NATURAL NUMBERS REPRESENTED BY $\left\lfloor x^{2} / a\right\rfloor+\left\lfloor y^{2} / b\right\rfloor+\left\lfloor z^{2} / c\right\rfloor$

Zhi-Wei SUN
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Abstract

Let a, b, c be positive integers. It is known that there are infinitely many positive integers not representated by $a x^{2}+b y^{2}+c z^{2}$ with $x, y, z \in \mathbb{Z}$. In contrast, we conjecture that any natural number is represented by $\left\lfloor x^{2} / a\right\rfloor+\left\lfloor y^{2} / b\right\rfloor+$ $\left\lfloor z^{2} / c\right\rfloor$ with $x, y, z \in \mathbb{Z}$ if $(a, b, c) \neq(1,1,1),(2,2,2)$, and that any natural number is represented by $\left\lfloor T_{x} / a\right\rfloor+\left\lfloor T_{y} / b\right\rfloor+\left\lfloor T_{z} / c\right\rfloor$ with $x, y, z \in \mathbb{Z}$, where T_{x} denotes the triangular number $x(x+1) / 2$. We confirm this general conjecture in some special cases; in particular, we prove that

$$
\left\{x^{2}+y^{2}+\left\lfloor\frac{z^{2}}{5}\right\rfloor: x, y, z \in \mathbb{Z} \text { and } 2 \nmid y\right\}=\{1,2,3, \ldots\}
$$

and

$$
\left\{\left\lfloor\frac{x^{2}}{m}\right\rfloor+\left\lfloor\frac{y^{2}}{m}\right\rfloor+\left\lfloor\frac{z^{2}}{m}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\{0,1,2, \ldots\} \quad \text { for } m=5,6,15 .
$$

We also pose several conjectures for further research; for example, we conjecture that any integer can be written as $x^{4}-y^{3}+z^{2}$, where x, y and z are positive integers.

1. Introduction

Let $\mathbb{N}=\{0,1,2, \ldots\}$ be the set of all natural numbers (nonnegative integers). A well-known theorem of Lagrange asserts that each $n \in \mathbb{N}$ can be written as the sum of four squares. It is known that for any $a, b, c \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ there are infinitely many positive integers not represented by $a x^{2}+b y^{2}+c z^{2}$ with $x, y, z \in \mathbb{Z}$.

A classical theorem of Gauss and Legendre states that $n \in \mathbb{N}$ can be written as the sum of three squares if and only if it is not of the form $4^{k}(8 l+7)$ with 11P32.

Keywords. Representations of integers, the floor function, squares, polygonal numbers.
Supported by the National Natural Science Foundation (Grant No. 11171140) of China.
$k, l \in \mathbb{N}$. Consequently, for each $n \in \mathbb{N}$ there are $x, y, z \in \mathbb{Z}$ such that
$8 n+3=(2 x+1)^{2}+(2 y+1)^{2}+(2 z+1)^{2}$, i.e., $n=\frac{x(x+1)}{2}+\frac{y(y+1)}{2}+\frac{z(z+1)}{2}$.
Those $T_{x}=x(x+1) / 2$ with $x \in \mathbb{Z}$ are called triangular numbers. For $m=3,4, \ldots$, those m-gonal numbers (or polygonal numbers of order m) are given by

$$
p_{m}(n):=(m-2)\binom{n}{2}+n=\frac{(m-2) n^{2}-(m-4) n}{2}(n=0,1,2, \ldots)
$$

and those $p_{m}(x)$ with $x \in \mathbb{Z}$ are called generalized m-gonal numbers. Cauchy's polygonal number theorem states that for each $m=5,6, \ldots$ any $n \in \mathbb{N}$ can be written as the sum of m polygonals of order m (see, e.g., [N96, pp. 3-35] and [MW, pp. 54-57].)

For any $k \in \mathbb{Z}$, we clearly have

$$
T_{k}=\frac{(2 k+1)^{2}-1}{8}=\left\lfloor\frac{(2 k+1)^{2}}{8}\right\rfloor .
$$

As any natural number can be expressed as the sum of three triangular numbers, each $n \in \mathbb{N}$ can be written as $\left\lfloor x^{2} / 8\right\rfloor+\left\lfloor y^{2} / 8\right\rfloor+\left\lfloor z^{2} / 8\right\rfloor$ with $x, y, z \in \mathbb{Z}$. B. Farhi [F13] conjectured that any $n \in \mathbb{N}$ can be expressed the sum of three elements of the set $\left\{\left\lfloor x^{2} / 3\right\rfloor: x \in \mathbb{Z}\right\}$ and showed this for $n \not \equiv 2(\bmod 24)$. The conjecture was later proved by S. Mezroui, A. Azizi and M. Ziane [MAZ] in 2014 via the known formula for the number of ways to write n as the sum of three squares. In [F] Farhi provided an elementary proof of the conjecture and made a further conjecture that for each $a=3,4,5, \ldots$ any $n \in \mathbb{N}$ can be written as the sum of three elements of the set $\left\{\left\lfloor x^{2} / a\right\rfloor: x \in \mathbb{Z}\right\}$. This general conjecture of Farhi has been solved for $a=3,4,7,8,9$ (cf. [HKR]).

Motivated by the above work, we pose the following general conjecture based on our computation.

Conjecture 1.1. Let $a, b, c \in \mathbb{Z}^{+}$with $a \leqslant b \leqslant c$.
(i) If the triple (a, b, c) is neither $(1,1,1)$ nor $(2,2,2)$, then for any $n \in \mathbb{N}$ there are $x, y, z \in \mathbb{Z}$ such that

$$
\begin{equation*}
n=\left\lfloor\frac{x^{2}}{a}\right\rfloor+\left\lfloor\frac{y^{2}}{b}\right\rfloor+\left\lfloor\frac{z^{2}}{c}\right\rfloor=\left\lfloor\frac{x^{2}}{a}+\frac{y^{2}}{b}\right\rfloor+\left\lfloor\frac{z^{2}}{c}\right\rfloor=\left\lfloor\frac{x^{2}}{a}\right\rfloor+\left\lfloor\frac{y^{2}}{b}+\frac{z^{2}}{c}\right\rfloor \tag{1.1}
\end{equation*}
$$

(ii) For any $n \in \mathbb{N}$, there are $x, y, z \in \mathbb{Z}$ such that

$$
\begin{equation*}
n=\left\lfloor\frac{T_{x}}{a}\right\rfloor+\left\lfloor\frac{T_{y}}{b}\right\rfloor+\left\lfloor\frac{T_{z}}{c}\right\rfloor=\left\lfloor\frac{T_{x}}{a}+\frac{T_{y}}{b}\right\rfloor+\left\lfloor\frac{T_{z}}{c}\right\rfloor=\left\lfloor\frac{T_{x}}{a}\right\rfloor+\left\lfloor\frac{T_{y}}{b}+\frac{T_{z}}{c}\right\rfloor . \tag{1.2}
\end{equation*}
$$

Moreover, if the triple (a, b, c) is not among

$$
(1,1,1),(1,1,3),(1,1,7),(1,3,3),(1,7,7),(3,3,3)
$$

then for any $n \in \mathbb{N}$ there are $x, y, z \in \mathbb{Z}$ such that

$$
\begin{align*}
n & =\left\lfloor\frac{x(x+1)}{a}\right\rfloor+\left\lfloor\frac{y(y+1)}{b}\right\rfloor+\left\lfloor\frac{z(z+1)}{c}\right\rfloor \\
& =\left\lfloor\frac{x(x+1)}{a}+\frac{y(y+1)}{b}\right\rfloor+\left\lfloor\frac{z(z+1)}{c}\right\rfloor \tag{1.3}\\
& =\left\lfloor\frac{x(x+1)}{a}\right\rfloor+\left\lfloor\frac{y(y+1)}{b}+\frac{z(z+1)}{c}\right\rfloor .
\end{align*}
$$

In this paper we establish some results in the direction of Conjecture 1.1.
Theorem 1.1. (i) For each $m=4,6$, any $n \in \mathbb{N}$ can be written as $x^{2}+(2 y)^{2}+$ $\left\lfloor z^{2} / m\right\rfloor$ with $x, y, z \in \mathbb{Z}$. Also, any $n \in \mathbb{Z}^{+}$can be expressed as $x^{2}+y^{2}+\left\lfloor z^{2} / 5\right\rfloor$ with $x, y, z \in \mathbb{Z}$ and $2 \nmid y$.
(ii) For any $\delta \in\{0,1\}$, any $n \in \mathbb{Z}^{+}$can be expressed as $x^{2}+y^{2}+\left\lfloor z^{2} / 8\right\rfloor$ with $x, y, z \in \mathbb{Z}$ and $y \equiv \delta(\bmod 2)$.
(iii) For each $m=2,3,9,21$, any $n \in \mathbb{N}$ can be written as $x^{2}+y^{2}+\left\lfloor z^{2} / m\right\rfloor$ with $x, y, z \in \mathbb{Z}$. Also, for each $m=3,4,6$ we have

$$
\begin{equation*}
\left\{x^{2}+y^{2}+\left\lfloor\frac{z(z+1)}{m}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} . \tag{1.4}
\end{equation*}
$$

(iv) For each $m=5,6,15$, we have
$\left\{x^{2}+\left\lfloor\frac{y^{2}}{m}\right\rfloor+\left\lfloor\frac{z^{2}}{m}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\left\{\left\lfloor\frac{x^{2}}{m}\right\rfloor+\left\lfloor\frac{y^{2}}{m}\right\rfloor+\left\lfloor\frac{z^{2}}{m}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}$.
(v) We have

$$
\left\{T_{x}+T_{y}+\left\lfloor\frac{T_{z}}{3}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\left\{\left\lfloor\frac{T_{x}}{3}\right\rfloor+\left\lfloor\frac{T_{y}}{3}\right\rfloor+\left\lfloor\frac{T_{z}}{3}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

and

$$
\begin{equation*}
\left\{x(x+1)+y(y+1)+\left\lfloor\frac{z(z+1)}{4}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} . \tag{1.6}
\end{equation*}
$$

Remark 1.1. As $x^{2}=(3 x)^{2} / 9$, Theorem 1.1(iii) with $m=9$ implies that any $n \in \mathbb{N}$ can be written as $\left\lfloor x^{2} / 9\right\rfloor+\left\lfloor y^{2} / 9\right\rfloor+\left\lfloor z^{2} / 9\right\rfloor$ with $x, y, z \in \mathbb{Z}$. Theorem 1.1(iv) confirms Farhi's conjecture for $a=5,6,15$. The author [S15a, Remark 1.8] conjectured that for any $n \in \mathbb{N}$ we can write $20 n+9$ as $5 x^{2}+5 y^{2}+(2 z+1)^{2}$ with $x, y, z \in \mathbb{Z}$; it is easy to see that (1.4) for $m=5$ follows from this conjecture. As $\left\{2 T_{x}+2 T_{y}+T_{z}: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}$ by Liouville's result, any $n \in \mathbb{N}$ can be written as $T_{x}+T_{y}+T_{z} / 2$ with $x, y, z \in \mathbb{Z}$.

