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Abstract

Juggling patterns can be described by a sequence of cards which keep track
of the relative order of the balls at each step. This interpretation has many
algebraic and combinatorial properties, with connections to Stirling numbers,
Dyck paths, Narayana numbers, boson normal ordering, arc-labeled digraphs,
and more. Some of these connections are investigated with a particular focus on
enumerating juggling patterns satisfying certain ordering constraints, including
where the number of crossings is fixed.

1 Introduction

It is traditional for mathematically-inclined jugglers to represent various juggling
patterns by sequences T = (t1, t2, . . . , tn) where the ti are natural numbers. The
connection to juggling being that at time i, the object (which we will assume is a
ball) is thrown so that it comes down ti time units later at time i + ti. The usual
convention is that the sequence T is repeated indefinitely, i.e., it is periodic, so that
the expanded pattern is actually (. . . , t1, t2, . . . , tn, t1, t2, . . . , tn, . . .).

A sequence T is said to be a juggling sequence, or siteswap sequence, provided that
it never happens that two balls come down at the same time. For example, (3, 4, 5) is
a juggling sequence while (3, 5, 4) is not. It is known [5] that a necessary and sufficient
condition for T to be a juggling sequence is that all the quantities i+ ti (mod n) are
distinct. For a juggling sequence T = (t1, t2, . . . , tn), its period is defined to be n. A
well known property is that the number of balls b needed to perform T is the average
b = 1

n

∑n

i=1 ti. It is also known that the number of juggling sequences with period n
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and at most b balls is bn (cf. [4, 5]; our convention assumes that we will always catch
and then immediatly throw something at every step, or in other words there are no
0 throws).

There is an alternative way to represent periodic juggling patterns, a variation of
which was first introduced by Ehrenborg and Readdy [9]. For this method, certain
cards are used to indicate the relative ordering of the balls (with respect to when they
will land) as the juggling pattern is executed. One might call the first representation
“time” sequences for representing juggling patterns while the second representation
might be called “order” sequences for representing these same patterns.

In this paper, we will explore various algebraic and combinatorial properties as-
sociated with these order sequences. It will turn out that there are a number of
unexpected connections with a wide variety of combinatorial structures. In the re-
mainder of this section we will introduce these juggling card sequences, and then in
the ensuing sections will count the number of juggling card sequences that induce a
given ordering, count the number of juggling card sequences that do not change the
ordering and have a fixed number of crossings, and look at the probability that the
induced ordering consists of a single cycle.

1.1 Juggling card sequences

We will represent juggling patterns by the use of juggling cards. Sequences of these
juggling cards will describe the behaviors of the balls being juggled. In particular,
the set of juggling cards produce the juggling diagram of the pattern.

Throughout the paper, we will let b denote the number of balls that are available
to be juggled. We will also have available to us a collection of cards C that can be
used. In the setting when at each time step one ball is caught and then immediately
thrown, we can represent these by C1, C2, . . . , Cb where Ci indicates that the bottom
ball in the ordering has now dropped into our hand and we now throw it so that
relative to the other balls it will now be the i-th ball to land. Visually we draw the
cards so that there are b levels on each side of the card (numbered 1,2,. . . ,b from
bottom to top) and b tracks connecting the levels on the left to the levels on the
right by the following: level 1 connects to level i; level j connects to level j − 1 for
2 ≤ j ≤ i; level j connects to level j for i+1 ≤ j ≤ b. An example of the cards when
b = 4 is shown in Figure 1.
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Figure 1: Cards for b = 4
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As we juggle the b balls, 1, 2, . . . , b, move along the track on the cards. For each
card Ci the relative ordering of the balls changes and corresponds to a permutation
πCi

. Written in cycle form this permutation is πCi
= (i i−1 . . . 2 1). In particular,

a ball starting on level j on the left of card Ci will be on level πCi
(j) on the right of

card Ci.
A sequence of cards, A, written by concatenation, i.e., Ci1Ci2 . . . Cin , is a juggling

card sequence of length n. The n cards of A are laid out in order so that the levels
match up. The balls now move from the left of the sequence of cards to the right of the
sequence of cards with their relative ordering changing as they move. The resulting
final change in the ordering of the balls is a permutation denoted πA, i.e., a ball
starting on level i will end on πA(i). We note that πA = πCi1

πCi2
· · ·πCin

. We will also

associate with juggling card sequence A the arrangement [π−1
A (1), π−1

A (2), . . . , π−1
A (b)],

which corresponds to the resulting ordering of the balls on the right of the diagram
when read from bottom to top.

As an example, in Figure 2 we look at A = C3C3C2C4C3C4C3C2C2 (note we
allow ourselves the ability to repeat cards as often as desired). For this juggling card
sequence we have πA = (1 2 4 3) and corresponding arrangement [3, 1, 4, 2]. We have
also marked the ball being thrown at each stage under the card for reference.
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C3 C3 C2 C4 C3 C4 C3 C2 C2

1 2 3 1 3 2 4 3 1

Figure 2: A juggling card sequence A; below each card we mark the ball thrown

From the juggling card sequence we can recover the siteswap sequence by letting ti
be the number of cards traversed starting at the bottom of the ith card until we return
to the bottom of some other card. For example, the siteswap pattern in Figure 2 is
(3, 4, 2, 5, 3, 10, 5, 2, 2).

We can also increase the number of balls caught and then thrown at one time,
which is known as multiplex juggling. In the more general setting we will denote the
cards CS where S = (s1, s2, . . . , sk) is an ordered subset of [b]. Each card still has
levels 1, 2, . . . , b and now for 1 ≤ j ≤ k the ball at level i goes to level si and the
remaining balls then fill the available levels in a way that preserves their order. As
an example, the cards C2,5 and C5,2 are shown in Figure 3 for b = 5.

As before we can combine these together to form juggling card sequences A which
induce permutations πA and corresponding arrangements. An example of a juggling
card sequence composed of cards CS with |S| = 2 is shown in Figure 4 which has
corresponding arrangement [3, 4, 2, 5, 1]. We note that it is also possible to form

3



1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

C2,5 C5,2

Figure 3: The cards C2,5 and C5,2 for b = 5

juggling card sequences which have differing sizes of |S|.
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Figure 4: A juggling card sequence A; below each card we mark the balls thrown

2 Juggling card sequences with given arrangement

In this section we will consider the problem of enumerating juggling card sequences
of length n using cards drawn from a collection of cards C with the final arrangement
corresponding to the permutation σ. We will denote the number of such sequences
by JS(σ, n, C). This will be dependent on the following parameter.

Definition 1. Let σ be a permutation of 1, 2, . . . , b. Then L(σ) is the largest ℓ such
that σ(b− ℓ+ 1) < · · · < σ(b− 1) < σ(b). Alternatively, L(σ) is the largest ℓ so that
b− ℓ+ 1, . . . , b− 1, b appear in increasing order in the arrangement for σ.

As an example, the final arrangement in Figure 2 has L(σ) = 2 and the final
arrangement in Figure 4 has L(σ) = 3.

The key idea for our approach will be that with information about what balls are
thrown we can “work backwards”. In particular, we have the following.

Proposition 1. Given a single card, if we know the ordering of balls on the right
hand side of the card and we know which balls are thrown, then we can determine the
card CS and the ordering of the balls on the left hand side of the card.
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Proof. Suppose that i1, i2, . . . , iℓ are the balls, in that order, which are thrown. Then
the card is CS where S = (s1, s2, . . . , sℓ) and sj is the location of ball ij in the ordering
of the balls (i.e., where the ball ij moved). The ordering of the left hand side starts
i1, i2, . . . , iℓ and the remaining balls are then determined by noting that their ordering
must be preserved.

