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PERIODIC SEQUENCES OF p-CLASS TOWER GROUPS

DANIEL C. MAYER

Dedicated to the memory of Emil Artin

Abstract. Recent examples of periodic bifurcations in descendant trees of finite p-groups with
p ∈ {2, 3} are used to show that the possible p-class tower groups G of certain multiquadratic
fields K with p-class group of type (2, 2, 2), resp. (3, 3), form periodic sequences in the descen-
dant tree of the elementary abelian root C3

2 , resp. C2
3 . The particular vertex of the periodic

sequence which occurs as the p-class tower group G of an assigned field K is determined uniquely

by the p-class number of a quadratic, resp. cubic, auxiliary field k, associated unambiguously
to K. Consequently, the hard problem of identifying the p-class tower group G is reduced to an
easy computation of low degree arithmetical invariants.

1. Introduction

In this article, we establish class field theoretic applications of the purely group theoretic dis-
covery of periodic bifurcations in descendant trees of finite p-groups, as described in our previous
papers [1, §§ 21–22, pp.182–193] and [2, § 6.2.2], and summarized in section § 2.

The infinite families of Galois groups of p-class field towers with p ∈ {2, 3} which are presented
in sections §§ 4 and 6 can be divided into different kinds. Either they form infinite periodic
sequences of uniform step size 1, and thus of fixed coclass. These are the classical and well-known
coclass sequences whose virtual periodicity has been proved independently by du Sautoy and by
Eick and Leedham-Green (see [1, § 7, pp.167–168]). Or they arise from infinite paths of directed
edges in descendant trees whose vertices reveal periodic bifurcations (see [1, Thm.21.1, p.182], [1,
Thm.21.3, p.185], and [2, Thm.6.4]). Extensive finite parts of the latter have been constructed
computationally with the aid of the p-group generation algorithm by Newman [3] and O’Brien [4]
(see [1, §§12–18]), but their indefinitely repeating periodic pattern has not been proven rigorously,
so far. They can be of uniform step size 2, as in § 4, or of mixed alternating step sizes 1 and 2, as
in § 6, whence their coclass increases unboundedly.

2. Periodic bifurcations in trees of p-groups

For the specification of finite p-groups throughout this article, we use the identifiers of the
SmallGroups database [5, 6] and of the ANUPQ-package [7] implemented in the computational
algebra systems GAP [8] and MAGMA [9, 10, 11], as discussed in [1, § 9, pp.168–169].

The first periodic bifurcations were discovered in August 2012 for the descendant trees of the
3-groups Q = 〈729, 49〉 and U = 〈729, 54〉 (see [1, § 3, p.163] and [1, Thm.21.3, p.185]), having
abelian quotient invariants (3, 3), when we, in collaboration with Bush, conducted a search for
Schur σ-groups as possible candidates for Galois groups G∞

3 (K) = Gal(F∞
3 (K)|K) of three-stage

towers of 3-class fields over complex quadratic base fields K = Q(
√
d) with d ≤ −9748 and a

certain type of 3-principalization [12, Cor.4.1.1, p.775]. The result in [12, Thm.4.1, p.774] will be
generalized to more principalization types and groups of higher nilpotency class in section § 6.
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Similar phenomena were found in May 2013 for the trees with roots 〈2187, 168〉 and 〈2187, 181|191〉
of type (9, 3) but have not been published yet, since we first have to present a classification of all
metabelian 3-groups with abelianization (9, 3).

At the beginning of 2014, we investigated the root 〈729, 45〉, which possesses an infinite balanced
cover [2, Dfn.6.1], and found periodic bifurcations in its decendant tree [2, Thm.6.4]).

In January 2015, we studied complex bicyclic biquadratic fields K = Q(
√
−1,

√
d), called special

Dirichlet fields by Hilbert [13], for whose 2-class tower groups G∞
2 (K) presentations had been given

by Azizi, Zekhnini and Taous [14, Thm.2(4)], provided the radicand d exhibits a certain prime
factorization which ensures a 2-class group Cl2(K) of type (2, 2, 2).

