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Abstract

In prior work, Cho and Kim studied competition graphs arising from doubly partial orders.
In this article, we consider a related problem where competition graphs are instead induced by
permutations. We first show that this approach produces the same class of competition graphs as
the doubly partial order. In addition, we observe that the 123 and 132 patterns in a permutation
induce the edges in the associated competition graph. We classify the competition graphs arising
from 132-avoiding permutations and show that those graphs must avoid an induced path graph
of length 3. Finally, we consider the weighted competition graph of permutations and give some
initial enumerative and structural results in that setting.

1 Introduction

Given a digraph D = (V,A), the competition graph G = C(D) of D is the undirected graph that
has the same vertex set as D and has edge xy if and only if there exists a vertex u ∈ V such that
both the arcs (x, u) and (y, u) are in D. Competition graphs were first introduced by Cohen [2] as
a way to study food webs in ecology, where vertices represented different species in an ecosystem
and a directed edge (in the digraph) existed from species A to species B if A preyed on B. In this
context, competition graphs are undirected graphs where an edge exists if two species feed on the
same prey (i.e., they are in competition for resources).

One active research effort has been to study competition graphs arising from interesting families
of digraphs. For example, competition graphs of acyclic digraphs were studied in [3, 10] while those
of Hamiltonian digraphs were studied in [4, 5]. More recently, Cho and Kim [1] studied competition
graphs arising from doubly partial orders, which was a problem posed to them by Roberts as a
means of extending results in [6].

Let S be a finite subset of R2. Cho and Kim define a relation ≺ as a doubly partial order on
S if (x, y) ≺ (z, w) whenever x < z and y < w for (x, y), (z, w) ∈ S. The set S induces a digraph
D = (V,A) (under this relation) by letting the points in S become the vertices of D and arc (u, v) ∈ A
if and only if v ≺ u (in the doubly partial order on S). We will refer to D as a doubly partial order.
Cho and Kim [1] showed that the competition graphs of these doubly partial orders are interval
graphs, which are intersection graphs of a set of intervals on the real line. They also showed that
any interval graph, with sufficiently many isolated vertices, is the competition graph of some doubly
partial order.

In this article, we will consider competition graphs induced by certain families of this doubly
partial order and will show why this is a natural consideration. Let π = π1 . . . πn ∈ Sn be a
permutation of length n in one-line notation. Given a finite sequence s1s2 . . . sn of distinct real
numbers, we define the reduction of this sequence, denoted by red(s1 . . . sn), to be the permutation
π1 . . . πn ∈ Sn that is order-isomorphic to the sequence (that is, πi < πj if and only if si < sj for
every 1 ≤ i, j ≤ n).
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We say that the permutation π ∈ Sn contains the (permutation) pattern τ ∈ Sk if there exists
some 1 ≤ i1 < i2 < . . . < ik ≤ n such that red(πi1πi2 . . . πik) = τ (i.e., the subsequence πi1 . . . πik
and τ are order-isomorphic). Such a subsequence will be referred to as an occurrence of τ . We say
that permutation π avoids the pattern τ if π does not contain τ . For example, the permutation
π = 53412 avoids the pattern τ = 123, while the permutation π′ = 52134 contains two occurrences
of τ (given by the 234 and 134 subsequences). The set of length n permutations avoiding the pattern
τ is denoted by Sn(τ). Additionally, the number of length n permutations avoiding τ is denoted by
sn(τ) := |Sn(τ)|. The patterns σ and τ are said to be Wilf-equivalent if sn(σ) = sn(τ) for every n.

The study of patterns in permutations gained interest after Knuth used the notion to describe
permutations that are stack-sortable [9]. For patterns of length 2, it is (trivially) known that
sn(τ) = 1 for all n. For each pattern τ of length 3, it is known that sn(τ) = 1

n+1

(
2n
n

)
(the Catalan

numbers). In this case, the patterns 123 and 321 are “trivially” Wilf-equivalent, while the patterns
132, 213, 231, and 312 are trivially Wilf-equivalent to one another. The patterns 123 and 132 are
Wilf-equivalent for non-trivial reasons. For further background, the reader is directed to [7, 8, 14].

There is a natural connection between permutations and the doubly partial order described ear-
lier. A permutation π = π1 . . . πn is often visualized as the n points {(i, πi)}1≤i≤n in a grid or in
R2. For example, the permutation 461532 is shown in Figure 1.

4 6 1 5 3 2

Figure 1: Visualization of permutation 461532

We refer to the doubly partial order on these points as the doubly partial order on permutation
π. We will say that a digraph is induced from permutation π when it is the induced digraph from
the doubly partial order on π. This will be denoted by D(π). Analogously, the competition graph
induced by permutation π is the competition graph of the digraph D(π). This will be denoted by
C(D(π)) or more simply C(π). The digraph and competition graph of permutation 461532 is shown
in Figure 2.

In this article, we will present results regarding competition graphs for various permutation
classes. In Section 2, we will present some observations and results that motivate the restriction
of general finite subsets of R2 to sets of points arising from permutations. In Section 3, we will
provide a characterization of competition graphs arising from permutations in Sn(132) and some
partial results on competition graphs arising from Sn(123). In Section 4, we will define the notion
of weighted competition graphs and present enumerative results on such graphs that have certain
structures. We end with some suggestions for future work in Section 5.
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Figure 2: Digraph and competition graph of π = 461532

2 Preliminary observations and motivation

Given a permutation π ∈ Sn, recall that D(π) is the digraph induced by the doubly partial order
on π and that C(π) is the competition graph of D(π). For a set of permutations T ⊆ Sn, we write
C(T ) to denote the set of graphs {C(π) : π ∈ T}. For example, C(Sn) is the set of all competition
graphs arising from a length n permutation.

