EFFECTIVE RESISTANCES, KIRCHHOFF INDEX AND ADMISSIBLE INVARIANTS OF LADDER GRAPHS

ZUBEYIR CINKIR

Abstract

We explicitly compute the effective resistances between any two vertices of a ladder graph by using circuit reductions. Using our findings, we obtain explicit formulas for Kirchhoff index and admissible invariants of a ladder graph considering it as a model of a metrized graph. Comparing our formula for Kirchhoff index and previous results in literature, we obtain an explicit sum formula involving trigonometric functions. We also expressed our formulas in terms of certain generalized Fibonacci numbers that are the values of the Chebyshev polynomials of the second kind at 2.

1. Introduction

A ladder graph L_{n} is a planar graph that looks like a ladder with n rungs as shown in Figure 1. It has $2 n$ vertices and $3 n-2$ edges. Each of its edges has length 1 , so the total length of L_{n} is $\ell\left(L_{n}\right):=$ $3 n-2$. We label the vertices on the right and left as $\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}$ and $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$, respectively.

One can consider L_{n} as an electrical network in which the resistances along edges are given by the corresponding edge lengths. For the ladder graph L_{n}, Kirchhoff index and resistance values between vertices are studied in [3] by using the spectral properties of the discrete Laplacian of L_{n}, and closed form formulas are obtained in terms of Chebyshev polynomials.

In this paper, we obtained explicit formulas for Kirchhoff index and resistances between vertices of

Figure 1. Ladder graph L_{n} with $2 n$ vertices. L_{n} with a rather elementary method. Namely, we used circuit reductions and solved a number of recurrence relations. Moreover, by considering L_{n} as a model of a metrized graph, we derived explicit formulas for its admissible invariants considered in [4], [5], [6], [15] and the references therein. At the end, we expressed these formulas in terms of a sequence of generalized Fibonacci numbers G_{n} defined by $G_{n+2}=4 G_{n+1}-G_{n}$ if $n \geq 2, G_{1}=1$ and $G_{0}=0$. The number G_{n} is known to be the number of spanning trees in L_{n}, and that $G_{n}=U_{n-1}(2)$, where $U_{n}(x)$ is the Chebyshev polynomial of the second kind.

Among other things, we showed that the Kirchhoff index of L_{n} satisfies the following equalities for each positive integer n (see Theorem 3.1 and Equation (23) below):

$$
\begin{aligned}
K f\left(L_{n}\right) & =\frac{n^{3}}{3}+\frac{n^{2} G_{2 n}}{6 G_{n}^{2}} \\
& =\frac{n^{3}}{3}-\frac{n^{2}}{\sqrt{3}}\left[1-\frac{2}{1-(2-\sqrt{3})^{2 n}}\right] .
\end{aligned}
$$

Key words and phrases. Ladder graph, effective resistance, Kirchhoff index, admissible invariants.
and we derived the following trigonometric sum formulas (see Equation (23) and Equation (25) below):

$$
\sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{k \pi}{2 n}\right)}=\frac{1}{3}+\frac{n G_{2 n}}{6 G_{n}^{2}} \quad \text { and } \quad \sum_{k=1}^{n-1} \frac{1}{\sin ^{2}\left(\frac{k \pi}{2 n}\right)}=\frac{2\left(n^{2}-1\right)}{3}
$$

The resistance values on Wheel and Fan graphs are expressed in terms of generalized Fibonacci numbers in 11. Our findings for resistance values on a Ladder graph are analogues of those results on Wheel and Fan graphs.

2. Resistances between any pairs of vertices in L_{n}

Let $r(p, q)$ be the effective resistance between the vertices p and q in L_{n}. We also use the notation $r_{L_{n}}(p, q)$ for this value to emphasize the graph the resistance being computed in. In this section, we find explicit formula of $r(p, q)$ for every pair of vertices p and q of L_{n}. Using the symmetry of the graph L_{n}, for all $i, j \in\{1,2, \cdots, n\}$ we have

$$
\begin{equation*}
r\left(p_{i}, p_{j}\right)=r\left(q_{i}, q_{j}\right), \quad \text { and } \quad r\left(p_{i}, q_{j}\right)=r\left(q_{i}, p_{j}\right) \tag{1}
\end{equation*}
$$

First, we compute effective resistances between the end vertices p_{1}, p_{n}, q_{1} and q_{n}. Set $x_{n}:=r_{L_{n}}\left(p_{n}, p_{1}\right), y_{n}:=r_{L_{n}}\left(p_{n}, q_{1}\right)$ and $z_{n}:=r_{L_{n}}\left(p_{n}, q_{n}\right)$.