2.1 Throwing one ball at a time

We now work through the case when one ball at a time is caught and then immediately
thrown.

Theorem 2. Let b be the number of balls and C = {C1, . . . , Cb}. Then

JS(σ, n, C) =
b
∑

k=b−L(σ)

{

n

k

}

,

where
{

n

k

}

denotes the Stirling numbers of the second kind.

Proof. We establish a bijection between the partitions of [n] into k nonempty subsets
[n] = X1 ∪ X2 ∪ · · · ∪ Xk where b − L(σ) ≤ k ≤ b and juggling card sequences of
length n using cards from C with the final arrangement corresponding to σ. Because
such partitions are counted by the Stirling numbers of the second kind, the result will
then follow.

Starting with a partition we first reindex the sets so that the minimal elements
are in increasing order, i.e., minXi < minXj for i < j. We now place n blank cards,
mark the final arrangement corresponding to σ on the right of the final card, and
then under the i-th card we write j if and only if i ∈ Xj.

We interpret the labeling under the cards as the ball that is thrown at that card, in
particular we will have that k of the balls are thrown. We can now apply Proposition 1
iteratively from the right hand side to the left hand side to determine the cards in
the juggling card sequence, where we update our ordering as we move from right to
left.

We claim that the final ordering that we will end up with on the left hand side is
[1, 2, . . . , b] so that this is a juggling card sequence which should be counted. Looking
at the proof of the proposition we see that at each step the only ball which changes
position in the ordering is the ball which is thrown, and in that case the ball was
thrown from the bottom of the ordering. We now have two observations to make:

• For the k balls that will be thrown they will move into the first k slots in the
ordering, and by the assumption of our indexing we have that the first k balls
are ordered, i.e., for 1 ≤ i < j ≤ k the first occurrence when going from left to
right of i is before the first occurrence of j so that i will move below j.
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• The remaining balls will not have their relative ordering change. However, by
our assumption on k we have that k+1, . . . , b are already in the proper ordering.

This establishes the map from partitions to juggling card sequences. To go in the
other direction, we take a juggling card sequence of length n using our cards from
C, write down which ball is thrown under each card, and then form our sets for the
partition by letting Xi be the location of the cards where ball i is thrown. Because
σ(b−L(σ)) > σ(b−L(σ)+1) it must be that at some time that the ball b−L(σ) was
thrown and therefore the number of sets in our partition is at least b − L(σ). This
finishes the other side of the bijection and the proof.

For the partition of [9] = {1, 4, 9}∪ {2, 6}∪ {3, 5, 8}∪ {7} with final arrangement
[3, 1, 4, 2] the juggling card sequence which will be formed is the one given in Figure 2.

2.2 Throwing m ≥ 2 balls at a time

The proof readily generalizes to the setting where we catch and then immediately
throw m balls at a time. What we need to do is to find the appropriate way to
generalize the Stirling numbers of the second kind.

Definition 2. Given n and k let X = {x1, x2, . . . , xk}. Then
{

n

k

}

m
is the number of

ways, up to relabeling the xi, to form Y1, Y2, . . . , Yn so that Yj = (xj1, . . . , xjm) is an
ordered subset of X and each xi is in at least one Yj.

We note that
{

n

k

}

1
=
{

n

k

}

. This can be seen by observing that each Yi is a single
entry and then we form our partition by grouping the indices of the Yi which agree.
We now show that this gives the appropriate generalization.

Theorem 3. Let b be the number of balls and C be the collection of all cards for which
m balls are thrown. Then

JS(σ, n, C) =
b
∑

k=b−L(σ)

{

n

k

}

m

.

Proof. Suppose we are given Y1, . . . , Yn with Yj = (xj1 , . . . , xjm) an ordered subset of
{x1, . . . , xk}. Then we first concatenate the Yj together and remove all but the first
occurrence of each xi leaving us with a list Y ′. By our assumptions we have that
Y ′ consists of x1, . . . , xk in some order. For Y1, . . . , Yn, we now replace x1, . . . , xk by
1, . . . , k by replacing xi with j if xi is in the j-th position of Y ′. (This process is
equivalent to the reindexing carried out in the special case when one ball is thrown
at a time.)

We now have Y1, . . . , Yn with each consisting of m distinct numbers drawn from
{1, . . . , k} with the property that if i < j then i appears before j (i.e., in the sense
that if the first occurrence of i is in Yp and the first occurrence of j is in Yq and then
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either p < q or p = q and i appears in the list before j in Yp). We now put down
n blank cards, write down the arrangement corresponding to σ on the right side of
the last card and write Yi under the ith card for all i. The remainder of the proof
then proceeds as before, i.e., we can now work from right to left and determine the
card used at each stage by Proposition 1. The resulting process gives a valid juggling
sequence because the initial arrangement will have the first k balls in order (by our
work on reindexing) and the final balls inherit their order, which by assumption were
already in the correct order.

The map in the other direction is carried out as before, i.e., given a juggling card
sequence under each card we write the balls which are thrown and use these to form
Y1, . . . , Yn which contribute to the count of

{

n

k

}

m
for some appropriate k.

The value
{

n

k

}

2
is found by counting sets of ordered pairs. In particular, this

counts the number of multi-digraphs with n labeled edges and k vertices. This leads
to a bijection between these digraphs and juggling sequences for a given σ, provided
k ≥ b − L(σ). As an example consider the edge-labeled directed graph shown in
Figure 5.

x1

x2

x3

x4

x5

2

4

3 1

5 6

Figure 5: An edge labeled multi-digraph

Using the edge labeling we can now form the sets so that Y1 = (x3, x5), Y2 =
(x1, x3), Y3 = (x2, x1), Y4 = (x5, x2), Y5 = (x1, x4) and Y6 = (x3, x4). We now need
to label the xi with 1, 2, 3, 4, 5 so that the first occurrences of each number (ball) is
increasing. To do this we first concatenate these lists together to form the following
(i.e., the occurrences in order of all of the xi):

(x3, x5, x1, x3, x2, x1, x5, x2, x1, x4, x3, x4)

From here we look at first occurrences of each xi which is found by removing all but
the first occurrence of each symbol which gives us the following list.

Y ′ = (x3, x5, x1, x2, x4)

Therefore to make sure we have the first occurrences in the proper order, we replace
x3, x5, x1, x2, x4 by 1, 2, 3, 4, 5 respectively. If we now set the final arrangement to be
[4, 5, 2, 1, 3] then we get the corresponding juggling card sequence shown in Figure 6.

This bijection gives us the following.
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C2,4 C2,5 C2,3 C5,4 C5,2 C4,2

Figure 6: The juggling card sequence corresponding to the digraph from Figure 5 and
final arrangement [4, 5, 2, 1, 3]

Theorem 4. Let σ be a permutation of 1, 2, . . . , b and b−L(σ) ≤ k ≤ b. Then there
is a bijection between edge-labeled (multi-)digraphs without loops which have n arcs
on k vertices and juggling card sequences A of length n where two balls are caught
and thrown at a time, a total of k balls are thrown, and satisfying πA = σ.

We note that the numbers
{

n

k

}

m
have appeared recently in the literature in con-

nection with the so-called boson normal ordering problem arising in statistical physics
[2, 13]. The sequence

{

n

k

}

2
is A078739 in the OEIS [16].