As a supplement to parts (i)-(iii) of Theorem 1.1, we pose the following conjecture.

Conjecture 1.2. (i) Let $n \in \mathbb{Z}^{+}$. Then, for any integer $m>6$ and $\delta \in\{0,1\}$, we have $n=x^{2}+y^{2}+\left\lfloor z^{2} / m\right\rfloor$ for some $x, y, z \in \mathbb{Z}$ with $y \equiv \delta(\bmod 2)$.
(ii) For any integer $m>2$, we have

$$
\left\{x^{2}+(2 y)^{2}+\left\lfloor\frac{z(z+1)}{m}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

For each $m=4,5, \ldots$, any positive integer n can be represented by $x^{2}+y^{2}+$ $\lfloor z(z+1) / m\rfloor$ with $x, y, z \in \mathbb{Z}$ and $2 \nmid y$.
Remark 1.2. It is known that $\left\{x^{2}+(2 y)^{2}+T_{z}: x, y, z \in \mathbb{Z}\right\}=\left\{x^{2}+(2 y)^{2}+2 T_{z}\right.$: $x, y, z \in \mathbb{Z}\}=\mathbb{N}(c f .[S 07$, Section 4] $)$.

For any $a \in \mathbb{Z}^{+}$, clearly

$$
\left\{\left\lfloor\frac{x^{2}}{a}\right\rfloor: x \in \mathbb{Z}\right\} \supseteq\left\{\left\lfloor\frac{(a x)^{2}}{a}\right\rfloor=a x^{2}: x \in \mathbb{Z}\right\} .
$$

Theorem 1.2. (i) For each $m=2,3,4,5$ we have

$$
\left\{x^{2}+2 y^{2}+\left\lfloor\frac{z^{2}}{m}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

(ii) For each $m=3,4,6,8$, we have

$$
\left\{x^{2}+3 y^{2}+\left\lfloor\frac{z^{2}}{m}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

(iii) We have

$$
\left\{x^{2}+5 y^{2}+\left\lfloor\frac{z^{2}}{8}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\left\{x^{2}+6 y^{2}+\left\lfloor\frac{z^{2}}{4}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

(iv) We have

$$
\left\{2 x^{2}+2 y^{2}+\left\lfloor\frac{z^{2}}{8}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\left\{2 x^{2}+3 y^{2}+\left\lfloor\frac{z^{2}}{3}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

and

$$
\left\{2 x^{2}+\left\lfloor\frac{y^{2}}{2}\right\rfloor+\left\lfloor\frac{z^{2}}{3}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

Our following conjecture involving the ceiling function is quite similar to Conjecture 1.1.

Conjecture 1.3. Let $a, b, c \in \mathbb{Z}^{+}$with $a \leqslant b \leqslant c$.
(i) If the triple (a, b, c) is not among $(1,1,1),(1,1,2),(1,1,5)$, then for any $n \in \mathbb{N}$ there are $x, y, z \in \mathbb{Z}$ such that

$$
n=\left\lceil\frac{x^{2}}{a}\right\rceil+\left\lceil\frac{y^{2}}{b}\right\rceil+\left\lceil\frac{z^{2}}{c}\right\rceil
$$

(ii) We have

$$
\left\{\left\lceil\frac{T_{x}}{a}\right\rceil+\left\lceil\frac{T_{y}}{b}\right\rceil+\left\lceil\frac{T_{z}}{c}\right\rceil: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

Moreover, if the triple (a, b, c) is neither $(1,1,1)$ nor $(1,1,3)$, then for any $n \in \mathbb{N}$ there are $x, y, z \in \mathbb{Z}$ such that

$$
n=\left\lceil\frac{x(x+1)}{a}\right\rceil+\left\lceil\frac{y(y+1)}{b}\right\rceil+\left\lceil\frac{z(z+1)}{c}\right\rceil .
$$

We are also able to deduce some results similar to Theorems 1.1-1.2 in the direction of Conjecture 1.3. Here we just collect few results of this type.
Theorem 1.3. (i) For each $m=2,3,4,5,6,15$, we have

$$
\begin{equation*}
\left\{\left\lceil\frac{x^{2}}{m}\right\rceil+\left\lceil\frac{y^{2}}{m}\right\rceil+\left\lceil\frac{z^{2}}{m}\right\rceil: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} . \tag{1.7}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\left\{x^{2}+3 y^{2}+\left\lceil\frac{z^{2}}{2}\right\rceil: x, y, z \in \mathbb{Z}\right\}=\left\{x^{2}+3 y^{2}+\left\lceil\frac{z^{2}}{10}\right\rceil: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \tag{1.8}
\end{equation*}
$$

(iii) For any $n \in \mathbb{N}$, there are $x, y, z \in \mathbb{Z}$ such that

$$
\begin{equation*}
n=x(x+1)+\frac{y(y+1)}{3}+\left\lceil\frac{z(z+1)}{3}\right\rceil . \tag{1.9}
\end{equation*}
$$

Also, any $n \in \mathbb{N}$ can be written as $x(3 x+1)+y(3 y+1)+\lceil z(z+1) / 3\rceil$ with $x, y, z \in \mathbb{Z}$, and hence

$$
\begin{equation*}
\left\{\left\lceil\frac{x(x+1)}{3}\right\rceil+\left\lceil\frac{y(y+1)}{3}\right\rceil+\left\lceil\frac{z(z+1)}{3}\right\rceil: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} . \tag{1.10}
\end{equation*}
$$

Remark 1.3. In contrast with (1.8), we note that 20142 is the first natural number not represented by $x^{2}+3 y^{2}+\left\lfloor z^{2} / 10\right\rfloor$ with $x, y, z \in \mathbb{Z}$.

Now we state another theorem.

Theorem 1.4. (i) For any integer $a>1$, we have

$$
\left\{\left\lfloor\frac{x^{2}+y^{2}+z^{2}}{a}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

and

$$
\left\{\left\lfloor\frac{x(x+1)+y(y+1)+z(z+1)}{a}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

(ii) Let $a \in \mathbb{Z}^{+}$. If a is odd, then any $n \in \mathbb{N}$ can be written as $x^{2}+y^{2}+$ $z^{2}+\left\lfloor\frac{a}{2}(x+y+z)\right\rfloor$ with $x, y, z \in \mathbb{Z}$. If $3 \nmid a$, then any $n \in \mathbb{N}$ can be written as $x^{2}+y^{2}+z^{2}+\left\lfloor\frac{a}{3}(x+y+z)\right\rfloor$ with $x, y, z \in \mathbb{Z}$.
(iii) For any $n \in \mathbb{N}$, there are $x, y, z \in \mathbb{Z}$ such that

$$
n=\frac{p_{8}(x)}{2}+\left\lceil\frac{p_{8}(y)}{2}\right\rceil+\left\lceil\frac{p_{8}(z)}{2}\right\rceil .
$$

Hence

$$
\begin{equation*}
\{s(x)+s(y)+s(z): x, y, z \in \mathbb{Z}\}=\mathbb{N} \tag{1.11}
\end{equation*}
$$

where

$$
s(x):=\left\lceil\frac{p_{8}(-x)}{2}\right\rceil=x+\left\lceil 1.5 x^{2}\right\rceil .
$$

Remark 1.4. For $m=19,20$, we have $111 \neq x^{2}+y^{2}+z^{2}+\lfloor(x+y+z) / m\rfloor$ for any $x, y, z \in \mathbb{Z}$.

The generalized octagonal numbers $p_{8}(x)=x(3 x-2)(x \in \mathbb{Z})$ have some properties similar to certain properties of squares. For example, recently the author [S16] showed that any $n \in \mathbb{N}$ can be written as the sum of four generalized octagonal numbers; this result is quite similar to Lagrange's theorem on sums of four squares. Note that

$$
\begin{equation*}
\left\lfloor\frac{p_{8}(x)}{2 m}\right\rfloor=\left\lfloor\frac{4 p_{8}(x)+1}{4 m}\right\rfloor=\left\lfloor\frac{p_{8}(1-2 x)}{4 m}\right\rfloor \text { and }\left\lfloor\frac{p_{8}(x)}{m}\right\rfloor=\left\lfloor\frac{(3 x-1)^{2}}{3 m}\right\rfloor \tag{1.12}
\end{equation*}
$$

for any $m \in \mathbb{Z}^{+}$and $x \in \mathbb{Z}$.
Theorem 1.5. (i) $n \in \mathbb{N}$ can be written as $p_{8}(x)+p_{8}(y)+2 p_{8}(z)$ with $x, y, z \in \mathbb{Z}$ if and only if n does not belong to the set

$$
\left\{4^{k+2} q-\frac{2}{3}\left(4^{k}+2\right): k \in \mathbb{N} \text { and } q \in \mathbb{Z}^{+}\right\}
$$

Also, each nonnegative even number can be represented by $p_{8}(x)+2 p_{8}(y)+4 p_{8}(z)$ with $x, y, z \in \mathbb{Z}$. Consequently,

$$
\begin{equation*}
\left\{p_{8}(x)+\left\lfloor\frac{p_{8}(y)}{2}\right\rfloor+\left\lfloor\frac{p_{8}(z)}{2}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left\lfloor\frac{x^{2}}{3}\right\rfloor+\left\lfloor\frac{y^{2}}{6}\right\rfloor+\left\lfloor\frac{z^{2}}{6}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \tag{1.14}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\left\{p_{8}(x)+p_{8}(y)+\left\lfloor\frac{p_{8}(z)}{2}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \tag{1.15}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left\{p_{8}(x)+p_{8}(y)+\left\lfloor\frac{p_{8}(z)}{8}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \tag{1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left\lfloor\frac{x^{2}}{3}\right\rfloor+\left\lfloor\frac{y^{2}}{3}\right\rfloor+\left\lfloor\frac{z^{2}}{6}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} . \tag{1.17}
\end{equation*}
$$

(iii) For $n \in \mathbb{N}$ there are $x, y, z \in \mathbb{Z}$ such that

$$
\begin{equation*}
n=p_{8}(x)+p_{8}(y)+\frac{p_{8}(z)}{4} \tag{1.18}
\end{equation*}
$$

(iv) We have

$$
\begin{equation*}
\left\{p_{8}(x)+p_{8}(y)+\left\lfloor\frac{p_{8}(z)}{5}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \tag{1.19}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\{\left\lfloor\frac{x^{2}}{3}\right\rfloor+\left\lfloor\frac{y^{2}}{3}\right\rfloor+\left\lfloor\frac{z^{2}}{15}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} \tag{1.20}
\end{equation*}
$$

We are going to prove Theorems 1.1-1.2 in the next section, and show Theorems $1.3-1.4$ in Section 3. Section 4 is devoted to our proof of Theorem 1.5. We pose some further conjectures in Section 5 .

