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1. Abstract

A preferential arrangement of a finite set is an ordered partition. Associated

with each such ordered partition is a chain of subsets or blocks endowed with a

linear order. The chain may be split into sections by the introduction of a vertical

bar, leading to the notion of a barred preferential arrangements. In this paper

we derive some combinatorial identities satisfied by the number of possible barred

preferential arrangements of an n-element set. We illustrate with some suitable

examples highlighting some important consequences of the identities.

Mathematics Subject Classifications:05A18,05A19,05A16, 2013

2. introduction

The study of preferential arrangements in Combinatorics goes back to Cayley in

[1]. Further studies of these objects were made by Gross[3], Mendelson[4] and oth-

ers. More recently Pippenger studied special kind of preferential arrangements and

called them barred preferential arrangements in [7]. The same further generalised

in [8]. In this paper we derive several identities using combinatorial arguments,

thus answering a comments raised by Pippenger in [7].In preliminaries we gather

known results on preferential and barred preferential arrangements. In section 4

we state and prove several identities involving the number of barred preferential

arrangements of an n-element set. In proving the identities we use combinatorial

arguments. In section 5 we discuss some identities involving restricted barred pref-

erential arrangements. Throughout the paper we illustrate the concept with some

simple examples.
1
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3. Preliminaries

In this section we collect all the preliminaries and known results setting up con-

venient notations for the discussion of barred preferential arrangements. We refer

to the papers [8] and [7] for discussions and results on barred preferential arrange-

ments.

1◦ Preferential arrangement.

A partition of a set Xn = {1, 2, . . . , n} with n elements is a collection of disjoint

non-empty subsets whose union is Xn. The subsets forming the partition are called

blocks. If the blocks are arranged in a linear order, the ordered partition is referred

as a preferential arrangement of Xn. see [3], [4]. For example, {{1}, {2, 3}} is a

preferential arrangement of X3 with two blocks with the natural ordering

{1} ≤ {2, 3}. For convenience we write this preferential arrangement as 1 23,

reading the block containing 1 comes first and the block containing 23 comes second.

From now onwards we will use the natural ordering of blocks as illustrated here.

A warning: The natural ordering of the numbers 1, 2, . . . , n in not relevant here

but the ordering of the blocks are. Let Qn and Jn denote the set of preferential

arrangements of Xn and the number of preferential arrangements of Xn, so that

|Qn| = Jn. The numbers Jn for n ∈ N0 are also known as Fubini numbers and

a list of values of Jn for n = 0, 1, 2, . . . can be found in OEIS sequence number

A000670, [6]. The number Jn is interpreted as the number of outcomes in a race

with n participants assuming all of them finish the race and ties are allowed [4]

or the number of restricted preferential fuzzy subsets of Xn, [5]. The numbers Jn

satisfy a recurrence relation with the initial condition J0 = 1, or identity as a finite

sum, see [4] or an infinite sum, see [3] or a closed form involving Stirling numbers

of the second kind [7], respectively

(1) Jn+1 =

n∑

s=0

(
n+ 1

s

)

Js, or Jn =
1

2

∞∑

s=0

sn2−s, or Jn =

n∑

s=0

{
n

s

}

s! .

2◦ Barred Preferential arrangements.

The idea of introducing bars in between the blocks of a preferential arrangement

seems first to appear in [7] even though the numbers associated with counting barred

preferential arrangements appear much earlier in the literature [2]. For example,
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for the preferential arrangement X = 1 23 considered in 1◦, we can insert one bar

| in three different places in three different ways ( what a coincidence!) as follows:

1 | 23 or | 1 23 or 1 23 |, whereas a two-bar insertion into the same X would give rise

to 6 barred preferential arrangements. viz., 1 | | 23, | | 1 23, 1 23 | |, 1 | 23 |, | 1 23 | or

| 1 |23. We now illustrate what we mean by sections associated with bars. Consider

two 3-bar preferential arrangements of X7 with 4 blocks.

