12)/48) = -8/48 = -1/6. This implies that the degree of sin(2π/12) is 1 and not 2 as stated by 
Lehmer.  
 
Niven [N] (1956) quotes a corrected version of Lehmer’s result for sine and then extends it to the 
tangent case by showing that (tan(2πk/n) = (sin(2πk/n)) when 4 does not divide n, 
(tan(2πk/n) = (cos(2πk/n)) when n = 4 mod 8, and (tan(2πk/n) = (cos(4πk/n)) otherwise.  
 
Calcut [Ca]  gives a thorough treatment of all three cases from first principles using Galois 
Theory and later reproves the tangent result using an analogue to the Chebyshev polynomials of 



the first kind for cosine. Stillwell [St] notes that these basic polynomials were known to John 
Bernoulli as early as 1702, but it was Bernoulli’s student Euler who understood their significance 
in the development of complex logarithms and exponentials.  
 
Definition: The algebraic complexity of a regular N-gon is the degree of the minimal polynomial 
for cos(2π/N) – which is φ(N)/2. 
 
So N = 5,8,10 and 12 have ‘quadratic’ complexity, while N =7, N = 14 and N = 9 and N = 18 
are ‘cubic’ and N = 15, 16 and 24 are ‘quartic’. 
 
In Mathematica, Cyclotomic[N,x] gives ΦN(x) and MinimumPolynimial[Cos[2Pi/N]][x] gives 
the minimal polynomial for cos(2π/N). 
 
The Complexity Theorem simplifies when tan(2πk/N) is replaced by tan(kπ/N) because the only 
issue now is  whether 4|N or not 
 
Corollary (Complexity Theorem – Part 2): If n > 2 and (k,n) = 1, the degree of tan(kπ/n) over  
is φ(n), except when n is divisible by 4, the degree is φ(n)/2. 
 
Example: Table[{n, EulerPhi[n],  Exponent[MinimalPolynomial[Cos[Pi/n]][x], x], 
Exponent[MinimalPolynomial[Tan[Pi/n]][x], x], {n, 3, 20}]  (The matching Cotangent 
sequence is https://oeis.org/A089929.)  
 

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Φ(N) 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 

Degree of 
Cos[2Pi/N] 

1 1 2 1 3 2 3 2 5 2 6 3 4 4 8 3 9 4 

Degree of 
Tan[Pi/N] 

2 1 4 2 6 2 6 4 10 2 12 6 8 4 16 6 18 4 

 
 
For a given regular N-gon, there are always φ(N)/2 primitive sk  and when 4 does not divide N, 
TN[x] will be an even function with  φ(N) roots, and the roots will consist of the primitive sk and 
their negatives. Therefore the primitive sk are Galois conjugates. When 4|N, TN[x] will be odd 
with degree φ(N)/2, and there is no longer a guarantee that the primitive sk will be among the 
roots, but it is easy to restore the missing symmetry by including the negative of each root. This 
can be done using TN[x] in conjunction with TN[-x]. In Lemma 8 we will use the Root Lemma 
below to show that these statements are valid. 
 
Lemma 7 (Root Lemma): If  sk = tan(kπ/N) exists then the roots of  the minimal polynomial for 
tan(kπ/N) are sjk where j is any integer such that (j,N) = 1. But when 4|N, j must also be 1 mod 4.   
 
(Note that k does not have to be positive. We will only need the cases of k = 1 and k = -1 below.) 
 
 
 

https://oeis.org/A089929


Example (N = 8): The primitive sk of N = 8 are s1 = √2 -1 and s3 = √2 +1 as shown below in 
black. It is clear that both T8[x] and T8[-x] are needed to yield the two primitive roots (but as 
generators (s1) = (-s1), and they are both degree 2, so either would suffice for generating the 
primitive roots.) In the Root Lemma, setting k = 1 will yield T8[x] in blue. Since j must be 1 mod 
4, the only possible j values are j = 1 and j = 5 = -3 mod 8, so the indices are kj = 1 and kj = -3.  

       
Normally setting k = -1 would yield the same roots, but when 4|N, it will yield the matching 
negative roots for T8[x]. Setting k = -1 gives T8[-x] in red, and once again the only possible j 
values are j = 1 and j = 5, so the indices are kj = -1 and kj = -5 = 3 mod 8. This yields the two 
remaining roots. Therefore the full set of ‘primitive’ indices is {-3,-1,1,3}. The magenta star[2] 
corresponds to s2 = tan(2π/8) = 1 and the Basis Lemma below shows that it must be in (s1). 
 
Lemma 8: The primitive sk of a regular N-gon are the positive Galois conjugates of s1 = tan(π/N) 
or –s1 = tan(-π/N). There are always φ(n)/2 of these positive conjugates. 
 
Proof:  Note that when k = 1 or k = -1 in the Root Lemma, the  matching s1 = tan(π/N) and s-1 = 
tan(-π/N) always exist. 
 
(i) Suppose that 4 does not divide N. Since j is mod N, we can assume j < N. The Root Lemma 
says that the set of Galois conjugates of  s1 is  

G1 = {sjk : k = 1 and kj < N, (j,N) = 1}   S = {sk: 1≤ k <N/2, (k,N) = 1} 
so every primitive sk is a Galois conjugate of s1.When (N,j) = 1, then (N,-j) = (N,N-j) is also 1, so 
every sjk in G1  has a matching s-jk. This implies that setting k = -1 would yield the same roots, so 
TN[x] = TN[-x]. The set S corresponds to the positive indices with j <N/2 – so the primitive roots 
are positive, and there are φ(N)/2 such roots. 
 
(ii) Suppose that 4|N. The Root Lemma says that the Galois conjugates of s1 and –s1 are obtained 
by setting k = 1 or k = -1, so the combined conjugates are 

 G2 = {k = 1 or k = -1 and sjk : kj < N, (j,N) = 1 and ((j, 4) = 1 or (-j,4) = 1)}  
Since N is twice even (j,N) = 1 implies j = 1 or 3 mod 4, so these can be dropped above 

  G2 = {k = 1 or k = -1 and sjk : kj < N, (j,N) = 1}   S = {sk: 1≤ k <N/2, (k,N) = 1} 
Now the primitive sk on the right are spread between the two cases of k = 1 and k = -1 but there 
will always be an equal number of positive and negative indices since any valid j for k = 1 will 
remain valid for k = -1. In fact TN[x] (k = 1) = -TN[-x]( k = -1).There are φ(N)/2 combined roots. 
□ 
Corollary: For any regular N-gon, (s1) generates all the primitive sk and is always degree 
φ(N)/2. 
 
Proof: If N is not divisible by 4, Lemma 8 says that all the primitive sk are Galois conjugates of 
s1, so they are in (s1) (along with their negatives). If N is divisible by 4, the primitive sk are 
roots of s1 or –s1, and (s1) = (-s1). Therefore (s1) is always degree  φ(N)/2 . □ 



Note that this does not imply that the primitive sk are independent – just that the set {1,s1, s1
2,…} 

is independent. Also s1 is not in (N) unless 4|N, so we will often use the ‘surrogate’  is1. 
 
