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Abstract

We propose a systematic method to produce potentially good recursive towers over finite
fields. The graph point of view, so as some magma and sage computations are used in this
process. We also establish some theoretical functional criterion ensuring the existence of
many rational points on a recursive tower. Both points are illustrated on an example,
from the production process, to the theoretical study, using this functional criterion, of the
parameters of the obtained potentially good tower.
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Introduction

The search of explicit examples of sequences of algebraic curves over a given finite field, of genus
growing to infinity and having as much as possible rational points with regard to their genera
became more and more important not only for its own, but also for several uses such as coding
theory and cryptography (Garcia and Stichtenoth [GS07]) or for multiplication algorithms over
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finite fields (Ballet [Bal03]). For quite a long time, only modular examples were known for square
size of the finite field (Tsfasmann-Vladut-Zink [TVZ82] and Ihara [Iha81, “The general case”,
p. 723]), and only examples coming from class field theory were known for non square size.
Unfortunately, these examples were not explicit.

In 1995 appeared the important Garcia-Stichtenoth’s paper [GS95] in which the very first
explicit example was given. The explicitness comes from the recursive definition of each floor of
the tower; such towers are now called recursive towers. Since then, several authors gave many
examples of recursive towers (see Garcia and Stichtenoth’s survey [GS07] or Li’s one [Li10]). Two
features appear at a look at the literature. First, the authors never explain how they where able
to guess their examples. Second, once the explicit tower is given, there is always some difficulty
in its study. Either the genus sequence is hard to compute (usually in the wildly ramified case),
either the existence of many rational points is hard to prove (usually in the moderately ramified
case). For instance, in the particularly interesting example of Garcia-Sitchtenoth moderately
ramified tower recursively defined by the equation y2 = x2+1

2x
, the proof of the splitting behavior

is quite mysteriously related to some functional equation satisfied by the well known Deuring
polynomial1.

Apart from our previous article [HP14], the present work joins in the continuation of Lenstra’s
and Beelen’s one [Len02, Bee04]. A kind of non-existence result is proved by Lenstra [Len02] over
prime finite fields for a very particular type of recursive towers. The proof is technical and quite
intricate, at least for the authors of the present paper. A somehow understandable point is that
it relies upon some functional equation labeled as (5) therein and whose meaning is explained
in a concluding remark. Beelen proved soon after that the characteristic function of a totally
splitting set has to fulfill some functional equation in case of separable variable correspondances
on the projective line [Bee04, Theorem 3.2]. Beelen also proves, in a second part of his paper,
that such a functional equation can have at most one solution for a special type of recursive
tower, he called of type A. This second part has already been generalized by the authors [HP14].

In Section 1, we recall some backgrounds about recursive towers. Geometrically, the definition
only requires a base curve X and a correspondence Γ ⊂ X ×X . In this article we focus on the
special case of recursive towers with separable variables2, where the correspondence is given by
two morphisms f, g : X → X0. One of the main tool for the study of a recursive tower is an
associated graph G∞(X,Γ). This graph has already been introduced by Beelen [Bee04] with a
slightly different definition, and has been extensively used by the authors [HP14]. Many features
of the tower can be directly read on the graph. In particular, the existence of some kind of
finite component, the d-regular ones, is related to the existence of sets of points of the base
curve splitting totally in the tower. Following Beelen (loc. cit.), this leads to introduce the
weaker notion of completeness for subset of X(Fq). The importance of completeness comes from
Proposition 6, that the search for a splitting set in a tower is carried out if one knows the
ramification loci of f and g, an easy task, and if one can find complete sets, an harder task.

In section 2, we push further the understanding of the functional equation and its connection
with the existence of many rational points in the tower. Theorem 9 asserts essentially that a finite
set of points of the base curve splits totally in the tower if and only if the characteristic function of
its support satisfies some functional equation. Beyond the fact that we do not need to assume the
base curve to be the projective line, the contribution of Section 2 compared to Beelen’s one is at
first that while he proved that the functional equation is a necessary condition for completeness,
we prove here that it is in fact a necessary and sufficient conditions for regularness. Next, that

1 This is the characteristic polynomial of supersingular invariants in characteristic p.
2In a forthcoming paper, we intend to prove that one can always reduce the study of a general recursive tower

to the study of a recursive tower with separable variables.
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the precise form of the functional equation can be easily read from the singular graph of the
tower. The sufficiency is of great importance for the applications given in the following of the
present article.

We think that Theorem 9 is interesting in both theoretical and algorithmic study of recursive
towers. In section 3, we give several applications that may convince the reader.

On the theoretical side, we deduce Theorem 10 from Theorem 9, extending one of the two
main results in [HP14].

On the explicit side, we give two applications of the functional equation. Both use also the
graph theoretic approach of recursive towers. In Section 3.2, we explain how the mysterious
functional equation needed in [GSR03] to prove the splitting behavior of some base points can
in fact been deduced from the initial data y2 = x2+1

2x
.

Then, in Section 3.3, we describe our main application of the functional equation. It consists
in a systematic method to produce some potentially good recursive towers (Section 3.3.1) and in
original methods to compute the asymptotic parameters of the tower. These methods use jointly
the graph approach, some magma and sage computations, and Theorem 9 (Sections 3.3.2 & 3.3.3).
All these ideas are illustrated on a concrete example. An interesting feature of this example is the
following. The reader will be convinced that no modular tool is used in its production. However,
the tower turns to be modular (Proposition 18). This can be seen as another experimental
evidence toward Elkies’ modularity conjecture3 that any tame good recursive tower over a square
finite field should be modular!

1 Preliminary notations and background

We recall the definition of a recursive tower and of its principal parameters, and we associate a
graph to a recursive tower, as in our previous work [HP14]. Some of the results of this article
are also included.

1.1 Recursive towers

Let X be a smooth projective absolutely irreducible curve defined over the finite field Fq and
let Γ ⊂ X ×X be an irreducible correspondence, without no vertical nor horizontal component.
The singular recursive tower T (X,Γ) = (Xn)n≥1 is defined, for n ≥ 1, by

Xn = {(P1, P2, · · · , Pn) ∈ Xn | (Pi, Pi+1) ∈ Γ for each i = 1, 2, . . . , n− 1} .

In this article, we restrict ourselves to correspondences with separable variables, that is of the
form

Γ = Γf,g = {(P,Q) ∈ X ×X ; f(P ) = g(Q)}, (1)

where f, g : X → X0 are two degree d maps from X to a given smooth base curve X0.
The curves Xn may be singular and by desingularization process, we obtain the smooth

recursive tower T̃ (X,Γ) = (X̃n)n≥1. The interesting parameters of the towers are:

• the arithmetic genus of Xn, γn = γ(Xn);

• the geometric genus of Xn, i.e. the genus of X̃n, gn = g(Xn) = g(X̃n);

• the number of rational points over Fqr for r ≥ 1, Nr(X̃n) = ♯X̃n(Fqr);

3Or Elkies’ fantasia, as Elkies himself stated it in [Elk01].
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• last, the limit

λr(T ) = lim
n→+∞

Nr(X̃n)

gn
.