7 43 1
︸ ︷︷ ︸

1stsection

| 652
︸ ︷︷ ︸

2ndsection

|
︸︷︷︸

3rdsection

|
︸︷︷︸

4thsection

︸︷︷︸

1stsection

| 652 1
︸ ︷︷ ︸

2ndsection

| 7 43
︸ ︷︷ ︸

3rdsection

|
︸︷︷︸

4thsection

We notice that in general m bars induce m+ 1 sections with some of the sections

possibly empty.

In general we denote the number of barred preferential arrangements of Xn with

m bars (m ≥ 0) by Jm
n . In addition to the numbers Jm

n , we use Qm
n for the

set of all barred preferential arrangements of Xn with m bars (m ≥ 0). Hence

|Qm
n
| = Jm

n
. When m = 0, J0

n
(|Q0

n
|) identified as simply the number ( the set)

of preferential arrangements without any bars and therefore is equal to Jn ( Qn )

according to the notation in subsection 1◦ . For instance J2
2 = 15, J5

4 = 5340 can be

verified by direct manual counting of such barred preferential arrangements. The

following closed form for Jm
n

and the recurrence relation with the initial condition

Jm
0 = 1, Jm

1 = m+ 1 satisfied by it are obtained by Ahlbach et al in [8]

(2) Jm

n
=

n∑

s=0

{
n

s

}

s!

(
m+ s

m

)

, Jm

n
=

n∑

s=0

(
n

s

)

J0
s
Jm−1
n−s

(m ≥ 1)

The infinite sum representation for Jm
n corresponding to similar expression for pref-

erential arrangement is bit more involved.

(3) Jn

m
=

1

2m+1 m!

∞∑

s=0

(s+ 1)m̄sn

2s
where (s+ 1)m̄ =

m∑

t=1

s(m, t)× (s+ 1)m

again where s(m, t) is the Stirling numbers of the first kind.

3◦ Restricted Barred Preferential arrangements.

We also discuss some identities based on barred preferential arrangements with
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some restrictions. Consider the following restriction on a preferential arrangement

X of Xn with m bars. There are m + 1 sections. We fix a specific section, say the

(m+ 1)
th

section, namely the last section. After fixing the section, we impose the

restriction that every other section to have at most one block. We then preferentially

arrange the elements of the blocks of the fixed section. we then call such a barred

preferential arrangement a restricted barred preferential arrangement. We denote

the set of all restricted barred preferential arrangements of Xn having m bars by

Hm
n
. The order of the set Hm

n
is denoted by the number Im

n
. In the proofs involving

the set Hm
n , it is occasionally useful to consider one extra bar

∗

| introduced on the

elements of Hm
n

at the far right hand end of the last section. It will be clear

in the proofs that such an introduction of an extra bar does not affect counting.

Therefore we use set ∗¶m
n for elements of Hm

n with
∗

|. Both Hm
n and ∗¶m

n have the

same cardinality Im
n
.

4. The identities

In this section we develop a number of interesting identities satisfied by Jm
n

and

for various non-negative integral values of n and m. The proofs are combinatorial

arguments based on preferential arrangements. The first identity was found in [7]

without proof or reference. Further the author of that paper states that such an

identity can be proved combinatorially or otherwise. Here below we state and prove

that result as a lemma.

Lemma 1. Let n be an non-negative integer. Then J0
n+1 =

n∑

s=0

(
n

s

)
J1
s

proof : What we are required to prove is that the number of preferential arrange-

ments with no bars can be written as a sum of barred preferential arrangements

with one bar.

The left hand side of the identity can be interpreted combinatorially as outcomes

in a race of n+ 1 people ( assuming that all people finish the race )[4]. The terms

on the right hand side would correspond to races of n people, of which the people

are preferentially arranged with respect to a single bar ( hence the superscript of

J is 1 ). In proving the lemma, use a similar method to the one used in [4] in

establishing equation (7)). We need to associate each term on the left with one

term on the right and visa versa for the identity to hold. Therefore we first mark
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a person out of n+ 1 people who are to run a race. We interpret the block having

the marked person as a bar. Clearly all outcomes of the race would not be affected

whether a specific person is marked or not. In our notation the number of outcomes

is captured by J0
n+1 (by definition of J0

n+1). We ask the following question in order

to identify each outcome that is counted by J0
n+1is interpreted as an outcome in

the sum on the right hand side and visa versa: How many people do not finish with

the marked person? The block having the marked person would serve as the bar

in a barred preferential arrangement counted on the right hand side of the identity.