Example:N = 15 has φ(15) = 8 and there are  7 ‘star’  points sk with 4 primitive.  
 
NumberFieldSignature[Tan[Pi/15]] yields {8,0}. This is an ‘overkill’ because the 8 real roots 
are of the form  sk for (k,n) = 1. Lemma 8 guarantees that all the primitive roots will be in 
(s1), and the Basis Lemma below takes this one step further to show that all the degenerate sk 
are linear combinations of the primitive sk, so they are also in (s1). Here is an example with s5 = 
tan(5π/15) = √3 , but in order to work entirely inside (15), we will solve for is5 using (is1), 
 
 AlgebraicNumberPolynomial[ToNumberField[I*Tan[Pi/15], I*Tan[Pi/15]] ,x] 

yields 
3 5 7395 3075 2297 25

32 32 32 32
x x x x
+ + +   =  𝑖√3  where x = itan(π/15). Since these are odd 

powers of ix, the i terms will appear as +/-  and hence i can be cancelled to yield 
 

3 5 7395 3075 2297 25[ ] [ ] [ ] [ ]
32 15 32 15 32 15 32 15

Tan Tan Tan Tanπ π π π
− + −   = √3 

 
Of course this same result can be obtained directly using tan(π/15) as generator – but in general it 
is more efficient to do calculations inside (15). 
 
The minimal polynomial for tan(π/15) is T[x_] := MinimalPolynomial[Tan[Pi/15]][x]  
= x8-92x6+134x4-28x2+1. Using FirstFamily.nb with npoints = 15, Mathematica automatically 
finds the First Family, star polygons and star points. The primitive star points correspond to the 
units in ℤ15. To find them use the GCD function or K = Table[k*DirichletCharacter[k, 1, 15], 
{k, 1, 15}];  followed by K = Delete Cases[K, 0]  Then K  = {1,2,4,7,8,11,13,14}.These will be 
the k-indices of the roots of T[x] – so the primitive sk  will have indices 1,2,4,7 and we just show 
indices 1,2 and 4 on the right below and also the matching left side sk with indices -1(14),-2(13),-
4(11) The complete set of conjugates is S = Table[{Tan[K[[j]]*Pi/15],0} {j,1,8}]. The 
degenerate  sk are shown in magenta below.  
 
Show[Plot[T[x], {x, -1.3, 1.3}], ListPlot[{S,T} PlotStyle -> {Black,Magenta}]}] (on the right  

                                                                   
 
For the First Family shown here,the star points are the - sk by convention, and also by convention 
their second coordinate is -1 – while the roots on the right naturally have second coordinate 0. 
 
 

http://www.dynamicsofpolygons.org/Software/FirstFamily.nb


Lemma 9 (Basis Lemma) For a given N-gon we have defined  sk = tan(kπ/N) for  1≤ k < N/2. 
These ‘star points’ are classified as ‘primitive’ if (k,N) = 1 and ‘degenerate’ otherwise. Here we 
show that every degenerate sk can be written as a linear combination of the primitive si. (For 
convenience we show the equivalent result that every degenerate isk is a linear combination of 
the primitive isk.) 
 
Proof: Since itan() =  (ei2-1)/( ei2+ 1), isk = (e2kπi/N-1)/(e2kπi/N+1) = (k-1)/(k+1) where  = 
exp(2πi/N), so isk  () and the only difference between the primitive and degenerate sk is 
whether (k,N) = 1. (Note that this does not show that the sk are in () because i  () only 
when 4|N.) 
 
The φ(N) primitive roots of () can be grouped in pairs to generate ()+ = (+-1). This is 
called the maximal totally real subfield of (). It plays an important role in algebraic number 
theory and () is always a quadratic extension of ()+. Since ()+ = ()∩ , the isk all lie 
in the complement of ()+, ()∩ i, which is sometimes written as ()-. 
 
The Complexity Theorem shows that ()+ has dimension φ(N)/2 over , so ()- also has 
dimension φ(N)/2 – as a vector space. Since isk  ()- for 1 ≤ k < N/2, and the set S of 
primitive isk is independent with |S| = φ(N)/2, they form a basis for ()-□. 
 
A similar argument can be applied to the cotangent to obtain the ‘dual’ result that every 
‘degenerate’ ck = cot(kπ/n) can be written as a linear combination of the primitive ck .This is 
done in [G2].  
 
It should be clear that is1 =  itan(π/N) can actually generate both ()+ and ()- - using the even 
and odd powers respectively. This means that tan2(π/N) will generate ()+ as we implied 
earlier. For ()- a basis could be {is1

k} for k odd and k < φ(N) as shown above for N = 15, but 
the primitive isk are a more practical choice of basis.  
 
As a vector space, every element of ()- has the form: 

                 
1 /2, (k,n) = 1

  i k
k N

a is
≤ <
∑   =  

1 /2, (k,n) = 1
[ / ]  i

k N
a iTan k Nπ

≤ <
∑ for  ai   

Therefore if M = N/d, (N)  (M) and there must be rational ai such that 

tan(jπ/M) = tan(jdπ/N) = 
1 /2, (k,n) = 1

  i k
k N

a s
≤ <
∑   =  

1 /2, (k,n) = 1
[ / ]  i

k N
a Tan k Nπ

≤ <
∑  

Note that since the ai  can be negative, the indices k can be chosen negative (mod N) if desired. 
In general there are no elementary formulas that will yield these coefficients, so no one knows 
what ()- really looks like for large N  Most results are  derived from Dirichlet’s -series result 
that (s,) = ∑ (𝑛)

𝑛𝑠
∞
1  is not zero for s = 1 and  a principle character mod N. This series is 

naturally more applicable to the cot case than the tan series, so these are the strongest results. 
Theorem 1 of [G2] gives a manageable formula for the coefficients in the cotangent case (see the 
second example below). The problem is that the known tan results depend on relating the 
character sets of tan and cot. Theorem 2 of [G2] -presents a “sort of closed formula” for the tan 
coefficients. For more on this issue see [Ch], [G1], [G2], [B] and [Ha] 



Example: For a case like N = 18, known summation formula such as those found in [P] can be 
used to find the coefficients. For example  tan(π/18) + tan(π/18 + π/3) + tan(π/18 + 2π/3) = 
tan(6π/18). Note that all the factors on the left side are primitive in N = 18, with k values 1, 7 and 
13 (-5), so tan(π/18) + tan(7π/18) - tan(5π/18) = √3. By exploiting the connection between even 
and odd sk for N twice-odd, this can be written as cot(4π/9) + cot(π/9) - cot(2π/9) = √3. But this 
does not immediately solve the problem of writing this degenerate s3 = tan(3π/9) of N = 9 in 
terms of the primitive sk  of N = 9. More on this below.  
 