For a recursive tower, this limit always exists and is thus a non negative number. The tower
is said to be asymptotically good if it is non-zero for some r ≥ 1. This happens (see Lemma 1
in [HP14] for instance) if and only if there exist some c, c′ > 0 such that

gn = c× dn + o(dn) and Nr(X̃n) = c′ × dn + o(dn). (2)

1.2 Graphs and Recursive towers

To each recursive tower, one can associate a directed graph.

Definition 1. Let T (X,Γ) be a recursive tower, where Γ is associated, via (1), to the func-
tions f, g : X → X0.

(i) The geometric graph G∞(X,Γ) is the graph whose vertices are the geometric points of X,
and for which there is an oriented edge from P ∈ X(Fq) to Q ∈ X(Fq) if (P,Q) ∈ Γ(Fq),
that is if f(P ) = g(Q).

(ii) For S ⊂ X(Fq), the S-graph GS(X,Γ) is the subgraph of G∞(X,Γ) whose vertices are the
points of S.

(iii) The r-th arithmetic graph Gr(X,Γ) is the X(Fqr)-graph.

(iv) The singular graph is the union of the weakly connected components containing a (di-
rected) path joining a ramified point of f to a ramified point of g.

The adjectives geometric, arithmetic, or singular, qualifying the different graphs come from
the following correspondence between the points of tower and the paths in the graphs (see [HP14,
Section 3.2]).

Proposition 2. Let T (X,Γ) be a recursive tower, where Γ is associated, via (1), to the func-
tions f, g : X → X0. There is a one-to-one correspondence between

{paths of G∞(X,Γ) of length n− 1} ←→ Xn(Fq).

This correspondence:

(i) restricts to a one-to-one correspondence between Xn(Fqr) and the set of paths of length (n−
1) of the r-th arithmetic graph Gr(X,Γ);

(ii) is such that a path corresponds to a singular point of Xn if and only if it joins a ramified
point of f to a ramified point of g.

At any point outside the ramification loci of f and g, the in and out degrees in the geometric
graph are equal to the common degree d of both morphisms f, g, and only points that are ramified
by f or g have in or out degrees less than d. The following definition is of importance in this
article because of the following alternative which follows from (2) and [HP14, Proposition 21].

Definition 3. A finite subset S ⊂ X(Fq) is said to be d-regular if the S-graph GS(X,Γ) is a
d-regular graph that is if any vertex has in and out degrees equal to d.

4



Proposition 4. Let T (X,Γ) be a recursive tower, where Γ is associated, via (1), to the func-
tions f, g : X → X0 of degree d. Then the tower T (X,Γ) is asymptotically good over Fqr if and
only if there exists some c > 0, such that gn = c× dn + o(dn), and

(i) either the number of points of X̃n, defined over Fqr , coming from the desingularization of
the singular component of Gr(X,Γ) has asymptotic behaviour of the form to c′× dn + o(dn)
for some c′ > 0;

(ii) or there exists a finite d-regular set inside the r-th arithmetic graph Gr(X,Γ).

See loc. cit. for details, but notice that if there exists a d-regular finite subset S ⊂ X(Fqr) for
some r ≥ 1, then the number of paths of length (n− 1) of this component is clearly ♯S × dn. By
Proposition 2, these paths are in one-to-one correspondence with smooth points of Xn defined
over Fqr . Therefore the number of points of X̃n satisfies the last condition in Proposition 4 and
the tower is asymptotically good, provided that the genus sequence do not grows too fast as
required also as a first condition in Proposition 4. Note that geometrically, the vertices/points
of S are nothing else than the totally split points in the tower.

One of the main result of our previous work [HP14] says that there exists at most one finite
d-regular set. But there may exist other interesting finite subsets satisfying a weaker property
than regularness which turns to be useful to give characterizations of d-regular set.

Definition 5. Let X and X0 be two smooth, projective, absolutely irreducible curves over Fq and
let f : X → X0, g : X → X0 be two morphisms of degree d. A subset S of X(Fq) is said to be:

(i) forward complete if g−1(f(S)) ⊂ S;

(ii) backward complete if f−1(g(S)) ⊂ S;

(iii) complete if it is both backward and forward complete.

For S ⊂ X(Fq) a finite subset, if the graph GS(X,Γ) is d-regular, then S is complete. The
converse is false, but one easily see that the following Proposition holds.

Proposition 6. Let T (X,Γ) be a recursive tower, where Γ is associated, via (1), to the mor-
phisms f, g : X → X0 and let S be a subset of X(Fq). Then S is d-regular if and only if S is
complete and outside the ramification loci of f and g. If this is the case, then any point of S
splits totally in the tower.

2 Completeness and regularness criteria

We build successively in this section three characterizations of complete and of regular sets. The
first one is a basic set theoretic criterion for completeness, the second one is a divisorial criterion
for completeness, and the last one is a functional equation characterizing, once a first complete
finite set is known, if another given finite set is d-regular.

2.1 A divisorial criterion for completeness

Lemma 7 (Set theoretical completeness criterion). A subset S ⊂ X(Fq) is complete if and only
if there exists S0 ⊂ X0(Fq) such that S = f−1(S0) = g−1(S0).
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Proof — Suppose that S is complete. First we prove that f(S) = g(S). Let P ∈ S. There
exists some Q ∈ X(Fq) such that f(P ) = g(Q). By forward completeness, one has Q ∈ S.
This leads to f(S) ⊂ g(S), and the reverse inclusion is proved the same way using backward
completeness. Put S0 = f(S) = g(S) and let us prove that S = f−1(S0) = g−1(S0). Of
course S ⊂ f−1(S0) = f−1(f(S)). Conversely, if P ∈ f−1(S0) then f(P ) ∈ S0 = g(S), that
is f(P ) = g(Q) for some Q ∈ S. By backward completeness, we deduce that P ∈ S and
that f−1(S0) ⊂ S. The proof of the converse works also in the same way. �

For the remaining characterizations, we need to introduce the following notations.

• For S ⊂ X(Fq), we put div(S) =
∑

P∈S P and for ϕ ∈ Fq(X), we denote by div(ϕ) the
associated divisor.

• For P ∈ X(Fq) we denote by ef (P ) the ramification index of P by f .

• For S0 ⊂ X0(Fq), let

Df(S0) =
∑

P∈f−1(S0)

(ef (P )− 1)P

be the restricted different divisor of f .

Under these notations, if S0 is a subset ofX0(Fq), one can point out the useful divisorial equalities

f ∗ div(S0) = Df(S0) + div
(
f−1(S0)

)
and g∗ div(S0) = Dg(S0) + div

(
g−1(S0)

)
. (3)

We can then state the following, a generalization of Lenstra’s identity.