There are
(
n

s

)
ways of choosing s people who do not finish with the marked person

for each s such that 0 ≤ s ≤ n. For each such s, there are J1
s
ways of preferentially

arranging the s people with the block having the marked person serving as the bar.

Therefore there are
(
n

s

)
× J1

s many number of barred preferential arrangement of

the s people each of which is a preferential arrangement of n+1 persons finishing a

race. Clearly the preceding argument uniquely identifies each outcome of the LHS

as an outcome of the RHS.

We generalize Lemma 1 to the case of multiple bars in the following way,

Theorem 1. For two integers m,n ≥ 0, Jm
n+1 = (m+ 1)

n∑

s=0

(
n

s

)
Jm+1
s

proof : In forming a barred preferential arrangement of an n + 1-persons as in

Lemma one above, with m bars, we mark one of the n persons. The position of the

marked person would be determined by two quantities, one: the section in which

the marked person finishes in and two: the block in which he finishes within the

section. The block in which the marked person is in, is interpreted as the m+ 1th

bar on the right hand side. Let us assume that the marked person is in section

i. The question is: how many people do not finish with the marked person? Let

us say there are s of them, those s people can be selected in
(
n

s

)
ways. There are

Jm+1
s

ways of preferentially arranging the s persons, where the m+ 1th bar is the

block having the marked person. Summing over s we have
n∑

s=0

(
n

s

)
Jm+1
s number

of preferential arrangements. If the marked person finishes in section k instead of

section i above, we would still have
n∑

s=0

(
n

s

)
Jm+1
s

many preferential arrangements.
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Since there are m+1 sections hence the total number of preferential arrangements

is (m+ 1)
n∑

s=0

(
n

s

)
Jm+1
s .

After putting the sums in theorem 1 in a Pascal like triangle for fixed values of

m and n, we obtain the following corollaries.

Corollary 1. J1
2 = 4× J1

1

We prove the corollary combinatorially by establishing a bijection between a

set Q1
2 whose cardinality is J1

2 and a set {0, 1}2 × {0, 1}1 × Q1
1 whose cardinality

is 4 × J1
1 . We denote by Qm

n
the set of barred preferential arrangements of a n-

element set having m bar. We have, Q1
2 = {|ab, ab|, a b|, b a|, |a b, |b a, a|b, b|a, },

|Q1
2|=J1

2 (by definition of Q1
n
). We say Q1

1 = {|a, a|}. In proving the corollary

we generalise the method used in [8] in proving theorem 2.1 from a single label

of a bar to a double label of a bar, in the following way. We consider a map

f : {0, 1}2 × {0, 1}1 ×Q1
1 → Q1

2. We construct the set{0, 1}2 × {0, 1}1 ×Q1
1 in the

following way,

1. {0, 1}1 labels one of the elements of Q1
1 with a binary label 0 or 1 at the bottom.

Hence from the two element of Q1
1 there will result four labeled barred preferential

arrangements. The set {0, 1}1 ×Q1
1 = {|

0

a, |
1

a, a|
0

, a|
1

}.

2. Then {0, 1}2 labels at the top, the four elements of {0, 1}1 × Q1
1 to form eight

elements of {0, 1}2 × {0, 1}1 ×Q1
1 in the following way,

{0, 1}2 × {0, 1}1 × Q1
1 = {

0

|
0

a, a
0

|
0

,
0

|
1

a, a
0

|
1

,
1

|
0

a, a
1

|
0

,
1

|
1

a, a
1

|
1

} We now define a mapping

from {0, 1}2 × {0, 1}1 ×Q1
1 to Q1

2 in the following way,

I. If the indexes on the bar are both 0, then for a barred preferential arrangement,

by introducing a second element b, place a and b as a single block on the side of the

bar where a was(in all cases remove the indices on the bars). An example of such

an arrangement is |ab.