Example: N = 1001 and divisor d = 13 (from [G2] ). This is a cotangent example and the goal is 
to find degenerate cot(j13π/1001) = cot(jπ/77) using the φ(1001)/2 = 360 primitive sk of N = 
1001. The 360 coefficients will depend on j in a ‘mod 13’ fashion, so when k = jmod 13, the 
matching ak have absolute value given by a(j) where a(1), a(2)..,a(6) are given by:  
 
a(1) = 3919516007/M,  a(2) = 190871389/2M,  a(3) = 19275929/M, a(4) = 1953103131/M, 
a(5) = 34311951/2M,  a(6) =  437327793/2M – where M = 52132 611811117. 
 
Patterns of this kind persist for power-series solutions and typically the p|N cases are hard: 
AlgebraicNumberPolynomial[ToNumberField[Tan[Pi/11],Tan[Pi/77]],x] will (eventually) 
return 30 coefficients which form 15 +/- pairs as above, each with common denominators of M = 
253, 2M, 4M or 8M. As expected, the numerators are all divisible by 7. For example the 
coefficient of x29 is 741123519940876038425783052745701/M. 
 
These results about star points will enable us to prove non-trivial results about the (canonical) 
scales for a regular N-gon. Recall that the scales are defined as {s1/sk: sk = tan(kπ/N)  for 1 ≤ k < 
N}.  
 
Definition: The primitive scales of a regular N-gon are the scales of the form s1/sk for sk 
primitive.  

 
Since s1 is always primitive, the primitive scales are in 1-1 correspondence with the primitive 
star points so there are φ(N)/2 primitive scales. Even though the primitive sk are independent, 
this does not imply that the primitive scales are independent, and we will prove this below using 
the fact that the dual star points are linearly independent as shown by Siegel and Chowla. 
 
In Section 1, we defined the dual star points of a regular N-gon to be {rk = cot(kπ/N), 1≤ k <N/2} 
with the matching dual scales of the form r1/rk = sk/s1 and we noted that when sk is primitive, 
then 1/sk is primitive with respect to cot, because the k indices are identical between tan and cot. 
Therefore the dual primitive scales are simply the inverse of the primitive scales. 
 
Theorem 2: (complexity of scales): For any regular N-gon, the set of primitive scales is linearly 
independent and forms a basis for all the (canonical) scales. Therefore the complexity of the 
scales is φ(N)/2. 
 
Proof: The scales of a regular N-gon are {tk =  s1/sk  for 1≤ k <N/2} and the primitive scales are 
T = {tk

 , (k,N) = 1} so |T| = φ(N)/2  
 



(i) To show that the primitive scales are linearly independent, suppose that  
1 /2 i kk N

a t
≤ <∑ = 0 with 

(k,N) = 1 and  ai . Then 
1 /2

1

1
i kk N

a t
s ≤ <∑  = 

1 /2 i kk N
a r

≤ <∑  = 0 contrary to the independence of 

the primitive dual star points {rk, (k,N) = 1}. 
 
(ii) To show that these primitive scales form a basis for all scales, suppose that tj  = s1/sj has sj 
degenerate. Then the dual star point rj = 1/sj is also degenerate but it can be written as rj = 

1 /2 i kk N
a r

≤ <∑  for rk primitive dual star points. Therefore  tj = 1 1 /2 i kk N
s a r

≤ <∑  = 
1 /2 i kk N

a t
≤ <∑  for 

(k,N) = 1. □ 
 
Corollary(complexity of dual scales) For any regular N-gon, the set of primitive dual scales is 
linearly independent and forms a basis for all the dual scales. Therefore the complexity of the 
dual scales is φ(N)/2. (The proof is the dual of the proof Theorem 2 – exchanging star points 
with duals.) 
 

Since the scales are of the form is1/isk and isk  (), the scales are in () and they are real so 
they are in the maximal real subfield ()+ - which has degree φ(N)/2. Therefore the primitive 
scales form a basis for ()+ and the dual scales are also in ()+, so primitive scales are units in 
()+. This means that they form a group which has finite index in the full unit group. More on 
this later. 
 
We noted earlier that the traditional generator of  ()+ is λN = 2cos(2π/N) and based on the half-
angle formula of Diophantus  

2

2

1 tan ( / )cos(2 / )     
1 tan ( / )

NN
N

ππ
π

−
=

+
 

it follows that tan2(π/N) will also serve a generator for ()+ and when N is even tan2(π/N) is 
GenScale[N], so it is a unit when GenScale[N] is primitive. 
 
Lemma 10: GenScale[N] is primitive except when N is 2 mod 4. 
 
Proof: By definition scale[j] is primitive iff sj is primitive and this is true iff (j,N) = 1. By 
definition GenScale[N] = scale[<N/2>] so it is primitive iff (<N/2>,N) = 1. Recall that <N/2> is 
the largest integer k < N/2 , so N-1  2k < N. Since (N,N+1) = 1, (<N/2>,N) is either 1 or 2. 
(i) When N is even <N/2> = (N-2)/2 so (𝑁−2

2
,N) = (2𝑀−2

2
,2M) = (M-1, 2M). If N is twice-odd,    

M-1 is even, so (<N/2>,N) = 2. When N  is twice-even, M-1 is odd, so (<N/2>,N) = 1. 
(ii) When N is odd,  <N/2> = (N-1)/2 is even, so (<N/2>,N) = 1. □ 
 
Therefore by Theorem 2, GenScale[N] is a unit in ()+, except when N = 2 mod 4 and in his 
case GenScale[N/2] is a unit – and of course (N) ≈ (N/2). In addition the Twice-odd Lemma 
shows that GenScale[N/2] is the penultimate scale of N, so it is a natural choice as surrogate for 
GenScale[N] when N is 2 mod 4. (Many authors simply omit this case from consideration, but 
we believe that that there is something to be learned by including this case.) 
 
 



Corollary: For any regular N-gon, the primitive scales are a unit basis for ()+, and 
GenScale[N] is a unit generator for ()+, except when N is 2 mod 4, in which case 
GenScale[N/2] is a unit generator. 
 
Scaling Conjecture for Regular N-gons: For any regular N-gon, all of the scales needed to 
describe the dynamics of the outer-billiards map can be chosen from ()+, and hence these 
scales are -linear combinations of the canonical primitive scales determined by the First 
Families. These primitive scales are algebraic units and among them are GenScale[N] (or 
GenScale[N/2] if N is 2 mod N). These will always be generators for ()+ 
 
Progressing from tan(2π/N) → tan(π/N)→ itan(π/N) reduces the cases from 3 to 2 to 1 and in the 
last case, itan(π/N) can be split into its real and imaginary parts to generate ()+ and the 
complement ()-.  
 
Example: N = 27 has <N/2> = 13 and scale[13] is GenScale[27]. Since φ(27) = 18, there are 9 
primitive scales and the maximal real subfield ()+ is degree 9. 