Proposition 8 (Divisorial completeness criterion). Let S0 be a finite subset of X0(Fq). The
following assertions are equivalent.

(i) The set f−1(S0) is complete.

(ii) The set g−1(S0) is complete.

(iii) f ∗ div(S0)− g∗ div(S0) = Df (S0)−Dg(S0).

Proof — This is a direct consequence of (3) together with the set theoretical completeness
criterion (Lemma 7). �

2.2 A functional criterion for regularness

From this section, and for the rest of this article, given a curveX defined over Fq and f, g ∈ Fq(X),
we write f ∼ g if div(f) = div(g) in div(X), that is if there exists a constant c ∈ F∗

q such that
f = cg.

The characterizations of completeness given in Lemma 7 and Proposition 8 are not always
sufficiently effective in practice. The most fruitful characterization is the following functional
regularness characterization.

Theorem 9 (functional regularness criterion). Let Γ be a correspondence induced by f, g : X →
X0 as in (1). Let S = f−1(S0) = g−1(S0) be a complete subset of X(Fq). Let b be the order
of the degree zero divisor Df(S0) − Dg(S0) in the jacobian Jac(X), and let ρ ∈ Fq(X) be a
function such that div(ρ) = b(Df(S0) − Dg(S0)). Let T0 be a finite subset of X0(Fq), disjoint
from the ramification locus of g. Let s, t ∈ N∗ be such that t♯S0 = s♯T0, let a be the order of
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the degree zero divisor s div(T0) − t div(S0) in Jac(X0), and let ϕ ∈ Fq(X0) be a function such
that div(ϕ) = a (s div(T0)− t div(S0)).

Then the functional equation

ρta × (ϕ ◦ f)b ∼ (ϕ ◦ g)b (4)

holds in Fq(X0) if and only if f−1(T0) is d-regular.

Remark – In most instances4, the singular graph turns to be finite and complete.
It is then fruitful to choose S to be this singular graph, see Sections 3.2 and 3.3.3.

Proof — The divisors of the functions ϕ ◦ f and ϕ ◦ g on X are

div(ϕ ◦ f) = a (sf ∗ div(T0)− tf ∗ div(S0)) and div(ϕ ◦ g) = a (sg∗ div(T0)− tg∗ div(S0)) ,

so that by difference

div(ϕ ◦ f)− div(ϕ ◦ g) = as (f ∗ div(T0)− g∗ div(T0))− at (f ∗ div(S0)− g∗ div(S0)) . (5)

Since S is complete, it follows by the divisorial completeness criterion (Proposition 8) that
f ∗ div(S0) − g∗ div(S0) = Df (S0) − Dg(S0). Since none of the points of T0 are ramified by g,
we have Dg(T0) = 0, hence (3) reduces to f ∗ div(T0) − g∗ div(T0) = div (f−1(T0)) + Df(T0) −
div (g−1(T0)). Multiplying by b and taking div(ρta) into account, equation (5) becomes

b [div(ϕ ◦ f)− div(ϕ ◦ g)] + ta div(ρ) = abs
[
div
(
f−1(T0)

)
+Df(T0)− div

(
g−1(T0)

)]
.

It follows that the functional equation (4) holds if and only if

div
(
f−1(T0)

)
+Df(T0) = div

(
g−1(T0)

)
. (6)

Suppose that the functional equation (4), or equivalently that (6) do holds. Since the effective
divisor div (g−1(T0)) is reduced, the effective divisor div (f−1(T0)) + Df(T0) is also reduced.
Moreover, the support of the divisor Df(T0) is contained in the support of div (f−1(T0)), hence
we can deduce that Df(T0) = 0, that is T0 is outside the ramification locus of f . Furthermore, (6)
becomes

div
(
f−1(T0)

)
= div

(
g−1(T0)

)
,

meaning that f−1(T0) is complete by the set theoretical completeness criterion Lemma 7. It
follows that f−1(T0) is d-regular by Proposition 6. Conversely, suppose that that f−1(T0) is
d-regular, so that T0 is disjoint from the ramification locus of f and f−1(T0) is complete by
Proposition 6. Then Df(T0) = 0, and by the set theoretical completeness criterion, we have
div (f−1(T0)) = div (g−1(T0)), so that (6), hence the functional equation (4), holds true. �

3 Applications

3.1 Non existence of totally splitting sets for some recursive towers

We deduce from the functional regularness criterion the following Theorem, extending the main
result of [HP14].

4 We will prove in a forthcoming paper that the singular graph is not finite for the recursive tower X0(Pn

2 )
over Q(

√
3), whose explicit recursive equation is given in [Elk01, equations (47) and (48)].
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Theorem 10. Let T (X,Γ) be a recursive tower, where Γ is associated, via (1), to the mor-
phisms f, g : X → X0 of degree d. Suppose that the tower is irreducible, and that there exists
a complete set S such that Df(S0) = Dg(S0) for S0 = f(S) = g(S). Then the graph do not
contains any non-empty finite d-regular component T disjoint to S.

Remark – A d-regular set S satisfies Df(S0) =
∑

P∈S P = Dg(S0), so that this
statement contains Theorem 19 of [HP14] in case of correspondences with separable
variables. This Theorem also contains the case of a complete loop at a point P
(for instance for type A towers in Bellen’s [Bee04] and in [Len02]), in which case we
have S = {P}, S0 = {f(P0)} and Df (S0) = (d− 1)P = Dg(S0).

Proof — Suppose by contradiction that there do exist a finite d-regular component T and
let T0 = f(T ) = g(T ). Since GT (X,Γ) is assumed to be d-regular, each vertex of T is unramified
by f and g. One can apply the functional regularness criterion (Theorem 9) to S0 and T0.
Since by assumption Df(S0) − Dg(S0) = 0, we have b = 1 and one can choose ρ = 1. We
denote by a the order, in Jac(X0), of the zero degree divisor ♯S0 div(T0) − ♯T0 div(S0), and
we consider ϕ ∈ Fq(X0) such that div(ϕ) = a(♯S0 div(T0) − ♯T0 div(S0)). By the functional

regularness criterion (Theorem 9), there exists some c ∈ Fq
∗
such that

ϕ ◦ g = c× ϕ ◦ f.

For any Q,R ∈ X(Fq) such that f(Q) = g(R), we deduce that

ϕ ◦ f(Q) = ϕ ◦ g(R) = c× ϕ ◦ f(R).