For general m it has been observed [7] that
{

n

k

}

m
is the number of ways to properly

color the graph nKm using exactly k colors, i.e., each Yi is the coloring on the i-th
copy of Km, and by definition all k colors must be used.

If we denote the falling factorial xm = x(x − 1)(x − 2) · · · (x −m + 1), then the
ordinary Stirling numbers

{

n

k

}

act as connection coefficients between xn and xn by
means of the formula (e.g., see [10])

xn =
n
∑

k=1

{

n

k

}

xk.

In particular, they satisfy the recurrence:
{

n+ 1

k

}

= k

{

n

k

}

+

{

n

k − 1

}

,

and have the explicit representation

{

n

k

}

=
(−1)k

k!

k
∑

i=1

(−1)i
(

k

i

)

in.

The
{

n

k

}

m
satisfy analogs of these three relationship. Namely, as connection coeffi-

cients

(xm)n =

mn
∑

k=m

{

n

k

}

m

xk,
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satisfying a recurrence

{

n+ 1

k

}

m

=
m
∑

i=0

(

k + i−m

i

)

mi

{

n

k + i−m

}

m

,

and with the explicit representation

{

n

k

}

m

=
(−1)k

k!

k
∑

i=m

(−1)i
(

k

i

)

(im)n.

2.3 Throwing different numbers of balls at different times

We have restricted our analysis to the case when our collection of cards all catch
and then throw the same number of balls. We can relax this restriction and allow
ourselves to catch and throw differing number of balls at each step. For example, we
could insist that at the i-th step that mi balls are thrown.

Under the card in the i-th position we place a sequence Yi = (yi,1, yi,2, . . . , yi,mi
).

We then concatenate the labels as before to give a mapping from the yi,j to [k] to give
a compatible ball assignment to the card positions. Then we work from right to left
and recover the unique juggling card sequence which corresponds to this collection of
ordered sets. A variation of the preceding arguments show that the number of such
card sequences is equal to the number of k-colorings of ∪n

i=1Kmi
.

A much more complete analysis of this problem with connections to generalized
Stirling numbers and the boson normal ordering problem appears in [8]. A good
survey of this general problem also can be found in of [12, Ch. 10].

3 Preserving ordering while throwing

In the preceding section when we threw multiple balls at one time, we did not worry
about preserving the ordering of the balls which were thrown. The goal of this
section is to add the extra condition that the relative order of the thrown balls is
preserved, e.g., for m = 2 our set of cards will be the set of

(

b

2

)

cards given by
{Ci,j : 1 ≤ i < j ≤ b}. We will see that this situation is more complicated than the
one in the preceding section.

To begin the analysis, we start with a 2-cover of the set [n]. This is a collection
of k (not necessarily distinct) subsets Si of [n] with the property that each element j
of [n] occurs in exactly two of the Si. We can represent a 2-cover by a k × n matrix
M where for 1 ≤ i ≤ k, 1 ≤ j ≤ n, we have M(i, j) = 1 if j ∈ Si, and M(i, j) = 0
otherwise. For each set Si we will associate a virtual ball xi. For 1 ≤ j ≤ n, we
define the 2-element set Bj = {xi : j ∈ Si}. In other words, xi ∈ Bj if and only if
M(i, j) = 1. The interpretation is that at time j, the two virtual balls xi ∈ Bj will
be the balls that are thrown at that time.
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We now produce the (unique) mapping between the actual balls and the virtual
balls xi. To do this, we define a partial order on the xi as follows: xu is less than xv,
written as xu ≺ xv, if among all the Bi 6= {xu, xv}, xu occurs before xv (i.e., with a
lower indexed Bi). If there are no such Bi, we say that xu and xv are equivalent.

As an example, a 2-cover of [7] with five subsets is given by the following matrix.

M =













B1 B2 B3 B4 B5 B6 B7

x1 1 0 1 0 0 0 1
x2 0 1 0 0 1 0 0
x3 1 0 0 1 0 1 0
x4 0 1 0 0 1 0 0
x5 0 0 1 1 0 1 1













We have labeled the rows of M with the xi and the columns with the Bj. Thus, we
see that x2 and x4 are equivalent, so that the partial order on the xi is

x1 ≺ x3 ≺ x2 ≡ x4 ≺ x5.

If in the current arrangement we have that u is below v, then v cannot be thrown
before u (though it might possibly be at the same time). Therefore the partial order
on the xi determines how the balls are positioned relative to one another. The partial
order doesn’t specify anything about the relative order of equivalent xi but because
such pairs are always thrown together, their relative order never changes during the
process of traversing all the cards in the sequence.

In Figure 7 we show the sequence generated by the 2-cover from M , where we
assume the finishing arrangement of the xi is from bottom to top x4, x1, x5, x3, x2.
This choice was arbitrary, except that the initial and terminal orders of the equivalent
pair x2 and x4 must be the same, since there is a unique initial sequence which can
have the xi in Bj being thrown at time j, namely, the sequence that is consistent
with the partial order ≺ on the xi. To determine the appropriate cards needed for
the required throwing patterns it is simply a matter of starting at the right hand side
and choosing the cards sequentially which achieve the required throws. In Figure 7, we
have also have indicated the corresponding cards Ci,j which accomplish the indicated
throws.

If we now make the identification x1 → 1, x3 → 2, x4 → 3, x2 → 4, x5 → 5, then
we have the picture shown in Figure 8.

We can achieve any permutation σ of the balls {1, 2, 3, 4, 5} starting in increasing
order provided only that σ(2) is below σ(4).

For general n and k, given a 2-cover of [n] with k sets S1, . . . , Sk, there is an
induced partial order on the sets (or what we called virtual balls). For any terminal
permutation σ which preserves the relative order of equivalent balls, there is a unique
sequence of cards which achieves this permutation.

As pointed out in [6], there is a direct correspondence between 2-covers of [n]
with k subsets and multigraphs G(n, k) having k vertices and n labeled edges. In the
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x2
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x4

x1
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x3
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{x1, x3} {x2, x4} {x1, x5} {x3, x5} {x2, x4} {x3, x5} {x1, x5}

C4,5 C4,5 C1,5 C3,4 C4,5 C2,4 C2,3

Figure 7: A card sequence for the matrix M
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3

1

5

2

4

1 2 3 4 5 1 5 2 3 4 5 2 1 5

C4,5 C4,5 C1,5 C3,4 C4,5 C2,4 C2,3

Figure 8: A card sequence for the matrix M using actual balls

case of graphs, the vertices of G will be {x1, x2, . . . , xk}. We insert the edge {xr, xs}
with label i if the i-th column of M has 1’s in rows r and s. The number of vertices
of such an edge-labeled multigraph corresponds to the number of balls which are
thrown. These are enumerated by the numbers of vertices and labeled edges in [11]
(see also A098233 in the OEIS [16]). We illustrate this connection in Figure 9 where
we show the three edge-labeled multigraphs on two edges and the corresponding card
sequences which generate the identity permutation.

In the special case that the desired permutation πA = σ = id, the identity per-
mutation, then any 2-cover can generate this permutation. This gives the following
result (which should be compared with Theorem 4).

Theorem 5. Let b be the number of balls. Then there is a bijection between edge-
labeled (multi-)graphs without loops which have n edges on b vertices and juggling
card sequences A of length n where two balls are caught and thrown at a time and the
relative ordering of the thrown balls is preserved, where all b of the balls are thrown,
and satisfying πA = id.

