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EFFECTIVE RESISTANCES, KIRCHHOFF INDEX AND ADMISSIBLE

INVARIANTS OF LADDER GRAPHS

ZUBEYIR CINKIR

Abstract. We explicitly compute the effective resistances between any two vertices of a
ladder graph by using circuit reductions. Using our findings, we obtain explicit formulas
for Kirchhoff index and admissible invariants of a ladder graph considering it as a model
of a metrized graph. Comparing our formula for Kirchhoff index and previous results in
literature, we obtain an explicit sum formula involving trigonometric functions. We also
expressed our formulas in terms of certain generalized Fibonacci numbers that are the
values of the Chebyshev polynomials of the second kind at 2.

1. Introduction

A ladder graph Ln is a planar graph that looks
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Figure 1. Ladder
graph Ln with 2n
vertices.

like a ladder with n rungs as shown in Figure 1. It
has 2n vertices and 3n − 2 edges. Each of its edges
has length 1, so the total length of Ln is ℓ(Ln) :=
3n− 2. We label the vertices on the right and left as
{q1, q2, · · · , qn} and {p1, p2, · · · , pn}, respectively.

One can consider Ln as an electrical network in
which the resistances along edges are given by the
corresponding edge lengths. For the ladder graph Ln,
Kirchhoff index and resistance values between ver-
tices are studied in [3] by using the spectral proper-
ties of the discrete Laplacian of Ln, and closed form
formulas are obtained in terms of Chebyshev polyno-
mials.

In this paper, we obtained explicit formulas for
Kirchhoff index and resistances between vertices of
Ln with a rather elementary method. Namely, we
used circuit reductions and solved a number of recurrence relations. Moreover, by consid-
ering Ln as a model of a metrized graph, we derived explicit formulas for its admissible
invariants considered in [4], [5], [6], [15] and the references therein. At the end, we ex-
pressed these formulas in terms of a sequence of generalized Fibonacci numbers Gn defined
by Gn+2 = 4Gn+1 −Gn if n ≥ 2, G1 = 1 and G0 = 0. The number Gn is known to be the
number of spanning trees in Ln, and that Gn = Un−1(2), where Un(x) is the Chebyshev
polynomial of the second kind.

Among other things, we showed that the Kirchhoff index of Ln satisfies the following
equalities for each positive integer n (see Theorem 3.1 and Equation (23) below):

Kf(Ln) =
n3

3
+

n2G2n

6G2
n

=
n3

3
− n2

√
3

[

1− 2

1− (2−
√
3)2n

]

.
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and we derived the following trigonometric sum formulas (see Equation (23) and Equa-
tion (25) below):

n−1
∑

k=0

1

1 + 2 sin2 (kπ
2n
)
=

1

3
+

nG2n

6G2
n

and
n−1
∑

k=1

1

sin2 (kπ
2n
)
=

2(n2 − 1)

3
.

The resistance values on Wheel and Fan graphs are expressed in terms of generalized Fi-
bonacci numbers in [1]. Our findings for resistance values on a Ladder graph are analogues
of those results on Wheel and Fan graphs.

2. Resistances between any pairs of vertices in Ln

Let r(p, q) be the effective resistance between the vertices p and q in Ln. We also use
the notation rLn

(p, q) for this value to emphasize the graph the resistance being computed
in. In this section, we find explicit formula of r(p, q) for every pair of vertices p and q of
Ln. Using the symmetry of the graph Ln, for all i, j ∈ {1, 2, · · · , n} we have

r(pi, pj) = r(qi, qj), and r(pi, qj) = r(qi, pj).(1)

First, we compute effective resistances between the end vertices p1, pn, q1 and qn. Set
xn := rLn

(pn, p1), yn := rLn
(pn, q1) and zn := rLn

(pn, qn).
Suppose we make circuit reduc-

1 1

1

zn-1pn-1
qn-1

qnpn

Figure 2. Ladder graph Ln with cir-
cuit reduction of Ln−1 with respect to
pn−1 and qn−1, where n ≥ 2.