Therefore, if Q is any vertex of G∞(X,Γ), then ϕ ◦ f takes values in cZ×ϕ ◦ f(Q) on the vertices
in the connected component of Q. But this set of values is finite since c ∈ Fq

∗
. Hence, the

function ϕ ◦ f takes only finitely many values on each given connected component. Since ϕ ◦ f
is a finite morphism, every connected components is thus finite. Now, the graph G∞(X,Γ) being
infinite and since since there are only finitely many ramified points by f or g, it must have
infinitely many finite d-regular components by Proposition 6, a contradiction with Theorem 19
in [HP14] that under the irreducibility assumption, the graph contains at most one d-regular
component. �

3.2 Understanding the splitting set of the optimal tower y2 = x2+1
2x

For some known Garcia-Stichtenoth recursive towers, especially for the tame one, it is quite
difficult to prove that some set of places splits totally in the tower. Suppose that the base curve
is P1 (which is the case for all known explicit examples) whose Jacobian is trivial. Once the
characteristic function of the involved points on P1 is guessed (we explain in Subsection 3.3 how
it can be guessed on an example), the functional regularness criterion Theorem 9 is the good tool
to prove that they do split in the tower. Let us illustrate this on the example of the moderate

tower T
(
P1, y2 = x2+1

2x

)
, studied for instance in [GSR03] and well known to be optimal. The

genus computation being not difficult in this case, the hard point is the existence of some totally
splitting locus. Let H be the Deuring polynomial over Fp, whose simple roots are supersingular
j-invariants in characteristic p. The splitting behaviour of some set closely related to the zero
set of H is easily deduced by Garcia and Stichtenoth from the functional equation

H(x4) = xp−1H

((
x2 + 1

2x

)2
)
, (7)

8



1
−1

ı

−ı

0 ∞

ı2 = −1

Figure 1: The singular component of T
(
P1, x2+1

2x
= y2

)
over Fp2

which seems to be pulled out of the hat! We explain in this subsection that taking into account
the singular part of the graph, this is nothing but the functional equation (4) requested in the
functional regularness criterion (Theorem 9) for the characteristic function of some splitting set!

Let h(x) =
∏

P∈T0
(x − x(P )) ∈ Fq[x] be the characteristic polynomial of any finite set

T0 ⊂ P1 \ {∞} outside the ramification locus {0,∞} of g(y) = y2.
The singular graph is drawn in figure 1. For general p ≥ 3, the involved points of X = P1

are S = {1,−1, ı,−ı, 0,∞} where ı is a square root of −1 in Fp. Applying f(x) = 1+x2

2x
(or

g(y) = y2), we have S0 = {1,−1, 0,∞}. Moreover, Df (S0) = (2−1)[1]+(2−1)[−1] andDg(S0) =
(2− 1)[0] + (2− 1)[∞], hence the condition div(ρ) = Df (S0)−Dg(S0) = [1] + [−1]− [0]− [∞] is
fulfilled by the function

ρ(x) =
(x− 1)(x+ 1)

x
∈ Fp(P

1).

Some magma experiments, for few small values of p, show that there do exist such a set with ♯T0 =
p − 1. Since ♯S0 = 4 and p is odd, one can try t = p−1

2
and s = 2. The functional regularness

criterion also requires a function ϕ ∈ Fp(X0) such that div(ϕ) = 2 div(T0)− p−1
2

div(S0). Up to
a constant,

ϕ(x) =
h(x)2

[(x− 1)(x+ 1)x]
p−1

2

works. Hence, Theorem 9 asserts that the set f−1(T0) is complete if and only if h(0) 6= 0 and

ρ(x)
p−1

2 ϕ

(
x2 + 1

2x

)
∼ ϕ(x2).

This functional equation can be written

[
(x− 1)(x+ 1)

x

] p−1

2

×
h
(

x2+1
2x

)2

[(
x2+1
2x
− 1
) (

x2+1
2x

+ 1
) (

x2+1
2x

)] p−1

2

∼ h(x2)2

[(x2 − 1)(x2 + 1)x2]
p−1

2

.

After simplification by powers of x, x− 1 and x+ 1, this is equivalent to
[
xp−1h

(
x2 + 1

2x

)]2
∼
[
h(x2)

]2
,

that is to

xp−1h

(
x2 + 1

2x

)
∼ h(x2),

which is neither than (7) with h(x) = H(x2).

Of course, proving that this functional equation do have a solution H is another task. On
this example, the solution H have been already guessed by Garcia and Stichtenoth. To ovoid
cheating, we explain in the following section how this task can be achieved on another example,
chosen in such a way that the solution is a priori unknown.

9



3.3 Graph based strategy to produce and to study asymptotically

good recursive towers

The goal of this section is to show how a good recursive tower can be studied, from its production
process in Section 3.3.1, to the computation of its parameters in Sections 3.3.2 and 3.3.3.

3.3.1 Producing a potentially good recursive tower using graphs and computer help

The strategy to produce such a candidate is the following. For algorithmic purpose, we fix a
base curve X and a “kind” of correspondence Γ ⊂ X × X , that is a set of correspondences
parametrized by some quasi-projective variety V . In order to obtain recursive towers having
potentially low genus sequence as required by Proposition 4, we also fix a specific finite singular
graph. Now, any edge of the graph G∞(X,Γ) corresponds to a relation on the parameters of the
correspondence Γ viewed as a points of V . Hence, correspondences Γ on X of the given kind such
that G∞(X,Γ) contains the fixed finite graph as a subgraph are parametrized by a subvariety W
of V . Then, a magma program returns, for a given prime p, all Fp-rational points of W .

After very few trials of specific singular graphs5, we obtain for few values of p some explicit
equations. The associated graph having, as checked using a sage program, some d-regular
component, these equations define potentially good recursive towers. Indeed, they experimentally
possess some d-regular set ensuring that the number of points is large enough, and their singular
graph have a certain imposed shape, making it possible that the genus sequence is low enough
as required in Proposition 4.

Here is how all this works on an example. We choose:

• the base curve X to be P1;

• correspondences Γ of bi-degree (2, 2) and with separable variables, that is of type Γf,g

where f and g are two functions from P1 to P1 of degree 2;

• a singular graph of the form

R1

P1
S1 R2

P2
S2

,

where R1, R2 are the ramified points of f and S1, S2 those of g. In particular, in view of
the specific shape of the singular graph, these four ramification points should be distinct.

Remark – This kind of singular graph is not chosen at random. In order to minimize
the genus sequence, the curves Xn must be singular as pointed out in [HP14]. This
means by Proposition 2 that there must exist some paths from ramification points
of f to ramification points of g. We also have noted that in most known examples
of good recursive tower, there are loops at some of these ramification points. The
chosen graph is one of the most simple that takes into account these constraints.