The asymptotic behavior of the number of 2-covers of an n-set, denoted Cov(n),
has been studied in [6]. In particular, it is shown there that

Cov(n) ∼ B2n2
−n exp

(

−
1

2
log

(

2n

logn

))

where B2n is the well-known Bell number (see [14]).
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1 2 1 3
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1
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1 2 3 4

Figure 9: Edge-labeled multigraphs with two edges, and the corresponding card se-
quences

Counting the number of juggling card sequences which generate permutations
other than the identity is more complicated.

In the more general case of throwing m ≥ 3 balls, we want to consider m-covers
of the set [n]. An m-cover of [n] is a collection of k (not necessarily distinct) subsets
Si of [n] with the property that each element j of [n] occurs in exactly m of the Si.
As before, we can represent the m-cover by a k × n matrix M where for 1 ≤ i ≤ k,
1 ≤ j ≤ n, M(i, j) = 1 if j ∈ Si, and M(i, j) = 0 otherwise.

The same analysis holds in this case of general m as in the case of m = 2. Namely,
for each subset Si in the m-cover, we can associate a virtual ball xi. Then we can use
the sets Bj corresponding to the columns of M to induce a partial order ≺ on the xi.
As before, any permutation σ on [k] which respects the order of equivalent elements
can be achieved by a unique sequence of cards. In the case that σ is the identity
permutation, then any m-cover of [n] is able to generate this permutation with an
appropriate sequence of cards. In this case the number of such juggling card sequences
is the number of hyperedge-labeled multi-hypergraphs, (similar to the edge-labeled
multigraphs for the case m = 2).

4 Juggling card sequences with minimal crossings

We now return to throwing a single ball at a time. Any juggling card sequence of n
cards will produce a valid siteswap sequence which has period n. However most such
siteswap sequences will result in having the balls be permuted amongst themselves
after n throws. So one natural family to focus on are those which satisfy πA = id,
i.e., after n throws the same balls are in the same position to repeat.

Suppose now we follow the balls as they traverse the cards of some sequence A.

12



Then when a card Ck is used, we see that the path of the thrown ball has k − 1
“crossings” in that card, i.e., locations where the tracks intersect. For a sequence
A = Ci1Ci2 . . . Cin , the total number of crossings is Cr(A) =

∑

(ik − 1). In the case
when a juggling card sequence has b balls, uses the card Cb, and has πA = id, then
the number of crossings satisfies Cr(A) ≥ b(b−1). To see this we note that every ball
must be thrown (i.e., we throw something up to track b which moves b down and so
we must eventually have a throw that returns b to the top). In particular, the paths
of each pair of balls i and j, with i 6= j, must cross at least twice.

We will say a juggling card sequence A is aminimal crossing juggling card sequence
if the sequence has b balls, uses the card Cb, has πA = id, and Cr(A) = b(b − 1).
The goal of this section is to count the number of minimal crossing juggling card
sequences. In the process we will give a structure result that can give a bijective
relationship with Dyck paths.

4.1 Bijection with Dyck paths

Dyck paths are one of many well known combinatorial objects that are connected
with the Catalan numbers. Many of these objects can be decomposed into two smaller
(possibly empty) objects with the same properties; and we start by showing that this
is the case with minimal crossing juggling card sequences.

Lemma 6. Given a minimal crossing juggling card sequence A with b balls using n
cards, there is a unique pair of minimal crossing juggling card sequences (B,C) so
that B uses k balls, and m cards and C uses b − k balls and n −m − 1 cards (with
the possibility that B or C might be empty). Further, given any such pair of minimal
crossing juggling card sequences (B,C), the minimal crossing juggling card sequence
A can be determined.

Proof. The first card of A will throw the ball up to some level k + 1 and will thus
cross paths with balls 2, . . . , k+1. By the time that the first ball is thrown the second
time, the first ball will have had to cross paths with balls 2, . . . , k + 1 a second time.
Because each pair of balls can only cross twice it must be that the ball 1 will never
again cross with balls 2, . . . , k+1. In particular, we will never throw balls 2, . . . , k+1
after we throw ball 1 the second time. From this we conclude that all the crossings
between balls 2, . . . , k + 1 will occur between the first two throws of ball 1 and that
the relative ordering of balls 2, . . . , k+1 will be set when we get to the second throw
of ball 1.

So between the first two throws of ball 1, if we ignore balls 1, k + 2, . . . , b then
we have a juggling card sequence for k balls with k(k − 1) crossings with the final
arrangement corresponding to the identity.

If we now ignore balls 2, . . . , k + 1 from the second throw of ball 1 until the end
then we must again have all of the (b− k)(b− k − 1) crossings among the remaining
balls with the final arrangement corresponding to the identity.

13



We can now conclude that every juggling card sequence that we want to count
can be broken into the following three parts:

• The first card which throws ball 1 to height k + 1.

• The set of cards between the first two occurrences of the throw of ball 1; a
juggling card sequence with m cards and k balls having k(k − 1) crossings and
corresponding to the identity arrangement. We denote this minimal crossing
juggling card sequence by B.

• The set of cards from the second time ball 1 is thrown to the end; a juggling
card sequence with n −m − 1 cards and b − k balls having (b − k)(b − k − 1)
crossings and corresponding the identity arrangement. We denote this minimal
crossing juggling card sequence by C.

The first card can be found by knowing the number of balls used in B, so therefore
we only need to know B and C. Further, given the above information, we can
reconstruct the juggling card sequence for A. Namely, we have the first card. For the
next set of cards as determined by B, we initially add balls 1, k + 2, . . . , b on top of
the balls 2, . . . , k + 1 and then we continue with the same cards as before except for
the last time each ball is thrown we increase the height of the throw to move above
1, k+2, . . . , b, i.e., the card Ct will be replaced by Ct+b−k. For the last set of cards as
determined by C, we do the same process where we initially add balls 2, . . . , k on the
top and then we continue with the same cards as before except for last time each ball
k+2, . . . , b is thrown we increase the height of the throw to move above 2, . . . , k+1,
i.e., the card Ct will be replaced by Ct+k.

To help illustrate the correspondence used in Lemma 6 in Figure 10 we give two
juggling card sequences with minimal crossings, one for 2 balls and 3 cards and the
other for 3 balls and 4 cards. In Figure 11 we give the corresponding juggling card
sequence; to help emphasize the structure we shade the portion of the balls which
move in unison according to the construction in the lemma in the parts coming from
B and C.

1

2

1

2

C2 C1 C2

1

2

3

1

2

3

C2 C3 C2 C3

Figure 10: Two minimal crossing juggling card sequences

Let us suppose that we indicate the preceding correspondence in the following
way, if B and C are the minimal crossing juggling card sequences that generate the
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1

2

3

4

5

1

2

3

4

5

C3 C5 C1 C5 C2 C5 C2 C5

Figure 11: The result of combining the two sequences in Figure 10

minimal crossing juggling card sequence A then we write this as A = (B)C. So that
the example from Figures 10 and 11 would be written as

C3C5C1C5C2C5C2C5 = (C2C1C2)C2C3C2C3.