Suppose we make circuit reduction of L_{n-1} with respect to the vertices p_{n-1} and q_{n-1}. Since we obtain L_{n} by adding the vertices p_{n} and q_{n}, and the three edges with end points $\left\{p_{n-1}, p_{n}\right\},\left\{p_{n}, q_{n}\right\}$ and $\left\{q_{n}, q_{n-1}\right\}$, we have the circuit reduction of L_{n} as shown in Figure2. Now, using the parallel circuit reduction in this graph, we can ex-

Figure 2. Ladder graph L_{n} with circuit reduction of L_{n-1} with respect to p_{n-1} and q_{n-1}, where $n \geq 2$. press z_{n} in terms of z_{n-1}. This gives us the following recurrence relation:

$$
\begin{align*}
& z_{n}=\frac{z_{n-1}+2}{z_{n-1}+3}, \quad \text { for all } n \geq 2 \tag{2}\\
& z_{1}=1
\end{align*}
$$

Now, we use Mathematica [14] to solve this recurrence relation. This gives

$$
\begin{equation*}
z_{n}=-1-\sqrt{3}+\frac{2 \sqrt{3}}{1-(2-\sqrt{3})^{2 n}}, \quad \text { for all } n \geq 1 \tag{3}
\end{equation*}
$$

which indeed the solution of Equation (21). In particular, we have $z_{1}=1, z_{2}=\frac{3}{4}, z_{3}=\frac{11}{15}$, $z_{4}=\frac{41}{56}, z_{5}=\frac{153}{209}, z_{6}=\frac{571}{780}$.

Other equivalent forms of z_{n} can be given as follows:

$$
\begin{equation*}
z_{n}=-1-\sqrt{3}+\frac{2 \sqrt{3}(2+\sqrt{3})^{n}}{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}, \quad \text { or } \quad z_{n}=-1-\sqrt{3} \operatorname{coth}(n \ln (2-\sqrt{3})) \tag{4}
\end{equation*}
$$

where coth is the hyperbolic cotangent function. Note that $(2-\sqrt{3})(2+\sqrt{3})=1$.
We can rewrite Equation (2) in the following form:

$$
z_{n}=\frac{1}{1+\frac{1}{2+z_{n-1}}}
$$

and if we use this equality to express z_{n-1} in terms of z_{n-2} and substitute it in this equality, we obtain

$$
z_{n}=\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+z_{n-2}}}}}
$$

We can repeat this process to express z_{n} in terms of z_{k} for any positive integer $k<n$. Since $0<z_{n}<1$ for each integer $n \geq 2$ and z_{n} is decreasing by Equation (22), we notice that z_{n} 's must be part of the convergents of the number with continued fraction expansion $[0,1,2,1,2,1,2, \cdots]$. On the other hand, this is nothing but the every other terms in the continued fraction expansion of $\sqrt{3}-1$. Probabilistic explanation of these facts via spanning trees can be found in [10, page 11].

This kind of circuit reduction technique that we used to find z_{n} was used in the case of infinite ladder in [8, Chapter 22-Section 6].

Our next aim is to find explicit formulas for x_{n} and y_{n} as we did for z_{n}.
Now, suppose $n \geq 1$ and we make circuit reduction of the subgraph L_{n} of L_{n+1} with respect to the vertices p_{n}, q_{n} and p_{1}. That is, the part L_{n} in L_{n+1} is reduced to a Y-shaped graph with the outer vertices p_{n}, q_{n} and p_{1}, and having the effective resistances A, B and C between the end points of its edges. This is illustrated in Figure 3. Then we have $B+C=y_{n}$, $A+C=x_{n}$ and $A+B=z_{n}$. Solving these gives $A=\frac{x_{n}-y_{n}+z_{n}}{2}, B=\frac{-x_{n}+y_{n}+z_{n}}{2}$ and $C=\frac{x_{n}+y_{n}-z_{n}}{2}$. On the other hand, using parallel and series circuit reductions in Figure 3 we obtain $x_{n+1}=\frac{(A+1)(B+2)}{z_{n}+3}+C$

Figure 3. Ladder graph L_{n+1} with circuit reduction of L_{n} with respect to p_{n}, q_{n} and p_{1}, where $n \geq 1$. and $y_{n+1}=\frac{(B+1)(A+2)}{z_{n}+3}+C$. Therefore,

$$
\begin{align*}
x_{n+1} & =\frac{\left(x_{n}-y_{n}+z_{n}+2\right)\left(-x_{n}+y_{n}+z_{n}+4\right)}{4\left(z_{n}+3\right)}+\frac{x_{n}+y_{n}-z_{n}}{2}, \quad \text { if } n \geq 1 . \\
y_{n+1} & =\frac{\left(-x_{n}+y_{n}+z_{n}+2\right)\left(x_{n}-y_{n}+z_{n}+4\right)}{4\left(z_{n}+3\right)}+\frac{x_{n}+y_{n}-z_{n}}{2}, \quad \text { if } n \geq 1 . \tag{5}\\
x_{1} & =0 \quad \text { and } \quad y_{1}=1 .
\end{align*}
$$

If we subtract the second equation from the first one, we obtain $x_{n+1}-y_{n+1}=\frac{x_{n}-y_{n}}{z_{n}+3}$. Now, we set $t_{n}:=x_{n}-y_{n}$ to obtain

$$
\begin{equation*}
t_{n+1}=\frac{t_{n}}{z_{n}+3}, \quad \text { if } n \geq 1 \text { and } t_{1}=-1 \tag{6}
\end{equation*}
$$

This can be rewritten as follows

$$
\begin{equation*}
t_{n+1}=-\prod_{k=1}^{n} \frac{1}{z_{k}+3} \tag{7}
\end{equation*}
$$