Given a permutation π = π1 . . . πn, the competition graph C(π) will have vertices corresponding
to the points (1, π1), (2, π2), and so on. In general, we will refer to the vertex arising from (i, πi) as
simply πi. When two points satisfy the doubly partial order, say (j, πj) � (i, πi), we will often refer
to πj as the predator (vertex) and to πi as the prey (vertex). Equivalently, we may also say that πj
preys on πi.

We now give some observations and results to motivate this new direction.

Proposition 2.1. Let S ⊆ R2 with |S| = n. The competition graph of the doubly partial order on
S is isomorphic to C(π) for some π ∈ Sn.

Proof. Let S ⊆ R2 with |S| = n and let G be the competition graph of the doubly partial order on S.
Without loss of generality, suppose S = {(x1, y1), (x2, y2), . . . , (xn, yn)} such that x1 ≤ x2 ≤ . . . ≤ xn
and if xi = xj (for some i < j) then yi < yj . If no two points in S share the same x or y coordinates,
then the permutation π = red(y1y2 . . . yn) will induce a competition graph that is isomorphic to G.

Suppose that some of the points share a common x coordinate. Let (xk, yk), (xk+1, yk+1), . . . , (xl, yl)
be the first maximal subset of points having the same x coordinate (xk = xk+1 = . . . = xl). Recall
that yk < yk+1 < . . . < yl. Let d = xk − xk−1 (if k = 1, let d = 1), and let δ = d

l−k+1 . We “shift”
(xk, yk), . . . , (xl, yl) to the left so that they lie on a line with negative slope:

S′ = (S\{(xk, yk), (xk+1, yk+1), . . . , (xl, yl)}) ∪ {(xk+i − iδ, yk+i)}0≤i≤(l−k).

This new set S′ of n points will have the same induced directed graph and competition graph as
the original set S. We may repeat this procedure if there are other x coordinates that multiple
points share. If there are points sharing a y coordinate, the same approach may be applied by
slightly shifting points “downward” to create a decreasing slope. This guarantees that we may
always produce a set of points (with distinct x and y coordinates) having the same induced directed
graph and competition graph as set S.

The previous proposition shows that any doubly partial order for a finite subset of R2 can
be thought of as a doubly partial order on a permutation (in terms of the induced digraph and
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competition graph). In addition, we get some immediate corollaries from the results of Cho and
Kim [1].

Theorem 2.2 (Cho, Kim). Competition graphs of a digraph of a doubly partial order are interval
graphs.

Corollary 2.3. For each π ∈ Sn, C(π) is an interval graph.

Theorem 2.4 (Cho, Kim). An interval graph with sufficiently many isolated vertices is the compe-
tition graph of a doubly partial order.

Corollary 2.5. An interval graph with sufficiently many isolated vertices is the competition graph
C(π) of a doubly partial order of some permutation π.

We also make some observations on how structure within a permutation leads to structure within
the competition graph. The following observation follows directly from the definition of the doubly
partial order on permutations.

Observation 1. Given a permutation π = π1 . . . πn, there is an arc (πj , πi) in digraph D(π) if and
only if πi and πj form a 12 pattern (that is, i < j and πi < πj).

Edges in the competition graph also have a nice relation to structure within the permutation.

Proposition 2.6. Given a permutation π = π1 . . . πn, there is an edge {πi, πj} in the competition
graph C(π) if and only if πi and πj are the “2” and “3” terms in either a 123 pattern or a 132
pattern.

Proof. The edge {πi, πj} is in the competition graph C(π) if and only if there exists a πk such that
k < i, j and πk < πi, πj , in which case the subsequence πkπiπj forms either a 123 or a 132 pattern
in π.

Also observe that if we considered the competition graph C(π) with multiple edges allowed,
there is a one-to-one correspondence between the edges in the graph and occurrences of 123 and 132
patterns in π. Such graphs will be considered in Section 4.

3 Competition graphs of permutations

In the previous section, we showed that the set of directed graphs and competition graphs induced by
permutations (i.e., D(Sn) and C(Sn)) is equivalent to the set of such graphs induced by the doubly
partial order on R2 studied by Cho and Kim. Since edges in the competition graph correspond
strictly to 123 and 132 patterns in the permutation, it is natural to consider restricting permutations
to those that avoid one of the patterns. In this section, we will study competition graphs arising
from permutations in Sn(123) and Sn(132). By Proposition 2.6, edges in graphs from C(Sn(123))
(resp. C(Sn(132))) correspond to occurrences of the pattern 132 (resp. pattern 123). It should be
emphasized that we will not consider multiple edges in the competition graphs in this section. The
main result of this section is a forbidden subgraph characterization of graphs in C(Sn(132)) along
with some related observations for the C(Sn(123)) case.

3.1 Competition graphs of Sn(123) and Sn(132)
We first observe that for each n, there is a competition graph in C(Sn(123)) and C(Sn(132)) that
contains Kn−1, the complete graph on n− 1 vertices, as a subgraph.

Proposition 3.1. Let the n-vertex graph H be a copy of Kn−1 together with an isolated vertex.
Then, H is isomorphic to a graph in C(Sn(123)) as well as a graph in C(Sn(132)).
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Proof. The permutations 12 . . . n ∈ Sn(132) and 1n(n−1)(n−2) . . . 2 ∈ Sn(123) produce the desired
competition graphs.