NumberFieldSignature[Tan[Pi/27]^2] = NumberFieldSignature[GenScale[27]]={9,0} and 
tan2(π/27) and GenScale[27] are both integral generators of  ()+, but only GenScale[27]   = 
tan( π/27)tan(π/54) is a unit, so it would be a natural choice of generator when N is odd.  To 
make a comparison, we will solve for degenerate scale[9] = tan(π/27)/tan(9π/27) = tan(π/27)/√3 
usng both of these generators. (To find scale[9] in terms of tan2(π/27) or tan( π/27)tan(2π/27) 
sounds easy, but it is not because tan(π/27) is not in (27)+ (or even in (27))). 

AlgebraicNumberPolynomial[ToNumberField[scale[9],Tan[Pi/27]^2],x] = 

2 3 4 5 6 7 86435 88311 420353 2535207 5678187 3843943 53727 11253 143
32768 8192 4096 8192 16384 24576 2048 8192 32768

x x x x x x x x
− + − + − + − +   

AlgebraicNumberPolynomial[ToNumberField[scale[9],GenerationScale[27]],x] = 
2 3 4 5 6 7 835 671 171 871 109 253 241 25 5

384 192 64 64 16 192 192 192 384
x x x x x x x x

− + + + − − − +   

As indicated in the Basis Lemma, itan(π/27) is in the vector-space complement of (27)+ ,which 
we call (27)- , along with all the other ‘imaginary’ star points isk ,but itan(π/27) it is still 
capable of generating scale[9] - in the guise of tan2(π/27) (with proper sign changes). 

AlgebraicNumberPolynomial[ToNumberField[scale[9],I*Tan[Pi/27]],x] =  

2 4 6 8 10 12 14 166435 88311 420353 2535207 5678187 3843943 53727 11253 143
32768 8192 4096 8192 16384 24576 2048 8192 32768

x x x x x x x x
+ + + + + + + +

  



Example: N = 3,4 and 6 have ‘linear’ complexity so they have just one primitive star point 
(star[1]) and hence one ‘primitive’ scale – which is the identity. In terms of cyclotomic fields, 
these all have φ(N) = 2 so () must be of the form (√𝑑 ). It is easy to find d for N = 3 since  
3 = (𝑖√3 -1)/2, Therefor (3) = (𝑖√3 ) and this works for N = 6 also since 6 = (𝑖√3 + 1)/2. 
For N = 4, (4) = (i). 

Example: N = 6 shown here has primitive s1 = tan(π/6) = √3/3 and degenerate s2 = tan(2π/6) = 
√3, so in the Basis Lemma, a1 = 1/3. Since star[1] = {-1/√3,-1}, scale[2] = 1/3, so the identity 
scale will suffice. The minimal polynomial for tan[π/6] = T6[x] =  3x2 -1 as shown on the right. 
This is not monic over ℤ so tan(π/6) (and GenScale[6] = tan2(π/6) ) are not algebraic integers. 

              
 
Example: N = 8: s1 = tan(π/8) and  s3= tan(3π/8) are primitive with values = √2 -1 & √2 +1. The 
degenerate s2 is tan(2π/8) = 1, so in the Basis Lemma, (-1/2)s1 + (1/2)s3 = s2 .As in the case of N 
= 12, cofunction symmetry yields scale[2] = �scale[3] and the corresponding linear relationship 
is scale[2] = (1/2)(scale[1] – scale[3]) = (1/2)(1 – GenScale[8])  
 

           
 
The full set of negative and positive primitive indices is {-3,-1,1,3} and these are the prime 
residue classes mod 8, since {-3,-1,1,3} = {7,5,1,3}. The  matching Galois group is isomorphic 
to x

8  = {1,3,5,7}. This is the first N with a non-cyclic Galois group and there are three 
subgroups of order 2. The three quadratic extensions are (i), (𝑖√2) = (8) and (√2) = 
()+.  
 
Like all ‘quadratic’ N-gons, N = 8 has only one non trivial scale - which is scale[3] = 
GenScale[8] = (1-√2 )2. Renormalization yields a return-time (‘temporal’) scaling of 9, so the 
fractal dimension of the singularity set W is -Ln[9]/Ln[GenScale[8]] ≈ 1.246477. See [S2]. 

                                                



Example: For N = 9, the sk are {tan(π/9), tan(2π/9, tan(3π/9), tan(4π/9} and they are all primitive 
except for s3 = tan(3π/9) = √3  shown in magenta. In terms the Basis Lemma, there must be a 
rational solution to  a1s1 + a2s2 + a3s4 = √3 and we noted earlier that such a solution does exist 
with the primitive sk of N = 18 so cot(π/9) - cot(2π/9 + cot(4π/9) = √3. Therefore it is easy to 
derive the fact that  tan(π/9) – tan(2π/9) + tan(4π/9) = 3√3, so (1/3)(s1- s2 + s4) = s3.  

                                                                                                               
To get a linear relationship for the scales, the cotangent relationship above is perfect since √3 = 
3/s3. Therefore scale[3] = (1/3)(scale[1] - scale[2] + scale[4) = (1/3)(1 - scale[2] + GenScale[9]).  
(It is also true that scale[3]2 = (1- 2scale[2])/3.)  The important is issue is that N = 9 has just two 
non-trivial scales – just like N = 7. Dynamically speaking, N = 9 and N = 7 are quite similar even 
though N = 7 has no degenerate scales and no mutations. 
 
Since 9 is the power of an odd prime, the Galois group G9 must be cyclic of order (3-1)(32-1)  so 
every divisor of 6 defines a subgroup. As always, the elements of G9 are in 1-1 correspondence 
with the negative and positive indices of the primitive star points - namely {-4,-2,-1,1,2,4} = 
{5,7,8,1,2,4}. The generators are 2 and 5, and the proper subgroups are {1,4,7} and {1,8}.  
 
Example: (N = 12)  The sk are { 2- √3,. 1/√3, 1,√3, 2 +√3}. These are shown on the right below 
with the primitive s1 and s5 in black. It should be clear that the degenerate s2, s3, s4  
(corresponding to N=6,4 and 3) are linear combinations of the conjugate pair s1 and s5. 

  
Since 4|N, the primitive sk are the combined positive roots of T12[x]  = x2-4x + 1 in blue and 
T12[-x] = x2 + 4x + 1 in red. (In the case of N = 12, it would be sufficient to use justT12[x], but 
using T12[-x]  will yield the full range of negative and positive roots.) With T12[x] and k = 1, the 
Root Lemma says that the only legal j values are 1 and 5, and both are less than  N/2, so T12[x] 
generates the primitive s1 and s5 while T12[-x] generates the matching s-1 and s-5. 
 