In section § 4, we use the viewpoint of descendant trees of finite metabelian 2-groups and our
discovery of periodic bifurcations in the tree with root 〈32, 34〉 [1, Thm.21.1, p.182] to prove a
group theoretic restatement of the main result in the paper [14], which connects pairs (m,n) of
positive integer parameters with vertices of the descendant tree T (〈8, 5〉) by means of an injective
mapping (m,n) 7→ Gm,n, as shown impressively in Figure 1.

3. Pattern recognition via Artin transfers

Let p denote a prime number and suppose that G is a finite p-group or an infinite pro-p group
with finite abelianization G/G′ of order pv with a positive integer exponent v ≥ 1.

In this situation, there exist v + 1 layers

Lyrn(G) := {G′ ≤ H ≤ G | (G : H) = pn}, for 0 ≤ n ≤ v,

of intermediate normal subgroups H EG between G and its commutator subgroup G′. For each
of them, we denote by TG,H : G → H/H ′ the Artin transfer homomorphism from G to H [15].
In our recent papers [2, § 3] and [16], the components of the multiple-layered transfer target type
(TTT) τ(G) = [τ0(G); . . . ; τv(G)] of G, resp. the multiple-layered transfer kernel type (TKT)
κ(G) = [κ0(G); . . . ;κv(G)] of G, were defined by

τn(G) := (H/H ′)H∈Lyrn(G), resp. κn(G) := (ker(TG,H))H∈Lyrn(G), for 0 ≤ n ≤ v.

The following information is known [16] to be crucial for identifying the metabelianization G/G′′

of a p-class tower group G, but usually does not suffice to determine G itself.

Definition 3.1. By the Artin pattern of G we understand the pair

(3.1) AP(G) := (τ(G);κ(G))

consisting of the multiple-layered TTT τ(G) and the multiple-layered TKT κ(G) of G.
If G is the p-tower group of a number field K, then we put AP(K) := AP(G) and speak about
the Artin pattern of K.

As Emil Artin [15] pointed out in 1929 already, using a more classical terminology, the concepts
transfer target type (TTT) and transfer kernel type (TKT) of a base field K, which we have now
combined to the Artin pattern (τ(K);κ(K)) of K, require a non-abelian setting of unramified
extensions ofK. The reason is that the derived subgroupH ′ of an intermediate group G′ < H < G
between the p-tower group G of K and its commutator subgroup G′ is an intermediate group
between G′ and the second derived subgroup G′′. Therefore, the TTT τ(G) of the p-tower group
G = G∞

p (K) coincides with the TTT τ(Gn
p (K)) of any higher derived quotient Gn

p (K) ≃ G/G(n),

for n ≥ 2 but not for n = 1, since H/H ′ ≃ (H/G(n))/(H ′/G(n)), according to the isomorphism
theorem. Similarly, we have the coincidence of TKTs κ(Gn

p (K)) = κ(G), for n ≥ 2.

4. Two-stage towers of 2-class fields

As our first application of periodic bifurcations in trees of 2-groups, we present a family of
biquadratic number fields K with 2-class group Cl2(K) of type (2, 2, 2), discovered by Azizi,
Zekhnini and Taous [14], whose 2-class tower groups G = G∞

2 (K) are conjecturally distributed
over infinitely many periodic coclass sequences, without gaps.
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This claim is stronger than the statements in the following Theorem 4.1. The proof firstly
consists of a group theoretic construction of all possible candidates for G, identified by their
Artin pattern, up to nilpotency class cl(G) ≤ 12 and coclass cc(G) ≤ 13, thus having a maximal
logarithmic order log2(ord(G)) ≤ 25. (The first part is independent of the actual realization of the
possible groups G as 2-tower groups of suitable fields K.) Secondly, evidence is provided of the
realization of at least all those groups constructed in the first part whose logarithmic order does
not exceed 11. The second part (see § 5) is done by computing the Artin pattern of sufficiently
many fields K or by using more sophisticated ideas, presented in Theorem 4.1.

Remark 4.1. Generally, the first layer of the transfer kernel type κ1(G) of G will turn out to
be a permutation [1, Dfn.21.1, p.182] of the seven planes in the 3-dimensional F2-vector space
G/G′ ≃ Cl2(K). We are going to use the notation of [1, Thm.21.1 and Cor.21.1].