Now we simply apply this convention recursively to each minimal crossing juggling
card sequence, following the rule that if one part is empty we do not write anything.
So (∗) would be a juggling card sequence where ball 1 does not return until the
last card, ()∗ would be a juggling card sequence where the first card is C1, and ()
corresponds to the unique minimal juggling card sequence consisting of a single card,
C1. If we now carry this out on the above example we get the following:

C3C5C1C5C2C5C2C5 = (C2C1C2)C2C3C2C3

= ((C1C1))(C1)C2C2

= ((()C1))(())(C1)

= ((()()))(())(())

This leads naturally to Dyck paths by associating “(” with an up and to the right
step and “)” with a down and to the right step, which in our example gives the Dyck
path shown in Figure 12. This process can be reversed (working from right to left
and inside to outside), giving us a bijection between these minimal crossing juggling
card sequences and Dyck paths.

(0, 0) (16, 0)

Figure 12: The Dyck path for the juggling sequence in Figure 11

Careful analysis of the bijection shows that a juggling card sequence with b balls
and n cards will produce a Dyck path from (0, 0) to (2n, 0) which has n+1− b peaks.
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This latter statistic on Dyck paths is counted by the Narayana numbers (see A001263
in [16]). Establishing the following theorem (a generating function proof of which will
be given later in this section).

Theorem 7. The number of minimal crossing juggling card sequences with b balls
and n cards is

f(n, b) =
1

b

(

n− 1

b− 1

)(

n

b− 1

)

=
1

n

(

n

b

)(

n

b− 1

)

,

the Narayana numbers.

4.2 Non-crossing partitions

An alternative way to establish Theorem 7 is to note that the Narayana numbers
are the number of ways to partition [n] into b disjoint nonempty sets which are non-
crossing, i.e., so that there are no a < b < c < d so that a, c ∈ Si and b, d ∈ Sj (e.g.,
see [15]). The sets Si, formed by the locations of when the i-th ball is thrown, form
such a non-crossing partition (i.e., if such a < b < c < d exist then balls i and j
intersect at least three times, which is impossible). One then checks that using the
same construction as in Theorem 2 that we can go from a non-crossing partition to
one of the juggling card sequences we are counting establishing the bijection.

The important observation to make here, and which we will rely on moving for-
ward, is that if we know the ordering of the balls at the left and right ends and we
know the order in which the balls are thrown, then we can uniquely determine the
cards.

4.3 Counting using generating functions

We will now give another proof of Theorem 7 which will employ the use of generating
functions. We focus on looking at the ball throwing patterns P = 〈b1, b2, . . . , bn〉
which list the balls thrown at each step. Given that the minimal crossing juggling
card sequences will have each of the b balls thrown we have that P is a partition of
[n] into b nonempty sets which are ordered by smallest element.

We will find it convenient to consider a shorthand notation P ∗ = 〈d1, d2, . . . , dr〉
for a pattern P where each dk denotes a block of dk’s of length at least one, and
adjacent dk’s are distinct (note that repeated dk’s correspond to use of the card
C1). Thus, if P = 〈1, 1, 1, 2, 2, 2, 1, 3, 3, 3, 3, 2, 2, 4〉 then the reduced pattern is P ∗ =
〈1, 2, 1, 3, 2, 4〉. As noted before, in the patterns that we are interested in count-
ing, each pair of balls cross exactly twice and so there cannot be an occurrence of
〈. . . , a, . . . , b, . . . , a, . . . , b, . . .〉 in P ∗.

Proof of Theorem 7. We now define the following generating functions:

Fb(y) =
∑

n≥1 f(b, n)y
n,

F (x, y) =
∑

b,n≥1 f(b, n)x
byn =

∑

b,n≥1 Fb(y)x
n.
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For b = 1, we have f(1, n) = 1 for all n, since the only possible juggling card
sequence consists of n identical cards C1. Thus,

F1(y) = y + y2 + y3 + · · · =
y

1− y
.

Let us consider the only possible reduced pattern P ∗ = 〈1, 2, 1〉 of ball throwing
patterns for b = 2. The notation 1 indicates that this block of 1’s may be empty.
Thus,

F2(y) =
y

1− y
F1(y)

1

1− y
=

y2

(1− y)3

where the fraction 1
1−y

allows for the possibility that the second block of 1’s may be

empty (i.e., this is 1 + F1(y)).
For b = 3, there are two possibilities for the reduced pattern P ∗. The first is that

P ∗ = 〈1, C, 1〉 where C consists of 2’s and 3’s (and both must occur). The second is
that P ∗ = 〈1, 2, 1, 3, 1〉. Thus, we have

F3(y) =
y

1− y
F2(y)

1

1− y
+

y

1− y
F1(y)

y

1− y
F1(y)

1

1− y
=

y3(y + 1)

(1− y)5
.

Now consider the case for a general b ≥ 3. Here, we can also partition the
possibilities for P ∗ into two cases. On one hand, we can have P ∗ = 〈1, C〉 where C
is a pattern using all b− 1 of the balls {2, 3, . . . , b}. The number of possible reduced
patterns in this case is y

1−y
Fb−1(y). On the other hand, there may be additional 1’s

which occur after the first block of 1’s. In this case P ∗ has the form 〈1, C1, C2〉 where
C1 uses i > 0 balls (not including 1), and C2 begins with a 1 and uses j > 0 balls
(including 1). Note this decomposition is the same that was given in Lemma 6. Since
C1 ∪C2 = [b] then i+ j = b. In this case the number of possible patterns is given by
the following expression:

∑

0<i<b
i+j=b

y

1− y
Fi(y)Fj(y)

Therefore we have,

Fb(y) =
y

1− y
Fb−1(y) +

∑

0<i<b
i+j=b

y

1− y
Fi(y)Fj(y)

Multiplying both sides by xb and summing over b ≥ 2, we obtain

F (x, y)− xF1(y) =
∑

b≥2

Fb(y)x
b

=
y

1− y

∑

b≥2

xbFb−1(y) +
y

1− y

∑

b≥2

∑

0<i<b,
i+j=b

xiFi(y) x
jFj(y)
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=
y

1− y
(xF (x, y) +

(

F (x, y)
)2
)

In other words,

y
(

F (x, y)
)2

= (1− y − xy)F (x, y)− xy. (1)

Solving this for F (x, y), we get

F (x, y) =
1

2y

(

1− y − xy −
√

(1− y − xy)2 − 4xy2
)

=
1

2y

(

1− y − xy −
√

(1 + y − xy)2 − 4y
)

=
1

2y

(

1− y − xy − (1 + y − xy)

√

1−
4y

(1 + y − xy)2

)

=
1

2y

(

1− y − xy

− (1 + y − xy) + (1 + y − xy)
∑

k≥1

(2k − 2)!

22k−1k!(k − 1)!

(4y)k

(1 + y − xy)2k

)

=
1

2y

(

−2y + 4y
∑

k≥0

(2k)!

22k+1(k + 1)!k!

(4y)k

(1 + y − xy)2k+1

)

= −1 +
∑

k≥0

1

k + 1

(

2k

k

)

yk
∑

j≥0

(

2k + j

j

)

yj(x− 1)j.

Extracting the coefficient of xbyn, we obtain

f(b, n) =
∑

k≥0

1

k + 1

(

2k

k

)(

n + k

n− k

)(

n− k

b

)

(−1)n−b−k.

It remains to check that the right-hand side reduces to 1
b

(

n

b−1

)(

n−1
b−1

)

. Rewriting the
right hand side, we obtain

f(b, n) =
1

b

(

n− 1

b− 1

)

∑

k≥0

(

n+ k

k + 1

)(

n− b

k

)

(−1)n−b−k.

Thus, our proof will be complete if we can show

∑

k≥0

(−1)n−b−k

(

n+ k

k + 1

)(

n− b

k

)

=

(

n

b− 1

)

.