tion of Ln−1 with respect to the
vertices pn−1 and qn−1. Since we
obtain Ln by adding the vertices
pn and qn, and the three edges with
end points {pn−1, pn}, {pn, qn} and
{qn, qn−1}, we have the circuit re-
duction of Ln as shown in Figure 2.
Now, using the parallel circuit re-
duction in this graph, we can ex-
press zn in terms of zn−1. This
gives us the following recurrence relation:

zn =
zn−1 + 2

zn−1 + 3
, for all n ≥ 2.

z1 = 1.
(2)

Now, we use Mathematica [14] to solve this recurrence relation. This gives

zn = −1−
√
3 +

2
√
3

1− (2−
√
3)2n

, for all n ≥ 1,(3)

which indeed the solution of Equation (2). In particular, we have z1 = 1, z2 =
3
4
, z3 =

11
15
,

z4 =
41
56
, z5 =

153
209

, z6 =
571
780

.
Other equivalent forms of zn can be given as follows:

zn = −1 −
√
3 +

2
√
3(2 +

√
3)n

(2 +
√
3)n − (2−

√
3)n

, or zn = −1−
√
3 coth

(

n ln(2−
√
3)
)

,(4)

where coth is the hyperbolic cotangent function. Note that (2−
√
3)(2 +

√
3) = 1.

We can rewrite Equation (2) in the following form:

zn =
1

1 + 1
2+zn−1

,
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and if we use this equality to express zn−1 in terms of zn−2 and substitute it in this
equality, we obtain

zn =
1

1 + 1
2+ 1

1+ 1
2+zn−2

.

We can repeat this process to express zn in terms of zk for any positive integer k < n.
Since 0 < zn < 1 for each integer n ≥ 2 and zn is decreasing by Equation (2), we
notice that zn’s must be part of the convergents of the number with continued fraction
expansion [0, 1, 2, 1, 2, 1, 2, · · · ]. On the other hand, this is nothing but the every other
terms in the continued fraction expansion of

√
3 − 1. Probabilistic explanation of these

facts via spanning trees can be found in [10, page 11].
This kind of circuit reduction technique that we used to find zn was used in the case of

infinite ladder in [8, Chapter 22-Section 6].
Our next aim is to find explicit formulas for xn and yn as we did for zn.
Now, suppose n ≥ 1 and we make cir-

qn+1pn+1

p1

pn qn

pA B

C

1 1

1

Figure 3. Ladder graph Ln+1

with circuit reduction of Ln

with respect to pn, qn and p1,
where n ≥ 1.

cuit reduction of the subgraph Ln of Ln+1

with respect to the vertices pn, qn and p1.
That is, the part Ln in Ln+1 is reduced
to a Y -shaped graph with the outer ver-
tices pn, qn and p1, and having the effec-
tive resistances A, B and C between the
end points of its edges. This is illustrated
in Figure 3. Then we have B + C = yn,
A + C = xn and A + B = zn. Solving
these gives A = xn−yn+zn

2
, B = −xn+yn+zn

2

and C = xn+yn−zn
2

. On the other hand, us-
ing parallel and series circuit reductions in

Figure 3 we obtain xn+1 =
(A+1)(B+2)

zn+3
+C

and yn+1 =
(B+1)(A+2)

zn+3
+ C. Therefore,

xn+1 =
(xn − yn + zn + 2)(−xn + yn + zn + 4)

4(zn + 3)
+

xn + yn − zn

2
, if n ≥ 1.

yn+1 =
(−xn + yn + zn + 2)(xn − yn + zn + 4)

4(zn + 3)
+

xn + yn − zn

2
, if n ≥ 1.

x1 = 0 and y1 = 1.