Since $\frac{1}{z_{k}+3}=\frac{(2+\sqrt{3})^{k}-(2-\sqrt{3})^{k}}{(2+\sqrt{3})^{k+1}-(2-\sqrt{3})^{k+1}}$ by using the first equality in (4) and doing some algebra, we see that the product in Equation (7) can be simplified. This gives

$$
\begin{equation*}
t_{n}=\frac{-2 \sqrt{3}}{(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}}, \quad \text { for every } n \geq 1 \tag{8}
\end{equation*}
$$

which can also be written as $t_{n}=-\frac{2 \sqrt{3}(2-\sqrt{3})^{n}}{1-(2-\sqrt{3})^{2 n}}$ for all $n \geq 1$. Now, we turn our attention back to the solutions of x_{n} and y_{n}. Using $x_{n}=t_{n}+y_{n}$, Equation (3), Equation (8) and doing some algebra, the second equality in (5) becomes

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{\sqrt{3}}{1-(2-\sqrt{3})^{n+1}}-\frac{\sqrt{3}}{1-(2-\sqrt{3})^{n}}+\frac{1}{2}, \quad \text { for all } n \geq 1 \text { and } y_{1}=1 \tag{9}
\end{equation*}
$$

This can be solved as follows:

$$
\begin{equation*}
y_{n}=\frac{n-2-\sqrt{3}}{2}+\frac{\sqrt{3}}{1-(2-\sqrt{3})^{n}}, \quad \text { for all } n \geq 1 \tag{10}
\end{equation*}
$$

Using Equation (10), Equation (8) and the fact that $x_{n}=t_{n}+y_{n}$, we obtain

$$
\begin{equation*}
x_{n}=\frac{n-2-\sqrt{3}}{2}+\frac{\sqrt{3}}{1+(2-\sqrt{3})^{n}}, \quad \text { for all } n \geq 1 \tag{11}
\end{equation*}
$$

Note that for all $n \geq 1$ we have

$$
\begin{align*}
x_{n}+y_{n}-z_{n} & =n-1 \\
x_{n}-y_{n}+z_{n} & =-1-\sqrt{3}+\frac{2 \sqrt{3}}{1+(2-\sqrt{3})^{n}} \tag{12}\\
-x_{n}+y_{n}+z_{n} & =-1-\sqrt{3}+\frac{2 \sqrt{3}}{1-(2-\sqrt{3})^{n}} .
\end{align*}
$$

Next, we obtain formulas for $r_{L_{n}}\left(p_{n}, p_{i}\right), r_{L_{n}}\left(p_{n}, q_{i}\right)$ and $r_{L_{n}}\left(p_{i}, q_{i}\right)$, where $n>i>1$. We can consider L_{n} as the union of three graphs; the upper part of p_{i+1} and q_{i+1}, the lower part of p_{i} and q_{i}, and the middle part consisting of p_{i+1}, q_{i+1}, p_{i} and q_{i}. These graphs are illustrated in Figure 4. Note that the graphs in the upper and the lower parts are nothing but the graphs L_{n-i} and L_{i}, respectively. We make the circuit reduction of the upper part with respect to p_{n}, p_{i+1} and q_{i+1} to obtain a Y-shaped graph having the resistances M, N and K along its edges. We make the circuit reduction of the lower part with respect to p_{i} and q_{i}. The resistance between p_{i} and q_{i} in the lower part, $r_{L_{i}}\left(p_{i}, q_{i}\right)$, is z_{i} by definition. Now, we have

$$
\begin{equation*}
M+N=x_{n-i}, \quad M+K=y_{n-i}, \quad N+K=z_{n-i} \tag{13}
\end{equation*}
$$

Solving these for M, N and K, and using Equations (12) give

$$
\begin{align*}
& M=\frac{x_{n-i}+y_{n-i}-z_{n-i}}{2}=\frac{n-i-1}{2} \\
& N=\frac{x_{n-i}-y_{n-i}+z_{n-i}}{2}=\frac{-1-\sqrt{3}}{2}+\frac{\sqrt{3}}{1+(2-\sqrt{3})^{n-i}}, \tag{14}\\
& K=\frac{-x_{n-i}+y_{n-i}+z_{n-i}}{2}=\frac{-1-\sqrt{3}}{2}+\frac{\sqrt{3}}{1-(2-\sqrt{3})^{n-i}} .
\end{align*}
$$

Figure 4. L_{n} and circuit reductions to find $r_{L_{n}}\left(p_{n}, p_{i}\right), r_{L_{n}}\left(q_{n}, p_{i}\right)$ and $r_{L_{n}}\left(p_{i}, q_{i}\right)$.
By making parallel and series circuit reductions in the graph at the last column of Figure 4 , for each i with $n>i>1$, we obtain

$$
\begin{align*}
r_{L_{n}}\left(p_{n}, p_{i}\right) & =\frac{(N+1)\left(K+z_{i}+1\right)}{z_{n-i}+z_{i}+2}+M, \\
r_{L_{n}}\left(p_{n}, q_{i}\right) & =\frac{(K+1)\left(N+z_{i}+1\right)}{z_{n-i}+z_{i}+2}+M, \tag{15}\\
r_{L_{n}}\left(p_{i}, q_{i}\right) & =\frac{z_{i}\left(z_{n-i}+2\right)}{z_{n-i}+z_{i}+2} .
\end{align*}
$$