The full set of conjugate indices is {-5,-1,1,5}= {7,11,1,5} and these indices can serve as the 
prime residue classes mod 12 so the Galois group is isomorphic to x

12  = {1,5,7,11}. The 
matching automorphisms are {1, 5, 7, 11} where  k :  → k.  This group is not cyclic. It is 
generated by the pair{5, 7} and is in fact the Klein-4 group. Therefore N = 12 has three 
quadratic extensions - which correspond to the three degenerate star points above. 
 



The quadratic extensions of N = 12 are (√−3), (i) and (√3 ). The maximal real subfield is 
+ = (√3 ) and adjoining i to + , yields () = (√3, 𝑖). Therefore N = 12 has the ‘same’ 
subfield structure as N = 8 with √3  in place of √2 - and this structure replicates itself with   
(24) = (√2,√3, 𝑖). Based on this fact, it would seem reasonable that the dynamics of N = 12 
should be related to N = 8, and the dynamics of N = 24 should partially reflect both of these.  
 
Of course √2  and √3  are the rotation parameters 2cos(2π/8) and 2cos(2π/12). As noted earlier, 
λN = 2cos(2π/N) always generates the maximal real subfield +

N. Below is a series of  plots in 
the range √2  to √3  which show how the outer billiards web for N = 8 can be smoothly 
transformed into the web for N = 12 as the scaling in +

N varies with rotation angle . 
 
These plots are based on the Digital Filter map described in Appendix B. This map mimics the 
outer-billiards map but it allows any  in (0, π/2] (and hence variable step-size). Here the angular 
decrements are 2π/120, stating with N = 8 at  = 2π(15/120), so the 4th plot will have  = 
2π(12/120), which gives N = 10 at (√5 + 1)/2. In a sense this shows the full ‘quadratic’ range. 
 

 
 
Some of these plots do not correspond to the dynamics of any known regular N-gon. For 
example the second plot has  = 2π(14/120)  = 2π(7/60). This would correspond to N = 60, but 
the ‘step-size’ would have to be 7 instead of 1 as in the traditional outer billiards map. For N = 
60, the Df map allows 15 distinct step sizes, but step-15 would replicate N = 4. Step-14 is 
interesting because it reproduces the dynamics local to the central S[28] tile of N = 60. The rest 
are a mystery and they show no correlation with the step-1 outer billiards map of N = 60. (It may 
seem pointless to introduce a new level of complexity when the original layer is a total mystery – 
but maybe these multiple step sizes will yield a better understanding of the step-1 case.) 
 
The web plot on the left below is the same as final magenta image above. Since N = 12 has 
quadratic complexity there is only one non-trivial primitive scale, namely GenScale[12]. There 
appears to be uniform geometric and temporal scaling which  persists for all ‘generations’ even 
though there are mutations in S[2] and S[3] (and the matching DS[2], DS[3]). 
 

       



The mutations in S[2] and S[3] correspond to the ‘degenerate’ star points star[2] and star[3] with 
(k,N) > 1. But star[4] is also degenerate, and S[4] is not mutated. We have no definitive  criteria 
for these mutations – but a necessary condition for the mutation of an S[k] appears to be the 
‘degeneracy’ condition, (k,N) > 1, because this guarantees that the period of S[k] will be shorter 
than the canonical period N, and the local web development is related to this period. This 
degeneracy condition can also be applied to the star points of D and the DS[k] tiles, or the First 
Family of any regular tile. 
 
The enlargement on the right above, hints at structure on all scales. When N is twice-even, there 
are no M-D pairs to serve as templates for future generations. Except for mutations, all the First 
Family tiles are just scaled copies of N.  However the S[1] and S[2] tiles often foster extended 
generations with S[1] as the new ‘matriarch’.  
 
This makes sense because the S[1] tile is scaled by GenScale[N] relative to N and D. (When N is 
odd this scaling still exists but S[1] is a 2N-gon.) For N = 12 above, S[1] is a perfect regular 
dodecagon scaled by GenScale[12]  0.0717968 relative to N = 12 (which by convention has 
apothem 1).  (This S[1] is unique in that it has its own invariant local ‘web’ and matching star 
polygons- so it is locally ‘rational’ and not quadratic. Since the matching star point is s2 – which 
is star[1] of N = 6, this may be a remnant of the rationality of N = 6.)  
 
If S[1] is the  ‘matriarch’ of the next generation, the matching ‘D’ tile is the mutated S[2]. This 
poses no problem for future generations because mutations can propagate in the same fashion as 
unmutated tiles- so the next generation S[2] will be an exact copy of S[2] - scaled by 
GenScale[12]. 
 
In this chain converging to star[1], the tiles of generation[k] will be scaled by GenScale[12]k 

relative to generation[0] which is the First Family. In general the individual tiles in each 
generation may not be self-similar, but every generation will have an S[1] and S[2] in their 
canonical positions. For all ‘quadratic’ regular polygons the chains will eventually have perfect 
self-similarity. For N = 5, 8 and 10 this self-similarity begins with the First Family, but for N 
=12, it appears to begin with generation[1] shown on the right above. 
 
The matching ‘temporal’ scaling of these tiles appears to be 27 in the limit. For example the S[1] 
tiles in the chain have periods 12, 420, 14148, 387252,.. with  ratios which approach 27. The 
S[2] tiles also have periods which approach this same limit. This would yield a fractal dimension 
of : 

-Ln[27]/Ln[GenScale[12]] = -3Ln[3]/2Ln[Tan[π/12] ≈ 1.2513 
 
By comparison, the fractal dimensions of N = 8 is known to be 
 

- Ln[9]/Ln[GenScale[8]] =  -2Ln[3]/2Ln[Tan[π/8] ≈ 1.24648 
 
This 3/2 similarity is probably a consequence of the fact noted above - that the cyclotomic fields 
are related by √3 and √2 , so Tan[π/12] = 2- √3 and Tan[π/8] = √2 -1. This might help to 
explain the ‘unusual’ period 27 temporal scaling for N = 12. 
 



For odd N, GenScale[N]  relates the s1 terms of N and 2N, as shown below for N = 5, with 
temporal limit N+1 
 
 - Ln[6]/Ln[GenScale[5]] = -(Ln[2]+ Ln[3]) / (Ln[Tan[π/5] + Ln[Tan[π/10])  

= -(Ln[2]+ Ln[3]) / (Ln 5 2 5−  + Ln 21
5

−  )   ≈ 1.24114  

It seems reasonable that these three ‘quadratic’ fractal dimensions are increasing with N, but for 
cubic complexity and higher, there are no obvious measures of dimension – since there are 
multiple primitive scales. However if each of these N-gons has a well-defined spectrum of 
dimensions, there will be a maximal Hausdorff dimension, and we conjecture that these maximal 
Hausdorff dimensions will approach 2 as N increases.  
 