2. Proofs of Theorems 1.1-1.2

Lemma 2.1. Suppose that $n \in \mathbb{Z}^{+}$is not a power of two. Then there are $x, y, z \in$ \mathbb{Z} with $|x|<n,|y|<n$ and $|z|<n$ such that $x^{2}+y^{2}+z^{2}=n^{2}$.
Proof. In 1907 Hurwitz (cf. [D99, p. 271]) showed that

$$
\begin{align*}
& \left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=n^{2}\right\}\right| \\
= & 6 \prod_{p>2}\left(\frac{p^{\operatorname{ord}_{p}(n)+1}-1}{p-1}+(-1)^{(p+1) / 2} \frac{p^{\operatorname{ord}_{p}(m)}-1}{p-1}\right), \tag{2.1}
\end{align*}
$$

where $\operatorname{ord}_{p}(n)$ is the order of n at the prime p. Note that

$$
(\pm n)^{2}+0^{2}+0^{2}=0^{2}+(\pm n)^{2}+0^{2}=0^{2}+0^{2}+(\pm n)^{2}
$$

As n has an odd prime p, by (2.1) we have

$$
\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=n^{2}\right\}\right| \geqslant 6 \frac{p^{\operatorname{ord}_{p}(n)+1}-p^{\operatorname{ord}_{p}(n)}}{p-1} \geqslant 6 p>8
$$

and hence there are $x, y, z \in \mathbb{Z}$ with $x^{2}, y^{2}, z^{2} \neq n^{2}$ such that $x^{2}+y^{2}+z^{2}=n^{2}$. This concludes the proof.

Lemma 2.2. (i) Let u and v be integers with $u^{2}+v^{2}$ a positive multiple of 5 . Then $u^{2}+v^{2}=x^{2}+y^{2}$ for some $x, y \in \mathbb{Z}$ with $5 \nmid x y$.
(ii) For any $n \in \mathbb{N}$ with $n \equiv \pm 6(\bmod 20)$, we can write n as $5 x^{2}+5 y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ and $2 \nmid z$.

Remark 2.1. Parts (i) and (ii) of Lemma 2.2 are Lemmas 2.1 and 2.2 of [S15b].
Lemma 2.3. Let $n>1$ be an integer with $n \equiv 1,9(\bmod 20)$ or $n \equiv 11,19$ $(\bmod 40)$. Then we can write n as $5 x^{2}+5 y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ such that $x \not \equiv y$ $(\bmod 2)$ if $n \equiv 1,9(\bmod 20)$, and $2 \nmid y$ if $n \equiv 11,19(\bmod 40)$.

Proof. As $n \equiv 1(\bmod 4)$ or $n \equiv 3(\bmod 8)$, by the Gauss-Legendre theorem n is the sum of three squares. As n is not a power of two, in view of Lemma 2.1 we can always write n as $w^{2}+u^{2}+v^{2}$ with $u, v, w \in \mathbb{Z}$ and $w^{2}, u^{2}, v^{2} \neq n$. Without loss of generality, we assume that $2 \nmid w$ and $u \equiv v(\bmod 2)$. Clearly, $u \equiv v \equiv 0$ $(\bmod 2)$ if $n \equiv 1(\bmod 4)$. If $w^{2} \equiv-n(\bmod 5)$, then $u^{2}+v^{2} \equiv 2 n(\bmod 5)$ and hence $u^{2} \equiv v^{2} \equiv n(\bmod 5)$. If $w^{2} \equiv n(\bmod 5)$, then $u^{2}+v^{2}$ is a positive multiple of 5 and hence by Lemma 2.2 we can write it as $s^{2}+t^{2}$, where s and t are integers with $s^{2} \equiv-n(\bmod 5)$ and $t^{2} \equiv n(\bmod 5)$. When $n \equiv 1(\bmod 4)$, we have $s^{2}+t^{2}=u^{2}+v^{2} \equiv 0(\bmod 4)$, we have $s \equiv t \equiv 0(\bmod 2)$. If $5 \mid w$, then one of u^{2} and v^{2} is divisible by 5 and the other is congruent to n modulo 5 .

By the above, there always exist $x, y, z \in \mathbb{Z}$ with $z^{2} \equiv n(\bmod 5)$ such that $n=x^{2}+y^{2}+z^{2}$ and that $2 \mid z$ if $n \equiv 1(\bmod 4)$. Note that $x^{2} \equiv-y^{2} \equiv(\pm 2 y)^{2}$ $(\bmod 5)$. Without loss of generality, we assume that $x \equiv 2 y(\bmod 5)$ and hence $2 x \equiv-y(\bmod 5)$. Set $\bar{x}=(x-2 y) / 5$ and $\bar{y}=(2 x+y) / 5$. Then

$$
n=x^{2}+y^{2}+z^{2}=5 \bar{x}^{2}+5 \bar{y}^{2}+z^{2} .
$$

If $n \equiv 1(\bmod 4)$, then $2 \mid z$ and hence $\bar{x} \not \equiv \bar{y}(\bmod 2)$. If $n \equiv 3(\bmod 8)$, then $z^{2} \not \equiv n(\bmod 4)$ and hence \bar{x} or \bar{y} is odd. This concludes the proof.

Remark 2.1. Without using Lemma 2.1 and Lemma 2.2(i), the author [S15a, Theorem 1.7(iv)] showed by a different method that for any integer $n>1$ with $n \equiv 1,9(\bmod 20)$ we can write $n=5 x^{2}+5 y^{2}+(2 z)^{2}$ with $x, y, z \in \mathbb{Z}$ if n is not a square.

For convenience, we define

$$
E(f(x, y, z)):=\{n \in \mathbb{N}: n \neq f(x, y, z) \text { for any } x, y, z \in \mathbb{Z}\}
$$

for any function $f: \mathbb{Z}^{3} \rightarrow \mathbb{N}$.
Proof of Theorem 1.1. Let n be a fixed nonnegative integer.
(i) By Dickson [D39, pp. 112-113],

$$
E\left(4 x^{2}+16 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\{4 k+2,4 k+3,16 k+12\} \cup\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\} .
$$

So, there are $x, y, z \in \mathbb{Z}$ such that $4 n+1=4 x^{2}+16 y^{2}+z^{2}$ and hence $n=$ $x^{2}+(2 y)^{2}+\left\lfloor z^{2} / 4\right\rfloor$.

For $r \in\{1,4\}$, if $6 n+r=6 x^{2}+24 y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$, then $z^{2} \equiv r(\bmod 6)$ and $n=x^{2}+(2 y)^{2}+\left\lfloor z^{2} / 6\right\rfloor$. By Dickson [D39, pp. 112-113],

$$
E\left(6 x^{2}+24 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\{8 k+3,8 k+5,32 k+12\} \cup\left\{9^{k}(3 l+2): k, l \in \mathbb{N}\right\} .
$$

If both $6 n+1$ and $6 n+4$ belong to this set, then one of them has the form $32 k+12$ and hence we get a contradiction since $32 k+12 \pm 3 \not \equiv 3,5(\bmod 8)$.

If $n \equiv 0,1(\bmod 4)$, then $5 n+1 \equiv 1,6(\bmod 20)$ and hence by Lemmas 2.2 and 2.3 we have $5 n+1=5 x^{2}+5 y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x \not \equiv y(\bmod 2)$, thus x or y is odd and $n=x^{2}+y^{2}+\left\lfloor z^{2} / 5\right\rfloor$. By Dickson [D39, pp. 112-113],

$$
E\left(x^{2}+y^{2}+5 z^{2}\right)=\left\{4^{k}(8 l+3): k, l \in \mathbb{N}\right\} .
$$

If $n \equiv 2(\bmod 4)$ or $n \equiv 7(\bmod 8)$, then there are $x, y, z \in \mathbb{Z}$ such that $n=$ $x^{2}+y^{2}+5 z^{2}=x^{2}+y^{2}+\left\lfloor(5 z)^{2} / 5\right\rfloor$ and one of x and y is odd since $5 z^{2} \equiv z^{2} \not \equiv n$ $(\bmod 4)$. If $n \equiv 3(\bmod 8)$, then $5 n+4 \equiv 19(\bmod 40)$ and hence by Lemma 2.3 there are $x, y, z \in \mathbb{Z}$ with $2 \nmid y$ such that $5 n+4=5\left(x^{2}+y^{2}\right)+z^{2}$ and hence $n=x^{2}+y^{2}+\left\lfloor z^{2} / 5\right\rfloor$ with y odd.
(ii) By [D39, pp. 112-113], there are $x, y, z \in \mathbb{Z}$ such that $8 n+1=8 x^{2}+32 y^{2}+z^{2}$ and hence $n=x^{2}+(2 y)^{2}+\left\lfloor z^{2} / 8\right\rfloor$.

Suppose that $n \in \mathbb{Z}^{+}$. As conjectured by Sun [S07] and proved by Oh and Sun [OS], there are $x, y, z \in \mathbb{Z}$ with y odd such that $n=x^{2}+y^{2}+T_{z}$ and hence $n=x^{2}+y^{2}+\left\lfloor(2 z+1)^{2} / 8\right\rfloor$.
(iii) If $2 n \equiv 6(\bmod 8)$, then $2 n \notin\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$. If $2 n \not \equiv 6(\bmod 8)$, then $2 n+1 \notin\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$. So, for some $\delta \in\{0,1\}$, we have $2 n+\delta \notin$ $\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$ and hence (by the Gauss-Legendre theorem) $2 n+\delta=$ $x^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $z \equiv \delta(\bmod 2)$. Note that $x \equiv y(\bmod 2)$ and

$$
2 n+\delta=2\left(\frac{x+y}{2}\right)^{2}+2\left(\frac{x-y}{2}\right)^{2}+z^{2}
$$

Therefore,

$$
n=\left(\frac{x+y}{2}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}+\frac{z^{2}-\delta}{2}=\left(\frac{x+y}{2}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}+\left\lfloor\frac{z^{2}}{2}\right\rfloor .
$$

By Dickson [D39, pp. 112-113],

$$
E\left(3 x^{2}+3 y^{2}+z^{2}\right)=\left\{9^{k}(3 l+2): k, l \in \mathbb{N}\right\} .
$$

So, there are $x, y, z \in \mathbb{Z}$ such that $3 n+1=3\left(x^{2}+y^{2}\right)+z^{2}$ and hence $n=$ $x^{2}+y^{2}+\left\lfloor z^{2} / 3\right\rfloor$.