We set

$$
\alpha=2-\sqrt{3}
$$

Using Equation (3) and Equations (14), we can rewrite Equations in (15) as follows:

$$
\begin{align*}
& r_{L_{n}}\left(p_{n}, p_{i}\right)=\frac{n-i}{2}+\frac{\left(1-\alpha^{n-i}\right)}{4 \sqrt{3}\left(1-\alpha^{2 n}\right)}\left(2-2 \alpha^{n+i}-\alpha^{n+i-1}-\alpha^{n-i+1}+\alpha^{2 i-1}+\alpha\right) \\
& r_{L_{n}}\left(p_{n}, q_{i}\right)=\frac{n-i}{2}+\frac{\left(1+\alpha^{n-i}\right)}{4 \sqrt{3}\left(1-\alpha^{2 n}\right)}\left(2+2 \alpha^{n+i}+\alpha^{n+i-1}+\alpha^{n-i+1}+\alpha^{2 i-1}+\alpha\right) \tag{16}\\
& r_{L_{n}}\left(p_{i}, q_{i}\right)=\frac{\left(1+\alpha^{2 n-2 i+1}\right)\left(1+\alpha^{2 i-1}\right)}{\sqrt{3}\left(1-\alpha^{2 n}\right)}
\end{align*}
$$

Although we obtained formulas in (16) under the condition $n>i>1$, whenever $n=i$ or $i=1$ these formulas are consistent with the ones given in Equations (3), (11) and (10). Therefore, formulas in (16) are valid for each integer n and i satisfying $n \geq i \geq 1$.

In the remaining part of this section, we obtain formulas for

$$
r_{L_{n}}\left(p_{i}, q_{j}\right) \quad \text { and } \quad r_{L_{n}}\left(p_{i}, p_{j}\right), \quad \text { where } n>i \geq j \geq 1
$$

This time, we consider L_{n} as the union of two graphs; upper and lower parts of p_{i} and q_{i} as illustrated in the second stage in Figure 5. Note that the graph L_{n-i} appear in the upper part, and the lower part is nothing but L_{i}. Next, we can apply circuit reduction to reduce L_{n-i} into a line with the end points p_{i+1} and q_{i+1}, and this line has the resistance $r_{L_{n-i}}\left(p_{i+1}, q_{i+1}\right)=z_{n-i}$ between its end points. For the lower part, we apply circuit reduction to L_{i} fixing its points p_{i}, q_{i} and p_{j} so that we obtain a Y-shaped graph having the resistances D, E and F along its edges. These reductions are illustrated in the third

Figure 5. Circuit reductions applied to L_{n} to find $r_{L_{n}}\left(p_{i}, p_{j}\right)$ and $r_{L_{n}}\left(p_{i}, q_{j}\right)$.
stage in Figure 5, and the relations between D, E and F are given in Equations (17). Finally, we obtain the reduced graph as in the last stage in Figure 5 .

$$
\begin{equation*}
D+E=r_{L_{i}}\left(p_{i}, p_{j}\right), \quad D+F=r_{L_{i}}\left(p_{i}, q_{i}\right)=z_{i}, \quad E+F=r_{L_{i}}\left(q_{i}, p_{j}\right) \tag{17}
\end{equation*}
$$

Solving these for D, E and F gives

$$
\begin{align*}
& D=\frac{r_{L_{i}}\left(p_{i}, p_{j}\right)+z_{i}-r_{L_{i}}\left(q_{i}, p_{j}\right)}{2}, \\
& E=\frac{r_{L_{i}}\left(p_{i}, p_{j}\right)-z_{i}+r_{L_{i}}\left(q_{i}, p_{j}\right)}{2} \tag{18}\\
& F=\frac{-r_{L_{i}}\left(p_{i}, p_{j}\right)+z_{i}+r_{L_{i}}\left(q_{i}, p_{j}\right)}{2} .
\end{align*}
$$

By making parallel and series circuit reductions in the graph at the last column of Figure 5, for each i with $n>i \geq j \geq 1$, we obtain

$$
\begin{align*}
& r_{L_{n}}\left(p_{i}, p_{j}\right)=\frac{D\left(z_{n-i}+F+2\right)}{z_{n-i}+z_{i}+2}+E, \tag{19}\\
& r_{L_{n}}\left(q_{i}, p_{j}\right)=\frac{F\left(z_{n-i}+D+2\right)}{z_{n-i}+z_{i}+2}+E,
\end{align*}
$$

Now, we use Equation (3), Equations (16), (18) and (19) and do some algebra using Mathematica [14] to derive the following resistance values:

$$
\begin{align*}
& r_{L_{n}}\left(p_{i}, p_{j}\right)=\frac{i-j}{2}+\frac{\left(1-\alpha^{i-j}\right)}{4 \sqrt{3}\left(1-\alpha^{2 n}\right)}\left(2-\alpha^{i+j-1}+\alpha^{2 j-1}+\alpha^{2 n-2 i+1}\left(1-\alpha^{i-j}-2 \alpha^{i+j-1}\right)\right) \tag{20}\\
& r_{L_{n}}\left(q_{i}, p_{j}\right)=\frac{i-j}{2}+\frac{\left(1+\alpha^{i-j}\right)}{4 \sqrt{3}\left(1-\alpha^{2 n}\right)}\left(2+\alpha^{i+j-1}+\alpha^{2 j-1}+\alpha^{2 n-2 i+1}\left(1+\alpha^{i-j}+2 \alpha^{i+j-1}\right)\right)
\end{align*}
$$

In spite of the fact that we obtained formulas in (20) under the condition $n>i \geq j \geq 1$, when $n=i$ these formulas are consistent with the ones given in Equations (16). Therefore, formulas in (20) are valid for each integers i, j and n satisfying $n \geq i \geq j \geq 1$. That is, we can use the explicit formulas in (20) to find the resistances between any pair of vertices in L_{n}.

