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Abstract. In a multi-base representation of an integer (in contrast to, for example, the binary
or decimal representation) the base (or radix) is replaced by products of powers of single bases.
The resulting numeral system has desirable properties for fast arithmetic. It is usually redundant,
which means that each integer can have multiple different digit expansions, so the natural question
for the number of representations arises. In this paper, we provide a general asymptotic formula
for the number of such multi-base representations of a positive integer n. Moreover, we prove
central limit theorems for the sum of digits, the Hamming weight (number of non-zero digits,
which is a measure of efficiency) and the occurrences of a fixed digits in a random representation.

1. Introduction and Background

A numeral system1 (also called system of numeration) is a way to represent numbers. The
most common examples are, of course, the ordinary decimal and binary systems, which represent
numbers in base 10 and 2, respectively. Besides those “standard” systems, there is an immense
number of other numeral systems.

For fast arithmetic, the right choice of numeral system is an important aspect. The algorithms
we have in mind here are, for example, exponentiation in a finite group and the scalar multiplication
on elliptic curves. Both are used in cryptography, and clearly we want to improve on the running
time of those algorithms (which are often based on a Horner scheme, cf. Knuth [14]).

Starting with the binary system, one can improve the performance of the aforementioned
algorithms by adding more digits than needed. Thus, we make the numeral system redundant,
which means that each element can have a lot of different representations. For instance, using
digits 0, 1 and −1 can lead to a speed-up, cf. Morain and Olivos [20] for such a scalar multiplication
algorithm on elliptic curves. To gain back the uniqueness, additional syntax can complement the
redundant system. In the example using digits 0, 1 and −1, this can be the non-adjacent form, see
Reitwiesner’s seminal paper [25]. Generalizations in that direction can be found in [3, 9, 19,27].

A different way to get redundancy, and thereby a better running time of the algorithms mentioned
above, is to use double-base and multi-base numeral systems. For example, we can represent a
number by a finite sum of terms a` 3α`7β`11γ` for some digits a`, which leads to a multi-base system
with three bases. A formal definition is given in the next section. Note that multiplication by one
of the bases (in the example: 3, 7 or 11) is extremely simple for such representations, just like
doubling is easy for binary representations. This is a very desirable property for fast arithmetic.

Double-base numeral systems are used for cryptographic applications, see for example [1,5, 6].
The typical bases are 2 and 3. With these bases (and a digit set containing at least 0 and 1),
each positive integer has a double-base representation, cf. Berthé and Imbert [2]. When using

Date: November 5, 2018.
2010 Mathematics Subject Classification. 11A63; 05A16, 05A17, 68R05, 94A60.
Key words and phrases. multi-base representations, asymptotic formula, partitions.
Daniel Krenn is supported by the Austrian Science Fund (FWF): P24644, by the Austrian Science Fund (FWF):

F5510, which is part of the Special Research Program "‘Quasi-Monte Carlo Methods: Theory and Applications"’, by
the Austrian Science Fund (FWF): I1136, and by the Austrian Science Fund (FWF): W1230, Doctoral Program
“Discrete Mathematics”.

Dimbinaina Ralaivaosaona is supported by the Subcommittee B of Stellenbosch University, South Africa.
Stephan Wagner is supported by the National Research Foundation of South Africa under grant number 70560.
1We use the term numeral system rather than number system as it is also called sometimes, since that name is

ambiguous. For example, the system of p-adic numbers or the system of real numbers are called number systems.
1

ar
X

iv
:1

50
3.

08
59

4v
1 

 [
m

at
h.

N
T

] 
 3

0 
M

ar
 2

01
5



2 DANIEL KRENN, DIMBINAINA RALAIVAOSAONA, AND STEPHAN WAGNER

general bases, less is known on the existence, cf. Krenn, Thuswaldner and Ziegler [16] for some
results using small symmetric digit sets. However, choosing the digit set large enough (so that the
numeral system with only one of the bases can already represent all positive integers), existence
can always be guaranteed. Thus, when each positive integer has a multi-base representation, a
natural further question arises— and this is also the main question studied in this article: how
many representations does each integer have? Our Theorem I provides an (asymptotic) answer to
this question.

The question is also motivated by the cryptoanalysis of evaluation schemes (e.g. elliptic curve
scalar multiplication): One can avoid side channel attacks if the corresponding numeral system is
very redundant, i.e., if each element has many different representations. In addition to the number
of representations, other parameters, such as the (Hamming) weight or the sum of digits, are of
importance in this context and therefore studied here as well. The Hamming weight in particular
is a measure for the efficiency of a digit representation for fast arithmetic. We show here that the
sum of digits and the Hamming weight (as well as the number of occurrences of any fixed digit) of
a typical representation of n is of order (logn)m, where m is the number of bases.

Our paper is structured as follows. The following section provides more precise definitions and
reviews existing results on the number of representations (which are available in very special cases).
This is followed (in Section 3) by the precise statements of our main results. These results also
include, apart from the asymptotic enumeration of multi-base representations, the analysis of the
sum of digits, the (Hamming) weight and the number of occurrences of a fixed digit. The remaining
parts of this article (Sections 4 to 8) are devoted to the proofs of all these results, which are based
on generating functions and the saddle-point method. Section 9 concludes the paper.

An extended abstract of this paper was presented at the AofA 2014 conference in Paris, see [15].

2. Terminology and Existing Results

In a multi-base representation of n (or multi-base expansion), a positive integer n is expressed
as a finite sum

n =
L∑
`=1

a`B`, (>)

such that the following holds.
• The a` (called digits) are taken from a fixed finite digit set D. Here, we will be using
the canonical digit set {0, 1, . . . , d− 1} for some fixed integer d ≥ 2, but in principle our
methods work for other sets as well.

• The B` are in increasing order (i.e., B1 < B2 < · · · < BL) and taken from the set

S = {pα1
1 pα2

2 . . . pαm
m : αi ∈ N ∪ {0}}.

The numbers p1, . . . , pm are called the bases (in our setting, these are fixed coprime
integers greater than 1). The sequence of all elements of S in increasing order is sometimes
called a Hardy–Littlewood–Pólya-sequence.

In the following, we will discuss the number of representations of n in a given multi-base system,
which we denote by P (n) (we suppress the dependence on p1, p2, . . . , pm and d). Note that this
number is finite, since our digit set does not contain negative integers.

For redundant single-base representations a lot is known. Reznick [26] presents results on
certain partition functions, which correspond to representations with non-negative digits; see also
Protasov [23,24] for more recent results on the number of representations P (n). When negative
digits are used as well (for example in elliptic curve cryptography), there are usually infinitely
many representations of a number, so counting these does not make sense. In this case, expansions
with minimum number of non-zero digits are of interest, since they lead to fast evaluation schemes.
See Grabner and Heuberger [10] for a result counting minimal representations (one minimal
representation is the non-adjacent form mentioned above, cf. also [11,12,25]).