However, this follows at once by identifying the coefficients of xb in the expressions

1

(1− x)n
(1− x)n−b = (1− x)−b.
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Knowing that

F (x, y) =
∑

b≥1

∑

n≥b

1

b

(

n

b− 1

)(

n− 1

b− 1

)

xbyn,

we can substitute into (1) and identify the coefficients of xbyn to obtain the following
interesting binomial coefficient identity.

Corollary 8. We have

∑

1≤i≤b−1
1≤j≤n−2

1

i(b− i)

(

j

i− 1

)(

j − 1

i− 1

)(

n− 1− j

b− i− 1

)(

n− 2− j

b− i− 1

)

=
2

b

(

n− 1

b− 2

)(

n− 2

b− 1

)

.

5 Juggling card sequences with b(b−1)+2 crossings

In the preceding section we looked at minimal crossing juggling card sequences. In
this section we want to look at the ones which are almost minimal, in the sense that
we will increase the number of crossings to b(b− 1)+2. We will focus on the analysis
of the ball throwing patterns.

Since each pair of balls cross at least twice and will always cross an even number
of times, then it must be the case that there is a special pair of balls, call then
a and b with a < b, which cross four times. Therefore the ball throwing pattern
contains the pattern 〈. . . , a, . . . , b, . . . , a, . . . , b, . . .〉. It is possible that there might be
additional copies of the a’s and b’s so that this problem is not equivalent to counting
the number of partitions with one crossing, for which if has been shown (see [1, 3])
that the number of partitions of [n] into b sets which have exactly one crossing is
(

n

b−2

)(

n−5
b−3

)

. Nevertheless, we will see that the answers are similar and in this section
we will establish the following.

Theorem 9. The number of juggling card sequences A with b balls, using n cards one
of which is Cb, having πA = id and Cr(A) = b(b− 1) + 2 is

g(b, n) =

(

n

b+ 2

)(

n

b− 2

)

.

5.1 Structural result

To help establish Theorem 9 it will be useful to understand the structure of these ball
throwing patterns.

Lemma 10. A ball throwing pattern, P , of length n using b balls with two addi-
tional crossings can be decomposed into four ball throwing patterns with no addi-
tional crossings, P0, P1, P2, P3 where Pi has length mi ≥ 1 using ci ≥ 1 balls,
m0 +m2 +m2 +m3 = n, c0 + c1 + c2 + c3 = b+ 2, and a choice of the location of an
entry, i1, in P0.
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Proof. The crossings between a and b will happen in four of the cards for the juggling
card sequence, and using the ball throwing pattern we can determine precisely where
this will happen. Namely, we know that since a < b then a must at some first point
be thrown higher than b which will occur at the last occurrence of a before the first
occurrence of b (i.e., the last time we throw a before we see b); suppose this happens
at i1. Then the next crossing happens at the last occurrence of b before the first
occurrence of a after i1; suppose this happens at i2. Then the next crossing happens
at the last occurrence of a before the first occurrence of b after i2; suppose this
happens at i3. Finally the last crossing happens at the last occurrence of b before the
first occurrence of a after i3; suppose this happens at i4. In particular we have the
following (where some of the “. . .” might be empty):

Ball throwing pattern: 〈. . . ,a , . . . , b , . . . ,a , . . . , b , . . .〉
Location of crossings: i1 i2 i3 i4

Note that there might be additional occurrences of a and b in the ball throwing
pattern, so far we have focused only on the location of the crossings.

We now split the ball throwing pattern into four subpatterns Pi as follows:

• P1 consists of the entries of P between i1 + 1 and i2 (inclusive).

• P2 consists of the entries of P between i2 + 1 and i3 (inclusive).

• P3 consists of the entries of P between i3 + 1 and i4 (inclusive).

• P0 consists of the remaining entries of P , namely up to i1 and after i4 + 1.

Note that no subpattern contains both a and b (by construction), and therefore
each one of these subpatterns (by proper relabeling, i.e., so that the first occurrences
of the balls in order are 1, 2, . . .) give ball throwing patterns with no additional cross-
ings. So we have decomposed the ball throwing pattern into four patterns with no
additional crossings, by construction the sum of the lengths of the subpatterns is n.
We further have the following which gives information about the number of palls in
the subpatterns.

Claim. No ball other than a and b occurs in two of the Pi.

To see this suppose that a ball c occurred both in P1 and P2. Then it must be the
case that our pattern P contains 〈. . . , c . . . , b, . . . , c〉. But this is impossible, because
between the two occurrences of c in the pattern c had to go above b (one crossing)
and then b had to go above c (a second crossing) and so there are no more available
crossings for b and c to interact. However we know that the ordering on both ends is
the identity and so there must be another crossing at some point either before or after
the c’s to put them in the correct order at both ends giving us a third crossing which
is impossible (since other than the pair a and b, each pair crosses exactly twice). The
same argument works for each other pair of intervals.
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Therefore we can conclude that a appears in P0 and P2, b appears in P1 and P3

and each other ball appears in exactly one of the Pi. Letting ci denote the number of
balls in each Pi we can conclude that c0 + c1 + c2 + c3 = b+ 2. Finally we note that
the decomposition for P involved splitting the interval for P0 at some point, for which
there are m0 places we could have chosen (i.e., i1 is something from 1, 2, . . . , m0).

To finish the bijection we now show how to take four patterns P0, P1, P2, P3 with
no additional crossings with lengths m0 +m1 +m2 +m3 = n, number of balls c0 +
c1+ c2+ c3 = b+2, and a choice 1 ≤ i1 ≤ m0 to form a pattern P with two additional
crossings. We start by first labeling the balls so that they are all distinct among all
the Pi and no balls are yet labeled a and b and carry out the following three steps:

1. Whichever ball is thrown in position i1 in P0 we relabel that ball a in all its
occurrences in P0. Whichever ball is thrown in position m1 in P1 we relabel
that ball b in all its occurrences in P1. Whichever ball is thrown in position
m2 in P2 we relabel that ball a in all its occurrences in P2. Whichever ball is
thrown in position m3 in P3 we relabel that ball b in all its occurrences in P3.
(Note that we now have b different labels in use.)

2. Form a ball throwing pattern by concatenating, in order, the first i1 entries from
P0, all of P1, all of P2, all of P3, and the remaining m− i1 entries from P0.

3. Relabel the balls so that the first occurrences of the balls in order are 1, 2, . . ..

This produces a ball throwing pattern which has b(b− 1) + 2 crossings (i.e., since
a and b will cross four times and no other pair of balls can have more than two
crossings). Further, applying the preceding decomposition argument we can precisely
recover P0, P1, P2, P3 and our choice of i1, establishing the bijection.

5.2 Using generating functions

As in the preceding section, we can define a generating function for what we are trying
to count,

G(x, y) =
∑

b≥2,n≥4

g(b, n)xbyn.

We are now ready to establish Theorem 9

Proof of Theorem 9. From Lemma 10 we know that the ball throwing patterns we
want to count can be decomposed into four ball throwing patterns with no crossings
and where there is a choice of where to make a split on the first pattern. Therefore
we have

g(b, n) =
∑

ci,mi≥1
c0+c1+c2+c3=b+2
m0+m1+m2+m3=n

m0f(c0, m0)f(c1, m1)f(c2, m2)f(c3, m3). (2)
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We recall the generating function for the ball throwing patterns with no crossings
(i.e., for minimal crossing juggling sequences),

F (x, y) =
∑

b,n≥1

f(b, n)xbyn =
1− y − xy −

√

(1− y − xy)2 − 4xy2

2y
,

and note that

y
∂

∂y

(

F (x, y)
)

=
∑

b,n≥1

nf(b, n)xbyn.