Theorem 4.1. Let K = Q(
√
−1,

√
d) be a complex bicyclic biquadratic Dirichlet field with radi-

cand d = p1p2q, where p1 ≡ 1 (mod 8), p2 ≡ 5 (mod 8) and q ≡ 3 (mod 4) are prime numbers

such that
(

p1

p2

)

= −1 and
(

p1

q

)

= −1.

Then the 2-class group Cl2(K) of K is of type (2, 2, 2), the 2-class field tower of K is metabelian
(with exactly two stages), and the isomorphism type of the Galois group G = G∞

2 (K) = Gal(F∞
2 (K)|K)

of the maximal unramified pro-2 extension F∞
2 (K) of K is characterized uniquely by the pair of

positive integer parameters (m,n) defined by the 2-class numbers h2(k1) = 2m+1 and h2(k2) = 2n

of the complex quadratic fields k1 = Q(
√−p1) and k2 = Q(

√−p2q).

The Legendre symbol
(

p2

q

)

decides whether G is a descendant of 〈32, 34〉 or 〈32, 35〉:

•
(

p2

q

)

= −1 ⇐⇒ (m ≥)n = 1 ⇐⇒ the first layer TKT κ1(G) is a permutation with five

fixed points and a single 2-cycle ⇐⇒ G belongs to the mainline

(4.1) M0,k := 〈32, 35〉(−#1; 1)k, with k = m− 1 ≥ 0,

of the coclass tree T 3(〈32, 35〉).
•
(

p2

q

)

= +1 ⇐⇒ n > 1 ⇐⇒ the first layer TKT κ1(G) is a permutation with a single

fixed point and three 2-cycles ⇐⇒ G is a descendant of the group 〈32, 34〉, that is G ∈
T (〈32, 34〉).

More precisely, in the second case the following equivalences hold in dependence on the parameters
m,n ≤ ℓ, where ℓ ≤ 11 denotes a foregiven upper bound:

• m ≥ n ≥ 2 (with n fixed) ⇐⇒ G belongs to the mainline

(4.2) Mj+1,k := 〈32, 34〉(−#2; 1)j −#2; 2(−#1; 1)k, with fixed j = n− 2

and varying k = m− n ≥ 0, of the coclass tree T n+2(〈32, 34〉(−#2; 1)n−2 −#2; 2).
• n > m ≥ 1 (with m fixed) ⇐⇒ G belongs to the unique periodic coclass sequence

(4.3) Vj,k := 〈32, 34〉(−#2; 1)j(−#1; 1)k −#1; 2, with fixed j = m− 1

and varying k = n−m− 1 ≥ 0, whose members possess a permutation as their first layer
transfer kernel type, of the coclass tree T m+2(〈32, 34〉(−#2; 1)m−1).

We add a corollary which gives the Artin pattern of the groups in Theorem 4.1, firstly, since
it is interesting in its own right, and secondly, because we are going to use its proof as a starting
point for the proof of Theorem 4.1.

Corollary 4.1. Under the assumptions of Theorem 4.1, the Artin pattern AP(G) = (τ(G);κ(G))

of the 2-tower group G = G∞
2 (K) of the biquadratic field K = Q(

√
−1,

√
d) is given as follows:

The ordered multi-layered transfer target type (TTT) τ(G) = [τ0; τ1; τ2; τ3] of the Galois group
G is given by τ0 = (13), τ3 = (m,n), and
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(4.4) τ1 =

{

[(m+ 1, 2), (2, 1)2, (13)2, (2, 1)2], if
(

p2

q

)

= −1,

[(m+ 1, n+ 1), (13)6], else,

(4.5) τ2 =

{

[(m+ 1, 1), (m, 2), (m+ 1, 1), (2, 1)4], if
(

p2

q

)

= −1,

[(m+ 1, n), (m,n+ 1), (max(m+ 1, n+ 1),min(m,n)), (13)4], else.

If we now denote by Ni := NormKi|K(Cl2(Ki)), 1 ≤ i ≤ 7, the norm class groups of the seven
unramified quadratic extensions Ki|K, then the ordered multi-layered transfer kernel type (TKT)
κ(G) = [κ0;κ1;κ2;κ3] of the Galois group G is given by κ0 = 1, κ2 = (07), κ3 = (0), and

(4.6) κ1 =

{

(N1, N2, N3, N5, N4, N6, N7), if
(

p2

q

)

= −1,

(N1, N3, N2, N5, N4, N7, N6), else.