Note: At this time there is no theory that attempts to relate the ‘in-situ’ dynamics of a polygon 
with the ‘in-vitro’ dynamics – with the polygon as the generator. The maximal D tile for a 
regular N-gon is an important exception. It has the same local web whether it is at the origin or 
simply a First Family member, S[<N/2>]. The Df Theorem in [H2] provides some isolated 
examples – such as the case of  N = 60 mentioned earlier. But these involve iterations with  
multiple steps and this process is poorly understood.  
 
Most of the natural mutations which occur in the First Family are equilateral and not equiangular 
as shown on the left below for S[3] of N = 12. They preserve half the dihedral symmetry of the 
regular case, but the in-vitro dynamics of these ‘woven’ polygons shows imperfect rings of D 
tiles and little hope of bounded dynamics. By rotating the internal factors of a regular N-gon as 
shown on the right, the angles are preserved and it still has half the dihedral symmetry. These 
‘Riffle’ mutations are better behaved. See [H2],[Ho] and [S3]. 
 
The S[3] tile of N = 12 is an equilateral 
octagon as shown below. This is the typical 
form of a ‘mutated’ tile. We call it a ‘woven’ 
octagon because it has two embedded 
squares with different radii. Its dihedral 
symmetry group is D4 instead of D8 for the 
regular octagon, 
  

The ‘Riffle’ octagon shown below is formed 
by rotating one of the embedded squares. It is 
equiangular and also has dihedral symmetry 
group D4. We call these ‘semi-regular’ 
polygons and they are part of our quest to find 
classes of non-regular polygons with bounded 
dynamics. It has been conjectured that this 
class is measure zero. 

 

 
 

 

 
 



Appendix A: Webs and Generalized Star Polygons 
 
Since the star polygon {N,〈N/2〉} for a regular polygon consists of ‘extended’ edges of N, it is 
part of the ‘singularity’ set W for the outer billiards map τ. We refer to W as the ‘web’. The web 
at level-k, is defined to be those points where the outer billiards map τk (or its inverse) is not 
defined. For any piecewise affine map, the limiting web is very important because the 
complement defines regions (tiles) where the dynamics are always well-defined. Each S[k] of the 
First Family for N defines a step-k orbit of τ, so they all have period N or N/k when (k,N) >1. 
This means that these tiles arise early in the web generation process and hence they can serve as 
templates for the web evolution.  
 
It is not difficult to show that the region defined by the star polygon {N,〈N/2〉} becomes 
invariant in fewer than 〈N/2〉 iterations of the web. This means that this ‘inner star’ region  
can be used as a template to study the local web evolution (which is conjugate to the global 
evolution when N is regular).  
 
Below are the first few iterations of the local web W for N = 14 – showing levels 1,2,3,4,5 and 
10. Since the star polygon {14,6} is the level-1 (local) web for N = 14, the subsequent webs are 
all generated from {14,6}. Therefore they can be regarded as ‘generalized’ star polygons of N = 
14. In general, this web structure appears to be fractal or multi fractal and it is a curious fact that 
this fractal structure arises from a mapping which is discontinuous but definitely not ‘chaotic’ - 
yet it closely resembles the Poincare cross-sections which arise from chaotic mappings with 
positive Lyapunov exponents.  
 

 
 
 



The symmetry of the N-even family implies that this template can be further reduced to half of 
the magenta rhombus shown below. This is what we call the First Family template. The Digital 
Filter map (Df) mimics the outer billiards map on this ‘torus’ and provides a manifold increase in 
‘space’ and ‘time’ efficiency. The image on the right is a level 1000 Df web which takes just a 
few line of code and generates this web in a few seconds.  
 

                  
 
Note that there are 7 of these overlapping rhombi, and the overlaps cancel so that each rhombus 
contains exactly 1/7 of the tiles. This is only true for N even. Below is the embedding of this 
rhombus in the star polygon for N = 14. 
  

                                 
 
The Digital Filter map and the outer billiards map are examples of piecewise rational rotations. 
These maps will be discussed  below. See also [D], [A], [H1], and Appendix F of [H2].  
  
 
 
 



Appendix B:  Scaling for Rational Rotations 
 
The Digital Filter map is an example of an affine piecewise rotation. These are two-dimensional 
analogs of interval exchange maps- where rotations typically play the part of exchanges. The 
linear form for an affine piecewise rotation by θ  can be written as: 

0 1
1 2cos

x x
T

y yθ
−     

=     
     

  or in complex form T[z] = ρz where |ρ| =1 

Typically the phase space X is partitioned unto a finite number of mutually disjoint ‘atoms’ Ai 
and Ti acts on atom Ai as a rotation possibly followed by a translation. The combined map T: X 
→X is defined as T(z) = Ti(z) iff  z  Ai. When the map T is bijective, the image of a partition is 
a partition. When the rotation angle θ is a rational multiple of π, T is called a rational rotation or 
a polygonal rotation.  
 
Example: The Digital Filter map has linear form and matching Jordan normal form given by 

A = 
0 1
1 2cosθ

 
 − 

 ~ 
cos sin
sin cos
θ θ
θ θ

 
 − 

 

 
The space in which Df operates is [-1,1)2 so it is a map on a 2-Torus: T2 → T2. Like all affine 
piecewise rotations, Det[A] = 1, so it preserves area and is called a symplectic map. Symplectic 
maps on tori have been an area of interest to mathematicians and physicists since Henri Poincare 
(1854-1912) realized their value in the analysis of conservative (Hamiltonian) systems. In 
physics these are sometimes called ‘kicked’ Hamiltonians.  
 

The eigenvalues of A are complex of the form λ  and 1/ λ  with unit absolute value so λ = 2 ie π θ

and A represents a rotation. But this is an 'elliptical'  rotation which can be conjugated to a pure 
rotation. When studying the dynamics of maps based on matrices such as A, if the trace 2cos  is 
the solution to a polynomial equation of  low degree, there are computational advantages (exact 
arithmetic) to leaving A in its original form instead of its conjugate form.  

To reproduce the (local) outer billiards dynamics of a regular N-gon set  = 2π/N, and then λN  = 
2cos is the trace of A and also the the generator of the maximal real subfield of (N) and its 
minimal polynomial is always monic of degree φ(N)/2. This simplifies algebraic analysis, but the 
‘underflow’ and ‘overflow’ conditions of the toral map necessitates the use of a sawtooth 
function such as f (z) = Mod[z+1,2]-1. (In 1997 Peter Ashwin [A] showed that the digital filter 
map is equivalent to a sawtooth version of the Standard Map – which is the classical model for 
Hamiltonian ‘chaos’.) 

Definition: The Digital Filter map Df: [-1,1)2 → [-1,1)2 is defined as 

Df[{x,y}]:={y, f (-x + 2ycos)} where f (z) = Mod[z+1,2]-1 

For any given value of the trace 2cos, Df  is an affine piecewise rotation . The rotations can be 
irrational or rational but by symmetry the rational rotations need N to be even. 