3. Kirchhoff Index of L_{n}

In this section, we obtain an explicit formula for Kirchhoff index of L_{n} by using our explicit formulas derived in \S_{2} for the resistances between any pairs of vertices of L_{n}. Moreover, we obtain an interesting summation formula by combining our findings and what is known in the literature about Kirchhoff index of L_{n}.

Recall that Kirchhoff index of a graph $\Gamma, K f(\Gamma)$, is defined [11] as follows:

$$
K f(\Gamma)=\frac{1}{2} \sum_{p, q \in V(\Gamma)} r(p, q) .
$$

Theorem 3.1. For any positive integer n, we have

$$
K f\left(L_{n}\right)=\frac{n^{3}}{3}-\frac{n^{2}}{\sqrt{3}}\left[1-\frac{2}{1-(2-\sqrt{3})^{2 n}}\right] .
$$

Proof. With the notation of vertices as in Figure 1, using Equation (1) gives

$$
K f\left(L_{n}\right)=\frac{1}{2} \sum_{p, q \in V(\Gamma)} r(p, q)=2 \sum_{1 \leq j<i \leq n} r\left(p_{i}, p_{j}\right)+2 \sum_{1 \leq j<i \leq n} r\left(p_{i}, q_{j}\right)+\sum_{i=1}^{n} r\left(p_{i}, q_{i}\right) .
$$

Then the result follows if we use Equations (20) and doing some algebra [14].
Note that the Kirchhoff index formula in Theorem 3.1 can also be expressed as follows:

$$
K f\left(L_{n}\right)=\frac{n^{2}}{3}[n-\sqrt{3} \operatorname{coth}(n \ln (2-\sqrt{3}))] .
$$

The values of $K f\left(L_{n}\right)$ are rational numbers. For example, its values for $1 \leq n \leq 8$ are as follows: $1,5, \frac{71}{5}, \frac{214}{7}, \frac{11725}{209}, \frac{6031}{65}, \frac{415177}{2911}, \frac{140972}{679}$.
Theorem 3.2. For any positive integer n, we have

$$
\sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{\pi k}{2 n}\right)}=\frac{n}{\sqrt{3}}\left[\frac{2}{1-(2-\sqrt{3})^{2 n}}-1\right]+\frac{1}{3}
$$

Proof. We recall the following result [13, Theorem 4.1] obtained by using the relation between the Kirchhoff index and the eigenvalues of the discrete Laplacian matrix of L_{n}.

$$
\begin{equation*}
K f\left(L_{n}\right)=\frac{n\left(n^{2}-1\right)}{3}+n \sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{\pi k}{2 n}\right)} \tag{21}
\end{equation*}
$$

Note that Equation (21) is also a particular case of [3, Corollary 12] (namely, when $c=1$). Then the proof is completed by combining Equation (21) and the result in Theorem 3.1.

Since $(2-\sqrt{3})^{2} \approx 0.071796$, for large values of n we have $K f\left(L_{n}\right) \approx \frac{n^{2}(n+\sqrt{3})}{3}$ by Theorem 3.1.

Next, we give a geometric interpretation of the summation that appears in Equation (21). Let $P=\left\{0, \frac{\pi}{2 n}, \frac{2 \pi}{2 n}, \frac{3 \pi}{2 n}, \cdots, \frac{(n-1) \pi}{2 n}, \frac{n \pi}{2 n}=\frac{\pi}{2}\right\}$ be a partition of the interval

Figure 6. A Riemann sum approximation using left points.
$\left[0, \frac{\pi}{2}\right]$. Then the Riemann sum of $f(x)=\frac{1}{1+2 \sin ^{2}(x)}$ on $\left[0, \frac{\pi}{2}\right]$ that uses left points in each subinterval is nothing but

$$
\frac{\pi}{2 n} \sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{\pi k}{2 n}\right)}
$$

Figure 6 illustrates the case with $n=4$ subintervals. Note that

$$
\lim _{n \rightarrow \infty} \frac{\pi}{2 n} \sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{\pi k}{2 n}\right)}=\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+2 \sin ^{2} x}=\frac{\pi}{2 \sqrt{3}}
$$

which is consistent with our findings in Theorem 3.2.

4. Admissible Invariants of L_{n}

In this section, we give explicit formulas for the following admissible invariants of L_{n} : $\tau\left(L_{n}\right), \theta\left(L_{n}\right), \lambda\left(L_{n}\right), \varphi\left(L_{n}\right)$ and $\epsilon\left(L_{n}\right)$ when L_{n} is considered as a model of a metrized graph. These invariants were studied in [4], [5], [6], [15] and the references therein.
Theorem 4.1. For any positive integer n, we have

$$
\theta\left(L_{n}\right)=\frac{2(n-2)}{3}\left[n^{2}-4 n+10-(n-6) \sqrt{3}\left(1-\frac{2}{1-(2-\sqrt{3})^{2 n}}\right)\right] .
$$