Thus, κ1 is always a permutation of the norm class groups Ni. For
(

p2

q

)

= −1 it contains five

fixed points and a single 2-cycle, and otherwise it contains a single fixed point and three 2-cycles.

Proof. The underlying order of the 7 unramified quadratic, resp. bicyclic biquadratic, extensions
of K is taken from [14, § 2.1, Thm.1,(3),(5)].

For the TTT we use logarithmic abelian type invariants as explained in [2, § 2]. τ0 is taken from
[14, § 2.2, Thm.2,(1)], τ1, τ2 from [14, § 2.3, Thm.3,(1),(2)], and τ3 from [14, § 2.2, Thm.2,(5)].

Concerning the TKT, κ0 is trivial, κ1,κ2 are taken from [14, § 2.3, Thm.3,(3)–(5)], and κ3 is
total, due to the Hilbert/Artin/Furtwängler principal ideal theorem. �

Proof. (Proof of Theorem 4.1)

Firstly, the equivalence
(

p2

q

)

= −1 ⇐⇒ n = 1 is proved in [14, § 3, Lem.5].

Next, we use the Artin pattern of G, as given in Corollary 4.1, to narrow down the possibilities for
G. The possible class-2 quotients of G are exactly the immediate descendants of the root 〈8, 5〉,
that is, three vertices 〈16, 11 . . .13〉 of step size 1, nine vertices 〈32, 27 . . .35〉 of step size 2, and
ten vertices 〈64, 73 . . .82〉 of step size 3. Among all descendants of 〈8, 5〉, the mainline vertices
of the tree T (〈32, 35〉) are characterized uniquely by the fact that their first layer TKT κ1 is a
permutation with five fixed points and a single 2-cycle, and that their first layer TTT τ1 contains
the unique polarized (i.e. parameter dependent) component (m + 1, 2). Note that the mainline
vertices of the tree T (〈32, 31〉) reveal the same six stable (i.e. parameter independent) components
((13)2, (2, 1)4) of the accumulated (unordered) first layer TTT τ1, but their first layer TKT κ1

contains three 2-cycles, similarly as for descendants of 〈32, 34〉. However, vertices of the complete
descendant tree T (〈32, 34〉) are characterized uniquely by six stable components ((13)6) of their
first layer TTT τ1.
So far, we have been able to single out that G must be a descendant of either 〈32, 34〉 or 〈32, 35〉,
by means of Artin patterns, without knowing a presentation. Now, the parametrized presentation
for the group G = Gm,n in [14, § 2.2, Thm.2,(4)],

(4.7) Gm,n = 〈ρ, σ, τ | ρ4 = σ2n+1

= τ2
m+1

= 1, ρ2 = σ2n , [ρ, σ] = σ2, [ρ, τ ] = τ2, [σ, τ ] = 1〉,
is used as input for a Magma program script [10, 11] which identifies a 2-group, given by generators
and relations,

Group< ρ, σ, τ | relator words in ρ, σ, τ >,

with the aid of the following functions:

• CanIdentifyGroup() and IdentifyGroup() if |G| ≤ 28,
• IsInSmallGroupDatabase(), pQuotient(), NumberOfSmallGroups(), SmallGroup()

and IsIsomorphic() if |G| = 29, and
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• GeneratepGroups(), resp. a recursive call of Descendants()
(using NuclearRank() for the recursion), and IsIsomorphic() if |G| ≥ 210.

The output of the Magma script is in perfect accordance with the pruned descendant tree
T∗(〈8, 5〉), as described in Theorem 21.1 and Corollary 21.1 of [1, pp.182–183].