Clearly $9 n+1 \equiv 9 n+7(\bmod 2)$ but $9 n+1 \not \equiv 9 n+7(\bmod 4)$. So, for some $r \in\{1,7\}$, we have $9 n+r \notin\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$ and hence (by the GaussLegendre theorem) there are $x, y, z \in \mathbb{Z}$ such that $9 n+r=(3 x)^{2}+(3 y)^{2}+z^{2}$ and therefore $n=x^{2}+y^{2}+\left\lfloor z^{2} / 9\right\rfloor$.

By Dickson [D39, pp. 112-113],

$$
E\left(21 x^{2}+21 y^{2}+z^{2}\right)=\bigcup_{k, l \in \mathbb{N}}\left\{4^{k}(8 l+7), 9^{k}(3 l+2), 49^{k}(7 l+3), 49^{k}(7 l+5), 49^{k}(7 l+6)\right\}
$$

For each $r=1,4,16$, if $21 n+r$ belongs to the above set then it has the form $4^{k}(8 l+7)$ with $k, l \in \mathbb{N}$. If

$$
\{21 n+1,21 n+4,21 n+16\} \subseteq\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}
$$

then $21 n+4$ and $21 n+16$ are even since $21 n+4 \not \equiv 21 n+16(\bmod 8)$, hence $21 n+1 \equiv 7(\bmod 8)$ and $21 n+4 \equiv 2(\bmod 8)$ which leads a contradiction. So, for some $r \in\{1,4,16\}$ and $x, y, z \in \mathbb{Z}$ we have $21 n+r=21\left(x^{2}+y^{2}\right)+z^{2}$ and hence $n=x^{2}+y^{2}+\left\lfloor z^{2} / 21\right\rfloor$.

By Dickson [D39, pp. 112-113],

$$
E\left(12 x^{2}+12 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\left\{(4 k+2,4 k+3\} \cup\left\{9^{k}(3 l+2): k, l \in \mathbb{N}\right\}\right.
$$

So, for some $x, y, z \in \mathbb{Z}$ we have $12 n+1=12\left(x^{2}+y^{2}\right)+(2 z+1)^{2}$ and hence

$$
n=x^{2}+y^{2}+\frac{z(z+1)}{3}=x^{2}+y^{2}+\left\lfloor\frac{z(z+1)}{3}\right\rfloor .
$$

This proves (1.4) for $m=3$.
By Jones and Pall [JP], there are $x, y, z \in \mathbb{Z}$ such that $16 n+1=16 x^{2}+16 y^{2}+$ $(2 z+1)^{2}$ and hence

$$
n=x^{2}+y^{2}+\frac{(2 z+1)^{2}-1}{16}=x^{2}+y^{2}+\left\lfloor\frac{z(z+1)}{4}\right\rfloor .
$$

This proves (1.4) for $m=4$.
By [S15a, Theorem 1.7(ii)], n can be written as $x^{2}+y^{2}+p_{5}(z)$ with $x, y, z \in \mathbb{Z}$. Note that

$$
p_{5}(z)=\frac{z(3 z-1)}{2}=\frac{3 z(3 z-1)}{6} .
$$

So (1.4) holds for $m=6$.
(iv) Now we prove (1.5) for $m=5$. By Dickson [D39, pp. 112-113],

$$
E\left(5 x^{2}+y^{2}+z^{2}\right)=\left\{4^{k}(8 l+3): k, l \in \mathbb{N}\right\} .
$$

As $5 n+2 \not \equiv 5 n+4(\bmod 4)$, for a suitable choice of $r \in\{2,4\}$ we can write $5 n+r$ as $5 x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$. If $r=2$, then $y^{2} \equiv z^{2} \equiv 1(\bmod 5)$ and hence

$$
n=x^{2}+\frac{y^{2}-1}{5}+\frac{z^{2}-1}{5}=x^{2}+\left\lfloor\frac{y^{2}}{5}\right\rfloor+\left\lfloor\frac{z^{2}}{5}\right\rfloor .
$$

If $r=4$, then we may assume that $y^{2} \equiv 0(\bmod 5)$ and $z^{2} \equiv 4(\bmod 5)$, hence

$$
n=x^{2}+\frac{y^{2}}{5}+\frac{z^{2}-4}{5}=x^{2}+\left\lfloor\frac{y^{2}}{5}\right\rfloor+\left\lfloor\frac{z^{2}}{5}\right\rfloor .
$$

If $\{5 n+5,5 n+6,5 n+9\} \subseteq E:=\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$, then we must have $5 n+6 \equiv 7(\bmod 8)$ and hence $5 n+9 \equiv 2(\bmod 8)$ which leads a contradiction. Thus, by the Gauss-Legendre theorem, for some $r \in\{0,1,4\}$ the number $5 n+5+r$ is the sum of three squares. If $5(n+1)+r=m^{2}$ for some $m \in \mathbb{Z}^{+}$which is not a power of two, then by Lemma 2.1 we have $5(n+1)+r=x^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $x^{2}, y^{2}, z^{2} \neq 5(n+1)+r$. If $5(n+1)+r=\left(2^{k}\right)^{2}$ for some $k \in \mathbb{Z}^{+}$, then $r \in\{1,4\}, 5(n+1)+(5-r)=4^{k}+5-2 r \equiv 5-2 r \equiv \pm 3(\bmod 8)$ and hence $5(n+1)+(5-r) \notin E$. So, for a suitable choice of $r \in\{0,1,4\}$, we can write $5(n+1)+r=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x^{2}, y^{2}, z^{2} \neq 5(n+1)+r$. Clearly, one of x^{2}, y^{2}, z^{2}, say z^{2}, is congruent to r modulo 5 . Then $x^{2}+y^{2}$ is a positive multiple of 5 . By Lemma 2.2, $x^{2}+y^{2}=\bar{x}^{2}+\bar{y}^{2}$ for some $\bar{x}, \bar{y} \in \mathbb{Z}$ with $5 \nmid \bar{x} \bar{y}$. Without loss of generality we may assume that $\bar{x}^{2} \equiv 1(\bmod 5)$ and $\bar{y}^{2} \equiv 4$ $(\bmod 5)$. Therefore,

$$
n=\frac{\bar{x}^{2}-1}{5}+\frac{\bar{y}^{2}-4}{5}+\frac{z^{2}-r}{5}=\left\lfloor\frac{\bar{x}^{2}}{5}\right\rfloor+\left\lfloor\frac{\bar{y}^{2}}{5}\right\rfloor+\left\lfloor\frac{z^{2}}{5}\right\rfloor .
$$

Now we show (1.5) for $m=6$. By Dickson [D39, pp. 112-113],

$$
E\left(6 x^{2}+y^{2}+z^{2}\right)=\left\{9^{k}(9 l+3): k, l \in \mathbb{N}\right\} .
$$

So, there are $x, y, z \in \mathbb{Z}$ such that $6 n+4=6 x^{2}+y^{2}+z^{2}$. Clearly, exactly one of y and z, say y, is divisible by 3 . Note that y and z have the same parity. If $y \equiv z \equiv 0(\bmod 2)$, then $y^{2} \equiv 0(\bmod 6)$ and $z^{2} \equiv 4(\bmod 6)$. If $y \equiv z \equiv 1$ $(\bmod 2)$, then $y^{2} \equiv 3(\bmod 6)$ and $z^{2} \equiv 1(\bmod 6)$. Anyway, we have

$$
n=x^{2}+\frac{y^{2}+z^{2}-4}{6}=x^{2}+\left\lfloor\frac{y^{2}}{6}\right\rfloor+\left\lfloor\frac{z^{2}}{6}\right\rfloor .
$$

Assume that n is even. Then $6 n+9 \equiv 1(\bmod 4)$ and hence by the GaussLegendre theorem and [S16, Lemma 2.2] we can write $6 n+9=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ and $3 \nmid x y z$. Clearly, exactly one of x, y, z, say x, is odd. Thus $x^{2} \equiv 1$ $(\bmod 6)$ and $y^{2} \equiv z^{2} \equiv 4(\bmod 6)$. Therefore

$$
n=\frac{x^{2}-1}{6}+\frac{y^{2}-4}{6}+\frac{z^{2}-4}{6}=\left\lfloor\frac{x^{2}}{6}\right\rfloor+\left\lfloor\frac{y^{2}}{6}\right\rfloor+\left\lfloor\frac{z^{2}}{6}\right\rfloor .
$$

Now suppose that n is odd. Then $3 n+4 \equiv 1(\bmod 6)$, and hence by [S16, Lemma 4.3(ii)] we can write $3 n+4=x^{2}+y^{2}+2 z^{2}$ with $x, y, z \in \mathbb{Z}$ and $3 \nmid x y z$. Without loss of generality, we may assume that $x \equiv y(\bmod 3)$ (otherwise we may use $-y$ to replace $y)$. Clearly, $x \not \equiv y(\bmod 2)$. Thus $6 n+8=(x+y)^{2}+(x-y)^{2}+$ $(2 z)^{2}$ with $(x+y)^{2} \equiv 1(\bmod 6),(x-y)^{2} \equiv 3(\bmod 6)$ and $(2 z)^{2} \equiv 4(\bmod 6)$. Therefore

$$
n=\frac{(x+y)^{2}-1}{6}+\frac{(x-y)^{2}-3}{6}+\frac{(2 z)^{2}-4}{6}=\left\lfloor\frac{(x+y)^{2}}{6}\right\rfloor+\left\lfloor\frac{(x-y)^{2}}{6}\right\rfloor+\left\lfloor\frac{(2 z)^{2}}{6}\right\rfloor .
$$