Proof. By definition [4, Section 4], $\theta\left(L_{n}\right)=\sum_{p, q \in V\left(L_{n}\right)}(v(p)-2)(v(q)-2) r(p, q)$, where $v(p)$ is the degree of the vertex p. Therefore,

$$
\begin{aligned}
2 K f\left(L_{n}\right)-\theta\left(L_{n}\right) & =8 \sum_{p \in V\left(L_{n}\right)} r\left(p, p_{n}\right)-4\left[r\left(p_{n}, p_{1}\right)+r\left(p_{n}, q_{1}\right)+r\left(p_{n}, q_{n}\right)\right] \\
& =8 \sum_{i=2}^{n-1}\left(r\left(p_{i}, p_{n}\right)+r\left(q_{i}, p_{n}\right)\right)+4\left[r\left(p_{n}, p_{1}\right)+r\left(p_{n}, q_{1}\right)+r\left(p_{n}, q_{n}\right)\right]
\end{aligned}
$$

where the vertices p_{i} and q_{i} with $i \in\{1, \ldots, n\}$ are as in Figure 1 . Thus, the result follows by using this equality, Equations (20), Theorem 3.1 and doing some algebra [14].
Theorem 4.2. For any positive integer n, we have

$$
\tau\left(L_{n}\right)=\frac{9 n-20}{36}+\frac{n-6}{6 \sqrt{3}}\left[1-\frac{2}{1-(2-\sqrt{3})^{2 n}}\right]
$$

Proof. Let Γ be a graph with set of vertices $V(\Gamma)$ such that each edge length in Γ is 1 . Suppose Γ is a model of a metrized graph. If we use [5, Proposition 2.6], [5, Equation (3)] and [5, Proof of Lemma 4.9], we obtain the following formula of the tau constant $\tau(\Gamma)$ of Γ for every $s \in V(\Gamma)$:

$$
\begin{equation*}
\tau(\Gamma)=\frac{1}{12} \sum_{\substack{p \sim q \\ p, q \in V(\Gamma)}}(1-r(p, q))^{2}+\frac{1}{4} \sum_{\substack{p \sim q \\ p, q \in V(\Gamma)}}(r(s, p)-r(s, q))^{2}, \tag{22}
\end{equation*}
$$

where $p \sim q$ means p and q are adjacent, i.e., connected by an edge in Γ.
Using the notations in Figure 1 and the symmetry in L_{n}, we can rewrite Equation (22) for L_{n} with $s=p_{n}$ as follows:

$$
\begin{aligned}
\tau\left(L_{n}\right)= & \frac{1}{6} \sum_{i=1}^{n-1}\left(1-r\left(p_{i}, p_{i+1}\right)\right)^{2}+\frac{1}{12} \sum_{i=1}^{n}\left(1-r\left(p_{i}, q_{i}\right)\right)^{2}+\frac{1}{4} \sum_{i=1}^{n-1}\left(r\left(p_{n}, p_{i}\right)-r\left(p_{n}, p_{i+1}\right)\right)^{2} \\
& +\frac{1}{4} \sum_{i=1}^{n}\left(r\left(p_{n}, p_{i}\right)-r\left(p_{n}, q_{i}\right)\right)^{2}+\frac{1}{4} \sum_{i=1}^{n-1}\left(r\left(p_{n}, q_{i}\right)-r\left(p_{n}, q_{i+1}\right)\right)^{2} .
\end{aligned}
$$

Therefore, the proof follows if we use this equality, Equations (20) and doing some algebra [14.

Theorem 4.3. For any positive integer n, we have

$$
\begin{aligned}
& \varphi\left(L_{n}\right)=\frac{3 n^{3}-9 n^{2}-5 n+1}{18(n-1)}+\frac{(n-6)(2 n-1)}{6 \sqrt{3}(n-1)}\left[1-\frac{2}{1-(2-\sqrt{3})^{2 n}}\right] \\
& \lambda\left(L_{n}\right)=\frac{n(n+4)(n-1)}{12(2 n-1)}, \\
& \epsilon\left(L_{n}\right)=\frac{\left(3 n^{2}-3 n+10\right)(n-2)}{9(n-1)}-\frac{(n-2)(n-6)}{3 \sqrt{3}(n-1)}\left[1-\frac{2}{1-(2-\sqrt{3})^{2 n}}\right] \\
& Z\left(L_{n}\right)=\frac{\left(3 n^{2}-13\right) n}{36(n-1)^{2}}+\frac{n(n-6)}{12 \sqrt{3}(n-1)^{2}}\left[1-\frac{2}{1-(2-\sqrt{3})^{2 n}}\right] .
\end{aligned}
$$

Proof. Since each of $\varphi\left(L_{n}\right), \lambda\left(L_{n}\right), \epsilon\left(L_{n}\right)$ and $Z\left(L_{n}\right)$ can be expressed in terms of $\tau\left(L_{n}\right)$, $\theta\left(L_{n}\right)$ and $\ell\left(L_{n}\right)$ 4, Propositions 4.6, 4.7, 4.8 and 4.9] with $g\left(L_{n}\right)=(3 n-2)-(2 n)+1=$ $n-1$, the results follow from Theorem 4.1 and Theorem 4.2.

Note that our findings in this section are consistent with the numeric results given in [6. Table 5] for $n \in\{5,10,15,20\}$.