(5)

If we subtract the second equation from the first one, we obtain xn+1 − yn+1 = xn−yn
zn+3

.
Now, we set tn := xn − yn to obtain

tn+1 =
tn

zn + 3
, if n ≥ 1 and t1 = −1.(6)

This can be rewritten as follows

tn+1 = −
n
∏

k=1

1

zk + 3
.(7)
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Since 1
zk+3

=
(2+

√
3)

k

−(2−
√
3)

k

(2+
√
3)

k+1
−(2−

√
3)

k+1 by using the first equality in (4) and doing some algebra,

we see that the product in Equation (7) can be simplified. This gives

tn =
−2

√
3

(2 +
√
3)n − (2−

√
3)n

, for every n ≥ 1,(8)

which can also be written as tn = −2
√
3(2−

√
3)

n

1−(2−
√
3)

2n for all n ≥ 1. Now, we turn our attention

back to the solutions of xn and yn. Using xn = tn + yn, Equation (3), Equation (8) and
doing some algebra, the second equality in (5) becomes

yn+1 = yn +

√
3

1−
(

2−
√
3
)n+1 −

√
3

1−
(

2−
√
3
)n +

1

2
, for all n ≥ 1 and y1 = 1.(9)

This can be solved as follows:

yn =
n− 2−

√
3

2
+

√
3

1−
(

2−
√
3
)n , for all n ≥ 1.(10)

Using Equation (10), Equation (8) and the fact that xn = tn + yn, we obtain

xn =
n− 2−

√
3

2
+

√
3

1 +
(

2−
√
3
)n , for all n ≥ 1.(11)

Note that for all n ≥ 1 we have

xn + yn − zn = n− 1,

xn − yn + zn = −1−
√
3 +

2
√
3

1 + (2−
√
3)n

,

−xn + yn + zn = −1−
√
3 +

2
√
3

1− (2−
√
3)n

.

(12)

Next, we obtain formulas for rLn
(pn, pi), rLn

(pn, qi) and rLn
(pi, qi), where n > i > 1.

We can consider Ln as the union of three graphs; the upper part of pi+1 and qi+1, the
lower part of pi and qi, and the middle part consisting of pi+1, qi+1, pi and qi. These
graphs are illustrated in Figure 4. Note that the graphs in the upper and the lower parts
are nothing but the graphs Ln−i and Li, respectively. We make the circuit reduction of
the upper part with respect to pn, pi+1 and qi+1 to obtain a Y -shaped graph having the
resistances M , N and K along its edges. We make the circuit reduction of the lower part
with respect to pi and qi. The resistance between pi and qi in the lower part, rLi

(pi, qi),
is zi by definition. Now, we have

M +N = xn−i, M +K = yn−i, N +K = zn−i.(13)

Solving these for M , N and K, and using Equations (12) give

M =
xn−i + yn−i − zn−i

2
=

n− i− 1

2
,

N =
xn−i − yn−i + zn−i

2
=

−1−
√
3

2
+

√
3

1 + (2−
√
3)n−i

,

K =
−xn−i + yn−i + zn−i

2
=

−1 −
√
3

2
+

√
3

1− (2−
√
3)n−i

.

(14)
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Figure 4. Ln and circuit reductions to find rLn
(pn, pi), rLn

(qn, pi) and rLn
(pi, qi).

By making parallel and series circuit reductions in the graph at the last column of Figure 4,
for each i with n > i > 1, we obtain

rLn
(pn, pi) =

(N + 1)(K + zi + 1)

zn−i + zi + 2
+M,

rLn
(pn, qi) =

(K + 1)(N + zi + 1)

zn−i + zi + 2
+M,

rLn
(pi, qi) =

zi(zn−i + 2)

zn−i + zi + 2
.

(15)

We set
α = 2−

√
3.

Using Equation (3) and Equations (14), we can rewrite Equations in (15) as follows:

rLn
(pn, pi) =

n− i

2
+

(1− αn−i)

4
√
3(1− α2n)

(

2− 2αn+i − αn+i−1 − αn−i+1 + α2i−1 + α
)

,

rLn
(pn, qi) =

n− i

2
+

(1 + αn−i)

4
√
3(1− α2n)

(

2 + 2αn+i + αn+i−1 + αn−i+1 + α2i−1 + α
)

,

rLn
(pi, qi) =

(1 + α2n−2i+1)(1 + α2i−1)√
3(1− α2n)

.

(16)

Although we obtained formulas in (16) under the condition n > i > 1, whenever n = i or
i = 1 these formulas are consistent with the ones given in Equations (3), (11) and (10).
Therefore, formulas in (16) are valid for each integer n and i satisfying n ≥ i ≥ 1.