Now we prove (1.5) for $m=15$. By Dickson [D39, pp. 112-113],

$$
E\left(3 x^{2}+y^{2}+z^{2}\right)=\left\{9^{k}(9 l+6): k, l \in \mathbb{N}\right\} .
$$

So, there are $x, y, z \in \mathbb{Z}$ such that $3 n+1=3 x^{2}+y^{2}+z^{2}$ and hence

$$
15 n+5=15 x^{2}+\left(2^{2}+1^{2}\right)\left(y^{2}+z^{2}\right)=15 x^{2}+(2 y-z)^{2}+(y+2 z)^{2} .
$$

As $(2 y-z)^{2}+(y+2 z)^{2}=5\left(y^{2}+z^{2}\right)$ is a positive multiple of 5 , by Lemma 2.2 there are $u, v \in \mathbb{Z}$ with $5 \nmid u v$ such that $(2 y-z)^{2}+(y+2 z)^{2}=u^{2}+v^{2}$. Without loss of generality, we assume that $u^{2} \equiv 1(\bmod 5)$ and $v^{2} \equiv 4(\bmod 5)$. Then $15 n+5=15 x^{2}+u^{2}+v^{2}$ with $u^{2} \equiv 1(\bmod 15)$ and $v^{2} \equiv 4(\bmod 15)$. Therefore

$$
n=x^{2}+\frac{u^{2}-1}{15}+\frac{v^{2}-1}{15}=x^{2}+\left\lfloor\frac{u^{2}}{15}\right\rfloor+\left\lfloor\frac{v^{2}}{15}\right\rfloor .
$$

If $\{15 n+6,15 n+9,15 n+15\} \subseteq E:=\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$, then we must have $15 n+6 \equiv 7(\bmod 8)$ and hence $15 n+9 \equiv 2(\bmod 8)$ which leads a contradiction. Thus, by the Gauss-Legendre theorem, for some $r \in\{1,4,10\}$ the number $15 n+5+r$ is the sum of three squares. In view of [S16, Lemma 2.2], we can write $15 n+5+r=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ and $3 \nmid x y z$. It is easy to see that one of x^{2}, y^{2}, z^{2}, say z^{2}, is congruent to r modulo 5 . Then $x^{2}+y^{2}$ is a positive multiple of 5 , and hence by Lemma 2.2 we can write $x^{2}+y^{2}=\bar{x}^{2}+\bar{y}^{2}$ with $\bar{x}, \bar{y} \in \mathbb{Z}$ and $5 \nmid \bar{x} \bar{y}$. Without loss of generality, we may assume that $\bar{x}^{2} \equiv 1$ $(\bmod 5)$ and $\bar{y}^{2} \equiv 4(\bmod 5)$. Then $\bar{x}^{2} \equiv 1(\bmod 15), \bar{y}^{2} \equiv 4(\bmod 15)$ and $z^{2} \equiv r(\bmod 15)$. Therefore

$$
n=\frac{\bar{x}^{2}-1}{15}+\frac{\bar{y}^{2}-4}{15}+\frac{z^{2}-r}{15}=\left\lfloor\frac{\bar{x}^{2}}{15}\right\rfloor+\left\lfloor\frac{\bar{y}^{2}}{15}\right\rfloor+\left\lfloor\frac{z^{2}}{15}\right\rfloor .
$$

(v) Clearly,

$$
\left\{\left\lfloor\frac{T_{x}}{3}\right\rfloor: x \in \mathbb{Z}\right\} \supseteq\left\{p_{5}(x)=\frac{T_{3 x-1}}{3}: x \in \mathbb{Z}\right\}
$$

By [S15a, Theorem 1.14], $\left\{T_{x}+T_{y}+p_{5}(z): x, y, z \in \mathbb{Z}\right\}=\mathbb{N}$. It is also known that $\left\{p_{5}(x)+p_{5}(y)+p_{5}(z): x, y, z \in \mathbb{Z}\right\}=\mathbb{N}(c f$. Guy [Gu] and [S15a]).

Now it remains to prove (1.6). Clearly, for some $r \in\{1,2\}, 2 n+r$ is not a triangular number. Hence, by $[\mathrm{S} 07$, Theorem 1 (iii)] there are $x, y, z \in \mathbb{Z}$ with $x \not \equiv y$ $(\bmod 2)$ such that $2 n+r=x^{2}+y^{2}+T_{z}$. Thus $4 n+2 r=(x+y)^{2}+(x-y)^{2}+z(z+1)$ with $x \pm y$ odd and $z(z+1) \equiv 2(r-1)(\bmod 4)$. Write $x+y=2 u+1$ and $x-y=2 v+1$ with $u, v \in \mathbb{Z}$. Then

$$
\begin{aligned}
n & =\frac{(2 u+1)^{2}-1}{4}+\frac{(2 v+1)^{2}-1}{4}+\frac{z(z+1)-2(r-1)}{4} \\
& =u(u+1)+v(v+1)+\left\lfloor\frac{z(z+1)}{4}\right\rfloor .
\end{aligned}
$$

In view the above, we have completed the proof of Theorem 1.1.
Proof of Theorem 1.2. Let n be a fixed natural number.
(i) By a known result first observed by Euler (cf. [D99, p. 260] and also [P]), there are $x, y, z \in \mathbb{Z}$ such that $2 n+1=2 x^{2}+4 y^{2}+z^{2}$ and hence $n=x^{2}+2 y^{2}+$ $\left\lfloor z^{2} / 2\right\rfloor$.

Suppose that $n \neq x^{2}+2 y^{2}+\left\lfloor(3 z)^{2} / 3\right\rfloor=x^{2}+2 y^{2}+3 z^{2}$ for all $x, y, z \in \mathbb{Z}$. Then n is even by a known result (cf. [D39, p. 112-113] or [P]). By [D39, p. 112-113],

$$
E\left(3 x^{2}+6 y^{2}+z^{2}\right)=\{3 k+2: k \in \mathbb{N}\} \cup\left\{4^{k}(16 l+14): k, l \in \mathbb{N}\right\}
$$

Since $3 n+1$ is odd, for some $x, y, z \in \mathbb{Z}$ we have $3 n+1=3 x^{2}+6 y^{2}+z^{2}$ and hence $n=x^{2}+2 y^{2}+\left\lfloor z^{2} / 3\right\rfloor$.

By [D39, p. 112-113],

$$
E\left(4 x^{2}+8 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\{4 k+2,4 k+3\} \cup\left\{4^{k}(16 l+14): k, l \in \mathbb{N}\right\}
$$

So there are $x, y, z \in \mathbb{Z}$ such that $4 n+1=4 x^{2}+8 y^{2}+z^{2}$ and hence $n=$ $x^{2}+2 y^{2}+\left\lfloor z^{2} / 4\right\rfloor$.

By [D39, p. 112-113],

$$
E\left(5 x^{2}+10 y^{2}+z^{2}\right)=\bigcup_{k, l \in \mathbb{N}}\left\{25^{k}(5 l+2), 25^{k}(5 l+3)\right\}
$$

Thus, for some $x, y, z \in \mathbb{Z}$ we have $5 n+1=5 x^{2}+10 y^{2}+z^{2}$ and hence $n=$ $x^{2}+2 y^{2}+\left\lfloor z^{2} / 5\right\rfloor$.
(ii) By [D39, p. 112-113],

$$
E\left(3 x^{2}+y^{2}+z^{2}\right)=\left\{9^{k}(9 l+6): k, l \in \mathbb{N}\right\} .
$$

So, there are $x, y, z \in \mathbb{Z}$ such that $3 n+1=3 x^{2}+(3 y)^{2}+z^{2}$ and hence $n=$ $x^{2}+3 y^{2}+\left\lfloor z^{2} / 3\right\rfloor$.

By [D39, p. 112-113],

$$
E\left(4 x^{2}+12 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\{4 k+2,4 k+3\} \cup\left\{9^{k}(9 l+6): k, l \in \mathbb{N}\right\}
$$

Choose $\delta \in\{0,1\}$ such that $4 n+\delta \not \equiv 0(\bmod 3)$. Then, for some $x, y, z \in \mathbb{Z}$ we have $4 n+\delta=4 x^{2}+12 y^{2}+z^{2}$ and hence $n=x^{2}+3 y^{2}+\left\lfloor z^{2} / 4\right\rfloor$.

If $6 n+r=6 x^{2}+18 y^{2}+z^{2}$ for some $r \in\{0,1,3,4\}$ and $x, y, z \in \mathbb{Z}$, then $n=x^{2}+3 y^{2}+\left\lfloor z^{2} / 6\right\rfloor$. Now suppose that $6 n+r \neq 6 x^{2}+18 y^{2}+z^{2}$ for any $r \in\{0,1,3,4\}$ and $x, y, z \in \mathbb{Z}$. By [D39, p. 112-113],

$$
S:=E\left(6 x^{2}+18 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\{3 k+2,9 k+3\} \cup\left\{4^{k}(8 l+5): k, l \in \mathbb{N}\right\}
$$

So $6 n+1$ or $6 n+4$ is congruent to 5 modulo 8 . If $6 n+4 \equiv 5(\bmod 8)$, then $6 n+1 \equiv 2(\bmod 8)$ which contradicts that $6 n+1 \in S$. So, $6 n+1 \equiv 5(\bmod 8)$ and hence $6 n+3 \equiv 7(\bmod 8)$. By $6 n+3 \in S$, we must have $3 \mid n$. As $6 n \equiv 0$ $(\bmod 9)$ and $6 n \equiv 4(\bmod 8)$, by $6 n \in S$ we have $6 n=4(8 q+5)$ for some $q \in \mathbb{Z}$. As $6 n+4=4(8 q+6) \notin S$, we get a contradiction.

As conjectured by Sun [S07] and confirmed in [GPS], there are $x, y, z \in \mathbb{Z}$ such that $n=x^{2}+3 y^{2}+T_{z}$ and hence $n=x^{2}+3 y^{2}+\left\lfloor(2 z+1)^{2} / 8\right\rfloor$.
(iii) By [D39, p. 112-113], $E\left(8 x^{2}+40 y^{2}+z^{2}\right)$ coincides with

$$
\bigcup_{k \in \mathbb{N}}\{4 k+2,4 k+3,8 k+5,32 k+28\} \cup \bigcup_{k, l \in \mathbb{N}}\left\{25^{k}(25 l+5), 25^{k}(25 l+20)\right\}
$$

Choose $\delta \in\{0,1\}$ such that $8 n+\delta \not \equiv 0(\bmod 5)$. Then $8 n+\delta \notin E\left(8 x^{2}+40 y^{2}+z^{2}\right)$. So, for some $x, y, z \in \mathbb{Z}$ we have $8 n+\delta=8 x^{2}+40 y^{2}+z^{2}$ and hence $n=$ $x^{2}+5 y^{2}+\left\lfloor z^{2} / 8\right\rfloor$.