Finally, we observe the following behavior of these invariants:

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \frac{\tau\left(L_{n}\right)}{\ell\left(L_{n}\right)}=\frac{1}{108}(9-2 \sqrt{3}), & \lim _{n \rightarrow \infty} \frac{Z\left(L_{n}\right)}{\ell\left(L_{n}\right)}=\frac{1}{36}, \\
\lim _{n \rightarrow \infty} \frac{1}{g\left(L_{n}\right)} \frac{\varphi\left(L_{n}\right)}{\ell\left(L_{n}\right)}=\frac{1}{18}, & \lim _{n \rightarrow \infty} \frac{1}{g\left(L_{n}\right)} \frac{\epsilon\left(L_{n}\right)}{\ell\left(L_{n}\right)}=\frac{1}{9}, \\
\lim _{n \rightarrow \infty} \frac{1}{g\left(L_{n}\right)} \frac{\lambda\left(L_{n}\right)}{\ell\left(L_{n}\right)}=\frac{1}{72}, & \lim _{n \rightarrow \infty} \frac{1}{g^{2}\left(L_{n}\right)} \frac{\theta\left(L_{n}\right)}{\ell\left(L_{n}\right)}=\frac{2}{9} .
\end{array}
$$

5. Connection to Generalized Fibonacci Numbers

We note that the powers of $2-\sqrt{3}$ appear in the binet formula of certain generalized Fibonacci numbers [9]. Namely, for the sequence of integers G_{n} defined by the following
recurrence relation

$$
G_{n+2}=4 G_{n+1}-G_{n}, \quad \text { if } n \geq 2, \text { and } G_{0}=0, G_{1}=1
$$

we have

$$
G_{n}=\frac{(2-\sqrt{3})^{-n}-(2-\sqrt{3})^{n}}{2 \sqrt{3}}, \quad \text { for each integer } n \geq 0
$$

The values of G_{n} with $0 \leq n \leq 10$ are as follows: $0,1,4,15,56,209,780,2911,10864$, 40545, 151316.

Various properties of the sequence G_{n} are well-known in the literature [12]. For example, we recognize the number G_{n} as the number of spanning trees of $L_{n}[2]$.

Since we have

$$
(2-\sqrt{3})^{n}=\frac{1}{G_{n+1}-(2-\sqrt{3}) G_{n}}, \quad \text { for each integer } n \geq 0
$$

and

$$
G_{2 n}=G_{n}\left((2-\sqrt{3})^{-n}+(2-\sqrt{3})^{n}\right)=-2 \sqrt{3} G_{n}^{2} \operatorname{coth}(n \ln (2-\sqrt{3})),
$$

we can rewrite our findings in the previous sections in terms of G_{n}. Namely, we obtained the following results in this paper:

For every integer $n \geq 1$,

$$
\begin{array}{ll}
t_{n}=-\frac{1}{G_{n}}, & z_{n}=-1+\frac{G_{2 n}}{2 G_{n}^{2}}, \\
y_{n}=\frac{n-2}{2}+3 \frac{G_{n}^{2}}{G_{2 n}-2 G_{n}}, & x_{n}=\frac{n-2}{2}+\frac{G_{2 n}-2 G_{n}}{4 G_{n}^{2}} .
\end{array}
$$

If we let $g_{n}:=\frac{1}{G_{n+1}-(2-\sqrt{3}) G_{n}}$, we can rewrite Equation (20) in the following form

$$
\begin{aligned}
r_{L_{n}}\left(p_{i}, p_{j}\right)= & \frac{i-j}{2}+\frac{1-g_{i-j}}{8 \sqrt{3}}\left(1+\frac{G_{2 n}}{2 \sqrt{3} G_{n}^{2}}\right)\left[\left(1-g_{i+j-1}\right)\left(1+g_{2 n-2 i+1}\right)\right. \\
& \left.+\left(1+g_{2 j-1}\right)\left(1-g_{2 n-i-j+1}\right)\right] \\
r_{L_{n}}\left(q_{i}, p_{j}\right)= & \frac{i-j}{2}+\frac{1+g_{i-j}}{8 \sqrt{3}}\left(1+\frac{G_{2 n}}{2 \sqrt{3} G_{n}^{2}}\right)\left[\left(1+g_{i+j-1}\right)\left(1+g_{2 n-2 i+1}\right)\right. \\
& \left.+\left(1+g_{2 j-1}\right)\left(1+g_{2 n-i-j+1}\right)\right],
\end{aligned}
$$

where $n \geq i \geq j \geq 1$.
Here is how we can express the results given in Theorem 3.1 and Theorem 3.2 in terms of G_{n} :

$$
\begin{equation*}
K f\left(L_{n}\right)=\frac{n^{3}}{3}+\frac{n^{2} G_{2 n}}{6 G_{n}^{2}}, \quad \text { and } \quad \sum_{k=0}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{k \pi}{2 n}\right)}=\frac{1}{3}+\frac{n G_{2 n}}{6 G_{n}^{2}} \tag{23}
\end{equation*}
$$

If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are nonzero eigenvalues of a connected graph Γ with m vertices, then $K f(\Gamma)=m \sum_{i=1}^{m} \frac{1}{\lambda_{i}}\left([7]\right.$ and [16]). Since $2,2-2 \cos \left(\frac{k \pi}{n}\right)=4 \sin ^{2}\left(\frac{k \pi}{2 n}\right)$ and $4-2 \cos \left(\frac{k \pi}{n}\right)=$ $2+4 \sin ^{2}\left(\frac{k \pi}{2 n}\right)$ for $k=1,2, \ldots, n-1$ are the nonzero eigenvalues of the discrete Laplacian matrix of L_{n} [2, Proof of Theorem 6], we have

$$
\begin{equation*}
K f\left(L_{n}\right)=n+\frac{n}{2} \sum_{k=1}^{n-1} \frac{1}{\sin ^{2}\left(\frac{k \pi}{2 n}\right)}+n \sum_{k=1}^{n-1} \frac{1}{1+2 \sin ^{2}\left(\frac{k \pi}{2 n}\right)} . \tag{24}
\end{equation*}
$$