Recall that sn(123) = sn(132) for all n. Even though Sn(123) and Sn(132) are in one-to-one
correspondence (and multiple bijections are known), the sets of competition graphs C(Sn(123)) and
C(Sn(132)) are not “equivalent.” For n ≤ 6, it can be computationally verified that there exists a
bijection from C(Sn(123)) to C(Sn(132)) mapping graphs in the first set to isomorphic graphs in the
second set. For n ≥ 7, there are graphs in C(Sn(123)) (resp. C(Sn(132))) that are not isomorphic
to any graphs in C(Sn(132)) (resp. C(Sn(123))).

The two graph structures of interest are stars and paths. Let K1,m denote the complete bipartite
graph on m+ 1 vertices with bipartitions of size 1 and m. We will often refer to this as a star. Also,
let Pm denote the path graph on m+ 1 vertices.

Lemma 3.2. Let K ′1,3 be the graph with 7 vertices formed by a copy of K1,3 and 3 isolated vertices,
and let P ′3 be the graph on 7 vertices formed by a copy of P3 and 3 isolated vertices.

(i) There exists no π ∈ S7(123) such that C(π) ∼= K ′1,3. Additionally, K ′1,3 is the only graph in
C(S7)\C(S7(123)).

(ii) There exists no π ∈ S7(132) such that C(π) ∼= P ′3. Additionally, P ′3 is the only graph in
C(S7)\C(S7(132)).

Proof. Both of these can be verified via computer.

A stronger statement can be shown for larger n.

Proposition 3.3. Given a graph G ∈ C(Sn) with n ≥ 7, the following hold:

(i) If K1,3 is an induced subgraph of G, then G /∈ C(Sn(123)).

(ii) If P3 is an induced subgraph of G, then G /∈ C(Sn(132)).

Proof. (i) For the sake of contradiction, suppose π ∈ Sn(123) has a competition graph G = C(π)
that contains K1,3 as an induced subgraph. Let πa, πb, πc, and πd be the four vertices that
form the K1,3 induced subgraph. Observe that no single prey vertex can induce more than
one edge in the K1,3. To see this, suppose the prey vertex πα induced two of the edges
in the K1,3. Without loss of generality, suppose those two edges are {πa, πb} and {πa, πc}.
Since α < a, b, c and πα < πa, πb, πc, the induced subgraph should contain a triangle, which
is a contradiction. Thus, each of the three edges has a distinct prey vertex (if an edge has
more than one possible prey vertex, just choose one). This gives us 7 vertices (4 predators
and 3 prey) and the corresponding length 7 subsequence within π would give us a length 7
permutation σ that produces K1,3 with 3 isolated vertices. If π was 123-avoiding, then σ
would also be 123-avoiding, but by Lemma 3.2, this is impossible. Therefore, π /∈ Sn(123) and
G /∈ C(Sn(123)).

(ii) The same argument as above holds by replacing K1,3 with P3 and 123 with 132.

This leads to our main result of this section.

Theorem 3.4. Let graph G ∈ C(Sn). Then, G ∈ C(Sn(132)) if and only if P3 is not an induced
subgraph in G.

The proof of the theorem is given in the next subsection. We also have the analogous conjecture
(with one direction proven by Proposition 3.3):
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Conjecture 1. Let graph G ∈ C(Sn). Then, G ∈ C(Sn(123)) if and only if K1,3 is not an induced
subgraph in G.

This conjecture would be resolved if one proves: “if K1,3 is not an induced subgraph in G, then
G ∈ C(Sn(123)).”

3.2 Proof of Theorem 3.4

We first define an operation for inflating a permutation with smaller permutations. Let π ∈ Sn
and σ1, σ2, . . . , σn be non-empty permutations (possibly of different lengths). The inflation of π by
σ1, . . . , σn, denoted by π[σ1, σ2, . . . , σn], is the permutation of length

∑
|σi| created by replacing πi

with σi. For example, 213[132, 12, 4231] = 354129786, as shown in Figure 3.

3 5 4 1 2 9 7 8 6

Figure 3: Graphical representation of 213[132, 12, 4231] = 354129786

We begin by proving a couple of lemmas before the main result.

Lemma 3.5. Let π ∈ Sn such that G := C(π) has exactly one connected component C1 with at least
two vertices and G avoids P3 as an induced subgraph. Then, there exists a vertex v ∈ C1 that is
adjacent to all vertices in C1 − v.

Proof. Given such a permutation π = π1 . . . πn, we will say that a term πi is redundant in π if the
permutation σ := red(π − πi) has competition graph C(σ) that is isomorphic to C(π) with one
isolated vertex deleted (i.e., it maintains the connected component). We construct a “minimal”
permutation π′ iteratively from π as follows. Let σ(0) := π. Now, if σ(i) contains no redundant

terms, then π′ := σ(i). Otherwise, we define σ
(i)
∗ as the right-most redundant term in σ(i) and define

σ(i+1) := red(σ(i)−σ(i)
∗ ). We note that the definition of π′ is well-defined and any term in π′ can be

associated to its corresponding term in π. We also observe that the isolated vertices in C(π′) will
form a decreasing pattern in π′ (if there were a 12 pattern among those terms, the ‘2’ term would
be redundant).

Let m := |π′| and let π′k be the right-most term in π′ that is an isolated vertex in C(π′). We
note that this term must induce at least one edge (and more precisely, a clique on the vertices
π′k+1, . . . , π

′
m). Let π′c and π′d be the largest and smallest terms out of π′k+1, . . . , π

′
m, respectively.

Let π′j be the left-most term such that π′j is an isolated vertex in C(π′) and π′j < π′c. Note that
π′j > π′d, otherwise π′k is redundant.