Note that there are 6 parameters in such a singular graph, namely the 6 points Pi, Ri, Si,
for i = 1, 2. We use the automorphisms group Aut(P1) to fix some of them as follows. For
any σ, τ ∈ Aut(P1), the map

(P1, . . . , Pn) 7→ (τ−1(P1), . . . , τ
−1(Pn))

5Trying with the singular graph in figure 1 gives as an unique solution (up to Aut(P1)) the Garcia-Stichtenoth

tower y2 = x
2
+1

2x
!
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defines an isomorphism from the tower T (P1,Γf,g) to the tower T (P1,Γσ◦f◦τ,σ◦g◦τ ). Therefore,
using the simply 3-transitivity of Aut(P1) on P1, one can suppose that R1 = 1, S1 = 0 and S2 =
∞. In the same way, one can suppose that g(S1) = 0, g(S2) = ∞ and g(1) = 1. These
normalizations lead to g(y) = y2, so that we are reduced to look for a rational function

f(x) =
a2x

2 + a1x+ a0
b2x2 + b1x+ b0

where the parameter (a2 : a1 : a0 : b2 : b1 : b0) lives in P5. Since f have to be of degree deg f =
deg g = 2, this point in P5 must lie in the complementary V of the sets of constant functions and
of degree one functions. The constant functions is the zero set of the 2-by-2 minors of (

a2 a1 a0
b2 b1 b0 ),

and the degree one functions is the zero set of the resultant of a2x
2+a1x+a0 and b2x

2+ b1x+ b0.
For such a f ∈ V , the equation of the correspondence Γf,g in P1 × P1 = Proj(Fq[X1, Y1]) ×

Proj(Fq[X2, Y2]) is

E(X1, Y1, X2, Y2) = Y 2
2 (a2X

2
1 + a1X1Y1 + a0Y

2
1 )−X2

2 (b2X
2
1 + b1X1Y1 + b0Y

2
1 ) = 0.

Let us now traduce as equations on the parameter (a2 : a1 : a0 : b2 : b1 : b0) the requested
shape for the singular graph. The fact that the point (1 : 1) is ramified by f gives as a first
constraint the vanishing at x = 1 of the derivative of f(x), a quadratic equation in the parameters.
Note for later use that the second ramified point by f is (a1b0−a0b1 : a2b1−a1b2). Each loop, so
as each horizontal path of length 2, gives rise to linear algebraic constraints on the parameters
as follows. The four loops lead to the equations

E(1, 1, 1, 1) = E(0, 1, 0, 1) = E(1, 0, 1, 0) = E(a1b0−a0b1, a2b1−a1b2, a1b0−a0b1, a2b1−a1b2) = 0.

The existence of a path of length 2 from Ri to Si is equivalent to the vanishing of a resultant, since
this is the request of the existence of some common zero Pi of f(Ri)− g(P ) and of f(P )− g(Si).
Finally these 1 + 4 + 2 = 7 equations define a quasi-projective curve W in P5.

For the small values of the prime p ∈ {5, 7, 11, 13, 17}, we find using magma the unique solution
whose equation f(x) = x2+x

3x−1
doesn’t depend on p.

To conclude, this graph aided strategy suggests to study the recursive tower defined byX = P1

for p ≥ 5, and

Γf,g =

{
((x1 : y1), (x2 : y2)) ∈ P1 × P1 | x2

1 + x1y1
3x1y1 − y21

=
x2
2

y22

}
.

The ramification points of the function f(x) = x2+x
3x−1

are 1 and −1
3
∈ Fp, those of the func-

tion g(y) = y2 are 0 and ∞, and the singular complete subgraph is the following

1
−1

0 −1
3

1
3 ∞

.

The remaining of this section is devoted to the proof of the following result stating that this
potentially good tower is actually asymptotically good.

Theorem 11. The recursive tower T
(
P1, y2 = x2+x

3x−1

)
is asymptotically good.

Proof — The proof is divided in two steps. In Propositions 12, the genus sequence is computed
and we observe that it has the good shape requested in Proposition 4. Then, we prove Proposi-
tion 14 that the number of points sequence also have the good shape. �

11



3.3.2 Genus sequence computation

In this section we establish a closed formula for the genus sequence of the tower. One can
distinguish at least two strategies to compute the genus sequence of such a recursive tower. The
first one, used by Garcia and Stichtenoth in their articles in this area, consists in applying the
Riemann-Hurwitz genus formula to the function field extensions Fp(Xn)/Fp(X1) after having
computed the different divisor of these extensions. The second one, used in our previous work
on recursive towers [HP14], consists in computing the geometric genus of the curves Xn from
their arithmetic one by subtracting the sum of the measures of singularity of the points. This
last point of view takes better into account the geometry of the data. Furthermore, as will be
seen by the reader in the proof of Lemma 12 below, this method is a guide for the choice of a
fixed singular graph as was done in Subsection 3.3.1. This is the first time that we illustrate our
method on a simple, though non-trivial, example of recursive tower.

Proposition 12. The genus sequence (gn)n≥1 of the tower T
(
P1, y2 = x2+x

3x−1

)
is given by

gn = 2n − (2 + n mod 2)× 2⌊
n
2
⌋ + 1, ∀n ≥ 1.

Proof — Let n ≥ 1. We denote by νn the desingularization morphism νn : X̃n → Xn and by X♯
n

the pullback of the embedding Xn →֒ Xn−1 ×X along νn−1 × Id : X̃n−1 ×X → Xn−1 ×X . We
have the cartesian diagram

X♯
n X̃n−1 ×X

Xn Xn−1 ×X

ν
n−1 × Id

The curves Xn, X
♯
n and X̃n are birational and the two first one are singular for n ≥ 3. We thus

introduce the measure of singularity of the curve X♯
n defined, as usual, by

∆n =
∑

P∈X♯
n(Fp)

dimFp
ÕP/OP ,

where OP and ÕP denote the local ring at P of X♯
n and of its integral closure. Then, using

Proposition 4 in [HP14] specialized to the case where d = 2, g1 = 0 and γ2 = 1, we obtain:

gn = 1 + (n− 2)2n−1 −
n∑

i=2

2n−i∆i.

From the following Lemma 13, we have ∆i = 2i−1 − 2⌊ i
2⌋. Proposition 12 follows from an easy

summation exercise. �

Lemma 13. Let n ≥ 1. The singular points of the curve X♯
n are above the points (1r,−1, 0s)

and
(
−1

3

r
, 1
3
,∞s

)
of Xn, for r + s + 1 = n and r ≥ s ≥ 1. For such r, s, there are exactly 2s−1

points on X♯
n, all of them giving rise to two points on X̃n, and having a measure of singularity

equal to 2r−s. The global measure of singularity of the curve X♯
n is ∆n = 2n−1 − 2⌊n2 ⌋.

Remark – The curves X1 and X2 are smooth and thus so are X♯
1 and X♯

2.