By [D39, p. 112-113],

$$
E\left(4 x^{2}+24 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\{4 k+2,4 k+3\} \cup\left\{9^{k}(9 l+3): k, l \in \mathbb{N}\right\}
$$

Choose $\delta \in\{0,1\}$ such that $4 n+\delta \not \equiv 0(\bmod 3)$. Then $4 n+\delta \notin E\left(4 x^{2}+24 y^{2}+z^{2}\right)$. Hence there are $x, y, z \in \mathbb{Z}$ such that $4 n+\delta=4 x^{2}+24 y^{2}+z^{2}$ and thus $n=$ $x^{2}+6 y^{2}+\left\lfloor z^{2} / 4\right\rfloor$.
(iv) By [JP] or [D39, p. 112-113], for some $x, y, z \in \mathbb{Z}$ we have $8 n+1=16 x^{2}+$ $16 y^{2}+z^{2}$ and hence $n=2 x^{2}+2 y^{2}+\left\lfloor z^{2} / 8\right\rfloor$.

In view of [D39, p. 112-113],

$$
E\left(6 x^{2}+9 y^{2}+z^{2}\right)=\{3 k+2: k \in \mathbb{N}\} \cup\left\{9^{k}(9 l+3): k, l \in \mathbb{N}\right\}
$$

So, there are $x, y, z \in \mathbb{Z}$ such that $3 n+1=6 x^{2}+9 y^{2}+z^{2}$ and hence $n=$ $2 x^{2}+3 y^{2}+\left\lfloor z^{2} / 3\right\rfloor$.

By [D39, p. 112-113],

$$
E\left(3 x^{2}+3 y^{2}+2 z^{2}\right)=\left\{9^{k}(3 l+1): k, l \in \mathbb{N}\right\}
$$

So there are $x, y, z \in \mathbb{Z}$ such that $6 n+5=3 x^{2}+3 y^{2}+2 z^{2}$. Since $x \not \equiv y(\bmod 2)$, without loss of generality we may assume that $2 \mid x$ and $2 \nmid y$. Thus

$$
n=2\left(\frac{x}{2}\right)^{2}+\frac{y^{2}-1}{2}+\frac{z^{2}-1}{3}=2\left(\frac{x}{2}\right)^{2}+\left\lfloor\frac{y^{2}}{2}\right\rfloor+\left\lfloor\frac{z^{2}}{3}\right\rfloor .
$$

So far we have completed the proof of Theorem 1.2.

3. Proofs of Theorems 1.3-1.4

Proof of Theorem 1.3. (i) Clearly, $0=\left\lceil 0^{2} / m\right\rceil+\left\lceil 0^{2} / m\right\rceil+\left\lceil 0^{2} / m\right\rceil, 1=\left\lceil 1^{2} / 3\right\rceil+$ $\left\lceil 0^{2} / 3\right\rceil+\left\lceil 0^{2} / 3\right\rceil$ and $2=\left\lceil 1^{2} / 3\right\rceil+\left\lceil 1^{2} / 3\right\rceil+\left\lceil 0^{2} / 3\right\rceil$. for any $m \in\{2,3,4,5\}$. So we just consider required representations for $n \in\{3,4,5, \ldots\}$.

If n is even, then $2 n-2 \equiv 2(\bmod 4)$, hence by the Gauss-Legendre theorem there are integers x, y, z with $2 \nmid y z$ such that $2 n-2=(2 x)^{2}+y^{2}+z^{2}$ and thus

$$
n=2 x^{2}+\frac{y^{2}+1}{2}+\frac{z^{2}+1}{2}=\frac{(2 x)^{2}}{2}+\left\lceil\frac{y^{2}}{2}\right\rceil+\left\lceil\frac{z^{2}}{2}\right\rceil .
$$

When $n \equiv 1(\bmod 4)$, we have $2 n-1 \equiv 1(\bmod 8)$ and hence by the GaussLegendre theorem there are $x, y, z \in \mathbb{Z}$ with $2 \nmid z$ such that $2 n-1=(2 x)^{2}+$ $(2 y)^{2}+z^{2}$ and thus

$$
n=2 x^{2}+2 y^{2}+\frac{z^{2}+1}{2}=\frac{(2 x)^{2}}{2}+\frac{(2 y)^{2}}{2}+\left\lceil\frac{z^{2}}{2}\right\rceil .
$$

If $n \equiv 3(\bmod 4)$, then $2 n-3 \equiv 3(\bmod 8)$, hence there are odd integers x, y, z such that $2 n-3=x^{2}+y^{2}+z^{2}$ and thus

$$
n=\frac{x^{2}+1}{2}+\frac{y^{2}+1}{2}+\frac{z^{2}+1}{2}=\left\lceil\frac{x^{2}}{2}\right\rceil+\left\lceil\frac{y^{2}}{2}\right\rceil+\left\lceil\frac{z^{2}}{2}\right\rceil .
$$

This proves (1.7) for $m=2$.
Now we show (1.7) for $m=3$. Clearly we cannot have $\{3 n-4,3 n-6\} \subseteq$ $\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$ and hence either $3 n-4$ or $3 n-6$ can be written as the sum of three squares. If $3 n-4=x^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Z}$, then exactly one of x, y, z (say, x) is divisible by 3 , hence

$$
n=3\left(\frac{x}{3}\right)^{2}+\frac{y^{2}+2}{3}+\frac{z^{2}+2}{3}=\left\lceil\frac{x^{2}}{3}\right\rceil+\left\lceil\frac{y^{2}}{3}\right\rceil+\left\lceil\frac{z^{2}}{3}\right\rceil
$$

When $3 n-6=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ not all zero, by [S16, Lemma 2.2] there are $u, v, w \in \mathbb{Z}$ with $3 \nmid u v w$ such that $3 n-6=u^{2}+v^{2}+w^{2}$ and hence

$$
n=\frac{u^{2}+2}{3}+\frac{v^{2}+2}{3}+\frac{w^{2}+2}{3}=\left\lceil\frac{u^{2}}{3}\right\rceil+\left\lceil\frac{v^{2}}{3}\right\rceil+\left\lceil\frac{w^{2}}{3}\right\rceil .
$$

As $4 n-3 \notin\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$, by the Gauss-Legendre theorem there are $x, y, z \in \mathbb{Z}$ such that $4 n-3=(2 x)^{2}+(2 y)^{2}+(2 z+1)^{2}$ and hence $n=$ $x^{2}+y^{2}+\left\lceil(2 z+1)^{2} / 4\right\rceil$. This proves (1.7) for $m=4$.

Now we prove (1.7) for $m=5$ by modifying our proof of the last equality in (1.5). If $\{5 n-5,5 n-6,5 n-9\} \subseteq E:=\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$, then $5 n-6 \equiv 7(\bmod 8)$ and hence $5 n-5 \equiv 6(\bmod 8)$ which leads a contradiction. So, for some $r \in\{0,1,4\}$ we can write $5 n-5-r>5$ as the sum of three squares. If $5 n-5-r=m^{2}$ for some integer $m>2$ which is not a power of two, then by Lemma 2.1 we have $5(n-1)-r=x^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $x^{2}, y^{2}, z^{2} \neq 5 n-5-r$. If $5(n-1)-r=\left(2^{k}\right)^{2}$ for some $k \in \mathbb{Z}^{+}$, then $r \in\{1,4\}$, and $5(n-1)-(5-r)=4^{k}+2 r-5 \equiv 2 r-5 \equiv \pm 3(\bmod 8)$ and hence $5(n-1)-(5-r) \notin E$. So, for a suitable choice of $r \in\{0,1,4\}$, we can write $5(n-1)-r=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x^{2}, y^{2}, z^{2} \neq 5(n-1)-r$. Clearly, one of x^{2}, y^{2}, z^{2}, say z^{2}, is congruent to $-r$ modulo 5 . Then $x^{2}+y^{2}$ is a positive multiple of 5 . By Lemma $2.2, x^{2}+y^{2}=\bar{x}^{2}+\bar{y}^{2}$ for some $\bar{x}, \bar{y} \in \mathbb{Z}$ with $5 \nmid \bar{x} \bar{y}$. Without loss of generality, we may assume that $\bar{x}^{2} \equiv 1(\bmod 5)$ and $\bar{y}^{2} \equiv 4(\bmod 5)$. Therefore,

$$
n=\frac{\bar{x}^{2}+4}{5}+\frac{\bar{y}^{2}+1}{5}+\frac{z^{2}+r}{5}=\left\lceil\frac{\bar{x}^{2}}{5}\right\rceil+\left\lceil\frac{\bar{y}^{2}}{5}\right\rceil+\left\lceil\frac{z^{2}}{5}\right\rceil .
$$

Now we show (1.7) for $m=6$. If n is odd, then $6 n-9 \equiv 1(\bmod 4)$, hence by the Gauss-Legendre theorem and [S16, Lemma 2.2] we can write $6 n-9=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}, 2 \nmid x, 2|y, 2| z$ and $3 \nmid x y z$, therefore

$$
n=\frac{x^{2}+5}{6}+\frac{y^{2}+2}{6}+\frac{z^{2}+2}{6}=\left\lceil\frac{x^{2}}{6}\right\rceil+\left\lceil\frac{y^{2}}{6}\right\rceil+\left\lceil\frac{z^{2}}{6}\right\rceil .
$$

Now assume that n is even. Then $6 n-10 \equiv 2(\bmod 12)$. By the Gauss-Legendre theorem we can write $6 n-10=x^{2}+y^{2}+z^{2}$ with $x, y, z \in \mathbb{Z}, 2 \nmid x y$ and $2 \mid z$. Note that exactly one of x, y, z is divisible by 3 . If $3 \nmid x y$ and $3 \mid z$, then $x^{2} \equiv y^{2} \equiv 1$ $(\bmod 6)$ and $z^{2} \equiv 0(\bmod 6)$, hence

$$
n=\frac{x^{2}+5}{6}+\frac{y^{2}+5}{6}+\frac{z^{2}}{6}=\left\lceil\frac{x^{2}}{6}\right\rceil+\left\lceil\frac{y^{2}}{6}\right\rceil+\left\lceil\frac{z^{2}}{6}\right\rceil .
$$