II. If the top index on the bar is 0 and the bottom index on the bar is 1, then

remove the indexing on the bar and place b on opposite side of the bar from a in

obtaining an element of Q1
2. An example of such an arrangement is a|b.

III. If the top index on the bar is 1 and the bottom index is 0, then place the

two elements on the same side of the bar but placing the element b on its on

block immediately before the bar then following by the block of the element a. An

example of such an arrangement is, a b|.
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IV. If both index are equal to 1, then place both elements on separate block on the

same side of the ba, where now as opposed to 3 above the immediate block before

the bar will be that of a then followed by the block of b. an example of such an

arrangement is |a b.

From the way we have constructed the function f ,

two elements of {0, 1}2×{0, 1}1×Q1
1 satisfy each of the four conditions above and

each element of {0, 1}2 × {0, 1}1 ×Q1
1 is mapped to one element of Q1

2. Hence the

mapping is 1-1.

Clear by marking the position of the elements a and b in an element X ∈ Q1
2, we

can identify an element of {0, 1}2 × {0, 1}1 ×Q1
1 which is mapped to X. Hence the

map in onto. So |{0, 1}2 × {0, 1}1 ×Q1
1| = |Q1

2| ⇒ 2× 2× J1
1 = J1

2 as required.

Corollary 2. for m = 1 and n = 1 the identity holds,

J1
1 = J1

0 + J0
1

We prove the corollary by considering a mapping f : Q1
1 → Q1

0 ∪Q0
1, where Qm

n

is the set of all barred preferential arrangements of an n ≥ 1 element set having

m ≥ 0 bars. The set Q1
1 = {|a, a|}, also Q1

0 ∪ Q0
1 = {|, a}. We define a mapping

from Q1
1 in the following way,

I. If a is before the bar on X ∈ Q1
1 then map X to a in Q1

0∪Q
0
1 (this operation behaves

as if you remove the bar from X, when mapping X to an element of Q1
0 ∪Q0

1).

II. If a is after the bar on X ∈ Q1
1 then map X to | in Q1

0∪Q0
1 (this operation behaves

as if a is removed from X when mapping X to an element of Q1
0 ∪Q0

1). Clearly this

mapping is a one to one and onto mapping between the two sets of two elements

each. So |Q1
1| = |Q1

0 ∪ Q0
1|. Hence J1

1 = J0
1 + J1

0 (|Q1
0 ∪ Q0

1| = J0
1 + J1

0 this is so,

since the two sets are disjoint). Thus the corollary.

Corollary 3. for m = 1 and n = 2 the identity holds,

J1
2 = 3× J1

1 + 2× J1
0

We prove the corollary by establishing a bijection between a set Q1
2 whose cardi-

nality is J1
2 and a set {0, 1, 2}×Q1

1∪{0, 1}×Q1
0, whose cardinality is 3×J1

1 +2×J1
0 .

Where Qm
n

denotes the set of all barred preferential arrangements of an n ≥ 1

element set having m ≥ 0 bars. We say, Q1
1 = {|a, a|}. We then construct the
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set {0, 1, 2}×Q1
1 in the following way, {0, 1, 2}×Q1

1 = {a|
0

, |
0

a, a|
1

, |
1

a, a|
2

, |
2

a},So

the bar of each element of Q1
1 is labeled by either 0, 1 or 2, in forming the set

{0, 1, 2}×Q1
1. We construct the set {0, 1}×Q1

0 in a similar way to obtain {0, 1}×

Q1
1 = {|

0

, |
1

}. So we have, {0, 1, 2}×Q1
1∪{0, 1}×Q1

0 = {a|
0

, |
0

a, a|
1

, |
1

a, a|
2

, |
2

a, |
0

, |
1

}

. Also we have, Q1
2 = {a|b, b|a, |a b, b a|, a b|, |b a, |ab, ab|}. We define a map-

ping f : {0, 1, 2} ×Q1
1 ∪ {0, 1} ×Q1

0 → Q1
2 in the following way,

I. If X ∈ {0, 1, 2}×Q1
1 and the indexing on the bar being 0. Then place an element

b on opposite side of a. An example of such an arrangement is a|b.