12



Proof — The singular points of Xn correspond by Proposition 2 to the paths of the graph G∞
joining a ramified point of f to a ramified point of g. In view of the chosen singular graph, they
are the points (1r,−1, 0s) and

(
−1

3

r
, 1
3
,∞s

)
for r, s ≥ 1 and r+ s+1 = n. The second one going

the same way, let us concentrate on the first type of points. For each edge of the corresponding
singular component of the singular graph

1
−1

0
,

one can associate an appropriate recursive algebraic relation and the corresponding Newton
polygon in the following way:

(xn − 1)2 − 2(xn − 1)− (xn−1−1)2

3xn−1−1
(xn + 1)2 − 2(xn + 1)− (xn−1−1)2

3xn−1−1

1

−2v(xn−1 − 1)•2v(xn−1 − 1)

•
1

•
2O 1 −1

−2v(xn−1 − 1)•2v(xn−1 − 1)

•
1

•
2O

x2
n − xn−1(xn−1+1)

3xn−1−1
x2
n − xn−1(xn−1+1)

3xn−1−1

−1 0

−1
2
v(xn−1 + 1)•v(xn−1 + 1)

•
2O 0

−1
2
v(xn−1)•v(xn−1)

•
2O

In this tabular, v respectively denotes a valuation of the field Fp(Xn−1) satisfying v(xn−1−1) > 0,
v(xn−1 − 1) > 0, v(xn−1 + 1) > 0 and v(xn−1) > 0. In the remaining of this section, for r, s ≥ 1,
we denote by v(1r ,−1,0s) any valuation of the field Fp(Xr+s+1) satisfying v(1r ,−1,0s)(xi − 1) > 0
for 1 ≤ i ≤ r, v(1r ,−1,0s)(xr+1 + 1) > 0, v(1r ,−1,0s)(xj) > 0 for 1 ≤ j ≤ s and v(1r ,−1,0s)(x1 − 1) = 1
(we normalize this way in order to have formulas (8)). We do the same for v(1r) and v(1r ,−1).
With these notations, the Newton polygons of the preceding tabular permit to prove that every
loop at 1 and the path form 1 to −1 multiply the valuations by 2, while the path from −1 to 0
and the loop at 0 divides the valuations by 2. More precisely, we have

v(1r)(xr − 1) = 2r−1, v(1r ,−1)(xr+1 + 1) = 2r, v(1r ,−1,0s)(xr+s+1) = 2r−s. (8)

Let us start with the point Q = (1n−2,−1, 0), that is with r = n − 2 and s = 1. The

point P = (1n−2,−1) ∈ Xn−1 is smooth and thus corresponds to a unique point of X̃n−1, and
the function x1 is an uniformizing parameter at P . Let OP be the local ring at P . There is
a unique singular point Q♯ ∈ X♯

n above P ∈ Xn−1, and above Q ∈ Xn. The local ring at Q♯

is OQ♯ = OP [xn]. Since vP (xn−1 + 1) = 2n−2, one has

(
xn

x2n−3

1

)2

− xn−1

3xn−1 − 1
× xn−1 + 1

x2n−2

1︸ ︷︷ ︸
non zero at P

= 0.

The non-vanishing of the constant function shows that this equation is smooth. This proves

that ÕP [xn] = OP

[
xn

x2n−3

1

]
. Thus there are two points in X̃n aboveQ

♯ ∈ X♯
n, or above (1

n−2,−1, 0) ∈
Xn and moreover δP ♯ = 2n−3.
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We proceed by induction on s for the study of the singularity above the general singular
point P = (1r,−1, 0s) ∈ Xn for r + s+ 1 = n. We need to distinguish two cases.

If r ≥ s ≥ 1, then by induction, there are exactly 2s−1 points of X̃n−1 above (1r,−1, 0s−1).
Let P one of them and let OP be the local ring at P . The function x1 is still an uniformizing
parameter at P and above P there is only one point Q♯ ∈ X♯

n, whose local ring is OQ♯ = OP [xn].
Then vP (xn−1) = 2r−s+1, and the equation

(
xn

x2r−s

1

)2

− xn−1

3xn−1 − 1
× xn−1 + 1

x2r−s+1

1︸ ︷︷ ︸
non zero at P

= 0

is smooth. This proves that there are two points of X̃n above Q♯ ∈ X♯
n, that is above (1

r,−1, 0s) ∈
Xn, and that δP ♯ = 2r−s.

In the other case, that is if s > r ≥ 1, then xn−1 turns to be an uniformizing element for all
the points of X̃n−1 above P = (1r,−1, 0s−1), and the corresponding points P ♯ on X♯

n are smooth

(and ramified over X̃n−1).
In conclusion, we get by summation

∆n = 2×
⌊n−1

2
⌋∑

s=1

2s−1 × 2r−s =

⌊n−1

2
⌋∑

s=1

2n−s−1,

where the first factor 2 comes from the other component of the singular graph. The remaining
of the computation is left to the reader. �

3.3.3 Lower bound for the number of points sequence

The last step is to prove that the tower has a large enough number of rational points sequence
over some Fpr , that is of size ♯X̃n(Fpr) = c×2n+ o(2n) for some non-zero constant c as requested
in Proposition 4. To this end, we prove the following result.

Proposition 14. Let p ≥ 5 be a prime. There exists r ≥ 1, and a finite set T ⊂ P1(Fpr)
with 2(p − 1) elements, such that the graph GT (X,Γ) is 2-regular and the number of points

sequence of the tower T
(
P1
Fp
, y2 = x2+x

3x−1

)
satisfies

♯Xn(F
r
q) ≥ (p− 1)× 2n.

By the correspondence recalled in Proposition 2, if such a finite set T exists, then the curve Xn

contains at least 2n(p− 1) points over Fp2 . The rest of this section is devoted to the proof of the
existence of this finite set T , stated in Lemma 15. It is divided in few steps.

First, we experimentally compute this finite set and its characteristic polynomial for few
small primes p. Second, we observe that these polynomials for these small values of p do lift
to Z, that is are reduction modulo p of some truncation of some integer coefficients series. We
enter this experimental integer sequence of first coefficients in the database OEIS, which luckily
returns a whole infinite integer sequence. Finally, we prove that the reduction modulo p of
some truncation of the generating series of this infinite integer sequence do fulfill the functional
equation required in Theorem 9. This implies the regularness of the reciprocal image by f of
the zeroes of the truncations. The fact that the power series is closely related to a Gaussian
hypergeometric function, hence satisfies some second order linear differential equation, turns to
be a crucial point here.
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α7

α3

α23

α21

α15

α9

α11

α19

F25 = F5(α)

α2 − α + 2 = 0

Figure 2: The 2 regular complete component of G∞ for p = 5

Experimental observation for few small primes p. — It is an experimental observation,
using magma and sage, that for small values of the prime p, the geometric graph G∞(P1

Fp
, y2 =

x2+x
3x−1

) contains a finite 2-regular component with 2(p− 1) vertices. In figure 2, we represent this
component for p = 5.

Looking for a potentially splitting set for any prime p. — Suppose that there exists, for
any prime p ≥ 5, some non-empty finite 2-regular set T = Tp in the geometric graph G∞(P1

Fp
, y2 =

x2+x
3x−1

). Note that in this case, this set is unique thanks to [HP14, Theorem 19]. Let χp(x) ∈ Fp[x]
be the characteristic polynomial of the set of values of f (or g) at the vertices of Tp

χp(x) =
∏

P∈Tp

(x− x (f(P ))) .