In the remaining part of this section, we obtain formulas for

rLn
(pi, qj) and rLn

(pi, pj), where n > i ≥ j ≥ 1.

This time, we consider Ln as the union of two graphs; upper and lower parts of pi and
qi as illustrated in the second stage in Figure 5. Note that the graph Ln−i appear in the
upper part, and the lower part is nothing but Li . Next, we can apply circuit reduction to
reduce Ln−i into a line with the end points pi+1 and qi+1, and this line has the resistance
rLn−i

(pi+1, qi+1) = zn−i between its end points. For the lower part, we apply circuit
reduction to Li fixing its points pi, qi and pj so that we obtain a Y -shaped graph having
the resistances D, E and F along its edges. These reductions are illustrated in the third
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Ln

pn

p1

qipi

pj qj

qn

q1

1

1

1

1

1

1 1

qi+1
pi+1

pn

p1

qipi

pj qj

qn

q1

1

1

1

1

1

1 1

qi+1

qipi

pi+1

qi

qi+1

pi

pi+1

1 1

qipi

pj

D F

E

zn-i

qipi

E

FD

zn-i+2

p j

Figure 5. Circuit reductions applied to Ln to find rLn
(pi, pj) and rLn

(pi, qj).

stage in Figure 5, and the relations between D, E and F are given in Equations (17).
Finally, we obtain the reduced graph as in the last stage in Figure 5.

D + E = rLi
(pi, pj), D + F = rLi

(pi, qi) = zi, E + F = rLi
(qi, pj).(17)

Solving these for D, E and F gives

D =
rLi

(pi, pj) + zi − rLi
(qi, pj)

2
,

E =
rLi

(pi, pj)− zi + rLi
(qi, pj)

2
,

F =
−rLi

(pi, pj) + zi + rLi
(qi, pj)

2
.

(18)

By making parallel and series circuit reductions in the graph at the last column of
Figure 5, for each i with n > i ≥ j ≥ 1, we obtain

rLn
(pi, pj) =

D(zn−i + F + 2)

zn−i + zi + 2
+ E,

rLn
(qi, pj) =

F (zn−i +D + 2)

zn−i + zi + 2
+ E,

(19)

Now, we use Equation (3), Equations (16), (18) and (19) and do some algebra using
Mathematica [14] to derive the following resistance values:

rLn
(pi, pj) =

i− j

2
+

(1− αi−j)

4
√
3(1− α2n)

(

2− αi+j−1 + α2j−1 + α2n−2i+1(1− αi−j − 2αi+j−1)
)

,

rLn
(qi, pj) =

i− j

2
+

(1 + αi−j)

4
√
3(1− α2n)

(

2 + αi+j−1 + α2j−1 + α2n−2i+1(1 + αi−j + 2αi+j−1)
)

.

(20)
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In spite of the fact that we obtained formulas in (20) under the condition n > i ≥ j ≥ 1,
when n = i these formulas are consistent with the ones given in Equations (16). Therefore,
formulas in (20) are valid for each integers i, j and n satisfying n ≥ i ≥ j ≥ 1. That is, we
can use the explicit formulas in (20) to find the resistances between any pair of vertices
in Ln.

3. Kirchhoff Index of Ln

In this section, we obtain an explicit formula for Kirchhoff index of Ln by using our
explicit formulas derived in §2 for the resistances between any pairs of vertices of Ln.
Moreover, we obtain an interesting summation formula by combining our findings and
what is known in the literature about Kirchhoff index of Ln.

Recall that Kirchhoff index of a graph Γ, Kf(Γ), is defined [11] as follows:

Kf(Γ) =
1

2

∑

p, q∈V (Γ)

r(p, q).

Theorem 3.1. For any positive integer n, we have

Kf(Ln) =
n3

3
− n2

√
3

[

1− 2

1− (2−
√
3)2n

]

.