Let us consider double-base systems in particular, and let us take bases 2 and p, where p > 1
is an odd integer, and digits 0 and 1. We can group terms involving the same powers of p and
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use the uniqueness of the binary expansion to show that double-base representations with bases 2
and p are in bijection with partitions into powers of p, i.e., representations of the form

n = n0 + n1p+ n2p
2 + n3p

3 + · · ·

with (arbitrary) non-negative integers n`. More generally, the same is true for double-base
representations with bases q and p and digit set {0, 1, . . . , q− 1}. It seems that the first non-trivial
approximation of P (n) in this special case is due to Mahler [17]. By studying Mordell’s functional
equation, he obtained

logP (pn) ∼ (logn)2/(2 log p).
The much more precise result

logP (pn) = 1
2 log p

(
log n

logn

)2
+
(

1
2 + 1

log p + log log p
log p

)
logn

−
(

1 + log log p
log p

)
log logn+O(1)

was derived by Pennington [22]. The error term in the previous asymptotic formula exhibits a
periodic fluctuation. Note that for bases 2 and p, the function P (n) fulfils the recurrence relation

P (n) =
{
P (n− 1) + P (n/p) if p | n,
P (n− 1) otherwise,

which has been known for a long time in conjunction with partitions of integers.
For further reference and more information see A005704 in the On-Line Encyclopedia of Integer

Sequences [21] and see also [5, 18] for the connection to double-base systems.

3. Main Results

We present our main results now. The aim of this work is to give an asymptotic formula in a
more general set-up. Throughout this paper, d ≥ 2 and m ≥ 2 are fixed integers, and p1, p2, . . . ,
pm are integers such that 1 < p1 < p2 < · · · < pm and gcd(pi, pj) = 1 for i 6= j. As our first main
theorem, we prove an asymptotic formula for the number of representations of n of the form (>).
It will be convenient to use the abbreviation

κ = log d
m!

m∏
j=1

1
log pj

.

Theorem I. If m ≥ 3, then the number P (n) of distinct multi-base representations of n of the
form (>) satisfies the asymptotic formula

logP (n) = C0(logn)m + C1(logn)m−1 log logn+ C2(logn)m−1 +O
(
(logn)m−2 log logn

)
for n→∞, where

C0 = κ,

C1 = −m(m− 1)κ,

C2 = κm
(

1 + 1
2

m∑
j=1

log pj − 1
2 log d− log(κm)

)
.

In the case that there are precisely two bases, we have the following more precise asymptotic
result.

Theorem II. If m = 2, then the number P (n) of distinct multi-base representations of n of the
form (>) satisfies the asymptotic formula

P (n) = K(n)(logn)K0nK1 exp
(
κ log2

(
n

logn

))
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for n→∞, where K(n) is a fluctuating function of n, that is, bounded above and below by positive
constants, and

K0 = 1
2 + 2κ

(
log(2κ)− 1

2 (log p1 + log p2 − log d)
)
,

K1 = 2κ
(
1− log(2κ) + 1

2 (log p1 + log p2 − log d)
)
− 1.

Note that the first two terms of the asymptotic formula in Theorem I coincide with those in
Theorem II.

Moreover, we study the distribution of three natural parameters in random multi-base repre-
sentations, namely the sum of digits, i.e. a1 + a2 + · · ·+ aL in the notation of (>), the Hamming
weight (the number of non-zero coefficients a`) and the number of occurrences of a fixed digit b.
We get the following theorems.

Theorem III. The sum of digits in a random multi-base representation of n of the form (>)
asymptotically follows a Gaussian distribution with mean and variance equal to

µn = κ(d− 1)
2 log d (logn)m +O

(
(logn)m−1 log logn

)
and

σ2
n = κ(d− 1)(d+ 1)

12 log d (logn)m +O
(
(logn)m−1 log logn

)
respectively.

Theorem IV. The Hamming weight of a random multi-base representation of n of the form (>)
asymptotically follows a Gaussian distribution with mean and variance equal to

µn = κ(d− 1)
d log d (logn)m +O

(
(logn)m−1 log logn

)
and

σ2
n = κ(d− 1)

d2 log d (logn)m +O
(
(logn)m−1 log logn

)
respectively.

Theorem V. Let b ∈ {0, 1, . . . , d − 1}. The number of occurrences of the digit b in a random
multi-base representation of n of the form (>) asymptotically follows a Gaussian distribution with
mean and variance equal to

µn = κ

d log d (logn)m +O
(
(logn)m−1 log logn

)
and

σ2
n = κ(d− 1)

d2 log d (logn)m +O
(
(logn)m−1 log logn

)
respectively.

The proofs of all these theorems are based on a saddle-point analysis of the associated generating
functions. As it turns out, the tail estimates are most challenging, especially in the case m = 2
(see Section 5 for details). For the asymptotic analysis of the various harmonic sums that occur,
we apply the classical Mellin transform technique, see [7].

4. The Generating Function

We start with a generating function for our problem. As mentioned earlier, we define the set

S = {pα1
1 pα2

2 · · · pαm
m : αj ∈ N ∪ {0}},

which is exactly the monoid that is freely generated by p1, p2, . . . , pm. Note that the representations
of n correspond exactly to partitions of n into elements of S where each term has multiplicity at
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most d− 1. The generating function for such partitions, where the first variable z marks the size n
and the second variable u marks the sum of digits, can be written as

F (z, u) =
∏
h∈S

(
1 + uzh + u2z2h + · · ·+ ud−1z(d−1)h

)
=
∏
h∈S

1− (uzh)d

1− uzh . (4.1)

Likewise, we have the generating function

G(z, u) =
∏
h∈S

(
1 + uzh + uz2h + · · ·+ uz(d−1)h

)
=
∏
h∈S

(
1 + uzh

1− z(d−1)h

1− zh

)
, (4.2)

where the second variable marks the Hamming weight (number of non-zero digits, or equivalently
number of distinct parts in a partition). For a digit b ∈ {0, 1, . . . , d− 1}, whose occurrences will be
marked by u, we use the generating function

Hb(z, u) =
∏
h∈S

(
1 + zh + · · ·+ uzbh + · · ·+ z(d−1)h

)
=
∏
h∈S

(
1− zdh

1− zh + (u− 1)zbh
)
. (4.3)

Obviously, F (z, 1) = G(z, 1) = Hb(z, 1). We would like to apply the saddle-point method to
these generating functions. The trickiest part in this regard are the rather technical tail estimates,
especially when m = 2, which will be discussed in the next section. We will also need an asymptotic
expansion in the central region. To this end, we define the three functions

f(t, u) = logF (e−t, u) =
∑
h∈S

log
(
1 + ue−ht + u2e−2ht + · · ·+ ud−1e−(d−1)ht),

g(t, u) = logG(e−t, u) =
∑
h∈S

log
(
1 + ue−ht + ue−2ht + · · ·+ ue−(d−1)ht)

and

hb(t, u) = logHb(e−t, u) =
∑
h∈S

log
(
1 + e−ht + · · ·+ ue−bht + · · ·+ e−(d−1)ht).