It is an easy task using magma to compute χp(x) for small primes p. Here is the table for p ∈
{5, 7, 11, 13, 17, 23}:

p χp(x)
5 −1 + 2x+ 2x3 + x4

7 1 + 3x+ x2 + 2x3 + 2x4 − 2x5 + x6

11 −1 − 3x− 4x2 − 5x3 − x4 − 2x6 − 2x7 + x8 + 4x9 + x10

13 1 + 3x+ 2x2 + 2x3 + 2x4 − x5 + 4x6 + 4x7 + 6x8 + 2x9 + 5x10 − 4x11 + x12

17 −1 − 3x+ 2x2 − 8x3 + 7x4 + 5x5 + 4x6 − 2x7 + x9 − x10 − 7x11 + 7x12 − 4x13

−8x14 + 6x15 + x16

19 1 + 3x− 4x2 − 2x3 − 7x4 − 2x5 − 5x7 + 5x8 + 7x9 + 7x10 − 6x11 + 7x13 + 2x14

−3x15 + 3x16 − 6x17 + x18

23 −1 − 3x+ 8x2 − x3 + 5x4 − 7x5 − 2x6 − 9x7 + 9x8 − 9x9 + 4x10 + 10x12 − 7x13

−6x14 + 8x15 − 7x16 − 2x17 + 3x18 − 10x19 + 7x20 + 8x21 + x22

We observe that the constant term is nothing but the Legendre symbol
(
−3
p

)
. So all the polyno-

mials
(
−3
p

)
χp(x) have unitary constant coefficient.

These polynomials can be seen as the analogue for this tower, of the Deuring polynomials
for the tame optimal tower already touched on in Subsection 3.2. However, in contrast with
this Subsection, we a priori do not know here any theoretical polynomial which could play
the part of the Deuring polynomials therein. Fortunately, the Deuring polynomials turn to be
the modulo p truncations at degree (p − 1) of a power series in Z[[x]]. One can expect that
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the same holds in our example. More precisely, we want to prove that there exists a power
series H(x) =

∑
n≥0 anx

n ∈ Z[[x]], such that for all primes p ≥ 5, one has

(−3
p

)
χp(x) =

p−1∑

n=0

anx
n mod p.

In other terms, we want to lift to Z[[x]] the polynomials
(
−3
p

)
χp(x) ∈ Fp[x]. Thanks to the

Chinese Remainder Theorem and using more and more primes, one can lift the experimentally
known polynomials

(
−3
p

)
χp(x) for small p modulo increasing integers. For example using primes

of the preceding tabular, one obtains

H(x) = 1 + 3x+ 15x2 + 93x3 + 639x4 + 4653x5 + 35169x6 + 272835x7 + 33065x8

+ 322285x9 + 438261x10 + 43884x11 + 40470x12 + 1755x13 − 2202x14

+ 130x15 − 1327x16 − 44x17 + 20x18 + 10x19 − 7x20 − 8x21 − x22 + · · · ,

each coefficient being respectively known modulo

37182145, 37182145, 37182145, 37182145, 37182145, 7436429, 7436429, 1062347, 1062347,

1062347, 1062347, 96577, 96577, 7429, 7429,

7429, 7429, 437, 437, 23, 23, 23, 23.

Requesting for the integer sequence 1, 3, 15, 93, 639, 4 653, 35 169 on the Online Encyclopedia of
Integer Sequences [OEI], we fortunately learn that these are the first terms of the sequence

an =

n∑

k=0

(
n

k

)2(
2k

k

)
.

The associated generating power series H(x) is moreover related to a Gaussian hypergeometric
function by

H(x) =

∞∑

k=0

(
n∑

k=0

(
n

k

)2(
2k

k

))

︸ ︷︷ ︸
an

xn =
1

1− 3x
F

(
1/3, 2/3

1

∣∣∣∣
27x2(1− x)

(1− 3x)3

)
, (9)

where the Gaussian hypergeometric part (see for instance [GKP89, Chap. 5] for hypergeometric
series) is

F

(
1/3, 2/3

1

∣∣∣∣ z
)

=

∞∑

n=0

(
1
3

)
n

(
2
3

)
n

(1)n n!
zn, so that F

(
1/3, 2/3

1

∣∣∣∣ 27z
)

=

∞∑

n=0

(3n)!

(n!)3
zn.

Here, we denote as usual (a)n
def
= a(a+1) · · · (a+n−1). We denote by Hp(x) ∈ Fp[x] the modulo p

truncation in degree (p− 1) of H :

Hp(x) =

p−1∑

n=0

anx
n mod p. (10)

Proof of the splitting behavior. — We have now reached the point where we do have, for any
prime p ≥ 5, a candidate for a 2-regular set, namely the set of roots of the explicit polynomial
Hp(x) defined in (10). The encouraging point is that it is easily checked using magma and sage

that for any tested value of p, this set do corresponds to a 2-regular component of the geometric
graph.
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Lemma 15. Let p ≥ 5 be a prime and let T0 (depending on p) be the set of roots of the polyno-
mial Hp(x) ∈ Fp[x] defined in (10). Then f−1(T0) is 2-regular.

Proof — In order to apply the functional regularness criterion Theorem 9 of which we keep
notations, we choose as finite complete set S the support of the singular graph

S =
{
0,±1,±1

3
,∞
}
, so that S0 =

{
0, 1, 1

9
,∞
}
.

The different divisors are

Df(S0) =
[
−1

3

]
+ [1] and Dg(S0) = [0] + [∞] ,

hence one can choose the function ρ to be

ρ(x) =
(x− 1)

(
x+ 1

3

)

x
∈ Fq(P

1).

Since Hp(0) ≡ Hp(0) ≡ 1 6= 0 (mod p), the set T0 of roots of Hp(x) in Fp is disjoint from the
ramification locus {0,∞} of g. Since ♯T0 = deg(Hp) = (p − 1), we can try t = 2 and s = p−1

2
.

We put

ϕ(x) =
Hp(x)

x(x− 1)
(
x− 1

9

) .

After some easy computation similar to those in Subsection 3.2, we see that the functional
regularness criterion specializes as follows in this example. For the set f−1(T0) to be 2-regular,
it suffices that the functional equation

1

(3x− 1)1−p
Hp

(
x2 + x

3x− 1

)
∼ Hp

(
x2
)

(11)

holds, which follows from Lemma 17 below. �

Lemma 16. Let n =
∑r

i=0 nip
i be the decomposition of n in basis p. Then we have

an ≡
r∏

i=1

ani
(mod p).