Proof. With the notation of vertices as in Figure 1, using Equation (1) gives

Kf(Ln) =
1

2

∑

p, q∈V (Γ)

r(p, q) = 2
∑

1≤j<i≤n

r(pi, pj) + 2
∑

1≤j<i≤n

r(pi, qj) +
n

∑

i=1

r(pi, qi).

Then the result follows if we use Equations (20) and doing some algebra [14]. �

Note that the Kirchhoff index formula in Theorem 3.1 can also be expressed as follows:

Kf(Ln) =
n2

3

[

n−
√
3 coth

(

n ln(2−
√
3)
)]

.

The values of Kf(Ln) are rational numbers. For example, its values for 1 ≤ n ≤ 8 are as
follows: 1, 5, 71

5
, 214

7
, 11725

209
, 6031

65
, 415177

2911
, 140972

679
.

Theorem 3.2. For any positive integer n, we have

n−1
∑

k=0

1

1 + 2 sin2(πk
2n
)
=

n√
3

[ 2

1− (2−
√
3)2n

− 1
]

+
1

3
.

Proof. We recall the following result [13, Theorem 4.1] obtained by using the relation
between the Kirchhoff index and the eigenvalues of the discrete Laplacian matrix of Ln.

Kf(Ln) =
n(n2 − 1)

3
+ n

n−1
∑

k=0

1

1 + 2 sin2(πk
2n
)
.(21)

Note that Equation (21) is also a particular case of [3, Corollary 12] (namely, when
c = 1). Then the proof is completed by combining Equation (21) and the result in
Theorem 3.1. �

Since (2 −
√
3)2 ≈ 0.071796, for large values of n we have Kf(Ln) ≈ n2(n+

√
3)

3
by

Theorem 3.1.
Next, we give a geometric interpretation of the summation that appears in Equa-

tion (21). Let P = {0, π
2n
, 2π

2n
, 3π

2n
, · · · , (n−1)π

2n
, nπ

2n
= π

2
} be a partition of the interval
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Figure 6. A Riemann sum approximation using left points.

[0, π
2
]. Then the Riemann sum of f(x) = 1

1+2 sin2(x)
on [0, π

2
] that uses left points in each

subinterval is nothing but

π

2n

n−1
∑

k=0

1

1 + 2 sin2(πk
2n
)
.

Figure 6 illustrates the case with n = 4 subintervals. Note that

lim
n→∞

π

2n

n−1
∑

k=0

1

1 + 2 sin2(πk
2n
)
=

∫ π

2

0

dx

1 + 2 sin2 x
=

π

2
√
3
,

which is consistent with our findings in Theorem 3.2.

4. Admissible Invariants of Ln

In this section, we give explicit formulas for the following admissible invariants of Ln:
τ(Ln), θ(Ln), λ(Ln), ϕ(Ln) and ǫ(Ln) when Ln is considered as a model of a metrized
graph. These invariants were studied in [4], [5], [6], [15] and the references therein.

Theorem 4.1. For any positive integer n, we have

θ(Ln) =
2(n− 2)

3

[

n2 − 4n+ 10− (n− 6)
√
3(1− 2

1− (2−
√
3)2n

)
]

.

Proof. By definition [4, Section 4], θ(Ln) =
∑

p, q∈V (Ln)
(υ(p)− 2)(υ(q)− 2)r(p, q), where

υ(p) is the degree of the vertex p. Therefore,

2Kf(Ln)− θ(Ln) = 8
∑

p∈V (Ln)

r(p, pn)− 4
[

r(pn, p1) + r(pn, q1) + r(pn, qn)
]

= 8

n−1
∑

i=2

(

r(pi, pn) + r(qi, pn)
)

+ 4
[

r(pn, p1) + r(pn, q1) + r(pn, qn)
]

,

where the vertices pi and qi with i ∈ {1, . . . , n} are as in Figure 1. Thus, the result follows
by using this equality, Equations (20), Theorem 3.1 and doing some algebra [14]. �

Theorem 4.2. For any positive integer n, we have

τ(Ln) =
9n− 20

36
+

n− 6

6
√
3

[

1− 2

1− (2−
√
3)2n

]