Lemma 1. Suppose that u lies in a fixed bounded positive interval around 1, e.g. u ∈ [1/2, 2].
(1) For certain (real-)analytic functions f1(u), f2(u), . . . , fm(u) with

fm(u) = log(1 + u+ · · ·+ ud−1)
m∏
j=1

1
log pj

,

we have the following asymptotic formula as t→ 0+ (t positive and real), uniformly in u:

f(t, u) = fm(u)
m! (log 1/t)m + fm−1(u)

(m− 1)! (log 1/t)m−1 + · · ·+ f1(u)(log 1/t) +O(1) .

Moreover,

∂

∂t
f(t, u) = − fm(u)

(m− 1)! t (log 1/t)m−1 +O
(
t−1(log 1/t)m−2)

and
∂2

∂t2
f(t, u) = fm(u)

(m− 1)! t2 (log 1/t)m−1 +O
(
t−2(log 1/t)m−2) .

Finally, there exists an η > 0 such that for complex t with |Im t| ≤ η, we have

∂3

∂t3
f(t, u) = O

(
(Re t)−3(log 1/(Re t))m−1)

as Re t→ 0+, again uniformly in u.
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(2) Likewise, there exist functions g1(u), g2(u), . . . , gm(u) such that

g(t, u) = gm(u)
m! (log 1/t)m + gm−1(u)

(m− 1)! (log 1/t)m−1 + · · ·+ g1(u)(log 1/t) +O(1) ,

and the same conditions as in (1) hold with

gm(u) = log(1 + (d− 1)u)
m∏
j=1

1
log pj

.

(3) Moreover, for each digit b ∈ {0, 1, . . . , d − 1}, there exist functions hb,1(u), hb,2(u), . . . ,
hb,m(u) such that

hb(t, u) = hb,m(u)
m! (log 1/t)m + hb,m−1(u)

(m− 1)! (log 1/t)m−1 + · · ·+ hb,1(u)(log 1/t) +O(1) ,

and the same conditions as in (1) hold with

hb,m(u) = log(d− 1 + u)
m∏
j=1

1
log pj

.

Proof. To prove the first part, we apply the classical Mellin transform technique to deal with
the harmonic sums, see the paper of Flajolet, Gourdon and Dumas [7]. Consider first the Mellin
transform

Y (s, u) =
∫ ∞

0
log
(
1 + ue−t + u2e−2t + · · ·+ ud−1e−(d−1)t)ts−1 dt.

Integration by parts allows us to provide a meromorphic continuation (cf. Hwang [13]). We have

Y (s, u) = 1
s

∫ ∞
0

ts
ue−t + 2u2e−2t + · · ·+ (d− 1)ud−1e−(d−1)t

1 + ue−t + · · ·+ ud−1e−(d−1)t dt,

which exhibits the pole at 0 with residue log
(
1 + u+ u2 + · · ·+ ud−1), i.e., we have

Y (s, u) ∼ s−1 log(1 + u+ · · ·+ ud−1)

as s→ 0. By repeating this process one obtains a meromorphic continuation with further poles at
−1,−2, . . ..

Moreover, since the integrand in the definition of Y (s, u) decays exponentially as Re t→∞, we
can change the path of integration to the ray consisting of all complex numbers t with Arg t = ε > 0,
where ε is chosen small enough so that there is no t with Arg t ≤ ε for which the expression inside
the logarithm vanishes (this is possible since u was assumed to be positive, so there are no real
values of t for which this happens). Set β = eiε, and perform the change of variables t = βv to
obtain

Y (s, u) = βs
∫ ∞

0
log
(
1 + ue−βv + u2e−2βv + · · ·+ ud−1e−(d−1)βv)vs−1 dv.

If now s = σ + iτ with σ > 0, then the integral is uniformly bounded in τ for fixed σ, while the
factor βs = eiεσ−ετ decays exponentially as τ → ∞. The same can be done for σ = 0 and for
negative values of σ (after suitable integration by parts) as well as negative τ (by symmetry).
Therefore, we have

Y (σ + iτ, u) = O
(
e−ε|τ |

)
as τ →∞, uniformly in u.

Second, let us consider the Dirichlet series associated with the set S, i.e., D(s) =
∑
h∈S h

−s. It
can be written as a product of elementary functions

D(s) =
∑
h∈S

h−s =
m∏
j=1

1
1− p−sj

. (4.4)

Each factor 1/(1 − p−sj ) has a simple pole at 0 and its singular expansion there is given by
1/(1− p−sj ) ∼ 1/(s log pj) as s→ 0.
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Next we consider the Mellin transform of f(t, u), which is given by Y (s, u)D(s). This function
has a pole of order m+ 1 at s = 0, so the Laurent series of Y (s, u)D(s) has the form

fm(u)
sm+1 + fm−1(u)

sm
+ · · ·+ f1(u)

s2 + f0(u)
s

+ · · · ,

with fm(u) as indicated in the statement of our lemma. The other coefficients can be expressed in
terms of certain improper integrals. Applying the Mellin inversion formula, we get

f(t, u) = 1
2πi

∫ c+i∞

c−i∞
Y (s, u)D(s)t−s ds

for any c > 0. Following Flajolet, Gourdon and Dumas [7, Theorem 4], we shift the line of integration
to the left and pick up residues at the poles. This is possible because of the aforementioned growth
properties of Y (s, u). The main contribution comes from the pole at s = 0, where the residue is
indeed

fm(u)
m! (log 1/t)m + fm−1(u)

(m− 1)! (log 1/t)m−1 + · · ·+ f1(u)(log 1/t) + f0(u).

There are further poles at all multiples of 2πi/ log pj (1 ≤ j ≤ m), which are all simple poles (no
two of them coincide) in view of the fact that the pj were assumed to be pairwise coprime, hence
they only contribute O(1). In fact, the O(1) term can be replaced by a sum of m Fourier series
with periods log pj (1 ≤ j ≤ m) that are given by

Ψj(t) =
∑

k∈Z\{0}

Res
s=2πik/ log pj

Y (s, u)D(s)t−s

=
∑

k∈Z\{0}

Y
( 2πik

log pj
, u
)
· 1

log pj

m∏
r=1
r 6=j

1
1− p−2πik/ log pj

r

exp
(
−2πik log t

log pj

)
.