II. If X ∈ {0, 1, 2}×Q1
1 and the indexing on the bar being 1, then place an element b

on it’s own block on the same side as a but the block of a should be the one which

is immediately before the bar. An example of such an arrangement is |a b.

III. If X ∈ {0, 1, 2}×Q1
1 and the indexing on the bar being 2. Then place an element

b on its own block immediately before the bar, then followed by the block of a. An

example of such an arrangement is |b a.

IV.If X ∈ {0, 1}×Q1
0 and the index on the bar is 0 then introduce write two elements

a and b as a single block to the right of the bar. Hence that element will be mapped

to the element |ab in Q1
2.

V. If X ∈ {0, 1}×Q1
0 and the index on the bar is 1 then introduce write two elements

a and b as a single block to the left of the bar. Hence that element will be mapped

to the element ab| in Q1
2.

From the way we have defined f above, the 1st and the 2nd elements of Q1
2, satisfy

property I. The 3rd and the 4th element of Q1
2 satisfy property II. The 5th and the

6th elements of Q1
2 satisfy property III. The 7th element of Q1

2 satisfy property IV

above. The 8th element of Q1
2 satisfy property V above. From the way we have

defined f above, each element of {0, 1, 2}×Q1
1 ∪{0, 1}×Q1

0 is mapped to a unique

element of Q1
2. Also using f above, we can move from elements of Q1

2 to elements

of {0, 1, 2}×Q1
1 ∪ {0, 1}×Q1

0 with out ambiguity. Hence the mapping is bijective.

Thus |{0, 1, 2}×Q1
1 ∪ {0, 1}×Q1

0| = |Q1
2| i.e 3× J1

1 + 2× J1
0 = J1

2 as required(note

the sets {0, 1, 2}×Q1
1 and the set {0, 1}×Q1

0 are disjoint hence order of their union

is the sum of the orders).

Theorem 2. for m,n ≥ 1,

Jk
n
= Jk−1

n
+

n−1∑

s=0

(
n

s

)
Jk−1
s

J0
n−s
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We recall Jk
n
is the cardinality of a set Qk

n
which is the collection of all possi-

ble barred preferential arrangements of an n-element having k bars. Each barred

preferential arrangement in Qk
n
has k + 1 section since there are k bars. We prove

the theorem by partitioning Qk
n
into disjoint subsets µ1 and µ2. Where µ1 is the

collection of all those elements from Qk
n whose first section is empty and µ2 is the

collection of all those elements from Qk
n
whose first section is non-empty. In find-

ing the number of element in µ1 we argue as follows: the first section of O ∈ Qk
n

being empty means the n elements are distributed among the k other sections. A

distribution of n elements among k sections is a distribution of the elements among

k − 1 bars. As a result |µ1| = Jk−1
n

.

For the case the first section of each element of Qk
n
being required to be non-

empty we argue as follows in finding the number of elements of µ2: There can be a

minimum of 0 elements not in the first section and there can be a maximum of n−1

elements which are not in the first section on all barred preferential arrangements

which are to be in µ2. Lets assume there are s elements which are not in the first

section of each barred preferential arrangement. There are
(
n

s

)
ways of selecting

the s elements. There are Jk−1
s

ways of preferentially arranging the s elements

among the other k sections. There n− s remaining elements can be preferentially

arranged on the first section in J0
n−s

ways. Taking the product and summing over

s we obtain µ2 =
n−1∑

s=0

(
n

s

)
Jk−1
s

J0
n−s

. When we combine µ1 and µ2 we obtain the

result of the theorem.

5. Identities of restricted barred preferential arrangements

We denote by Hm
n the set of all barred preferential arrangements of an n element

set having m bars, in which m fixed sections (out of m + 1 sections) are allowed

to have a maximum of only one block and the other section can have one or more

blocks (we refer to this section as the free section). The elements of the free section

can have any possible number of blocks of a preferential arrangement of given r ≥ 0

elements. So Hm
n represents the set of all barred preferential arrangements of an n

element set having m bars in which the m fixed (first) sections have a maximum

of one block but one fixed section can have more than one block. The free section

can be any of the section as long its fixed. We denote by |Hm
n
| = Im

n
.