Proof — We recall Lucas formula [Dic66, p. 271] for binomial coefficients modulo a prime p.
If n = n0 + n1p+ · · ·+ nrp

r and k = k0 + k1p+ · · ·+ krp
r with pi ∈ {0, . . . , p− 1}, then

(
n

k

)
≡

r∏

i=0

(
ni

ki

)
(mod p).

From both computations

an =

n=
∑r

i=0
nip

i∑

k=
∑r

i=0 kip
i=0

(∑r
i=0 nip

i

∑r
i=0 kip

i

)2(
2k

k

)

≡
r∑

i=0

p−1∑

ki=0

r∏

i=0

(
ni

ki

)2(
2k

k

)
(mod p) (by Lucas formula)
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and

r∏

i=1

ani
≡

r∑

i=0

p−1∑

ki=0

r∏

i=0

(
ni

ki

)2 r∏

i=0

(
2ki
ki

)
(mod p)

which takes into account that
(
nr

kr

)
= 0 if kr > nr, we have only to prove that for any k =

∑r
i=0 kip

i

with 0 ≤ ki ≤ p− 1, equality

(
2k

k

)
≡

r∏

i=0

(
2ki
ki

)
(mod p) (12)

holds. Suppose first that for any i = 0, . . . , r, we have 0 ≤ ki ≤ p−1
2
. Then 2k =

∑r
i=0 2kip

i is
the decomposition of 2k in basis p, and (12) follows from Lucas formula. Suppose now that for
at least one i ∈ {0, 1, . . . , r}, we have p−1

2
< ki ≤ p− 1. Then ki ≤ p− 1 < p ≤ 2ki, hence as is

well known
(
2ki
ki

)
≡ 0 (mod p). We now prove that in this case,

(
2k
k

)
≡ 0 (mod p), so that both

sides in (12) vanish. We use Legendre Theorem [Dic66, p. 263] that the p-adic valuation of the
factorial n! of an integer n, written in basis p as n =

∑r
i=0 nip

i, is given by

vp(n!) =
n− Sp(n)

p− 1
, (13)

where Sp(n) :=
∑r

i=0 ni. The vanishing of
(
2k
k

)
= (2k)!

(k!)2
modulo p is equivalent to vp((2k)!) >

2vp(k), hence by (13), is equivalent to Sp(2k) < 2Sp(k). We observe that :

• for i ∈ {0, 1, . . . , r} such that 0 ≤ ki ≤ p−1
2
, then 0 ≤ 2ki ≤ p− 1;

• for i ∈ {0, 1, . . . , r} such that ki =
p−1
2

+ ℓi, with 1 ≤ ℓi ≤ p−1
2
, then 2ki = (2ℓi − 1) + p,

with 0 ≤ 2ℓi − 1 ≤ p− 1.

Denote by [N ]i the i-th digit of a composite integer N in basis p, so that

2Sp(k)− Sp(2k) =

r∑

i=0

2ki − [2k]i. (14)

We deduce the following tabular, where contrib. means “contribution to”:

ki ∈ ki 2ki contrib. [2k]i contrib. [2k]i+1 contrib. to (14)

{0, . . . , p−1
2
} ki 2ki +2ki +0 +0

{p−1
2

+ 1, . . . , p− 1} p−1
2

+ ℓi (2ℓi − 1) + p +(2ℓi − 1) +1 +p− 1 > 0

from which it follows that vp(
(
2k
k

)
) = 0 if, and only if, there exists some 0 ≤ i ≤ r such that

p−1
2

< ki. The proof of Lemma 16 is complete. �

We are now able to prove that the functional equation (11) holds. We use a Li’s trick [Li10,
§7.2], which relies this truncated series modulo p to the initial series, and on the fact that
hypergeometric functions are solutions of some second order linear differential equations.

Lemma 17. Let H(x) ∈ Z[[x]] be the series defined in (9) and for every prime p, let Hp(x) ∈ Fp[x]
be the degree (p− 1)− th truncation of H(x) modulo p defined in (10).

(i) The series H and its truncation Hp modulo p are related by the relation

H(x)1−p ≡ Hp(x) (mod p).
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(ii) The series H and its truncation Hp satisfy the functional equations

1

1− 3x
H

(
x2 + x

3x− 1

)
= H(x2) and

1

(1− 3x)1−p
Hp

(
x2 + x

3x− 1

)
= Hp(x

2).

Proof — Point (i). We have the following congruences modulo p:

Hp(x)×Hp(x)
p ×Hp(x)

p2 × . . . ≡ Hp(x)×Hp(x
p)×Hp(x

p2)× . . .

≡
∞∏

i=0

(
p−1∑

ni=0

ani
xnip

i

)

≡
∑

r∈N;0≤n0,...,nr≤p−1

r∏

i=1

ani
xn0+pn1+···+nrpr

≡
∑

n∈N

anx
n (by Lemma 16)

≡ H(x),

where the first product converges to an invertible function in Zp[[x]]. It follows that

H(x)1−p =
H(x)

H(x)p
≡ Hp(x) (mod p),

which proves (i). Now, Gaussian hypergeometric functions are known to be solution of some
second order linear differential equation. As for the hypergeometric geometric function F (x) =

F
(

1/3, 2/3
1

∣∣∣ x
)
, it satisfies the equation

x(1− x)F ′′(x) + (1− 2x)F ′(x)− 2

9
F (x) = 0

(see [GKP89, Ex. 5.108 p. 221]). We then deduce (the details of the computations are left to the
reader) two second order linear differential equations respectively satisfied by the functions x 7→

1
1−3x

H
(

x2+x
3x−1

)
and x 7→ H(x2). These two equations turn to be proportional. Since the two

preceding functions have same value and derivative at zero, they must be equal. This complete
the proof of the first functional equation. To prove the second one, it suffices to raise the first
one to the power (p− 1) and to use point (i). This completes the proofs of (ii). �

3.3.4 The last question

We have not yet answered the important question of the value of r, such that λr

(
T
(
P1, y2 = x2+x

3x−1

))
>

0. The magma experiments for small values of p ≥ 5 show that, at least for these values of p, one
has r = 2. Unfortunately, we were not able to prove this. But a close look at Elkies article [Elk01]
leads to the following Proposition, showing that this tower is actually not new.

Proposition 18. The recursive tower T
(
P1, y2 = x2+x

3x−1

)
is isomorphic to the modular tower

(X0(3 · 2n))n≥2 described by Elkies [Elk01]. This tower is asymptotically good, and even optimal,
over Fp2 for every prime p outside {2, 3}.
Proof — The model of the tower (X0(3 · 2n))n≥2 given by Elkies [Elk01, formula (45)] is the
recursive tower with base curve X = P1 and correspondence ΓfE ,gE defined by the two func-

tions fE(x) = x2 and gE(y) =
y2+3y
y−1

. One easily verifies that f = σ ◦ fE ◦ τ and g = σ ◦ gE ◦ τ
for τ(x) = 3x+1

x−1
and σ(x) = x−1

x−9
. �
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