We remark that these Fourier series have exponentially decaying coefficients, since Y (s, u) decays
exponentially in imaginary direction, while Baker’s theorem on linear forms in logarithms (see
Chapter 12 of [4]) guarantees that

m∏
r=1
r 6=j

1∣∣1− p−2πik/ log pj
r

∣∣
is bounded above by a power of k: indeed, there exist constants AΛ, BΛ (depending on the bases
p1, p2, . . . , pm) such that

Λ = |k log pr − ` log pj | ≥ AΛk
−BΛ

for all r 6= j and integers k and ` not equal to 0. Thus, if ‖ · ‖ denotes the distance to the nearest
integer, ∥∥∥∥k log pr

log pj

∥∥∥∥ ≥ AΛ

log pj
k−BΛ

and consequently∣∣1− p−2πik/ log pj
r

∣∣ =
∣∣∣1− exp

(
−2πik log pr

log pj

)∣∣∣ ≥ 4
∥∥∥∥k log pr

log pj

∥∥∥∥ ≥ 4AΛ

log pj
k−BΛ .

It follows that
m∏
r=1
r 6=j

1∣∣1− p−2πik/ log pj
r

∣∣ = O
(
k(m−1)BΛ

)
,

which in turn means that

Res
s=2πik/ log pj

Y (s, u)D(s)t−s = O
(
|k|(m−1)BΛ e−2πε|k|/ log pj

)
.

Thus each of the Fourier series Ψj is convergent and indeed represents a smooth function. This
proves the asymptotic formula for f(t, u). The derivatives ∂

∂tf(t, u) and ∂2

∂t2 f(t, u) have Mellin
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transforms (1−s)Y (s−1, u)D(s−1) and (s−1)(s−2)Y (s−2, u)D(s−2) respectively, so essentially
the same arguments apply, now with the main terms coming from the poles at 1 and 2 respectively.

It remains to prove the estimate for the third derivative. Note that it can be written as
∂3

∂t3
f(t, u) =

∑
h∈S

h3e−ht
Q(e−ht, u)

(1 + ue−ht + · · ·+ ud−1e−(d−1)ht)3 ,

where Q is some polynomial. If we choose η (recall that our result will be valid for |Im t| ≤ η)
small enough so that the denominator stays away from 0 (compare the analysis of Y (s, u) above),
the last factor is uniformly bounded by a constant. The Mellin transform of∑

h∈S

h3e−ht

is given by Γ(s)D(s− 3), to which we can apply the same arguments as for the harmonic sums
encountered before. The dominant singularity is clearly a pole of order m at s = 3 in this case, so
that the desired estimate follows immediately.

The proofs of the second and the third part of Lemma 1 are analogous. �

5. Estimating the Tails

For our application of the saddle-point method, we need to estimate the tails (i.e., the parts
where z is away from the positive real axis) of the generating functions given in (4.1), (4.2) and (4.3).
This is done in the following sequence of lemmas. First of all, let us introduce some notation. For
r > 0, we set

S(r) = S ∩ [1, 1/r] = {h ∈ S : hr ≤ 1}.
It is straightforward to prove that

|S(r)| = (log 1/r)m

m!
∏m
j=1 log pj

+O
(
(log 1/r)m−1) (5.1)

as r → 0+. Note that later (starting with the next section), r will be determined by the saddle
point equation.

Lemma 2. Let u be in the interval [ 1
2 , 2], and let z = e−r+2πiy with r > 0 and y ∈ [− 1

2 ,
1
2 ]. There

exists an absolute constant C such that
|F (z, u)|
F (|z| , u) ≤ exp

(
−C

∑
h∈S(r)

‖hy‖2
)
,

|G(z, u)|
G(|z| , u) ≤ exp

(
−C

∑
h∈S(r)

‖hy‖2
)

and
|Hb(z, u)|
Hb(|z| , u) ≤ exp

(
−C

∑
h∈S(r)

‖hy‖2
)
,

where ‖ · ‖ denotes the distance to the nearest integer.

Proof. For positive real a and complex w, we have the two identities
|1 + aw|2

(1 + a |w|)2 = 1− 2a(|w| − Rew)
(1 + a |w|)2

and ∣∣1 + aw + aw2
∣∣2

(1 + a |w|+ a |w|2)2
= 1− 2a(|w| − Rew)(1 + 2 |w|+ a |w|2 + 2 Rew)

(1 + a |w|+ a |w|2)2
.

Assuming that a ∈ [ 1
2 , 2] and |w| ≤ 2, we get

|1 + aw|2

(1 + a |w|)2 ≤ 1− 1
25(|w| − Rew) ≤ exp

(
− 1

25(|w| − Rew)
)

(5.2)
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and ∣∣1 + aw + aw2
∣∣2

(1 + a |w|+ a |w|2)2
≤ 1− 1

169(|w| − Rew) ≤ exp
(
− 1

169(|w| − Rew)
)
. (5.3)

Now let d be even, set a = u and w = zh, so that (5.2), together with the triangle inequality, yields∣∣∣1 + uzh + u2z2h + · · ·+ ud−1z(d−1)h
∣∣∣

≤
∣∣1 + uzh

∣∣+ u2 |z|2h
∣∣1 + uzh

∣∣+ · · ·+ ud−2 |z|(d−2)h ∣∣1 + uzh
∣∣

≤
(
1 + u |z|h + u2 |z|2h + · · ·+ ud−1 |z|(d−1)h ) exp

(
− 1

50
(
|z|h − Re

(
zh
) ))

.

Taking the product over all h ∈ S gives

|F (z, u)| ≤ F (|z| , u) exp
(
− 1

50
∑
h∈S

(
|z|h − Re

(
zh
) ))

= F (|z| , u) exp
(
− 1

50
∑
h∈S

e−hr (1− cos(2πhy))
)

≤ F (|z| , u) exp
(
− 1

50e
∑

h∈S(r)

(1− cos(2πhy))
)

≤ F (|z| , u) exp
(
− 8

50e
∑

h∈S(r)

‖hy‖2
)
,

which proves the first statement of the lemma with C = 4/(25e). For odd d, we can argue in a
similar fashion, but we also apply (5.3) (with a = 1 and w = uzh) and use the triangle inequality
in the following way:∣∣1 + uzh + u2w2 + · · ·+ ud−1z(d−1)h∣∣

≤
∣∣1 + uzh + u2z2h∣∣+ u3 |z|3h

∣∣1 + uzh
∣∣+ · · ·+ ud−2 |z|(d−2)h ∣∣1 + uzh

∣∣.
For the generating function G(z, u), the reasoning is fully analogous, but we also have to use (5.3)
with a = u and w = zh. A similar situation occurs for Hb(z, u). �

Next we estimate the sum that occurs in the previous lemma. When m > 2, relatively simple
estimates suffice for our purposes, while we need an additional auxiliary result in the case that
m = 2. The following lemma provides the necessary estimates.

Lemma 3. Let r > 0 and y ∈ [− 1
2 ,

1
2 ], and set

Σ = Σ(r, y) =
∑

h∈S(r)

‖hy‖2 ,

where again ‖ · ‖ denotes the distance to the nearest integer. For sufficiently small r, we have the
following estimates for Σ.