We claim that π′c is our desired vertex. If π′j is the left-most term in π′ that is an isolated vertex,
we are done. If π′j = π′k, then either it is the only isolated vertex (and we are again done) or there
is another π′i to the left of π′k such that π′i > π′c, a contradiction (there would be more than one
connected component).
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π′i

π′j

π′k

π′a

π′b

π′c

π′d

Figure 4: Structure within π′ for Lemma 3.5

Now, suppose that π′j 6= π′k and there is another isolated vertex to the left of π′j . Let π′b be
the largest term between π′j and π′k. Also, let π′i be the left-most term such that π′i is an isolated
vertex and π′i < π′b. Note that such a term must exist and must be to the left of π′j . Let π′a be
the largest term between π′i and π′j . The terms π′a, π

′
b, π
′
c, π
′
d now form an induced P3 in C(π′),

a contradiction. Therefore, there is no π′i to the left of π′j , so π′c is adjacent to all vertices in its
connected component.

Lemma 3.6. Let π ∈ Sn, and suppose that G := C(π) has the connected components C1, C2, . . . , Ck
where |Ci| > 1 for each i. Then, π can be partitioned into a collection of disjoint subsequences
L0, L1, . . . , Lk, with σi := red(Li) (for 0 ≤ i ≤ k), such that the following are true:

(i) |σ0| ≥ 0, |σi| ≥ 1 (for 1 ≤ i ≤ k), and
∑
|σi| = n.

(ii) C(σ0) contains no edges.

(iii) For 1 ≤ i ≤ k, C(σi) ∼= C ′i, where C ′i is Ci with 0 or more isolated vertices.

(iv) For each i (1 ≤ i ≤ k), none of the isolated vertices in C(σi) form a 12 pattern within σi.

Proof. For each Cj , let Ij be the set of (prey) vertices inducing edges in Cj . Note that Cj ∩ Ij may
be non-empty. We first prove two claims.

Claim 1: if i 6= j, then Ii ∩ Ij = ∅.
Suppose there exists x ∈ Ii ∩ Ij . Let s, t ∈ Ci such that x induces edge s− t and u, v ∈ Cj such

that x induces edge u − v. Then, the term πx (associated with x) must be to the left of and less
than the terms πs, πt, πu, πv (associated with s, t, u, v), so x induces a K4 subgraph on those four
vertices. This contradicts Ci and Cj being different connected components.

Claim 2: if i 6= j, then Ci ∩ Ij = ∅.
Suppose there exists x ∈ Ci ∩ Ij . Let s, t ∈ Cj such that x induces edge s− t. Then, the term in

πx must be to the left of and less than the terms πs, πt. Also, let y ∈ Ci be a vertex adjacent to x
and suppose that edge x− y is induced by vertex v ∈ Ii. Then, the term πv is to the left of and less
than the terms πx, πy, πs, πt. This would induce a K4 on the four vertices, contradicting Ci and Cj
being different connected components.

Now, for each 1 ≤ i ≤ k, we define the set I ′i ⊆ (Ii\Ci) as

I ′i := {b ∈ Ii\Ci : there does not exist a ∈ Ii\Ci where ab form a 12 pattern}.
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Let Li be the subsequence of terms in π associated to the vertices Ci∪I ′i, and let σi := red(Li). Also,
let L0 be the (potentially empty) subsequence of terms in π not contained in any Li for i ≥ 1, and
let σ0 := red(L0). Observe that this gives a partitioning of π that satisfies conditions (i)–(iv).

Observe that Theorem 3.4 can be restated as follows:
“Let graph G ∈ C(Sn). Then, G /∈ C(Sn(132)) if and only if P3 is an induced subgraph in G.”

We now prove this equivalent statement.

Proof of Theorem 3.4. One direction is already given by Proposition 3.3. Now suppose π ∈ Sn
such that P3 is not an induced subgraph in G = C(π). We would like to show that there ex-
ists π′ ∈ Sn(132) such that G ∼= C(π′). Let C1, . . . , Ck be the connected components of G with
at least two vertices. If there are no such connected components (i.e., G has no edges), then
π′ = (n)(n − 1) . . . 21 ∈ Sn(132) such that C(π′) ∼= G. For later notational convenience, we let αi

denote the decreasing permutation of length i. We now handle k ≥ 1 in two cases.

Case (k = 1): Let v ∈ C1 such that v is adjacent to all vertices in C1 − v, given by Lemma 3.5,
and let πv be the term in π associated with v. Let β := red(π − πv) and G′ := C(β). Observe that
G′ ∼= G− v since v is a non-isolated vertex. Let Q1, . . . , Qj be the connected components of G′ with
at least two vertices. Note that the Qi components (and perhaps some isolated vertices in G′) are
the “pieces” that were disconnected from C1 when v was deleted. Let I be the set of new isolated
vertices created from C1− v, and let m := |I|. We note that G must have had at least m additional
isolated vertices (prey) inducing the m edges that were deleted to produce I.

Since G′ also does not contain an induced P3 subgraph, by induction, there exists π′ ∈ Sn−1(132)
such that C(π′) ∼= G′. By Lemma 3.6, π′ can be partitioned into smaller permutations σ0, σ1, . . . , σj

such that C(σ0) contains no edges, C(σi) ∼= Ci (with some isolated vertices) for each 1 ≤ i ≤ j,
C(σi) does not contain any isolated vertices forming a 12 pattern in σi for each 1 ≤ i ≤ j, and
C(σ0) ∪ C(σ1) ∪ . . . ∪ C(σj) ∼= G′. Note that |C(σ0)| ≥ 2m. Observe that each σi avoids 132 since
it is equivalent to a subsequence in π′. Additionally, we replace σ0 with τ = αm[12, 12, . . . , 12] and
the decreasing permutation of length |C(σ0)| − 2m, which we call τ0.