.
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Proof. Let Γ be a graph with set of vertices V (Γ) such that each edge length in Γ is 1.
Suppose Γ is a model of a metrized graph. If we use [5, Proposition 2.6], [5, Equation (3)]
and [5, Proof of Lemma 4.9], we obtain the following formula of the tau constant τ(Γ) of
Γ for every s ∈ V (Γ):

τ(Γ) =
1

12

∑

p∼q
p, q∈V (Γ)

(1− r(p, q))2 +
1

4

∑

p∼q
p, q∈V (Γ)

(

r(s, p)− r(s, q)
)2
,

(22)

where p ∼ q means p and q are adjacent, i.e., connected by an edge in Γ.
Using the notations in Figure 1 and the symmetry in Ln, we can rewrite Equation (22)

for Ln with s = pn as follows:

τ(Ln) =
1

6

n−1
∑

i=1

(1− r(pi, pi+1))
2 +

1

12

n
∑

i=1

(1− r(pi, qi))
2 +

1

4

n−1
∑

i=1

(

r(pn, pi)− r(pn, pi+1)
)2

+
1

4

n
∑

i=1

(

r(pn, pi)− r(pn, qi)
)2

+
1

4

n−1
∑

i=1

(

r(pn, qi)− r(pn, qi+1)
)2
.

Therefore, the proof follows if we use this equality, Equations (20) and doing some algebra
[14]. �

Theorem 4.3. For any positive integer n, we have

ϕ(Ln) =
3n3 − 9n2 − 5n+ 1

18(n− 1)
+

(n− 6)(2n− 1)

6
√
3(n− 1)

[

1− 2

1− (2−
√
3)2n

]

,

λ(Ln) =
n(n+ 4)(n− 1)

12(2n− 1)
,

ǫ(Ln) =
(3n2 − 3n+ 10)(n− 2)

9(n− 1)
− (n− 2)(n− 6)

3
√
3(n− 1)

[

1− 2

1− (2−
√
3)2n

]

,

Z(Ln) =
(3n2 − 13)n

36(n− 1)2
+

n(n− 6)

12
√
3(n− 1)2

[

1− 2

1− (2−
√
3)2n

]

.

Proof. Since each of ϕ(Ln), λ(Ln), ǫ(Ln) and Z(Ln) can be expressed in terms of τ(Ln),
θ(Ln) and ℓ(Ln) [4, Propositions 4.6, 4.7, 4.8 and 4.9] with g(Ln) = (3n− 2)− (2n)+ 1 =
n− 1, the results follow from Theorem 4.1 and Theorem 4.2. �

Note that our findings in this section are consistent with the numeric results given in
[6, Table 5] for n ∈ {5, 10, 15, 20}.

Finally, we observe the following behavior of these invariants:

lim
n−>∞

τ(Ln)

ℓ(Ln)
=

1

108
(9− 2

√
3), lim

n−>∞

Z(Ln)

ℓ(Ln)
=

1

36
,

lim
n−>∞

1

g(Ln)

ϕ(Ln)

ℓ(Ln)
=

1

18
, lim

n−>∞

1

g(Ln)

ǫ(Ln)

ℓ(Ln)
=

1

9
,

lim
n−>∞

1

g(Ln)

λ(Ln)

ℓ(Ln)
=

1

72
, lim

n−>∞

1

g2(Ln)

θ(Ln)

ℓ(Ln)
=

2

9
.

5. Connection to Generalized Fibonacci Numbers

We note that the powers of 2 −
√
3 appear in the binet formula of certain generalized

Fibonacci numbers [9]. Namely, for the sequence of integers Gn defined by the following
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recurrence relation

Gn+2 = 4Gn+1 −Gn, if n ≥ 2, and G0 = 0, G1 = 1,

we have

Gn =
(2−

√
3)−n − (2−

√
3)n

2
√
3

, for each integer n ≥ 0.

The values of Gn with 0 ≤ n ≤ 10 are as follows: 0, 1, 4, 15, 56, 209, 780, 2911, 10864,
40545, 151316.

Various properties of the sequence Gn are well-known in the literature [12]. For example,
we recognize the number Gn as the number of spanning trees of Ln [2].