(a) If |y| ≤ r/2, then Σ ≥ A1(y/r)2(log(1/r))m−1 for some positive constant A1 (that only
depends on m and the set of bases {p1, p2, . . . , pm}).

(b) If |y| ≥ r/2, then Σ ≥ A2(log(1/r))m−1 for some positive constant A2 (that also only
depends on m and the set of bases {p1, p2, . . . , pm}).

Now let m = 2. For any constant K > 0 and any δ > 0, there exists a constant B > 0 depending
on p1, p2,K and δ such that the following holds for sufficiently small r.

(c) We have Σ ≥ K log(1/r), except when y lies in a certain set E(K, r) of Lebesgue measure
at most Br1−δ.

Proof. For better readability, the proof is split into several claims.

A. Statement (a) is correct.
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Proof of A. Let |y| ≤ r/2, which implies |hy| ≤ 1
2 for all h ∈ S(r). Then we have

Σ =
∑

h∈S(r)

‖hy‖2 =
∑

h∈S(r)

h2y2 ≥
∑

h∈S(r)
h/∈S(r/ρ)

h2y2 ≥ ρ2(y/r)2 (|S(r)| − |S(r/ρ)|)

for any ρ > 0. If we take ρ sufficiently small and apply the asymptotic formula in (5.1), we obtain
estimate (a). �

B. A2 can be chosen in such a way that statement (b) holds for |y| ≤ r2/3.

Proof of B. Let us assume that r/2 ≤ |y| ≤ r2/3. Then we have log |1/y| ≥ 2
3 log(1/r), and

essentially the same idea as above works again. We obtain

Σ =
∑

h∈S(r)

‖hy‖2 ≥
∑

h∈S(2|y|)

h2y2 ≥
∑

h∈S(2|y|)
h/∈S(|y|/ρ)

h2y2 ≥ ρ2 (|S(2 |y|)| − |S(|y| /ρ)|) ,

and formula (5.1) can be applied again to obtain (b). �

We are left with the case that |y| > r2/3, so we will assume this from now on. By Dirichlet’s
approximation theorem, there exists a rational number a/q (with coprime a and q) such that
q ≤ r−2/3 and ∣∣∣∣y − a

q

∣∣∣∣ ≤ r2/3

q
.

C. There exists a positive constant c1 that only depends on m and the set of bases {p1, p2, . . . , pm}
such that for small enough r and any coprime integers a, q with q ≤ r−2/3, there are at least

c1(log q)(log 1/r)m−1

many elements h1 ∈ S(r1/3) with ‖ah1/q‖ ≥ 1/q.

Proof of C. For q = 1, the statement is trivial, so we assume that q 6= 1. Let us now distinguish
whether q is in the set S or not.

If q ∈ S, then write q = pα1
1 pα2

2 · · · pαm
m . We have

A = max(α1, α2, . . . , αm) ≥ log q
log(p1p2 . . . pm) .

Suppose that αi = A. Consider the elements h1 = pβ1
1 pβ2

2 · · · pβm
m ∈ S with 0 ≤ βi < αi = A. For

any of these h1, the number ah1/q is not an integer and thus ‖ah1/q‖ ≥ 1/q. Let us now find a lower
bound for the number of such elements h1. Using (5.1) (applied to the set Si = {s ∈ S : pi - s}),
we find that for some positive constants ĉ1 and c1, there exist at least

ĉ1A
∣∣Si(r1/3)

∣∣ ≥ c1(log q)(log 1/r)m−1

elements h1 ∈ S with h1 ≤ r−1/3.
If q /∈ S, then we clearly have ‖h1a/q‖ ≥ 1/q for all h1 ∈ S, so the same statement as in the

first case holds again. �

D. There exists a positive constant c that only depends on m and the set of bases {p1, p2, . . . , pm}
such that for sufficiently small r and r2/3 < |y| ≤ 1

2 , there are at least

c(log 1/r)m−1

many elements h ∈ S(r) with ‖hy‖ ≥ 1/(3p1).

Proof of D. Let us divide the interval [1/q, 1/2] into subintervals
I0 = [1/(2p1), 1/2], I1 = [1/(2p2

1), 1/(2p1)], . . .
whose ends have a ratio of p1 (except possibly for the last one). There are at most

log(q/2)/ log(p1) ≤ c2 log q
such intervals.
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By C and the pigeonhole principle, we can choose one of these intervals (Ij , say) such that for
at least c1/c2 (log 1/r)m−1 distinct numbers h1 ∈ S with h1 ≤ r−1/3, the number ‖h1a/q‖ lies in
this interval Ij , i.e., we have 1/(2pj+1

1 ) ≤ ‖h1a/q‖ ≤ 1/(2pj1).
Now we have ∥∥∥∥h1p

j
1a

q

∥∥∥∥ = pj1

∥∥∥∥h1a

q

∥∥∥∥ ≥ 1
2p1

,

which means that we have at least c1/c2 (log 1/r)m−1 elements h = h1p
j
1 ∈ S with ‖ah/q‖ ≥ 1/(2p1)

and
h = h1p

j
1 ≤ h1q ≤ r−1/3r−2/3 = 1

r
.

All of these numbers h are therefore in the set S(r). For sufficiently small r, it follows that

‖hy‖ ≥
∥∥∥∥haq

∥∥∥∥− r2/3h

q
≥ 1

2p1
− r2/3h1q

q
≥ 1

2p1
− r1/3 ≥ 1

3p1
,

which proves the claim. �

E. A2 can be chosen in such a way that statement (b) holds for |y| ≥ r2/3.

Proof of E. The result follows from D since

Σ ≥ c
(

log 1
r

)m−1
·
( 1

3p1

)2
= A2

(
log 1

r

)m−1

for A2 = c/(9p2
1) if r is sufficiently small. �

So (b) is now proven in both cases, and it remains to prove statement (c) of the lemma, so
assume that m = 2. Choose some ε ∈ (0, δ), set

L = b(1− ε) logp1 1/rc

and define, for a positive integer M , the set

D(M) =
{
v ∈ [0, 1] :

∥∥p`1v∥∥ < p−2
1 for 0 ≤ ` ≤ L with at most M exceptions

}
.

The constant M will be chosen appropriately at the end of the proof.
We get the following result, which almost proves (c).