If $3 \nmid z$, then exactly one of x and y, say x, is divisible by 3 , hence $x^{2} \equiv 3(\bmod 6)$, $y^{2} \equiv 1(\bmod 6)$ and $z^{2} \equiv 4(\bmod 6)$, and thus

$$
n=\frac{x^{2}+3}{6}+\frac{y^{2}+5}{6}+\frac{z^{2}+2}{6}=\left\lceil\frac{x^{2}}{6}\right\rceil+\left\lceil\frac{y^{2}}{6}\right\rceil+\left\lceil\frac{z^{2}}{6}\right\rceil .
$$

Now we prove (1.7) for $m=15$. By the proof of the last equality in (1.5) for $m=15$, for a suitable choice of $r \in\{1,4,10\}$ we have $15(n-3)+5+r=x^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $x^{2} \equiv 1(\bmod 15), y^{2} \equiv 4(\bmod 15)$ and $z^{2} \equiv r(\bmod 15)$. It follows that

$$
n=\frac{x^{2}+14}{15}+\frac{y^{2}+11}{15}+\frac{z^{2}+15-r}{15}=\left\lceil\frac{x^{2}}{15}\right\rceil+\left\lceil\frac{y^{2}}{15}\right\rceil+\left\lceil\frac{z^{2}}{15}\right\rceil
$$

(ii) Now we turn to prove (1.8). Apparently, $0=0^{2}+3 \times 0^{2}+\left\lceil 0^{2} / 2\right\rceil$. Let $n \in \mathbb{Z}^{+}$. If $2 n-1 \equiv 5(\bmod 8)$ then $4 \nmid 2 n$. So, we may choose $\delta \in\{0,1\}$ such that $2 n-\delta \notin\left\{4^{k}(8 l+5): k, l \in \mathbb{N}\right\}$. By [D39, p. 112-113],

$$
E\left(2 x^{2}+6 y^{2}+z^{2}\right)=\left\{4^{k}(8 l+5): k, l \in \mathbb{N}\right\} .
$$

So there are $x, y, z \in \mathbb{Z}$ such that $2 n-\delta=2 x^{2}+6 y^{2}+z^{2}$ and hence $n=$ $x^{2}+3 y^{2}+\left\lceil z^{2} / 2\right\rceil$.

Obviously, $0=0^{2}+3 \times 0^{2}+\left\lceil 0^{2} / 10\right\rceil$. Let $n \in \mathbb{Z}^{+}$. By [D39, p. 112-113],
$T:=E\left(10 x^{2}+30 y^{2}+z^{2}\right)=\bigcup_{k, l \in \mathbb{N}}\left\{4^{k}(8 l+5), 9^{k}(9 l+6), 25^{k}(5 l+2), 25^{k}(5 l+3)\right\}$.
If $10 n-r \notin T$ for some $r \in\{0,1,4,5,6,9\}$, then there are $x, y, z \in \mathbb{Z}$ such that $10 n-r=10 x^{2}+30 y^{2}+z^{2}$ and hence $n=x^{2}+3 y^{2}+\left\lceil z^{2} / 10\right\rceil$. Now we suppose that $10 n-r \in T$ for all $r=0,1,4,5,6,9$ and want to deduce a contradiction. If $3 \mid n(n+1)$, then by $10 n-1 \in T$ we have $10 n-1 \equiv 5(\bmod 8)$ and hence $10 n-4 \equiv 2(\bmod 8)$ which contradicts $10 n-4 \in T$. When $n \equiv 1(\bmod 3)$, by $10 n-9 \in T$ we must have $10 n-9 \equiv 5(\bmod 8)$ and thus $10 n \equiv 6(\bmod 8)$, hence $10 n \equiv 0 \not \equiv 5(\bmod 25)$ by $10 n \in T$, and thus by $10 n-5 \in T$ we have $10 n-5 \equiv 5$ $(\bmod 8)$ which contradicts $10 n \equiv 6(\bmod 8)$.
(iii) Choose $\delta \in\{0,1\}$ with $n \equiv \delta(\bmod 2)$. Then $12 n+5-4 \delta \not \equiv 0(\bmod 3)$. By [D39, pp. 112-113],

$$
E\left(3 x^{2}+y^{2}+z^{2}\right)=\left\{9^{k}(9 l+6): k, l \in \mathbb{N}\right\}
$$

So, there are $u, v, w \in \mathbb{Z}$ such that $12 n+5-4 \delta=3 u^{2}+v^{2}+w^{2}$. If v and w are both even, then $5 \equiv 3 u^{2}(\bmod 4)$ which is impossible. Without loss of generality, we assume that $w=2 z+1$ with $z \in \mathbb{Z}$. Then

$$
3 u^{2}+v^{2} \equiv 12 n+5-4 \delta-1 \equiv 4 \quad(\bmod 8)
$$

Hence, by [S15a, Lemma 3.2] we can write $3 u^{2}+v^{2}$ as $3(2 x+1)^{2}+(2 y+1)^{2}$ with $x, y \in \mathbb{Z}$. Therefore,
$12 n+5-4 \delta=3(2 x+1)^{2}+(2 y+1)^{2}+(2 z+1)^{2}=12 x(x+1)+4 y(y+1)+4 z(z+1)+5$
and hence

$$
3 n-\delta=3 x(x+1)+y(y+1)+z(z+1)
$$

Note that $m(m+1) \not \equiv 1(\bmod 3)$ for any $m \in \mathbb{Z}$. If $y(y+1), z(z+1) \not \equiv 0(\bmod 3)$, then $-\delta \equiv 2+2(\bmod 3)$ which is impossible. Without loss of generality we assume that $3 \mid y(y+1)$. Then

$$
n=x(x+1)+\frac{y(y+1)}{3}+\frac{z(z+1)+\delta}{3}=x(x+1)+\frac{y(y+1)}{3}+\left\lceil\frac{z(z+1)}{3}\right\rceil .
$$

Let $\delta \in\{0,1\}$ with $n \equiv \delta(\bmod 2)$. Then $12 n+3-4 \delta$ is congruent to 0 or 2 modulo 3 . As $12 n+3-4 \delta \equiv 3(\bmod 8)$, there are odd integers u, v, w such that $12 n+3-4 \delta=u^{2}+v^{2}+w^{2}$. If $\delta=0$, then by [S16, Lemma 2.2] we can write $u^{2}+v^{2}+w^{2}$ as $r^{2}+s^{2}+t^{2}$ with $r, s, t \in \mathbb{Z}$ and $\operatorname{gcd}(r s t, 6)=1$. So, there are $x, y, z \in \mathbb{Z}$ such that
$12 n+3-4 \delta=(2 x+1)^{2}+(2 y+1)^{2}+(2 z+1)^{2}=4 x(x+1)+4 y(y+1)+4 z(z+1)+3$
and $2 x+1,2 y+1 \not \equiv 0(\bmod 3)$. As $x, y \not \equiv 1(\bmod 3)$, both $x(x+1)$ and $y(y+1)$ are divisible by 3 . Thus
$n=\frac{x(x+1)}{3}+\frac{y(y+1)}{3}+\frac{z(z+1)+\delta}{3}=\left\lceil\frac{x(x+1)}{3}\right\rceil+\left\lceil\frac{y(y+1)}{3}\right\rceil+\left\lceil\frac{z(z+1)}{3}\right\rceil$.
Note that $\{m(m+1) / 3: m \in \mathbb{Z} \& 3 \mid m(m+1)\}=\{q(3 q+1): q \in \mathbb{Z}\}$.
The proof of Theorem 1.3 is now complete.
Proof of Theorem 1.4. (i) Let $n \in \mathbb{N}$. If $2 n+1 \in\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$, then $2 n \equiv 6(\bmod 8)$ and hence $2 n \notin\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$. So, for some $\delta \in\{0,1\}$ we have $2 n+\delta /\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$, and hence by the GaussLegendre theorem there are $x, y, z \in \mathbb{Z}$ such that $2 n+\delta=x^{2}+y^{2}+z^{2}$ and hence $n=\left\lfloor\left(x^{2}+y^{2}+z^{2}\right) / 2\right\rfloor$. Note also that $n=T_{x}+T_{y}+T_{z}$ for some $x, y, z \in \mathbb{Z}$. This proves the desired result for $a=2$.

Now we handle the case $a>2$. Clearly, for some $r \in\{0,2\}$ we have $a n+r \notin$ $\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$, hence for some $x, y, z \in \mathbb{Z}$ we have $a n+r=x^{2}+y^{2}+z^{2}$ and thus $n=\left\lfloor\left(x^{2}+y^{2}+z^{2}\right) / a\right\rfloor$. Take $\delta \in\{0,1\}$ with $a n \equiv \delta(\bmod 2)$. Then, there exist $x, y, z \in \mathbb{Z}$ such that $(a n+d a) / 2=T_{x}+T_{y}+T_{z}$ and hence $n=$ $\lfloor(x(x+1)+y(y+1)+z(z+1)) / a\rfloor$.
(ii) Suppose that a is odd. As $16 n+3 a^{2} \equiv 3(\bmod 8)$, by the Gauss-Legendre symbol $16 n+3 a^{2}$ can be expressed as the sum of three odd squares. For any odd integer w, either w or $-w$ is congruent to a modulo 4 . Thus, there are $x, y, z \in \mathbb{Z}$ such that
$16 n+3 a^{2}=(4 x+a)^{2}+(4 y+a)^{2}+(4 z+a)^{2}$, i.e., $2 n=2\left(x^{2}+y^{2}+z^{2}\right)+a(x+y+z)$.
Hence $n=x^{2}+y^{2}+z^{2}+\left\lfloor\frac{a}{2}(x+y+z)\right\rfloor$ as desired.