Finally, the class and coclass of G are given in [14, § 2.2, Thm.2,(6)]. �

Figure 1. Pairs (m,n) of parameters distributed over T∗(〈8, 5〉)
Order

8 23

16 24

32 25

64 26

128 27

256 28

512 29

1 024 210

2 048 211

4 096 212

❄

G(2, 2)

〈5〉

❅
❅
❅
❅
❅
❅
❅
❅

❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

〈34〉 (not coclass-settled)

〈174〉

〈978〉

〈6713〉

〈60885〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

q

q

❄
T 3
∗
(〈32, 34〉)

G(2, 3)
〈35〉

〈181〉

〈984〉

〈6719〉

〈60891〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

q

q

❄

T 3
∗
(〈32, 35〉)

〈175〉

〈979〉

〈6714〉

〈60886〉

1; 2

1; 2

1; 2

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

q

q

q

q

q

q

q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

1st bifurcation

〈444〉 (not coclass-settled)

〈5503〉

〈58920〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

❄
T 4
∗
(〈128, 444〉)

G(2, 4)
〈445〉

〈5509〉

〈58926〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

❄

T 4
∗
(〈128, 445〉)

〈5504〉

〈58921〉

1; 2

1; 2

1; 2

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

q

q

q

q

q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

2nd bifurcation

〈30599〉 (not coclass-settled)

1; 1

1; 1

1; 1

q

q

q

q

❄
T 5
∗
(〈512, 30599〉)

G(2, 5)

〈30600〉

1; 1

1; 1

1; 1

q

q

q

q

❄

T 5
∗
(〈512, 30600〉)

1; 2

1; 2

1; 2

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

q

q

q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

3rd bifurcation

2; 1 (not coclass-settled)

1; 1

q

q

❄
T 6
∗
(〈512, 30599〉 − #2; 1)

G(2, 6)
2; 2

1; 1

q

q

❄

T 6
∗
(〈512, 30599〉 − #2; 2)

1; 2

✁
✁

✁
✁
✁q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

4th bifurcation

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(7,1)

✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,8)

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(7,2)

✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

(3,3)

(4,3)

(5,3)

✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑

(3,4)

(3,5)

(3,6)

✓
✒

✏
✑

(4,4) ✓

✒

✏

✑
(4,5)

M0,0

M0,1

M0,2

M0,3

M0,4

M0,5

M0,6

M0,7

V0,0

V0,1

V0,2

V0,3

V0,4

V0,5

V0,6

G

G3
3

G4
3

G5
3

G6
3

G7
3

G8
3

G9
3

M1,0

M1,1

M1,2

M1,3

M1,4

M1,5

V1,0

V1,1

V1,2

V1,3

V1,4

δ1(G)

G4
4

G5
4

G6
4

G7
4

G8
4

M2,0

M2,1

M2,2

M2,3

V2,0

V2,1

V2,2

δ2(G)

G5
5

G6
5

G7
5

M3,0

M3,1
V3,0

δ3(G)

G6
6
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5. Computational results for two-stage towers

With the aid of the computational algebra system MAGMA [11], we have determined the pairs
of parameters (m,n) = (m(d), n(d)), investigated in [14], for all 11 753 square free radicands
d = p1p2q of the shape in Theorem 4.1 which occur in the range 0 < d < 2 · 106. As mentioned
at the beginning of § 4, the result supports the conjecture that the corresponding 2-tower groups
Gm(d),n(d) cover the pruned tree T∗(〈8, 5〉) without gaps.

Figure 2. Minimal radicands d distributed over T∗(〈8, 5〉)
Order

8 23

16 24

32 25

64 26

128 27

256 28

512 29

1 024 210

2 048 211

4 096 212

❄

G(2, 2)

〈5〉

❅
❅
❅
❅
❅
❅
❅
❅

❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

〈34〉 (not coclass-settled)

〈174〉

〈978〉

〈6713〉

〈60885〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

q

q

❄
T 3
∗
(〈32, 34〉)

G(2, 3)
〈35〉

〈181〉

〈984〉

〈6719〉

〈60891〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

q

q

❄

T 3
∗
(〈32, 35〉)

〈175〉

〈979〉

〈6714〉

〈60886〉

1; 2

1; 2

1; 2

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

q

q

q

q

q

q

q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

1st bifurcation

〈444〉 (not coclass-settled)

〈5503〉

〈58920〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

❄
T 4
∗
(〈128, 444〉)

G(2, 4)
〈445〉

〈5509〉

〈58926〉

1; 1

1; 1

1; 1

q

q

q

q

q

q

❄

T 4
∗
(〈128, 445〉)