Example: N = 14,  = 2π/14. The three ‘atoms’ A,B and C are shown below. Region A is the 
‘overflow’ region and C the ‘underflow’ – with B the ‘linear’ region. The Df map applies a 
(clockwise) elliptical rotation of θ = 2π/14 to each region and the sawtooth nonlinearity f  
provides the corresponding translation – which is vertical by -2, 0 and + 2 respectively for A,B 
and C as shown on the right below.  

 

The ‘speratices’ S1 and S2 are extended edges of N, so the atoms mimic the star structure of N = 
14. For the outer billiards map the web is formed by iterating these extended edges under . Here 
it is only necessary to itereate S1 and S2 under Df. The resulting level 1000 web is shown below 
in magenta along with its rectified version in blue. This is a prefect copy of the local web for N = 
14 – and hence also a perfect copy of the local N = 7 web. 

                               

There are computational advantages to using triangular regions for the atoms and it may be 
possible to implement the outer billiards map with a three triangle map such as the ‘dart’ shown 
here. Mappings such as this were studied by Adler, Kitchens and Tresser [AKT (2001)] 

 
A recent study by X. Bressaud and G. Poggiaspalla [BP] used computer analysis to categorize 
the possible bijective polygonal piecewise isometries with a phase space consisting of two or 
three triangles. For two triangles there is only one case which yields non-trivial dynamics. This is 
what they call the ‘tower’ case.   

                                                 
There are only two ways to implement a reflection such as this using orientation preserving 
rotations and A. Goetz [Go1] found them using rotations by π/5 and π/7, but the most natural 
phase space for π/7 is the three triangle case which we will look at below.  
 
 

http://dynamicsofpolygons.org/LargeImages/N7DfTrMom1.jpg


Example : The two triangle π/5 case of [Go1] is based on N = 10 as shown below. It can be 
implemented in complex form using a = 10 = cos(π/5) + isin(π/5). The triangles A0 and A1 have 
vertices {0, a2 + a4 + a6, –1} and {0,–1,a6}. The piecewise rotations and corresponding 
translations are T0(z) := a4z + a2+ a4 + a6  and T1(z) = a6z + a6 (so the rotations are  (π – π/5)). 
The combined map is T(z) = T0(z) if Im[z] > 0, otherwise T1(z). The first iteration is shown 
below along with the residual set obtained by iterating a non-periodic point.   

                  
The geometric scale factor is k = 1/λ10 where λ10= 2cos(2π/10) is the Golden Ratio . The 
limiting singularity set consists solely of pentagons and the ‘temporal’ scaling is 2, so the 
Hausdorff  dimension is Log[2]/Log[k] ≈ 1.4404.  By comparison, N = 5 (and N = 10) have a 
scale factor of GenScale[5] – which is k3 (the cube reflects the fact that Goetz implemented a 
contraction ratio of (10)3 ). The temporal scaling for N = 5 is 6 so the Hausdorff dimension can 
be written as  -(Log[2] + Log[3)])/3Log[k] ≈ 1.241. 
 
With a phase space based on three triangles Bressaud and Poggiaspalla found 810 cases 
involving rational rotations– including 258 ‘cubic’ cases based on rotations by π/7. One of these 
three-atom π/7 solutions is an extension of the example above. It has been studied by Goetz, 
Poggiaspalla, Kahng, Lowenstein, Vivaldi and Kapustov. This example is presented below.  
 
Example: Set a = 14 = cos(π/7) + isin(π/7) and define triangles A0 and A1 and A2 with vertices 
{0, a5–1,, -1} , {0, -1,- a3 } & {0, -a3, -a3+a2}. The corresponding transformations are T0(z) = 
za6 + a5 –1, T1(z) = –az – a4 + a5 – a6–1 and T2(z) = za6 – a3. Then T[z] = Ti(z) iff z  Ai. (Note 
that the rotations are  (π – π/7), so swapping π/7 and π/5 will make this example the same as 
the example above when restricted to A0 and A1.)        

 
The large heptagons H0 and H1 have centers which are the fixed points of A0 and A1. The π/7 
‘tower’ shown here appears to be self-similar beginning with H1[1]. Goetz and Poggiasapalla 
[GP] used symbolic complex analysis to aid in the analysis of these sequences of H0’s and H1’s.  



They determined that the sequences share a geometric scale factor of υ = 4sin2(π/14) (which is          
λ14 GenScale[7] where λ14 = 2cos(π/7) is the trace of their rotation matrix). The temporal scale 
factors of these sequences are (22n+1+1)/3  and (4n+1-1)/3, so the temporal scaling approaches 4 in 
either case - one from the top and the other from the bottom. This is similar to the First Family 
scaling of N = 7 and N = 14, but there are significant differences in the detailed scaling.  
 
In LKV],Lowenstein et al modified this map so that it had a ‘recursive tiling’ property that 
enabled them to determine the scaling sequences and hence the spectrum of dimensions with 
maximal Hausdorff dimension ≈ 1.652.  More on this below. 
 
These examples are all affine piecewise rotation so they share the same linear model and all are 
based on rational rotations with λN = 2cos(2π/N) as the trace of the rotational matrix. In practice 
the most common scenario is for N to be odd with rotations based on λ2N = 2cos(2π/2N) and 
scaling terms in the ring of integers [ λ2N].  
 
We have shown that GenScale[N] or GenScale[N/2] are natural choices of generators for +

N - 
alongside λN = 2cos(2π/N) and below we show how these generators are related:  
 

Lemma 11: When N is even GenScale[N]  = tan2(π/N) =  
2
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If N is odd GenScale[N] = tan(π/N) tan(π/2N) =  
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Therefore for N even, 2
2

GenScale[N] +1Nλ =  and for N odd 2
2

GenScale[N] + 1Nλ =  □ 

 
For a cyclotomic field (N), the matching ring of integers is [] where  is a unit generator for 
(N) so it is no surprise that the ring of integers in (N)+ is [ λN] and this will remain true for 
any integral generator of (N)+. 
 
Dirichlet’s Unit Theorem, says that the group of units in a number field K is finitely generated 
with rank given by r ={ r1 +  r2-1}  where r1 and r2 are the number of real and pairs of complex 
embeddings.  For a cyclotomic field (N) there are no real roots or embeddings and there are 
φ(N)/2 complex pairs of embeddings, so r is always φ(N)/2 -1. The maximal real subfield (N)+ 
has the same rank with real roots instead of complex.  
 
Therefore the unit groups UN and UN

+ have the same rank. Since they are finitely generated 
abelian groups – they will have the form Tr where T is the torsion subgroup. When K is 
(N), T will be the group of roots of unity because they have finite order, so every element of 
UN will have the form e1

j1 e2
j2 …er

jr with the ei units in [] and the ji integers. The ei are called 
the ‘fundamental units’ and they form a (multiplicative) basis for UN. All of this remains true for 
(N)+ but the torsion subgroup is just {1}. Dirichlet’s result does not address the issue of how 
UN and UN

+ are related and that will be discussed below. 