We prove the identity in the following way,
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Lemma 2. for m = 0 and n ≥ 0 we have,

2I0
n
= I1

n

We consider the set H0
n
which is the set of all barred preferential arrangements

of an n element set with no bars. Hence all elements of H0
n have only one sec-

tion since there are no bars. We also consider the set H1
n
, which is the set of all

barred preferential arrangement of an n element set having one bar, in which the

first section has a at most one block and the second section is just a preferential

arrangement of given elements not necessarily into one block.

Adding an extra bar
∗

| to the far right of each element of the set H0
n
does not

affect counting. We add an extra bar
∗

| to the far right of each element of the set H0
n

to form the set ∗¶0
n
, with the extra bar on the far right of each element.In proving

the lemma, use a similar method to the one used in [8] in proving theorem 2.1 .

We have | ∗ ¶0
n
| = I0

n
= |H0

n
|. We define the set R∗

n
(0) = {0, 1}× ∗¶0

n
as containing

the same elements as ∗¶0
n but with an indexing on the bar

∗

| which is either 0 or

1, hence R∗

n(0) has twice the number of elements as ∗¶0
n (half of them having the

index 0 and the other half the index 1). We now use the elements of R∗

n
(0) to

reconstruct the set H1
n. We do it as follows:

I. If the indexing on the bar
∗

| on an element X ∈ R∗

n(0) is 0 then such an element

will be interpreted in H1
n
, as an element of H1

n
whose 2nd section is empty. We

collect all such elements to form the set W . The set W has I0n elements(half of the

elements in R∗

n
(0) have the index 0) .

II If the indexing on the bar
∗

| on an element X ∈ R∗

n
(0) is 1 then we shift the last

block of section 1 to be the only block to the right of the bar
∗

| to form the set K.

The set K has I0
n
elements(half of the elements in R∗

n
(0) have the indexing 1)

Clearly the sets K and W are disjoint. So we have |K ∪ W | = |K| + |W | ⇒

|K ∪W | = I0
n
+ I0

n
. Now what we are having is two sets K ∪W and H1

n
have the

same definition(one fixed section can have a maximum of one block and the other

section is a free section) and the same number of elements in the underlying sets,

So they must be of the same size. Hence |K ∪W | = I1n + I1n = I1n = |H1
n|. Thus the
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lemma.

For the value m = 1, we have the following lemma,

Lemma 3. for m = 1 and n ≥ 0 we have,

2I1
n
− 1 = I2

n

We consider a set H1
n
, which is the set of all barred preferential arrangements

of an n element set having 1 bar, in which the first section has a maximum of

one block each and the 2nd section to be just a preferential arrangement of given

elements not necessarily into one block (this is the only section with this property).

So the 2nd section of each element of H1
n is a free section. We also consider the set

H2
n
, which is the set of all barred preferential arrangements of an n-element set,

having 2 bars in which 2 fixed sections have a maximum of one block each and one

section can have more than one block (the free section).

We now want to reconstruct H2
n using elements of H1

n. Adding an extra bar
∗

| to

the far right of each element of H1
n
does not affect counting. We do that to form

the set ∗¶1
n. Now we have | ∗ ¶1

n| = I1n = |H1
n|. The bar

∗

| is to the right of the free

sections of elements of H1
n. On each element X ∈ ∗¶1

n to the left of the bar
∗

| is the

free section of X and the section to the right of
∗

| is empty.