F. Set R = bε logp2 1/rc. If y is not contained in the set

E =
⋃
k≤R

{y ∈ [− 1
2 ,

1
2 ] : pk2y mod 1 ∈ D(M)},

then
Σ ≥ εp−2

1 M logp2 1/r.

Proof of F. By our assumptions, there is no k ≤ R such that pk2y mod 1 ∈ D(M). Therefore, for a
fixed k the inequality

∥∥p`1pk2y∥∥ ≥ p−2
1 holds for more than M choices of ` ≤ L. Moreover, we have

p`1p
k
2 ≤ r−1+ε · r−ε = r−1 for all such k and `.
It follows that

Σ =
∑

h∈S(r)

‖hy‖2 ≥
∑
`≤L

∑
k≤R

∥∥p`1pk2y∥∥2 ≥ (R+ 1)Mp−2
1 ≥ εp−2

1 M logp2 1/r,

which is what we wanted to show. �

It remains to show that the set E is small. This is done in the following two claims.

G. The Lebesgue measure of the set D(M) is at most O
(
LMpM−L1

)
.



12 DANIEL KRENN, DIMBINAINA RALAIVAOSAONA, AND STEPHAN WAGNER

Proof of G. First, note that
∥∥p`1v∥∥ ≥ p−2

1 unless the (`+ 1)-th and the (`+ 2)-th digit after the
decimal2 point in the p1-adic expansion of v are either both 0 or both p1 − 1. For an upper bound,
we relax this condition to both digits being equal.

Therefore, for an element of D(M), at least L−M + 1 of the first L+ 2 digits have to be equal
to the previous digit. Allowing exactly j ≤ M exceptions, there are

(
L+1
j

)
number of ways to

choose the “exceptional” digits. Moreover, each digit that has to be equal to the previous one
reduces the Lebesgue measure by a factor of p1.

Putting everything together, we end up finding that the Lebesgue measure of D(M) is at most
M∑
j=0

(
L+ 1
j

)
p
−(L+1)+j
1 = O

(
LMpM−L1

)
,

which proves the claim. �

We need one more claim, which concerns the size of the exceptional set E.

H. The set E has Lebesgue measure O
(
r1−ε(log 1/r)M+1).

Proof of H. Since y ∈ [− 1
2 ,

1
2 ] (an interval of length 1) and pk2 is an integer, the Lebesgue measure

λ is preserved under taking the pre-image of v 7→ pk2v mod 1. Therefore, we have

λ
(
{y : pk2y mod 1 ∈ D(M)}

)
= λ(D(M))

and obtain
λ(E) ≤

∑
k≤R

λ(D(M)) = O
(
RLMpM−L1

)
= O

(
r1−ε(log 1/r)M+1) .

Note that the implied constant only depends on p1, p2, M and ε. �

If we chooseM = dKε−1p2
1 log p2e, then statement (c) follows from the claims above (in particular,

F and H) with exceptional set E = E(K, r). Note that λ(E) = O
(
r1−ε(log 1/r)M+1) = O

(
r1−δ).

This completes the proof. �

6. Application of the Saddle-Point Method

We are now ready to apply the saddle-point method (see Chapter VIII of [8] for an excellent
introduction), which gives us asymptotic formulas for the coefficients of the generating functions
F (z, u), G(z, u) and Hb(z, u). In the following, we use the notations ft(t, u), ftt(t, u), . . . for the
derivatives of f with respect to the first coordinate.

Lemma 4. Let u ∈ [ 1
2 , 2], and define r > 0 implicitly by the saddle-point equation

n = −ft(r, u).
The coefficients of F (z, u) satisfy the asymptotic formula

[zn]F (z, u) = 1√
2πftt(r, u)

enr+f(r,u)(1 +O
(
(logn)−(m−1)/5)),

uniformly in u. Likewise, if we define r > 0 by
n = −gt(r, u),

then the coefficients of G(z, u) satisfy the asymptotic formula

[zn]G(z, u) = 1√
2πgtt(r, u)

enr+g(r,u)(1 +O
(
(logn)−(m−1)/5)),

uniformly in u, and if we define r > 0 by
n = −ha,t(r, u),

2We should rather correctly say “p1-point” instead of “decimal point” since p1 is the base of our numeral system,
but this may lead to even more confusion.



MULTI-BASE REPRESENTATIONS OF INTEGERS 13

then the coefficients of Hb(z, u) satisfy the asymptotic formula

[zn]Hb(z, u) = 1√
2πhb,tt(r, u)

enr+hb(r,u)(1 +O
(
(logn)−(m−1)/5)).

Let us first give a short outline on the proof, which we only present for F , since the other two
cases are analogous. We start by using Cauchy’s integral formula to extract the coefficient of zn
from F (z, u). After the subsequent change to polar coordinates (z = e−(r+it)), we choose r to
satisfy the saddle point equation. Thus the Taylor expansion in the central region simplifies (the
first order term vanishes). Lemma 1 shows that r is of order (logn)m−1/n. In the central region
(to be defined later), the error term is O

(
log(1/r)−(m−1)/5) by Lemma 1, and we can complete the

tails to get a Gaussian integral. The remaining parts of the integral are estimated by means of
Lemmas 2 and 3. If m > 2, parts (a) and (b) of Lemma 3 already give sufficiently strong bounds.
In the case that m = 2, we have to divide the tails further into a small “exceptional part”, where
we apply (b), and the rest, where the stronger bound from (c) holds.

So much for the overview; let us start with the actual proof now.

Proof. By Cauchy’s integral formula, we have

[zn]F (z, u) = 1
2πi

∮
C
F (z, u) dz

zn+1 ,

where C is a circle around 0 with radius less than 1. Let r > 0 and perform the change of variables
z = e−t = e−(r+iτ), so that the integral becomes

[zn]F (z, u) = 1
2π

∫ π

−π
exp(nr + f(r + iτ, u) + inτ) dτ. (6.1)

Now we choose r = r(n, u) > 0 to be the unique positive solution of the saddle-point equation

n = −ft(r, u). (6.2)

Let c be a constant such that (m− 1)/3 < c < (m− 1)/2, we choose specifically c = 2(m− 1)/5.
Consider first the integral

I0 = 1
2π

∫ r(log 1/r)−c

−r(log 1/r)−c

exp(nr + f(r + iτ, u) + inτ) dτ.

For |τ | ≤ r(log 1/r)−c, using Taylor expansion and Lemma 1, we have

f(r + iτ, u) = f(r, u) + ift(r, u)τ − ftt(r, u)τ
2

2 +O
(
|τ |3 sup

|y|≤τ
|fttt(r + iy, u)|

)
= f(r, u) + ift(r, u)τ − ftt(r, u)τ

2

2 +O
(
(log 1/r)m−1−3c) .

Therefore, by the definition of r in (6.2), we have

I0 = enr+f(r,u)

2π

∫ r(log 1/r)−c

−r(log 1/r)−c

exp
(
−ftt(r, u)τ

2

2

)
dτ
(
1 +O

(
(log 1/r)m−1−3c) ).