〈5504〉

〈58921〉

1; 2

1; 2

1; 2

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

q

q

q

q

q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

2nd bifurcation

〈30599〉 (not coclass-settled)

1; 1

1; 1

1; 1

q

q

q

q

❄
T 5
∗
(〈512, 30599〉)

G(2, 5)
〈30600〉

1; 1

1; 1

1; 1

q

q

q

q

❄

T 5
∗
(〈512, 30600〉)

1; 2

1; 2

1; 2

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

q

q

q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

3rd bifurcation

2; 1 (not coclass-settled)

1; 1

q

q

❄
T 6
∗
(〈512, 30599〉 − #2; 1)

G(2, 6)
2; 2

1; 1

q

q

❄

T 6
∗
(〈512, 30599〉 − #2; 2)

1; 2

✁
✁

✁
✁
✁q

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❆
❆
❆
❆
❆
❆
❆
❆
❆❆

4th bifurcation

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

255

1695

3855

12855

124095

331095

1006095

✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑

935

1887

6919

88791

86343

256615

746623

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

1599

13767

47135

246831

371319

855231

✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑

10735

19311

79663

103279

557887

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

24415

63159

702519

✓

✒

✏

✑
✓

✒

✏

✑
✓

✒

✏

✑

166463

395007

1116151

✓
✒

✏
✑

231583 ✓

✒

✏

✑
1066407
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Recall that a pair (m,n) contains information on the 2-class numbers of complex quadratic
fields. So we have a reduction of hard problems for biquadratic fields to easy questions about
quadratic fields.

By means of the following invariants, the statistical distribution d 7→ (m(d), n(d)) of parameter
pairs is visualized on the pruned descendant tree T∗(〈8, 5〉), using the injective (and probably even
bijective) mapping (m,n) 7→ Gm,n. For each fixed individual pair (m,n), we define its minimal
radicand M(m,n) as an absolute invariant:

(5.1) M(m,n) := min{d > 0 | (m(d), n(d)) = (m,n)}.
The purely group theoretic pruned descendant tree was constructed in [1, § 21.1, pp.182–184],

and was shown in [1, § 10.4.1, Fig.7, p.175], with vertices labelled by the standard identifiers in
the SmallGroups Library [5, 6] or of the ANUPQ-package [7].

In Figure 1, a pair (m,n) of parameters is placed adjacent to the corresponding vertex Gm,n of
the pruned descendant tree T∗(〈8, 5〉). There are no overlaps, since the mapping (m,n) 7→ Gm,n

is injective. Each vertex is additionally labelled with a formal identifier, as used in [1, Cor.21.1].
In Figure 2, the minimal radicand M(m,n) for which the adjacent vertex is realized as the

corresponding group Gm,n, is shown underlined and with boldface font.
Vertices within the support of the distribution are surrounded by an oval. The oval is drawn in

horizontal orientation for mainline vertices and in vertical orientation for vertices in other periodic
coclass sequences.

6. Three-stage towers of 3-class fields

Our second discovery of periodic bifurcations in trees of 3-groups will now be applied to a family
of quadratic number fields K with 3-class group Cl3(K) of type (3, 3), originally investigated by
ourselves in [16, 17, 18], and extended by Boston, Bush and Hajir in [19]. The 3-class tower groups
G = G∞

3 (K) of these fields are conjecturally distributed over six periodic sequences arising from
repeated bifurcations (of the new kind which was unknown up to now), whereas it is proven that
their metabelianizations populate six well-known periodic coclass sequences of fixed coclass 2.

Theorem 6.1. Let K = Q(
√
d) be a complex quadratic field with discriminant d < 0, having a

3-class group Cl3(K) of type (3, 3), such that its 3-principalization in the four unramified cyclic
cubic extensions L1, . . . , L4 is given by one of the following two first layer TKTs

κ1(K) = (1, 1, 2, 2) or (3, 1, 2, 2),

resp.

κ1(K) = (2, 2, 3, 4) or (2, 3, 3, 4).