If we now multiply both sides of (2) by xbyn and then sum we have the following

G(x, y) =
∑

b≥2,n≥4

g(b, n)xbyn

=
∑

b≥2,n≥4

(

∑

1≤ci,mi

c0+c1+c2+c3=b+2
m0+m1+m2+m3=n

m0f(c0, m0)f(c1, m1)f(c2, m2)f(c3, m3)

)

xbyn

=
1

x2

∑

b≥2,n≥4

∑

1≤ci,mi

c0+c1+c2+c3=b+2
m0+m1+m2+m3=n

(

m0f(c0, m0)x
c0ym0 × f(c1, m1)x

c1ym1

×f(c2, m2)x
c2ym2 × f(c3, m3)x

c3ym3

)

=
1

x2

(

y
∂

∂y

(

F (x, y)
)

)

× F (x, y)× F (x, y)× F (x, y)

= y
∂

∂y

(

(

F (x, y)
)4

4x2

)

.

Taking the known expression for F (x, y) and letting z = 1− y − xy we have

(

F (x, y)
)4

4x2
=

8z4 − 32xy2z2 + 16x2y4 − (8z3 − 16xy2z)
√

z2 − 4xy2

64x2y4
,

Further we have

√

z2 − 4xy2 = z

√

1−
4xy2

z2

= z − z
∑

k≥1

(2k − 2)!

22k−1k!(k − 1)!

(4xy2)k

z2k

= z −
2xy2

z
− z

∑

k≥2

(2k − 2)!

22k−1k!(k − 1)!

(4xy2)k

z2k

= z −
2xy2

z
− 2

∑

k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xk+2y2k+4

z2k+3
.
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Substituting this in and simplifying we have

(

F (x, y)
)4

4x2
=

1

4
(z2 − 2xy2)

∑

k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xky2k

z2k+2

=
1

4

∑

k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xky2k

z2k
−

1

2

∑

k≥0

(2k + 2)!

(k + 2)!(k + 1)!

xk+1y2k+2

z2k+2

=
1

4
+

1

2

∑

k≥2

(2k)!(k − 1)

k!(k + 2)!

xky2k

z2k
,

where in going to the last line we pull off the first term on the first summand and
shift the second summand and then combine noting we can drop the k = 1 case. We
also have

1

z2k
=

1
(

1− y(x+ 1)
)2k

=
∑

j≥0

(

2k − 1 + j

j

)

yj(x+ 1)j .

Substituting this we now have

(

F (x, y)
)4

4x2
=

1

4
+

1

2

∑

j≥0
k≥2

(2k)!(k − 1)

k!(k + 2)!

(

2k − 1 + j

j

)

xk(x+ 1)jy2k+j.

Finally, we can recover G(x, y) since what remains is to take the derivative with
respect to y and then multiply by y, which is equivalent to bringing down the power
of y. After simplifying, we can conclude

G(x, y) =
1

2

∑

j≥0
k≥2

(2k)!(k − 1)(2k + j)

k!(k + 2)!

(

2k − 1 + j

j

)

xk(x+ 1)jy2k+j

=
∑

j≥0
k≥2

(

2k + j

k + 2, k − 2, j

)

xk(x+ 1)jy2k+j

=
∑

n≥4
k≥2

(

n

k + 2, k − 2, n− 2k

)

xk(x+ 1)n−2kyn,

where
(

a

b,c,d

)

is the multinomial coefficient a!
b!c!d!

and in going to the last line we make
the substitution j → n− 2k.

We can now get the coefficient of xbyn, which is done by using the binomial
theorem and summing over possible k. In particular we can conclude

g(b, n) =
∑

k

(

n

k + 2, k − 2, n− 2k

)(

n− 2k

b− k

)
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=
∑

k

(

n

k + 2, k − 2, b− k, n− b− k

)

.

By the special case a = 2 of Proposition 11 (given below) this is equal to
(

n

b+2

)(

n

b−2

)

,
finishing the proof.

Proposition 11.
∑

k

(

n

k + a, k − a, b− k, n− b− k

)

=

(

n

b+ a

)(

n

b− a

)

.

Proof. We count the number of ways to select two sets A and B from n elements,
with |A| = b + a and |B| = b − a. This is clearly equal to the right hand side, so it
remains to show how the left hand side equals this as well.

We begin by noting that we can rewrite the multinomial coefficient as a product
of binomial coefficients in the following way,

∑

k

(

n

k + a, k − a, b− k, n− b− k

)

=
∑

k

(

n

b+ k

)(

b+ k

2k

)(

2k

k + a

)

.

We now choose our sets in the following way: First we pick b+ k elements which will
correspond to A ∪ B, then among those b + k elements we choose the 2k elements
which will belong to precisely one of the sets, finally among the 2k elements which
will belong to exactly one set we choose k+ a of them for A and the remaining k− a
go to B. Summing over all possibilities for k now gives the desired count.

5.3 Higher crossing numbers

The next natural step in our problem is to ask for the enumeration of sequences
A with larger values of Cr(A). One approach to this problem would be to further
simplify the types of juggling card sequences we are counting. Let us call a juggling
card sequence A primitive if it does not use the “trivial” card C1, i.e., the card which
generates the identity permutation. Such a card does not contribute to the number of
crossings Cr(A) of A. We note that counting these primitive juggling card sequences
is equivalent to counting the reduced ball throwing patterns which do not end in 1.

Let us denote by Pd(n, b) the number of primitive juggling card sequences A with
n cards using the card Cb with π(A) = id and Cr(A) = b(b− 1) + d, and let Qd(n, b)
denote the number of such sequences which are not necessarily primitive. Since
crossings occur in pairs, d must be even. Then

Qd(n, b) =
n
∑

k=1

(

n

k

)

Pd(k, b).

The hope would be that Pd(n, b) could be simpler in some sense than Qd(n, b) and
would therefore be easier to recognize. It turns out that if we write n = b+ t then it
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Table 1: Data for P4(n, b)

P4(n, b) b=2 b=3 b=4 b=5 b=6 b=7 b=8

n=6 1 3
n=7 2·7 3·7
n=8 22·3 24·7 22·3·7
n=9 22·32·5 22·3·72 23·32·7
n=10 2·32·5 25·32·5 2·3·5·7·11 2·32·5·7
n=11 33·5·11 24·33·5·11 25·3·7·11 2·32·7·11

P4(n, b) b=5 b=6 b=7 b=8 b=9

n=12 2·52·11 2·32·5·11·13 22·32·5·11·17 23·3·7·112 22·32·7·11
n=13 2·5·7·11·13 22·33·5·11·13 22·32·11·13·23 22·3·11·13·29
n=14 3·7·11·13 5·7·11·13·19 23·32·5·7·11·13 23·32·5·7·11·13

is not hard to show that

P0(n, b) =
1

t + 1

(

b− 2

t

)(

b+ t

t

)

and

P2(n, b) =

(

b+ t

2t

)(

2t

t− 2

)

.