Furthermore,∫ r(log 1/r)−c

−r(log 1/r)−c

exp
(
−ftt(r, u)τ

2

2

)
dτ

=
∫ ∞
−∞

exp
(
−ftt(r, u)τ

2

2

)
dτ − 2

∫ ∞
r(log 1/r)−c

exp
(
−ftt(r, u)τ

2

2

)
dτ

=

√
2π

ftt(r, u) − 2
∫ ∞
r(log 1/r)−c

exp
(
−ftt(r, u)τ

2

2

)
dτ,
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and

0 ≤
∫ ∞
r(log 1/r)−c

exp
(
−ftt(r, u)τ

2

2

)
dτ ≤

∫ ∞
r(log 1/r)−c

exp
(
−τ2ftt(r, u)r(log 1/r)−c

)
dτ

=
2 exp

(
−ftt(r, u)r2(log 1/r)−2c/2

)
ftt(r, u)r(log 1/r)−c

= O
(
r(log 1/r)−(m−1−c)e−γ(log 1/r)m−1−2c

)
for a constant γ > 0. Since m− 1− 2c = (m− 1)/5 > 0, the O-term goes to zero faster than any
power of log 1/r. Hence we have

I0 = enr+f(r,u)√
2πftt(r, u)

(
1 +O

(
(log 1/r)m−1−3c)) = enr+f(r,u)√

2πftt(r, u)
(
1 +O

(
(logn)−(m−1)/5)). (6.3)

It remains to show that the rest of the integral in (6.1) is small compared to I0. To this end,
note for comparison that 1/

√
2πftt(r, u) is of order r(log 1/r)−(m−1)/2. Now consider

I1 =
∫ π

r(log 1/r)−c

exp(nr + f(r + iτ, u) + inτ) dτ.

Then

|I1| ≤ enr+f(r,u)
∫ π

r(log 1/r)−c

exp(Re(f(r + iτ, u)− f(r, u))) dτ

= enr+f(r,u)
∫ π

r(log 1/r)−c

∣∣F (e−(r+iτ), u)
∣∣

F (e−r, u) dτ.

If m ≥ 3, then we can use Lemma 2 and parts (a) and (b) of Lemma 3 to show that the integrand∣∣F (e−(r+iτ), u)
∣∣ /F (e−r, u) on the right hand side is O

(
exp
(
−CA1/(2π)2 · (log 1/r)m−1−2c)) for

|τ | ≤ πr and O
(
exp
(
−CA2(log 1/r)m−1)) otherwise, which immediately shows that

|I1| = O
(
enr+f(r,u)

(
r exp

(
−CA1/(2π)2 · (log 1/r)m−1−2c)+ exp

(
−CA2(log 1/r)m−1))) .

For m = 2, we need to be more careful. Again, part (a) of Lemma 3 can be used for the interval
where |τ | ≤ πr, with the same bound as above. The rest of the integral is split again: we choose a
constant K > 0 such that CK > 1 (C as in Lemma 2), and δ > 0 such that δ < CA2 (A2 as in
Lemma 3).

If y = −τ/(2π) is not in the exceptional set E(K, r) as defined in Lemma 3, then we have∣∣F (e−(r+iτ), u)
∣∣

F (e−r, u) = O(exp(−CK log 1/r)) = O
(
rCK

)
.

By part (c) of Lemma 3, the set of τ -values for which this estimate does not hold has Lebesgue
measure O

(
r1−δ), and we have the estimate∣∣F (e−(r+iτ), u)

∣∣
F (e−r, u) = O(exp(−CA2 log 1/r)) = O

(
rCA2

)
for all those τ . Putting everything together shows that

|I1| = O
(
enr+f(r,u)(r exp

(
−CA1(log 1/r)1/5)+ rCK + rCA2+1−δ)),

which again means that I1 is negligible, since the exponents CK and CA2 + 1− δ are both > 1.
The same reasoning can of course be applied to

I2 =
∫ −r(log 1/r)−c

−π
exp(nr + f(r + iτ, u) + inτ) dτ.

This finishes the proof for the function F (z, u). The proof for G(z, u) and Hb(z, u) is analogous. �
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7. The Number of Representations

It is straightforward now to prove our main results.

Proof of Theorems I and II. We specialize by u = 1 in Lemma 4, which gives us

P (n) = [zn]F (z, 1) = 1√
2πftt(r0, 1)

enr0+f(r0,1)(1 +O
(
(logn)−(m−1)/5)),

where r0 is given by the saddle-point equation n = −ft(r0, 1) (as its unique positive solution).
Making use of Lemma 1, we get

n = fm(1)
(m− 1)!r0

(log 1/r0)m−1 +O
(
(log 1/r0)m−2) ,

which readily gives us

log 1/r0 = logn− (m− 1) log logn− log fm(1)
(m− 1)! +O

(
log logn

logn

)
(7.1)

for n→∞. Now it follows that

nr0 = fm(1)
(m− 1)! (logn)m−1

(
1 +O

(
log logn

logn

))
,

and Lemma 1 also yields

f(r0, 1) = fm(1)
m! (log 1/r0)m + fm−1(1)

(m− 1)! (log 1/r0)m−1 +O
(
(logn)m−2)

= fm(1)
m! (logn)m

(
1− m(m− 1)

logn log logn− m

logn log fm(1)
(m− 1)! +O

(
log logn
(logn)2

))
+ fm−1(1)

(m− 1)! (logn)m−1
(

1 +O
(

log logn
logn

))
+O

(
(logn)m−2 log logn

)
.

Since fm(1)/m! = κ and fm−1(1)/(m − 1)! = κm(
∑m
j=1 log pj − log d)/2, this readily proves

Theorem I (note that the factor ftt(r0, 1) only contributes O(logn) to logP (n)).
To get the more precise formula (Theorem II) in the case m = 2, we only need to expand a little

further. �

In principle, it would be possible to obtain similar (as in Theorem II), more precise asymptotic
formulas (in terms of logn and log logn) for all m ≥ 2, but the expressions become very lengthy.

8. Sum of Digits, Hamming Weight, Occurrences of a Digit

This section is devoted to the central limit theorems for the sum of digits (Theorem III), the
Hamming weight (Theorem IV) and the occurrence of a fixed digit (Theorem V). We will only
present the proof for the sum of digits; the other two proofs being analogous. The weak convergence
to a Gaussian distribution will follow from the following general theorem (see [8, Theorem IX.13]
and the comment thereafter, which states that it is sufficient to consider real values of u):

Lemma 5 (cf. [8, Theorem IX.13]). Let X1, X2, . . . be a sequence of discrete random variables
that only take on non-negative integer values. Assume that, for u in a fixed interval Ω around 1,
the probability generating function Pn(u) of Xn satisfies an asymptotic formula of the form

Pn(u) = exp(Rn(u))(1 + o(1))
uniformly with respect to u, where each Rn(u) is analytic in Ω. Assume also that the conditions

R′n(1) +R′′n(1)→∞ and R′′′(u)
(R′n(1) +R′′n(1))3/2 → 0

hold uniformly in u. Then the normalised random variables

X∗n = Xn −R′n(1)
(R′n(1) +R′′n(1))1/2

converge in distribution to a standard Gaussian distribution.
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Proof of Theorem III. We use Lemma 4. Let Xn be the sum of digits of a random multi-base
representation of n, and let

Pn(u) = [zn]F (z, u)
[zn]F (z, 1)

be the associated probability generating function. In the following, we write r(u) instead of just r
to emphasize the dependence on u (of course, r depends on n as well). Moreover, we set r0 = r(1)
as in the previous section. In view of Lemma 4, Lemma 5 applies with

Rn(u) = n(r(u)− r0) + f(r(u), u)− f(r0, 1)− 1
2 log ftt(r(u), u) + 1

2 log ftt(r0, 1).