First, observe that αj [σ1, . . . , σj ], τ , and τ0 are all permutations avoiding 132. Then, π′′ :=
4213[τ0, αj [σ1, . . . , σj ], τ, 1] ∈ Sn(132), as shown in Figure 5. Additionally, C(π′′) ∼= G, as desired.

τ0

σ1

σ2

. . .

σj

τ

Figure 5: Graphical representation of π′′ := 4213[τ0, αj [σ1, . . . , σj ], τ, 1]

Case (k > 1): By Lemma 3.6, π can be partitioned into smaller permutations σ0, σ1, . . . , σk such
that C(σ0) contains no edges, C(σi) ∼= Ci (with some isolated vertices) for each 1 ≤ i ≤ k, and
C(σ0)∪C(σ1)∪ . . .∪C(σk) ∼= G. Since each C(σi) avoids P3 as an induced subgraph, by induction,
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there exists a 132-avoiding permutation τ i of the same length as σi such that C(τ i) ∼= C(σi) for
each i. Then π′ = αk+1[τ0, τ1, . . . , τk] avoids 132 and C(π) ∼= C(π′). (See Figure 6.)

τ0

τ1

. . .

τk

Figure 6: Graphical representation of π′ = αk+1[τ0, τ1, . . . , τk]

4 Weighted competition graphs of permutations

In this section, we study a generalization of competition graphs which was first introduced by Sano
[12]. Given a directed graph D = (V,A), we define the weighted competition graph, denoted by
W (D), to be the edge-weighted undirected graph (G,w) such that G = (V,E) is the competition
graph of D and the weight for edge uv, denoted by w(uv), is the number of vertices x such that
both arcs (u, x) and (v, x) are in D (i.e., the number of common prey for u and v).

Given an edge-weighted graph G, we define the sets W−1n (G) and W−1n (G; τ) as:

W−1n (G) := {π ∈ Sn : W (π) is isomorphic to G with sufficiently many isolated vertices}.
W−1n (G; τ) := {π ∈ Sn(τ) : W (π) is isomorphic to G with sufficiently many isolated vertices}.

We will still focus on the path graphs Pm and star graphs K1,m since these are the natural graph
structures of interest for graphs arising from 123 and 132 avoiding permutations. In this section,
references to Pm (resp. K1,m) will refer to the path graphs (resp. star graphs) with edge weights all
equal to 1.

4.1 Permutations producing paths and stars

We begin our study of weighted competition graphs by considering permutations that produce paths
and stars. We will show a natural bijection between W−1n (Pm) (permutations forming path graphs)
and W−1n (K1,m) (permutations forming star graphs).

We first define some notation. Let Pm be the path graph on the vertices {p0, p1, . . . , pm}, where
pi and pi+1 are adjacent for 0 ≤ i ≤ m− 1. For π ∈ W−1n (Pm), we will often say “pi in π” to refer
to the term in π that pi corresponds to.

p0 p1 p2 pm−1 pm1 1 1

Figure 7: Path graph Pm

The following lemma provides insight into the arrangement of p0, . . . , pm within a permutation
π ∈W−1n (Pm).
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Lemma 4.1. Let π ∈W−1n (Pm). The pi labels on terms of π can be assigned such that the following
are true:

(i) pi is to the left of pi+1 within π for 0 ≤ i ≤ m− 2.

(ii) pm is to the right of pm−2 within π.

(iii) If πi1 and πim (in π) correspond to p1 and pm (in Pm), respectively, then πim < πi1 .

Proof. Remark: in the proof, we assume that m ≥ 4. Cases with smaller m are easily checked by
computer.

Satisfying condition (i): We first prove that p1, p2, . . . , pm−1 must occur consecutively (in order)
within π. Suppose that there is a pk that occurs between pi and pi+1 within π, where none of the
three vertices are p0 or pm. Let x be the prey vertex inducing edge pipi+1 and note that this must
be to the left of and smaller in value than both vertices. Observe that pk must be smaller in value
than x, otherwise x would induce a triangle on the three vertices. Since pk has degree 2, it has a
neighbor p′k which is neither pi nor pi+1 as well as a prey vertex y inducing the edge pkp

′
k. Observe

that y must be to the left of pk. But this induces a triangle on pk, p′k, and whichever of pi or pi+1

is to the right, a contradiction.
Therefore, the pi’s in π can be ordered either p1p2 . . . pm−1 or pm−1pm−2 . . . p1. We assume the

former ordering and show that this satisfies all the other conditions. Now suppose that p0 is to the
right of p1 in π. Let y1,2 be the prey vertex inducing edge p1p2. The value of p0 must be less than
the value of y1,2 in π, otherwise y1,2 induces a triangle. Let y0,1 be the prey vertex inducing edge
p0p1. Observe that this vertex would induce a triangle on p0, p1, and p2, a contradiction. Therefore,
p0 is to the left of p1.

Satisfying condition (ii): Let prey vertices a, b, and c induce edges pm−3pm−2, pm−2pm−1, and
pm−1pm, respectively. Note that a, b, c are distinct, otherwise they would induce a triangle. Let σ
be the length 7 permutation order-isomorphic to the subsequence in π corresponding to the terms
pm−3, pm−2, pm−1, pm, a, b, and c. Note that W (σ) should be isomorphic to P3 with three isolated
vertices. It is straightforward to computational check that the only length 7 permutations forming
this graph structure are 5736124, 5736142, 5637124, and 5637142 but none of these produce an
instance where the “pm” term is to the left of the “pm−2” term. Therefore, pm is to the right of
pm−2.

Satisfying condition (iii): Note that pm is to the right of p1 in π. If pm’s value in π was greater
than p1’s value in π, the prey vertex inducing edge p0p1 would also induce a triangle on p0, p1, and
pm, a contradiction.