Since we have

(2−
√
3)n =

1

Gn+1 − (2−
√
3)Gn

, for each integer n ≥ 0

and

G2n = Gn

(

(2−
√
3)−n + (2−

√
3)n

)

= −2
√
3G2

n coth (n ln (2−
√
3)),

we can rewrite our findings in the previous sections in terms of Gn. Namely, we obtained
the following results in this paper:

For every integer n ≥ 1,

tn = − 1

Gn

, zn = −1 +
G2n

2G2
n

,

yn =
n− 2

2
+ 3

G2
n

G2n − 2Gn

, xn =
n− 2

2
+

G2n − 2Gn

4G2
n

.

If we let gn := 1
Gn+1−(2−

√
3)Gn

, we can rewrite Equation (20) in the following form

rLn
(pi, pj) =

i− j

2
+

1− gi−j

8
√
3

(1 +
G2n

2
√
3G2

n

)
[

(1− gi+j−1)(1 + g2n−2i+1)

+ (1 + g2j−1)(1− g2n−i−j+1)
]

rLn
(qi, pj) =

i− j

2
+

1 + gi−j

8
√
3

(1 +
G2n

2
√
3G2

n

)
[

(1 + gi+j−1)(1 + g2n−2i+1)

+ (1 + g2j−1)(1 + g2n−i−j+1)
]

,

where n ≥ i ≥ j ≥ 1.
Here is how we can express the results given in Theorem 3.1 and Theorem 3.2 in terms

of Gn:

Kf(Ln) =
n3

3
+

n2G2n

6G2
n

, and
n−1
∑

k=0

1

1 + 2 sin2 (kπ
2n
)
=

1

3
+

nG2n

6G2
n

.(23)

If λ1, λ2, . . . , λm are nonzero eigenvalues of a connected graph Γ with m vertices, then
Kf(Γ) = m

∑m

i=1
1
λi

([7] and [16]). Since 2, 2−2 cos (kπ
n
) = 4 sin2 (kπ

2n
) and 4−2 cos (kπ

n
) =

2+4 sin2 (kπ
2n
) for k = 1, 2, . . . , n−1 are the nonzero eigenvalues of the discrete Laplacian

matrix of Ln [2, Proof of Theorem 6], we have

Kf(Ln) = n +
n

2

n−1
∑

k=1

1

sin2 (kπ
2n
)
+ n

n−1
∑

k=1

1

1 + 2 sin2 (kπ
2n
)
.(24)
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Then the following equality follows from Equations (23) and Equation (24),

n−1
∑

k=1

1

sin2 (kπ
2n
)
=

2(n2 − 1)

3
.(25)

Since the Chebyshev polynomial of the second kind Un(x) is given by the relation
Un+2(x) = 2xUn−1(x) − Un(x) for n ≥ 0 and the initial values U1(x) = 1 and U0(x) = 0,
we have Gn = Un−1(2). That is, the formulas we found are nothing but expressions
involving Chebyshev polynomials. Therefore, combining the formulas in Equation (23)
with the ones given in [3, Corollary 12] (when a = c = 1), we obtain the following equality:

6U ′
n−1(2) = n

U2n−1(2)

Un−1(2)
− 4Un−1(2).

Next, we express the admissible invariants of Ln in terms of the numbers Gn:

τ(Ln) =
9n− 20

36
− (n− 6)G2n

36G2
n

, θ(Ln) =
2(n− 2)

3

[

n2 − 4n+ 10 +
(n− 6)G2n

2G2
n

]

,

λ(Ln) =
n(n + 4)(n− 1)

12(2n− 1)
, ϕ(Ln) =

3n3 − 9n2 − 5n+ 1

18(n− 1)
− (n− 6)(2n− 1)G2n

36(n− 1)G2
n

,

and similarly we have

ǫ(Ln) =
(n− 2)

9(n− 1)

[

3n2 − 3n+ 10 +
(n− 6)G2n

2G2
n

]

,

Z(Ln) =
n

36(n− 1)2

[

3n2 − 13− (n− 6)G2n

2G2
n

]

.
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