We only have to confirm the conditions on the asymptotic behaviour of the derivatives. It is easy
to extend the argument of Lemma 1 to obtain

∂j

∂tj
∂k

∂uk
f(t, u) =

{
∂k

∂uk

fm(u)
m! (log 1/t)m +O

(
(log 1/t)m−1) , j = 0,

(−1)j(j − 1)! ∂
k

∂uk

fm(u)
(m−1)!

(log 1/t)m−1

tj +O
(
t−j(log 1/t)m−2) , j 6= 0,

(8.1)

as t → 0+, uniformly in u. The definition of r by the implicit equation n = −ft(r(u), u) allows
us to express r′(u) and all higher derivatives in terms of derivatives of f by means of implicit
differentiation: we have r′(u) = −ftu(r(u), u)/ftt(r(u), u), and so forth. Thus it is possible to
express the derivatives of Rn only in terms of f(r(u), u) and its partial derivatives, for which we
have the aforementioned asymptotic formula (8.1). Putting everything together, one obtains

∂k

∂uk
Rn(u) = 1

m!

(
∂k

∂uk
fm(u)

)(
log 1

r(u)

)m
+O

((
log 1

r(u)

)m−1
)

for k ∈ {1, 2, 3}, so (making use of (7.1))

R′n(1) ∼ f ′m(1)
m! (log 1/r0)m ∼ f ′m(1)

m! (logn)m = d− 1
2m! ·

m∏
j=1

1
log pj

(logn)m

and likewise

R′′n(1) ∼ f ′′m(1)
m! (log 1/r0)m ∼ f ′′m(1)

m! (logn)m = (d− 1)(d− 5)
12m! ·

m∏
j=1

1
log pj

(logn)m

and R′′′n (u) = O((logn)m) uniformly in u. Thus the conditions of Lemma 5 are satisfied, which
proves asymptotic normality of the distribution. However, we still need to verify the asymptotic
behaviour of the moments (which is not implied by weak convergence). To this end, we apply the
saddle point method once again.

The generating function of the total sum of digits is Fu(z, 1) = ∂
∂uF (z, u)

∣∣
u=1, and the mean is

given by

µn = [zn]Fu(z, 1)
[zn]F (z, 1) ,

so we have to determine an asymptotic formula for the coefficients of Fu(z, 1). Cauchy’s integral
formula,

[zn]Fu(z, 1) = 1
2πi

∮
C
Fu(z, 1) dz

zn+1 ,

and the change of variables z = e−t = e−(r0+iτ) (where r0 satisfies the saddle point equation as
before) yields

[zn]Fu(z, 1) = 1
2π

∫ π

−π
exp(nr0 + f(r0 + iτ, 1) + inτ) fu(r0 + iτ, 1)dτ.

Thus,

[zn]Fu(z, 1)− fu(r0, 1)[zn]F (z, 1)

= 1
2π

∫ π

−π
exp(nr0 + f(r0 + iτ, 1) + inτ) (fu(r0 + iτ, 1)− fu(r0, 1))dt.
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As we have seen in the proof of Lemma 4, the tails (the parts of the integral where |τ | ≥ r(log 1/r)−c)
are negligible in that they only contribute an error term that goes faster to 0 than any power of
log 1/r. So we may focus on the central part, where we expand into a power series

exp(nr0 + f(r0 + iτ, 1) + inτ) (fu(r0 + iτ, 1)− fu(r0, 1)) = enr0+f(r0,1)−ftt(r0,1)τ2/2

×
(
iftu(r0, 1)τ − fttu(r0, 1)

2 τ2 − iftttu(r0, 1)
6 τ3 + 4fttt(r0, 1)ftu(r0, 1) + fttttu(r0, 1)

24 τ4 + · · ·
)
.

We continue in the same way as in the proof of Lemma 4 to evaluate the integral over the central
region asymptotically by making use of the asymptotic formula (8.1). This eventually gives us

µn = [zn]Fu(z, 1)
[zn]F (z, 1) = fu(r0, 1) + ftu(r0, 1)fttt(r0, 1)− ftt(r0, 1)fttu(r0, 1)

ftt(r0, 1)2 +O
(

(log 1/r0)−(m−1)
)
.

Thus in particular

µn = fu(r0, 1) +O(1) = f ′m(1)
m! (log 1/r0)m +O

(
(log 1/r0)m−1)

= κ(d− 1)
2 log d (logn)m +O

(
(logn)m−1 log logn

)
.

We repeat the process with Fuu(z, u) + Fu(z, u) in the place of Fu(z, u) to obtain an asymptotic
formula for the second moment, which in turn yields formula

σ2
n = [zn](Fuu(z, 1) + Fu(z, 1))

[zn]F (z, 1) − µ2
n = fuu(r0, 1) + fu(r0, 1) +O

(
(log 1/r0)m−1)

= f ′m(1) + f ′′m(1)
m! (log 1/r0)m +O

(
(log 1/r0)m−1)

= κ(d− 1)(d+ 1)
12 log d (logn)m +O

(
(logn)m−1 log logn

)
.

for the variance. This completes our proof. �

9. Conclusion

We obtained an asymptotic formula for the number of representations of an integer n in a
multi-base system with given bases p1, p2, . . . , pm, which are equivalent to partitions into elements
of the set

S = {pα1
1 pα2

2 . . . pαm
m : αi ∈ N ∪ {0}}.

Moreover, we proved central limit theorems for three very natural parameters: the sum of digits
(corresponding to the length of a partition), the Hamming weight (corresponding to the number
of distinct parts of a partition), and the number of occurrences of a given digit. There are many
more parameters that could be studied; to give one further example, the probablilty that the digit
associated with a given element s ∈ S in a random multi-base representation of n is equal to b for
some b ∈ {0, 1, . . . , d− 1} is 1/d in the limit as n→∞, as one would heuristically expect. It is not
difficult to adapt our saddle point approach to this problem, the generating function being

zbs
∏
h∈S
h 6=s

1− zhd

1− zh

in this case. As it was already mentioned in Section 2, it would also be possible to extend our
results to other digit sets.
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