The above labeling of pi’s onto terms of π will be considered the canonical labeling. We have a
similar lemma regarding the structure of stars within a permutation.

Lemma 4.2. Let π ∈ W−1n (K1,m), and let {a} and {b1, . . . , bm} be the bipartitions of K1,m such
that bi is to the left of bi+1 within π for 1 ≤ i ≤ m− 1. The following are true:

(i) a is to the right of bm−1 within π.

(ii) If πα and πβ (in π) correspond to a and bm (in K1,m), respectively, then πβ < πα.

Proof. (i) Suppose there are at least two bi’s to the right of a within π. Let x and y be the
prey vertices inducing edges {a, bm−1} and {a, bm}, respectively. Without loss of generality,
suppose the value of x within π is less than the value of y within π. Since x is to the left of
a, bm−1, bm, it induces a triangle within the competition graph, which is a contradiction.

(ii) Suppose that a is less than bm as terms in π. Both these terms are to the right of bm−1, and
a and bm−1 are adjacent in the competition graph. The prey vertex that induces the edge
{a, bm−1} would actually induce a triangle on a, bm−1, bm, a contradiction.
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We now show that the sets W−1n (Pm) and W−1n (K1,m) are equinumerous.

Theorem 4.3. For m,n ≥ 1, |W−1n (Pm)| = |W−1n (K1,m)|.

Proof. We will prove this by establishing a bijection from W−1n (Pm) to W−1n (K1,m). First, we may
assume that m ≥ 3 (otherwise, Pm ∼= K1,m so this is trivially true). Additionally, we may assume
that n ≥ 7, since it is easy to verify by computer that smaller n will not produce P3 or K1,3. Now
consider an arbitrary π = π1 . . . πn ∈W−1n (Pm). Let πij (in π) correspond to vertex pj (in Pm). We
define the operator T on π to swap p1 with the pi immediately to its right within π. Observe that
T k on π will be a cyclic left shift of p1, . . . , pk+1 within π. More precisely, T k(π) is the permutation
formed by replacing πij with πij+1

for 1 ≤ j ≤ k, replacing πik+1
with πi1 , and keeping all other

terms of π fixed. We will show that Tm−2 is a bijection from W−1n (Pm) to W−1n (K1,m).
Let π′ = T k(π). We claim that Wn(π′) is the graph shown below in Figure 8.

p0

p1

p2

p3

...

pk+1

pk+2 pk+3 pm

Figure 8: The graph Wn(π′) (with isolated vertices not drawn).

We prove the claim by induction on k. The base case k = 0 is trivially true since π = T 0(π).
Suppose the claim holds up to k, and let π′ = π′1 . . . π

′
n := T k(π). Also, let G be the weighted com-

petition graph W (π′). Note that the operator T applied to π′ would swap the terms corresponding
to p1 and pk+2 in π′.

Observe that p1, pk+2, and pk+3 form a path of length 2 in G. Let x be the prey vertex in
D(π′) inducing the edge {p1, pk+2} in G, and let y be the prey vertex inducing edge {pk+2, pk+3}.
Observe that x 6= y, otherwise that vertex would induce a triangle in G. Since all edge weights
when edges exist are 1, these are the unique such vertices. Let σ be the length 5 permutation that
is order-isomorphic to the subsequence of π corresponding to the terms p1, pk+2, pk+3, x, and y. It
is straightforward to computationally verify that σ is either 34152 or 35142 if k < m − 2. In both
cases, the left to right order of the vertices are x, p1, y, pk+2, and pk+3. By swapping the p1 and
pk+2 terms, a direct verification on the two length 5 permutations shows that: edge {p1, pk+2} is
preserved, edge {pk+2, pk+3} is destroyed, and edge {p1, pk+3} is created.

By Lemma 4.1, all pj for 2 ≤ j ≤ k+ 1 are to the left of p1, pk+2, pk+3 in π′ and swapping p1 and
pk+2 will neither create new edges nor destroy existing ones that involve these pj ’s. Similarly, the
remaining pj ’s will all be to the right of p1, pk+2, pk+3 and the swap will neither create nor destroy
any additional edges.

For the final case k = m− 2, we have two possibilities since pm can be to the right or the left of
pm−1, although both will be to the right of pm−2 (by Lemma 4.1). If pm is to the right of pm−1, the
argument above holds. If pm is to the left of pm−1, then within π′, we have the subsequence formed
by x, p1, y, pm, pm−1 and this subsequence is order-isomorphic to either 34125 or 35124. We swap p1
and pm−1, and checking the analogous cases as above completes the proof of our claim.

The inverse mapping of T−1 can also be defined and (T−1)m−2 would send permutations π =
π1 . . . πn producing stars to permutations producing paths. Let {a} and {b1, b2, . . . , bm} be the

11



bipartitions of K1,m such that bi is to the left of bi+1 within π for each i. By Lemma 4.2, a and bm
are to the right of bm−1 and a is larger than bm as terms in π, so given a permutation π ∈W−1n (K1,m),
we can distinguish which terms of π correspond to each bi and a. The map T−1 swaps a with the bi
immediately to a’s left within π. Comparing the T and T−1 maps, the p1 term will correspond to
a, the p0 term will correspond to b1, and the pi term will correspond to bi for 2 ≤ i ≤ m.

4.2 Pattern-avoiders producing paths and stars

We now study the structure of permutations in W−1n (K1,m; 132). Additionally, we will show a
bijection between W−1n (Pm; 123) and W−1n (K1,m; 132), which will be very similar to the one in
Theorem 4.3.