In Table 1 we give data (in factored form) for P4(n, b) for small values of n and b.
The fact that there are many small factors suggest that P4(n, b) could be made

up of binomial coefficients in some way. However, the presence of occasional “large”
factors makes it difficult to guess what the expressions might actually be (for example,
P4(14, 10) = 3·7·11·13·37). Nevertheless, computations suggested that P4(n, b) is
given by the following expression:

P4(n, b) =
(bn− b− 8)

2(b+ 4)

(

n

b+ 3

)(

n

b− 2

)

.

This has been confirmed by one of the authors (Cummings), but we do not give a
proof of this result here. We don’t even have a guess as to what the expressions are
for P2k when k ≥ 3!

6 Final arrangements consisting of a single cycle

Suppose that we draw cards at random from the set {C1, C2, . . . , Cb} with replacement
to form a juggling card sequence A. We can then ask for the probability that πA has
some particular property. For example, what is the probability that it is equal to
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some given permutation, such as the identity, or that the permutation consists of a
single cycle. The first question can be answered using Theorem 2. The answer for
the second question is especially nice. We state the result as follows.

Theorem 12. The probability that a random sequence A of n cards taken from the
set of juggling sequence cards {C1, C2, . . . , Cb} has πA consisting of a single cycle is
1/b. In particular, this is independent of n.

The following proof is due to Richard Stong [17]. We start with the following two
basic lemmas.

Lemma 13. The probability that a random permutation σ of [b] has L(σ) ≥ k is 1/k!
for 1 ≤ k ≤ b.

Proof. Select a k-element subset {a0 > a1 > · · · > ak−1} from [b]. Define the permu-
tation ρ by first setting ρ(b − i) = ai for 0 ≤ i ≤ k − 1. There are exactly (b − k)!
ways to complete ρ so that it is a permutation of [b]. Clearly, L(σ) ≥ k and there are
(

b

k

)

(b− k) = b!/k! choices for ρ (and any ρ with L(ρ) = k must be formed this way).
Thus, the probability that a random ρ has L(ρ) ≥ k is 1/k! as claimed.

We note here that the number of permutations of [b] that consist of a single cycle
is (b− 1)!.

Lemma 14. The probability that a random permutation σ of [b] which consists of a
single cycle has L(σ) ≥ k is 1/k! for 1 ≤ k ≤ b− 1.

Proof. The proof is similar to that of Lemma 13. In this case we choose k elements
{a0 > a1 > · · · > ak−1} from [b−1] and map ρ(b− i) to ai for 0 ≤ i ≤ k−1 as before.
The reason that we don’t allow a0 = b is that if ρ(b) = a0 = b then ρ would have a
fixed point and so, could not be a single cycle. Now the question is how to complete
the definition of ρ so that it becomes a single cycle. This is actually quite easy. We
have the beginning of b−k chains, namely, b → a0, b−1 → a1, . . . , b−k+1 → ak−1,
together with the remaining single points not included in the points listed so far. It
is just a matter of piecing these fragments together to form a single cycle. The fact
that some of the ai might be equal to some of the b− j causes no problem. It is easy
to see that there are just (b− k − 1)! ways to complete the definition of ρ so that it
becomes a single cycle with L(ρ) ≥ k, and furthermore all such ρ can be constructed
this way. Since

(

b−1
k

)

(b− k− 1)! = (b− 1)!/k!, and there are (b− 1)! permutations of
[b] that are cycles of length b, this completes the proof of Lemma 14.

Proof of Theorem 12. Partition the set of b! permutations of [b] into b disjoint classes
Xk, for 1 ≤ k ≤ b. Namely, σ ∈ Xk if and only if L(σ) = k. By Lemma 13,
|Xk| = b!

(

1
k!
− 1

(k+1)!

)

for 1 ≤ k ≤ b−1, while |Xb| = 1. Similarly, we can partition the

set of (b− 1)! permutations which are b-cycles into disjoint sets Yk, for 1 ≤ k ≤ b− 1,
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where σ ∈ Yk if and only if L(σ) = k. By Lemma 14, |Yk| = (b− 1)!
(

1
k!
− 1

(k+1)!

)

for

1 ≤ k ≤ b− 2, while |Yb−1| = 1. Note that L(σ) ≥ b− 1 if and only if σ ∈ Xb−1 ∪Xb.
Now by Theorem 2, each σ ∈ Xk accounts for exactly

∑b

k=b−L(σ)

{

n

k

}

different card
sequences A with πA = σ, and the same is true for each σ ∈ Yk, where 1 ≤ k ≤ b− 2.
Furthermore, |Xk| = b|Yk| for these k. In addition, each σ ∈ Xb−1 ∪ Xb and each
σ ∈ Yb−1 accounts for exactly

∑b

k=1

{

n

k

}

different card sequences A with πA = σ.
Thus, since |Xb−1 ∪ Xb| =

b!
(b−1)!

= b = b|Yb−1| then it follows that the number of

card sequences accounted for by all σ (which is bn) is exactly b times the number
accounted for by the σ which are b-cycles. In other words, the probability that a
random sequence of n cards generates a permutation which is a b-cycle is just 1/b,
independent of n.

It turns out that the analog of Theorem 12 holds for cards where m balls are
thrown.

Theorem 15. The probability that a random sequence A of length n using cards where
m balls are thrown at a time has πA equal to a b-cycle is 1/b. In particular, this is
independent of n.

The proof follows the same lines as the proof of Theorem 12 and will be omitted.
The basic point is that in this case each σ with L(σ) = k accounts for exactly
∑b

k=b−L(σ)

{

n

k

}

m
sequences of m-cards with πA = σ. Note that it is not obvious that

Theorem 15 even holds for n = 1.
The surprising thing is that these results apply for all n and is not tied to a

limiting process. Indeed, in the limit this is a special case of a much more general
group theoretic principle that we prove now.

Theorem 16. Let G be a group, let S = {g1, . . . , gk} be a generating set of G, and let
P = {p1, . . . , pk} be a corresponding set of non-zero probabilities summing to 1. Con-
sider the Markov chain on G where at each stage the current element is multiplied by
a random g ∈ S chosen with probability given by P. Then the stationary distribution
of this process is the uniform distribution, independent of the group structure or P.

Proof. For simplicity we will assume that our walk begins at the identity element.
Consider the formal sum D =

∑

gi∈S
pigi. The probability distribution of the random

walk after n steps is then given by the formal sum Dn. Let F =
∑

g∈G qgg be the
stationary distribution of this Markov chain. Then we have that F acts as a fixed
point, i.e., DF = F .

Let h be a group element whose probability qh in the stationary distribution is
maximum, i.e., qh ≥ qg for all g ∈ G. Applying this after equating the h coefficients
on each side of DF = F gives

qh =

k
∑

i=1

piqg−1

i
h ≤

k
∑

i=1

piqh = qh,
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which can only hold if each qg−1

i
h = qh. Now, for each i, apply this same argument

by choosing g−1
i h as the maximum element instead of h. Since {g−1

i : i ∈ [k]} is also
a generating set of G, by continuing in this way we see that qg = qh for all g ∈ G,
completing the proof.

Thus in the case of Sn, the probability of having ℓ distinct cycles after choosing n
random juggling cards tends to

[

b

ℓ

]

/b! as n tends to infinity, where
[

b

ℓ

]

indicates the
Stirling number of the first kind, i.e., the number of ways to decompose {1, . . . , b}
into ℓ disjoint cycles. Indeed, we note without proof that it converges to this quite
rapidly. By following the lines of the proof of Theorem 12, only in the “end cases”
where L(σ) is within ℓ of b does the proportion not equal precisely

[

b

ℓ

]

/b!.
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