Then the following equality follows from Equations (23) and Equation (24),

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{1}{\sin ^{2}\left(\frac{k \pi}{2 n}\right)}=\frac{2\left(n^{2}-1\right)}{3} \tag{25}
\end{equation*}
$$

Since the Chebyshev polynomial of the second kind $U_{n}(x)$ is given by the relation $U_{n+2}(x)=2 x U_{n-1}(x)-U_{n}(x)$ for $n \geq 0$ and the initial values $U_{1}(x)=1$ and $U_{0}(x)=0$, we have $G_{n}=U_{n-1}(2)$. That is, the formulas we found are nothing but expressions involving Chebyshev polynomials. Therefore, combining the formulas in Equation (23) with the ones given in [3, Corollary 12] (when $a=c=1$), we obtain the following equality:

$$
6 U_{n-1}^{\prime}(2)=n \frac{U_{2 n-1}(2)}{U_{n-1}(2)}-4 U_{n-1}(2)
$$

Next, we express the admissible invariants of L_{n} in terms of the numbers G_{n} :

$$
\begin{array}{ll}
\tau\left(L_{n}\right)=\frac{9 n-20}{36}-\frac{(n-6) G_{2 n}}{36 G_{n}^{2}}, & \theta\left(L_{n}\right)=\frac{2(n-2)}{3}\left[n^{2}-4 n+10+\frac{(n-6) G_{2 n}}{2 G_{n}^{2}}\right] \\
\lambda\left(L_{n}\right)=\frac{n(n+4)(n-1)}{12(2 n-1)}, & \varphi\left(L_{n}\right)=\frac{3 n^{3}-9 n^{2}-5 n+1}{18(n-1)}-\frac{(n-6)(2 n-1) G_{2 n}}{36(n-1) G_{n}^{2}},
\end{array}
$$

and similarly we have

$$
\begin{aligned}
& \epsilon\left(L_{n}\right)=\frac{(n-2)}{9(n-1)}\left[3 n^{2}-3 n+10+\frac{(n-6) G_{2 n}}{2 G_{n}^{2}}\right] \\
& Z\left(L_{n}\right)=\frac{n}{36(n-1)^{2}}\left[3 n^{2}-13-\frac{(n-6) G_{2 n}}{2 G_{n}^{2}}\right]
\end{aligned}
$$

Acknowledgements: This work is supported by The Scientific and Technological Research Council of Turkey-TUBITAK (Project No: 110T686).

References

[1] R. B. Bapat and S. Gupta, Resistance distance in wheels and fans Indian J. Pure Appl. Math., 41(1), 1-13, (2010).
[2] F. T. Boesch and H. Prodinger, Spanning tree formulas and Chebyshev polynomials, Graphs and Combinatorics, Volume 2, Issue 1, 191-200, (1986).
[3] A. Carmona, A. M. Encinas and M. Mitjana, Effective resistances for ladder-like chains, Int. J. Quantum Chem., Vol 114, 1670-1677, (2014).
[4] Z. Cinkir, Zhang's Conjecture and the Effective Bogomolov Conjecture over function fields, Inventiones Mathematicae, Volume 183, Number 3, (2011), pp. 517-562.
[5] Z. Cinkir, The tau constant and the discrete Laplacian matrix of a metrized graph, European Journal of Combinatorics, Volume 32, Issue 4, (2011), pp. 639-655.
[6] Z. Cinkir, Computation of Polarized Metrized Graph Invariants By Using Discrete Laplacian Matrix, to appear in Mathematics of Computation, can be found at http://arxiv.org/abs/1202.4641v1
[7] I. Gutman and B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci., 36, 982-985, (1996).
[8] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Volume II, Addison-Wesley, (1964).
[9] D. Kalman and R. Mena, The Fibonacci numbers - exposed, Math. Magazine, 76(3), 167-181, (2003).
[10] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge University Press, In preparation (2014). Current version available at
http://mypage.iu.edu/~rdlyons/.
[11] D. J. Klein and M. Randic, Resistance distance, Journal Mathematical Chemistry, 12, 81-95, (1993).
[12] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, http://oeis.org, Sequence A001353.
[13] Y. Yang and H. Zhang, Kirchhoff Index of Linear Hexagonal Chains, Int. J. Quantum Chem., Vol 108, 503-512, (2008).
[14] Wolfram Research, Inc., Mathematica, Version 9.0, Wolfram Research Inc., Champaign, IL., (2012).
[15] S. Zhang, GrossSchoen cycles and dualising sheaves, Invent. Math., 179, 1-73, (2010).
[16] H. -Y. Zhu, D. J. Klein and I. Lukovits, Extensions of the Wiener Number, J. Chem. Inf. Comput. Sci., 36, 420-428, (1996).

Zubeyir Cinkir, Department of Industrial Engineering, Abdullah Gül University, Kayseri, TURKEY.

E-mail address: zubeyirc@gmail.com