We first define the notion of an “accessory vertex.” Given π ∈ Sn, we say that πi is an accessory
term if it does not contribute to any edges (as either an edge endpoint or a prey vertex) in the
weighted competition graph W (π). An isolated vertex in W (π) corresponding to an accessory term
will be called an accessory vertex. Note that equivalently, an accessory term in π is any term that
is not part of a 123 or 132 pattern. Given a graph G, we say that a permutation in W−1n (G) is a
base permutation if it contains no accessory terms. These permutations may be thought of as the
minimal permutations that produce the desired graph.

Given a graph G, we define B(G) to be the set of all base permutations in
⋃
n
W−1n (G). Given

a permutation pattern τ , we analogously define B(G; τ) to be the set of all base permutations in⋃
n
W−1n (G; τ). For example, B(K1,3) = {5634127, 5634172, 5734126, 5734162} and B(K1,3; 132) =

{5634127}.

Proposition 4.4. For each m, |B(K1,m; 132)| = 1 and that single base permutation is

π = (2m− 1)(2m)(2m− 3)(2m− 2) . . . (3)(4)(1)(2)(2m+ 1).

Proof. It is straightforward to verify that the permutation above is a base permutation producing
K1,m. To show that it is the only such permutation, we proceed by induction on m. It is easy to
verify that B(K1,1; 132) = {123}. Let π = π1 . . . πn ∈ B(K1,m; 132) for m ≥ 2. First observe that
πn−2 = 1. If 1 were to the left of πn−2, it would induce a triangle on πn−2, πn−1, πn, and if 1 were
to the right of πn−2, it would be an accessory term. Similarly, note that πn−1 = 2. If 2 were to the
left of πn−1, there would be multiple edges between πn−1 and πn, and if it were to the right (at the
πn position), it would form a 132 pattern. Then, π′ = red(π1 . . . πn−3πn) ∈ B(K1,m−1; 132), and
since there is only one possible choice of π′, there is only one possible choice for the original π.

We will write b(K1,m; 132) to be the unique permutation in B(K1,m; 132). In the following
results, we will let Y denote an instance of a prey vertex and P denote an instance of a predator
vertex (within a permutation). By this notation, b(K1,m; 132) = (Y P )mP = Y PY P . . . Y PP . We
will refer to the i-th Y and the i-th P in b(K1,m; 132) as the i-th (Y P )-pair (so b(K1,m; 132) is m
(Y P )-pairs followed by a P ). We will refer to the last P term as P ∗.

Lemma 4.5. Let π ∈ W−1n (K1,m; 132). The accessory terms within π will never occur within a
(Y P )-pair.

Proof. Suppose on the contrary that accessory term x occurs between the i-th Y and the i-th P
terms (say yi and pi). If yi < x (as terms in π), then yi would induce an edge on x and pi, and if
yi > x, then x would induce an extra edge on pi and P ∗. Both cases contradict x being an accessory
term.

Lemma 4.6. Let π ∈ W−1n (K1,m; 132). For each 1 ≤ i ≤ m − 1, the accessory terms between the
i-th (Y P )-pair and the (i + 1)-th (Y P )-pair must be less than the i-th (Y P )-pair, greater than the
(i+ 1)-th (Y P )-pair, and in decreasing order.

12



Proof. Let accessory terms a1, a2, . . . , ak be between the i-th (Y P )-pair (given by terms yi, pi) and
the (i+1)-th (Y P )-pair (given by terms yi+1, pi+1) such that aj is to the left of aj+1 for each j. Note
that yi < pi and yi+1 < pi+1. If yi < aj , then yi induces an edge on aj and P ∗, which contradicts
aj being an accessory term. Therefore, each aj is less than the i-th (Y P )-pair.

Similarly, if aj < pi+1, then aj induces a second edge on pi+1 and P ∗. Therefore, each aj is
greater than the i + 1-th (Y P )-pair. Finally, if there exists 1 ≤ j < j′ ≤ k such that aj < aj′ ,
then aj induces an edge on aj′ and P ∗, which contradicts aj′ being an accessory term. Therefore,
a1 > a2 > . . . > ak.

Now, let h(m,n) := |W−1n (K1,m; 132)|. We get the following nice recurrence:

Theorem 4.7. For m > 1 and n > 2, h(m,n) = h(m,n− 1) + h(m− 1, n− 2).

Proof. First, for n = 1 or n = 2, h(m,n) = 0 if m ≥ 1. Also, if m = 1 and n ≥ 2, then
h(m,n) = (n − 2)2n−3 by [11]. Consider π ∈ W−1n (K1,m; 132) for m > 1 and n > 2. Recall that
π will have m (Y P )-pairs. Suppose that the first (Y P )-pair in π is given by πaπa+1. If πa+2

is an accessory term, then π′ = red(π1 . . . πa+1πa+3 . . . πn) is a permutation in W−1n−1(K1,m; 132),
and since there is a unique way to re-insert πa+2 (by Lemma 4.6), the number of such original
permutations π is |W−1n−1(K1,m; 132)|. On the other hand, if πa+2 is part of the 2nd (Y P )-pair, then

π′′ = red(π1 . . . πa+1πa+4 . . . πn) is a permutation in W−1n−2(K1,m−1; 132), and there is a unique way
to re-insert the (Y P )-pair given by πa+2πa+3, so the theorem follows.

Finally, we prove the result analogous to Theorem 4.3 also by a bijection.

Theorem 4.8. For m,n ≥ 1, |W−1n (Pm; 123)| = |W−1n (K1,m; 132)|.