Example: N = 14: Mathematica will generate fundamental units for () or ()+ - although the 
results are not unique. NumberFieldSignature will return {r1,r2} = {3,0} and {0,3} respectively 
for λ14 and 14, so r = 2 in both cases. 
 
NumberFieldFundamentalUnits[Exp[2IPi/14]]] yields e1=  + 5 and e2= 1-  + 2 - 3 - 5  
And we will see below how these match up with units in UN

+
. 

NumberFieldFundamentalUnits[2Cos[2 Pi/14]] yields 1/ λ14 - 1 and  2- λ14
2 with product 1/ λ14  

 
In studies of rotations by π/7 from [LKV], the authors chose similar fundamental units of 1/λ14  
and 1- λ14 which are found in Appendix B of  [C]. These can be written in terms of GenScale[7] 

as:    GenScale[7]+1 GenScale[7]-1 GenScale[7]-1 and  with product 
2 GenScale[7]+1 2

 

 
We have shown that the primitive scales for any regular N-gon form a unit basis for ()+. For N 
= 14, the primitive scales are scale[1] = 1, scale[3] and scale[5] = GenScale[7]. It is easy to write 
λ14 as a linear combination of these scales since λ14 is itself a unit. For example λ14/GenScale[7] 
= 6(1+2)2/(-1)2 where = 7 (= -14). Of course this can also be done using any primitive scale 
and the result will always be a real unit, so the primitive scales can serve as ‘surrogate’ unit 
generators for ()+. This does not imply that the primitive scales are ‘fundamental’ units – but 
based on the example above with N = 14, there may be efficient algorithms for generating the 
fundamental units using the primitive scales. 
 
If Mathematica is asked to find the fundamental units using scale[3] or scale[5] – the results will 
be identical: { λ14

2-2 and  λ14} = {(5-GenScale[7])2/4 and (2/(GenScale[7]) +1)}- and these are 
essentially the same as the results shown above using λ14 as generator - or the fundamental units 
used in [LKV].  
 
Theorem 4.12 in [W] shows a close relationship between the units in any CM field such as (N) 
and the matching maximal real subfield (N)+ - namely if UN is the unit group in (N) and UN

+ 
is the unit group in(N)+, then [UN: WUN

+] = 1 or 2 where W is the group of roots of unity in 
(N). This follows because any CM field is a totally imaginary quadratic extension of a real 
subfield, so complex conjugation is well defined and fixes the real subfield. Therefore for any 
unit e in (N), |𝑒̅| is a unit in (N)+ and e/|𝑒̅| is a unit with norm 1 so  a root of unity. 
 
Example: Note that e = 1- N will be a unit in (N) whenever N is not a prime power, so for N 
= 14, e/|𝑒̅| is of the form  k – and here the sign is negative and k = 3. Clearly the index is 2 and 
it is easy to see that the positive sign for k = 3 will occur when e is the ‘fundamental’ unit  + 5. 
 
Since the units of (N) and (N)+ only differ by roots of unity, the basic units are the ‘same’, 
and hence the ratio of the regulators is 2r for N a prime power (two complex roots for each real 
root) – but if N is not a prime power, the index is 2 and the ratio is reduced by 2. These issues are 
important in the computation of class numbers. Kummer’s criteria is based on a comparison of 
the data and structure of (N) and (N)+ which involves ‘dividing out’ their Dedekind zeta 
functions so that the ratio of the class numbers can be reduced to their Bernoulli numbers. 
 
 



 
Summary:  
 
(i) For a given regular N-gon, we have defined the First Family of ‘tiles’ - with nucleus 
consisting of the S[k] tiles. Each S[k] tile corresponds to ‘star’ point sk = tan(kπ/N) and matching 
scale s1/sk. The primitive star points and scales satisfy (k,N) = 1, and based on the results of 
Siegel and Chowla, we have shown that the primitive star points and scales are independent with 
degree φ(N)/2.  
 
(ii) These primitive scales lie in the maximal real subfield of the cyclotomic field (N), which 
we denote as (N

+). They have degree φ(N)/2 so they are a unit basis for this subfield – which 
is traditionally generated by λN = 2cos(2π/). In all cases GenScale[N] or GenScale[N/2] can also 
serve as unit generators for (N

+). 
 
(iii) The primitive scales have the same complexity as the scales used by other investigators – 
since the dynamics and scaling of affine piecewise rational rotations are typically restricted to 
(λ) where λ is the trace of the rotation matrix. Therefore it seems likely that the scaling needed 
to describe the dynamics of maps such as the outer-billiards map and Digital Filter map will lie 
in the maximal real subfield (N)+ of the cyclotomic field (N). The canonical scales 
described here may help to unify investigations in this area.  
 
(iv) High in the ‘wish’ list are practical methods that can be used to relate the geometric and 
temporal scaling – maybe in some form of  ‘power’ law – which in turn can be used to estimate 
the Hausdorff dimension of the simgulartity set. This was done succesfully in [LKV] using λ14 
and a “ finite order recursive tiling with scaling  factors given by algebraic units”. But the 
recursive tiling required an extensive ‘catalog’ of scaling domains – which is typically not 
available.  
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Links: 
 
(i) The author’s web site at DynamicsOfPolygons.org is devoted to the outer billiards map and 
related maps from the perspective of a non-professional. This file is available there as 
FistFamilies.pdf – just click on PDFs.   
   
(ii) A Mathematica notebook called FirstFamily.nb will generate the First Family and related star 
polygons for any regular polygon. It is also a full-fledged outer billiards notebook which works 
for all regular polygons. It includes the Digital Filter map. Mathematica defaults to exact 
calculations whenever possible and this program can be used for algebraic investigations.  
 
(iii) Outer Billiards notebooks for all convex polygons. There are four cases: Nodd, NTwiceOdd, 
NTwiceEven and Nonregular. All but the last case is included in FirstFamily.nb described above. 
 
(iv) The open source PARI software at pari.math.u-bordeaux.fr has impressive facilities for 
computer algebra and algebraic number theory. There is an excellent introduction to Galois 
Theory and PARI in Fields and Galois Theory by J.S Milne – which is available at 
www.jmilne.org/math/ 
 
(v) We also recommend the open source (GPL- GNU) Sage software which was originally 
devised in 2005 by William Stein at U.C. San Diego, as a Python and C++ based library. It 
currently has hundreds of developers around the world and an extensive library of routines for 
number theory, algebra and geometry. Sage runs on an Oracle Virtual Machine which will install 
on almost any operating system.  
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N = 14


S[5]  (N = 7)
FirstFamily scaled
 by GenScale[7]



Sticky Note

The magenta scaled First Family shown here has the same overall structure as the actual 2nd generation, but the details are quite different. However the local 3rd generation will be an exact copy of the first generation shown here - so even and odd generations are self-similar. By symmetry, the same evolution occurs at GenStar. 