Further, let the integer 2 ≤ ℓ ≤ 9 denote a foregiven upper bound.
Then the 3-class field tower of K is non-metabelian with exactly three stages, and the isomorphism
type of the Galois group G = G∞

3 (K) = Gal(F∞
3 (K)|K) of the maximal unramified pro-3 extension

F∞
3 (K) of K is characterized uniquely by the positive integer parameter 2 ≤ u ≤ ℓ defined by the

3-class number h3(k0) = 3u of the simply real non-Galois cubic subfield k0 of the distinguished
polarized extension L among L1, . . . , L4 (i.e., L = L1, resp. L = L2):

(6.1)
G ≃ 〈729, 49〉(−#2; 1−#1; 1)j −#2; 4 or 5|6, resp.

G ≃ 〈729, 54〉(−#2; 1−#1; 1)j −#2; 2 or 4|6, with j = u− 2.

The metabelianization G/G′′ of the Schur σ-group G, that is the Galois group G2
3(K) = Gal(F2

3(K)|K)
of the maximal metabelian unramified 3-extension F2

3(K) of K is unbalanced and given by

(6.2)
G/G′′ ≃ 〈729, 49〉(−#1; 1−#1; 1)k −#1; 4 or 5|6, resp.

G/G′′ ≃ 〈729, 54〉(−#1; 1−#1; 1)k −#1; 2 or 4|6, with k = u− 2.

Again, we first state a corollary whose proof will initialize the proof of Theorem 6.1.
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Corollary 6.1. Under the assumptions of Theorem 6.1, the Artin pattern AP(G) = (τ(G);κ(G))

of the 3-tower group G = G∞
3 (K) of the complex quadratic field K = Q(

√
d) is given as follows:

The ordered multi-layered transfer target type (TTT) τ(G) = [τ0; τ1; τ2] of the Galois group G
is given by τ0 = (13), τ2 = (u, u, 1), and

(6.3) τ1 =

{

[(u + 1, u), 13, (2, 1)2], if G ∈ T (〈729, 49〉),
[(2, 1), (u+ 1, u), (2, 1)2], if G ∈ T (〈729, 54〉).

If we now denote by Ni := NormLi|K(Cl3(Li)), 1 ≤ i ≤ 4, the norm class groups of the four
unramified cyclic cubic extensions Li|K, then the ordered multi-layered transfer kernel type (TKT)
κ(G) = [κ0;κ1;κ2] of the Galois group G is given by κ0 = 1, κ2 = (0), and

(6.4) κ1 =

{

(N1, N1, N2, N2) or (N3, N1, N2, N2), if G ∈ T (〈729, 49〉),
(N2, N2, N3, N4) or (N2, N3, N3, N4), if G ∈ T (〈729, 54〉).

Thus, κ1 is not a permutation of the norm class groups Ni. For G ∈ T (〈729, 49〉) it contains a
single or no fixed point and no 2-cycle, and for G ∈ T (〈729, 54〉) it contains three or two fixed
points and no 2-cycle.

Proof. First, we must establish the connection of the TTT of G with the distinguished non-Galois
simply real cubic field k0. Anticipating the partial result of Theorem 6.1 that the metabelianization
G/G′′ of G must be of coclass r = 2, we can determine the 3-class numbers of all four non-Galois
cubic subfields ki < Li with the aid of Theorem 4.2 in [17, p.489]: with respect to the normalization

in this theorem, we have h3(k0) = 3u = h3(k1) = 3
m−2

2 and uniformly h3(ki) = 3 for 2 ≤ i ≤ 4,
since e = r + 1 = 3, which implies e−1

2 = 1, and G/G′′ has no defect of commutativity. The
parameterm is the index of nilpotency of G/G′′, whence the nilpotency class is given by c = m−1.

Now, the statements are an immediate consequence of §§ 4.1–4.2 in our recent article [2], where
the claims are reduced to theorems in our earlier papers: [16, Thm.1.3, p.405], and, more generally,
[18, Thm.4.4, p.440 and Tbl.4.7, p.441]. We must only take into consideration that the 3-class
group Cl3(L) of L is nearly homocyclic with abelian type invariants A(3, c) ≃ (u + 1, u), since
u = m−2