We define the set R∗

n(1) = {0, 1} × ∗¶1
n as containing the same elements as ∗¶1

n

but with an indexing on the bar
∗

| which is either 0 or 1, hence R∗

n
(1) has twice the

number of elements as ∗¶1
n(of which half of them having the indexing 0 and the

other half having the index 1). We now use elements of R∗

n
(1) to reconstruct the

set H2
n. We construct as follows,

I.If the indexing on the bar
∗

| on an element X ∈ R∗

n
(1) is 0 then such an element

will be interpreted in H2
n
, as an element of H2

n
whose 3rd section is empty. We

collect all such elements to form the set W . The set W has I1n elements(half of the

elements in R∗

n
(1) have the indexing 0)

II If the indexing on the bar
∗

| on an element X ∈ R∗

n(1) is 1 then we shift the last

block of the 3rd section of X to be the only block to the right of
∗

|(i.e the block

closest to the bar
∗

| on X) to form the set K. There are I1n elements having index

1 in R∗

n
(1)(half of the elements in R∗

n
(1) have the indexing 1). On the construct

of the set K some elements of K also appear as elements of the set W . Those
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redundant elements(elements having identical interpretation in H2
n
) occur when

there free section on elements of R∗

n(1) is empty. In that case there is no block

to put to the right of the bar
∗

| when constructing the set K. In that case we get

common elements between K and W . Common elements between K and W occur

when the n elements are distributed on the first m sections of H1
n of which there

is only one way of doing that. So there is one element in the intersection of K and

W (when elements of K and W are interpreted as elements of ).

The elements of both sets K and W have 3 sections, of which for those with a

fixed X ∈ K ∪W , 2 sections of X have a maximum of one block and one section is

a free section. We have, |K ∪W | = |K|+ |W | − |K ∩W |⇒ |K ∪W | = I1
n
+ I1

n
− 1.

Now what we are having is two sets K ∪W and H2
n
have the same definition and

the same number of elements in the underlying sets, hence must be of the same

size. That is, |K ∪W | = I1
n
+ I1

n
− 1 = I2

n
= |H2

n
|. Thus the lemma.

The case m = 2 differs from the above two cases in the sense that a non-trivial

constant term arises in the form of 2n. Therefore we state and prove for the value

m = 2, the following lemma,

Lemma 4. for m = 2 and n ≥ 0 we have,

2I2
n
− 2n = I3

n

We consider a set H2
n
, which is the set of all barred preferential arrangements of

an n element set having 2 bars, in which the first 2 sections have a maximum of

one block each and the 3rd section to be just a preferential arrangement of given

elements not necessarily into one block( this is the only section with this property).

So the 3rd section of each element of H2
n
is the free section. We also consider the

set H3
n
, which is the set of all barred preferential arrangements of an n element set,

having 3 bars in which 3 fixed sections have a maximum of one block each and one

section can have more than one block( the free section).

We now want to reconstruct H3
n using elements of H2

n. Adding an extra bar
∗

| to

the far right of each element of H2
n
does not affect counting. We do that to form

the set ∗¶2
n. Now we have | ∗ ¶2

n| = I2n = |H2
n|. Where the bar

∗

| is to the right of

the free sections of elements of H2
n
. On each element X ∈ ∗¶2

n
to the left of the bar

∗

| is the free section of X and the section to the right of
∗

| is empty.
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We define the set R∗

n
(2) = {0, 1} × ∗¶2

n
as containing the same elements as ∗¶2

n

but with an indexing on the bar
∗

| which is either 0 or 1, hence R∗

n(2) has twice the

number of elements as ∗¶2
n
(of which half of them having the indexing 0 and the

other half having the index 1). We now use elements of R∗

n
(2) to reconstruct the

set H3
n. We construct as follows,

I.If the indexing on the bar
∗

| on an element X ∈ R∗

n
(2) is 0 then such an element

will be interpreted in H8
n, as an element of H3

n whose 4th section is empty. We

collect all such elements to form the set W . The set W has I2
n
elements(half of the

elements in R∗

n(2) have the indexing 0)

II If the indexing on the bar
∗

| on an element X ∈ R∗

n
(2) is 1 then we shift the

last block of the 3rd section of X to be the only block to the right of
∗

|(i.e the block

closest to the bar
∗

| on X) to form the set K. There are I2n elements having index 1 in

R∗

n
(2)(half of the elements in R∗

n
(2) have the indexing 1). On the construct of the

set K some elements of K also appear as elements of the set W . Those redundant

elements occur when there free section on elements of R∗

n
(2) is empty. In that case

there is no block to put to the right of the bar
∗

| when constructing the set K. In

that case we get common elements between K and W . Common elements between

K and W occur when the n elements are distributed on the first m sections of

H2
n
of which there are 2n ways of doing that. So the number of elements in the

intersection of K and W is 2n.