Proof. We prove this by establishing a bijection from W−1n (Pm; 123) to W−1n (K1,m; 132). We may
assume that n ≥ 3 (otherwise, the competition graph cannot have any edges). Now consider an
arbitrary π = π1 . . . πn ∈ W−1n (Pm; 123), and let πij (in π) correspond to vertex pj (in Pm). First,
observe that πi0 > πi1 > . . . > πim . If there exists πia < πib with a < b, then these two together
with a prey vertex of πia would form a 123 pattern.

We now define the map M as a left cyclic shift on p0, p1, . . . , pm while holding all other terms of π
fixed. More precisely, M(π) is the permutation obtained by replacing πij with πij+1 for 0 ≤ j ≤ m−1
and replacing πim with πi0 . An example of the mapping is given in Figure 9.

p0

p1

p2

p3

5 7 3 6 1 4 2

p1

p2

p3

p0

5 6 3 4 1 2 7

M

Figure 9: Example of mapping M on 5736142
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First, we observe that map M is equivalent to swapping p0 and p1 and then applying Tm−1, the
operator defined in the proof of Theorem 4.3 (while viewing the p0 in π to be the new “p1” term
that gets moved). Let x and y be the prey vertices inducing edges p0p1 and p1p2, respectively. Let
σ be the length 5 permutation that is order-isomorphic to the subsequence of π corresponding to
x, y, p0, p1, p2. It is straightforward to computationally verify that σ = 35142 is the only possibility.
Swapping the p0 and p1 terms gives us 34152, which is another length two path (but this time, the
original p0 is now the middle vertex). Hence, swapping p0 and p1 in π gives us a path where p1 is now
the endpoint and p0 is its only neighbor. Using the same justification as the proof of Theorem 4.3,
we may apply Tm−2 to this new permutation to get a permutation π′ that produces a K1,m. Given
the original structure of π, it is clear that W (π′) is isomorphic to W (T (π′)).

Also, due to the original structure of π, there are at least m occurrences of 123 in T (π′), and
since W (T (π′)) has m edges, there can be no occurrences of 132. Since M has a well-defined inverse
(by performing a right cyclic shift on p0, p1, . . . , pm) and the previous results of this section show
that all permutations in W−1n (K1,m; 132) have the structure of permutations arising from M(π) with
π ∈W−1n (Pm; 123), M is a bijection between the sets.

4.3 Some enumerative results

Using the recurrence in Theorem 4.7, we can quickly compute many values for the quantity h(m,n).

m\n 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 1 4 12 32 80 192 448 1024 2304 5120
2 0 0 0 0 1 5 17 49 129 321 769 1793
3 0 0 0 0 0 0 1 6 23 72 201 522
4 0 0 0 0 0 0 0 0 1 7 30 102
5 0 0 0 0 0 0 0 0 0 0 1 8

Table 1: Some values for h(m,n) = |W−1n (K1,m; 132)|.

Recall that the first row is given by h(1, n) = (n − 2)2n−3 for n ≥ 2, since it is the number of
π ∈ Sn(132) with exactly one copy of 123.

We can also derive the generating function. For each m, we define

Fm(y) :=
∑
n≥0

h(m,n)yn.

We also define the more general generating function

H(x, y) :=
∑
m,n≥0

h(m,n)xmyn.

Note that the coefficient of xm in H(x, y) is Fm(y).
Since an explicit closed form is known for h(1, n), it is straightforward to verify that F1(y) =

y3/(1− 2y)2. In addition, the recurrence h(m,n) = h(m,n− 1) + h(m− 1, n− 2) from Theorem 4.7
can be re-written as

h(m,n) =

n−2∑
j=1

h(m− 1, j) (1)

so we get that Fm(y) = Fm−1(y) · (y2/(1− y)). Therefore, we get that

Fm(y) =
y2m+1

(1− 2y)2(1− y)m−1
. (2)
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Through some routine manipulations, we can also get the closed form for the bivariate rational
generating function H(x, y):

H(x, y) =

∞∑
m=1

Fm(y)xm (3)

=

∞∑
m=1

y2m+1

(1− 2y)2(1− y)m−1
xm (4)

=
xy3 (1− y)

(1− 2y)
2

(1− y − xy2)
. (5)

Using the closed form expression for Fm(y), we can also derive closed form expressions of h(m,n)
for fixed values of m. For example,

h(1, n) = (n− 2)2n−3 , n ≥ 3
h(2, n) = (n− 5)2n−4 + 1 , n ≥ 5
h(3, n) = (n− 8)2n−5 + n− 2 , n ≥ 7.

We note that for smaller m values, the associated sequences are known in the On-Line Encyclo-
pedia of Integer Sequences [13]. For example, h(1, n) is A001787, h(2, n) is A000337, and h(3, n) is
A045618.

5 Conclusion

In this article, we considered permutations inducing competition graphs through the notion of doubly
partial orders. This led to interesting structural connections between permutations and competition
graphs. Since edges in the competition graph arise precisely due to 123 or 132 patterns in the
permutation, it was natural to consider permutations restricting one of the patterns. We were able
to prove a classification for graphs arising from 132-avoiding permutations and have a nice analogous
conjecture for 123-avoiding permutations. However, many other interesting questions remain. For
example, do other patterns in permutations (longer patterns or other “types” of patterns) have
any interesting connection to competition graphs? Do any permutation statistics carry over to
competition graphs in any meaningful way?

We also considered the notion of weighted competition graphs, since this better captures some
internal structure of the permutation. In particular, the edges in the graph are in one-to-one cor-
respondence with 123 and 132 patterns in the permutation. We consider some enumerative and
structural properties for permutations inducing certain weighted graphs (namely paths and stars).
Many potential avenues of investigation also remain for weighted competition graphs, and perhaps
related graphs, induced by permutations.
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