2 , and thus 2u+ 1 = m− 1 = c. �

Proof. (Proof of Theorem 6.1) First, we use the Artin pattern of G, as given in Corollary 6.1, to
narrow down the possibilities for G. The possible class-3 quotients of G are exactly the immediate
descendants of the common class-2 quotient 〈27, 3〉 of all 3-groups with abelianization of type
(3, 3) (apart from 〈27, 4〉), that is, four vertices 〈81, 7 . . .10〉 of step size 1 [1, Fig.3], and seven
vertices 〈243, 3 . . .9〉 of step size 2 [1, Fig.4]. All descendants of the former are of coclass 1 and
reveal the same three stable (i.e. parameter independent) components ((12)3) of the first layer
TTT τ1, according to [2, Thm.3.2,(1)], which does not agree with the required TTT of G. Among
the latter, the criterion [12, Cor.3.0.2, p.772] rejects three of the seven vertices, 〈243, 3|4|9〉, since
the TKT of G does not contain a 2-cycle, and 〈243, 5|7〉 are discouraged, since they are terminal.
The remaining two vertices 〈243, 6|8〉 are exactly the parents of the decisive groups 〈729, 49|54〉,
where periodic bifurcations set in.

Now, Theorem 21.3 and Corollaries 21.2–21.3 in [1, pp.185–187] show that, using the local
notation of Corollary 21.2,

G ≃ Sk := 〈729, 49|54〉(−#2; 1−#1; 1)k −#2; 4|5|6 resp. 2|4|6

and

G/G′′ ≃ V0,2k := 〈729, 49|54〉(−#1; 1)2k −#1; 4|5|6 resp. 2|4|6,
both with k = u− 2. �
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7. Computational results for three-stage towers

With the aid of the computational algebra system MAGMA [11], where the class field theoretic
techniques of Fieker [20] are implemented, we have determined the Artin pattern (τ(K);κ(K)) of

all complex quadratic fields K = Q(
√
d) with discriminants in the range −108 < d < 0, whose first

layer TTT τ1(K) had been precomputed by Boston, Bush and Hajir in the database underlying
the numerical results in [19].

Figure 3. Minimal absolute discriminants |d| < 108 distributed over T 2(〈243, 6〉)
order 3n

243 35

729 36

2 187 37

6 561 38

19 683 39

59 049 310

177 147 311

531 441 312

1 594 323 313

4 782 969 314

14 348 907 315

❄
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✻
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B(8)
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〈6〉

〈50〉 〈51〉 〈49〉 〈48〉

〈292〉 〈293〉
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〈290〉 〈288〉 〈285〉

〈284〉
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〈286〉
〈287〉

〈276〉
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〈281〉
〈282〉

〈277〉
〈278〉
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∗22∗

2∗
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2∗
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∗2

∗2

∗2

∗2

∗2

∗2

∗2

∗2

∗2

∗2

#2

#2

#2

#2

∗2

∗2

∗2

∗2

∗3

∗3

∗3

∗3

∗3

∗3

∗3

∗3

∗3

∗3

∗3

∗3

∗3

∗3

TKT E.14 E.6 c.18 c.18 H.4 H.4 H.4 H.4 H.4

κ1 = (3122) (1122) (0122) (0122) (2122)(2122) (2122) (2122) (2122)

❄
infinite

mainline

T 2(〈243, 6〉)

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

15 544
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1 062 708

27 629 107

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑
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40 059 363

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

21 668

446 788

3 843 907

52 505 588
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Figure 3, resp. 4, shows the minimal absolute discriminant |d|, underlined and with boldface
font, for which the adjacent vertex of the coclass tree T 2(〈729, 49〉), resp. T 2(〈729, 54〉), is realized
as the metabelianization G/G′′ of the 3-tower group G of K = Q(

√
d). Vertices within the support

of the distribution are surrounded by an oval. The corresponding projections G → G/G′′ have
been visualized in the Figures 8–9 of [1, pp.188–189].

We have published this information in the Online Encyclopedia of Integer Sequences (OEIS)
[21], sequences A247692 to A247697.

Figure 4. Minimal absolute discriminants |d| < 108 distributed over T 2(〈243, 8〉)
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We emphasize that the results of section 6 provide the background for considerably stronger
assertions than those made in [12]. Firstly, since they concern four TKTs E.6, E.14, E.8, E.9
instead of just TKT E.9 [2, § 4], and secondly, since they apply to varying odd nilpotency class
5 ≤ cl(G) ≤ 19 instead of just class 5.
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