The elements both setsK andW have 4 sections. Of which for a fixed X ∈ K∪W ,

3 sections of X have a maximum of one block and one section is a free section. We

have, |K ∪ W | = |K| + |W | − |K ∩ W |⇒ |K ∪ W | = I2n + I2n − 2n. Now what

we are having is two sets K ∪ W and H3
n
have the same definition and the same

number of elements in the underlying sets, So they must be of the same size. Hence

|K ∪W | = I2
n
+ I2

n
− 2n = I3

n
= |H3

n
|. Thus the lemma.

We generalise lemmas 2,3 and 4 into the following theorem,

Theorem 3. for m,n ≥ 0, we have

2Imn −mn = Im+1
n

We consider a set Hm
n , which is the set of all barred preferential arrangements

of an n element set having m bars, in which the first m sections have a maximum

of one block each and the (m+ 1)
th

section to be just a preferential arrangement
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of given elements not necessarily into one block( this is the only section with this

property). So the (m+ 1)
th

section of each element of Hm
n is the free section. We

also consider the set Hm+1
n

, which is the set of all barred preferential arrangements

of an n element set, havingm+1 bars in whichm+1 fixed sections have a maximum

of one block each and one section can have more than one block(the free section).

We now want to reconstruct Hm+1
n

using elements of Hm
n
. Adding an extra bar

∗

| to the far right of each element of Hm
n does not affect counting. We do that to

form the set ∗¶m
n
. Now we have | ∗ ¶m

n
| = Im

n
= |Hm

n
|. Where the bar

∗

| is to the

right of the free sections of elements of Hm
n . On each element X ∈ ∗¶m

n to the left

of the bar
∗

| is the free section of X and the section to the right of
∗

| is empty.

We define the set R∗

n
(m) = {0, 1} × ∗¶m

n
as containing the same elements as ∗¶m

n

but with an indexing on the bar
∗

| which is either 0 or 1, hence R∗

n(m) has twice

the number of elements as ∗¶m
n
(of which half of them having the indexing 0 and

the other half having the index 1). We now use elements of R∗

n(m) to reconstruct

the set Hm+1
n

. We construct as follows,

I.If the indexing on the bar
∗

| on an element X ∈ R∗

n(m) is 0 then such an element will

be interpreted in Hm+1
n

, as an element of Hm+1
n

whose (m+ 2)
th

section is empty.

We collect all such elements to form the set W . The set W has Imn elements(half

of the elements in R∗

n
(m) have the indexing 0)

II If the indexing on the bar
∗

| on an element X ∈ R∗

n
(m) is 1 then we shift the last

block of the (m+ 1)
th

section of X to be the only block to the right of
∗

|(i.e the block

closest to the bar
∗

| on X) to form the set K. There are Im
n

elements having index

1 in R∗

n(m)(half of the elements in R∗

n(m) have the indexing 1). On the construct

of the set K some elements of K also appear as elements of the set W . Those

redundant elements occur when there free section on elements of R∗

n(m) is empty.

In that case there is no block to put to the right of the bar
∗

| when constructing

the set K. In that case we get common elements between K and W . Common

elements between K and W occur when the n elements are distributed on the first

m sections of Hm
n

of which there are mn ways of doing that. So the number of

elements in the intersection of K and W is mn.

The elements both sets K and W have m + 2 sections. Of which for a fixed

X ∈ K ∪W , m+ 1 sections of X have a maximum of one block and one section is a
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free section. We have, |K ∪W | = |K|+ |W |− |K ∩W |⇒ |K ∪W | = Im
n
+ Im

n
−mn.

Now what we are having is two sets K ∪ W and Hm+1
n have the same definition

and the same number of elements in the underlying sets, So they must be of the

same size. Hence |K ∪W | = Im
n

+ Im
n

−mn = Im+1
n

= |Hm+1
n

|. Thus the theorem.
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