Now assume that $\operatorname{gcd}(a, 6)=1$. Choose $\delta \in\{0,1\}$ such that $n \equiv \delta(\bmod 2)$. As $12(3 n+\delta)+3 a^{2} \equiv 3(\bmod 8)$, there are odd integers u, v, w such that $12(3 n+$ $\delta)+3 a^{2}=u^{2}+v^{2}+w^{2}$. Applying [S16, Lemma 2.2], we can write $u^{2}+v^{2}+w^{2}$ as $r^{2}+s^{2}+t^{2}$, where r, s, t are integers with
$r \equiv u_{0} \equiv u \equiv 1 \quad(\bmod 2), s \equiv v \equiv 1 \quad(\bmod 2), t \equiv w \equiv 1 \quad(\bmod 2)$, and $3 \nmid r s t$. Thus r or $-r$ has the form $6 x+a, s$ or $-s$ has the form $6 y+a$, and t or $-t$ has the form $6 z+a$, where $x, y, z \in \mathbb{Z}$. Therefore,

$$
\begin{aligned}
12(3 n+\delta)+3 a^{2} & =(6 x+a)^{2}+(6 y+a)^{2}+(6 z+a)^{2} \\
& =12\left(3 x^{2}+a x+3 y^{2}+a y+3 z^{2}+3 z\right)+3 a^{2}
\end{aligned}
$$

and hence

$$
n=x^{2}+y^{2}+z^{2}+\frac{a(x+y+z)-\delta}{3}=x^{2}+y^{2}+z^{2}+\left\lfloor\frac{a}{3}(x+y+z)\right\rfloor .
$$

Now we suppose that $2 \mid a$ and $3 \nmid a$. If $9 n+3(a / 2)^{2}+3 r \in\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$ for all $r=1,2,3$, then $9 n+3(a / 2)^{2}+6 \equiv 7(\bmod 8)$ and hence $9 n+3(a / 2)^{2}+9 \equiv 2$ $(\bmod 8)$ which leads a contradiction. So, by the Gauss-Legendre theorem, for some $r \in\{1,2,3\}$ and $u, v, w \in \mathbb{Z}$ we have $9 n+3(a / 2)^{2}+3 r=u^{2}+v^{2}+w^{2}$. By [S16, Lemma 2.2] we can write $9 n+3(a / 2)^{2}+3 r=\bar{u}^{2}+\bar{v}^{2}+\bar{w}^{2}$, where $\bar{u}, \bar{v}, \bar{w} \in \mathbb{Z}$ and $3 \nmid \bar{u} \bar{v} \bar{w}$. So there are $x, y, z \in \mathbb{Z}$ such that

$$
9 n+3 r+3\left(\frac{a}{2}\right)^{2}=\left(3 x+\frac{a}{2}\right)^{2}+\left(3 y+\frac{a}{2}\right)^{2}+\left(3 z+\frac{a}{2}\right)^{2}
$$

i.e.,

$$
3 n+r-1=x(3 x+a)+y(3 y+a)+z(3 z+a)
$$

It follows that

$$
n=x^{2}+y^{2}+z^{2}+\frac{a(x+y+z)-(r-1)}{3}=x^{2}+y^{2}+z^{2}+\left\lfloor\frac{a}{3}(x+y+z)\right\rfloor .
$$

(iii) Obviously, $0=p_{8}(0) / 2+\left\lceil p_{8}(0) / 2\right\rceil+\left\lceil p_{8}(0) / 2\right\rceil$. Now we let $n>0$ and choose $\delta \in\{0,1\}$ with $n \not \equiv \delta(\bmod 2)$. As $6 n-3 \delta$ is congruent to 1 or 2 modulo 4 , by the Gauss-Legendre theorem we can write $6 n-3 \delta$ as the sum of three squares and hence by $[\mathrm{S} 16$, Lemma 2.2] there are $x, y, z \in \mathbb{Z}$ such that
$6 n-3 \delta=(3 x-1)^{2}+(3 y-1)^{2}+(3 z-1)=3 p_{8}(x)+1+\left(3 p_{8}(y)+1\right)+\left(3 p_{8}(z)+1\right)$.
Clearly, $3 x-1,3 y-1,3 z-1$ cannot be all odd or all even. Without loss of generality, we may assume that

$$
3 x-1 \equiv 1 \quad(\bmod 2), 3 y-1 \equiv 0 \quad(\bmod 2) \text { and } 3 z-1 \equiv 1-\delta \equiv n \quad(\bmod 2)
$$

Then $p_{8}(x)=\left((3 x-1)^{2}-1\right) / 3$ is even, $p_{8}(y)$ is odd, and $p_{8}(z) \equiv-\delta(\bmod 2)$.
Therefore

$$
n=\frac{p_{8}(x)}{2}+\frac{p_{8}(y)+1}{2}+\frac{p_{8}(z)+\delta}{2}=\frac{p_{8}(x)}{2}+\left\lceil\frac{p_{8}(y)}{2}\right\rceil+\left\lceil\frac{p_{8}(z)}{2}\right\rceil .
$$

This concludes our proof.

4. Proof of Theorem 1.5

For $a, b, c, n \in \mathbb{Z}^{+}$, define

$$
\begin{equation*}
r_{(a, b, c)}(n)=\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: a x^{2}+b y^{2}+c z^{2}=n\right\}\right| \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{(a, b, c)}(n):=\prod_{p \nmid 2 a b c}\left(\frac{p^{\operatorname{ord}_{p}(n)+1}-1}{p-1}-\left(\frac{-a b c}{p}\right) \frac{p^{\operatorname{ord}_{p}(n)}-1}{p-1}\right) \tag{4.2}
\end{equation*}
$$

where $(\dot{\bar{p}})$ is the Legendre symbol. Clearly,

$$
\begin{equation*}
H_{(a, b, c)}(n) \geqslant \prod_{p \nmid 2 a b c} \frac{p^{\operatorname{ord}_{p}(n)+1}-1-\left(p^{\operatorname{ord}_{p}(n)}-1\right)}{p-1}=\prod_{p \nmid 2 a b c} p^{\operatorname{ord}_{p}(n)} \tag{4.3}
\end{equation*}
$$

In 1907 Hurwitz (cf. [D99, p. 271]) showed that $r_{(1,1,1)}\left(n^{2}\right)=6 H_{(1,1,1)}(n)$ which is just (2.1). In 2013 S. Cooper and H. Y. Lam [CL] deduced some similar formulas for

$$
r_{(1,1,2)}\left(n^{2}\right), r_{(1,1,3)}\left(n^{2}\right), r_{(1,2,2)}\left(n^{2}\right), r_{(1,3,3)}\left(n^{2}\right) .
$$

Lemma 4.1. For any integer $n>1$, there are $x, y, z \in \mathbb{Z}$ with $|x|<n$ and $|y|<n$ such that $x^{2}+y^{2}+2 z^{2}=n^{2}$.

Proof. By Cooper and Lam [CL, Theorem 1.2],

$$
r_{(1,1,2)}\left(n^{2}\right)= \begin{cases}4 H_{(1,1,2)}(n) & \text { if } 2 \nmid n \tag{4.4}\\ 12 H_{(1,1,2)}(n) & \text { if } 2 \mid n\end{cases}
$$

If n is odd, then there is an odd prime p dividing n, hence $r_{(1,1,2)}\left(n^{2}\right)=4 H_{(1,1,2)}(n)>$ 4 with the help of (4.3). If n is even, then $r_{(1,1,2)}\left(n^{2}\right)=12 H_{(1,1,2)}(n) \geqslant 12>4$. Clearly, $x^{2}+y^{2}+2 z^{2}=n^{2}$ for $(x, y, z)=(\pm n, 0,0),(0, \pm n, 0)$. So, there are $x, y, z \in \mathbb{Z}$ with $x^{2}, y^{2} \neq n^{2}$ such that $x^{2}+y^{2}+2 z^{2}=n^{2}$. This concludes the proof.

Lemma 4.2. Suppose that $n \in \mathbb{Z}^{+}$is not a power of two. Then there are $x, y, z \in$ \mathbb{Z} with $|x|<n$ and $|y|<n$ such that $x^{2}+y^{2}+5 z^{2}=n^{2}$.

Proof. As conjectured by Cooper and Lam [CL, Conjecture 8.1] and proved by Guo et al. [GPQ],

$$
\begin{equation*}
r_{(1,1,5)}\left(n^{2}\right)=2\left(5^{\operatorname{ord}_{5}(n)+1}-3\right) H_{(1,1,5)}(n) \tag{4.5}
\end{equation*}
$$

If $5 \mid n$, then $2\left(5^{\operatorname{ord}_{5}(n)+1}-3\right)>4$. If n has a prime divisor $p \neq 2,5$, then $H_{(1,1,5)}(n)>1$ by (4.3). Since $n>1$ is not a power of two, we have $r_{(1,1,5)}\left(n^{2}\right)>4$. Clearly, $x^{2}+y^{2}+5 z^{2}=n^{2}$ for $(x, y, z)=(\pm n, 0,0),(0, \pm n, 0)$. So, there are $x, y, z \in \mathbb{Z}$ with $x^{2}, y^{2} \neq n^{2}$ such that $x^{2}+y^{2}+5 z^{2}=n^{2}$. This ends the proof.

Remark 4.1. Note that Lemmas 4.1 and 4.2 are similar to Lemma 2.1.
Proof of Theorem 1.5. (i) Let $n \in \mathbb{N}$. Clearly, $n=p_{8}(x)+p_{8}(y)+2 p_{8}(z)$ if and only if $3 n+4=(3 x-1)^{2}+(3 y-1)^{2}+2(3 z-1)^{2}$. In view of [D39, pp. 112-113],

$$
E\left(x^{2}+y^{2}+2 z^{2}\right)=\left\{4^{k}(16 l+14): k, l \in \mathbb{N}\right\}
$$

If $3 n+4=4^{k}(16 l+14)$ for some $k, l \in \mathbb{N}$, then for some $q \in \mathbb{Z}^{+}$we have $l=3 q-1$ and hence

$$
n=\frac{4^{k}(16(3 q-1)+14)-4}{3}=4^{k+2} q-\frac{2}{3}\left(4^{k}+2\right) .
$$

If n has the form $4^{k+2} q-\frac{2}{3}\left(4^{k}+2\right)$ with $k \in \mathbb{N}$ and $q \in \mathbb{Z}^{+}$, then $n \neq p_{8}(x)+$ $p_{8}(y)+2 p_{8}(z)$ for all $x, y, z \in \mathbb{Z}$.

Now assume that n is not of the form $4^{k+2} q-\frac{2}{3}\left(4^{k}+2\right)$ with $k \in \mathbb{N}$ and $q \in \mathbb{Z}^{+}$. Then there are $r, s, t \in \mathbb{Z}$ such that $3 n+4=r^{2}+s^{2}+2 t^{2}$. In view of Lemma 4.1, we may assume that $r^{2}, s^{2} \neq 3 n+4$. Clearly r and s cannot be both divisible by 3. Without loss of generality, we assume that $3 \nmid r$. As $s^{2}+2 t^{2}=3 n+4-r^{2}$ is a positive multiple of 3 , by [S15a, Lemma 2.1] we can rewrite it as $u^{2}+2 v^{2}$ with $u, v \in \mathbb{Z}$ and $3 \nmid u v$. Thus there are $x, y, z \in \mathbb{Z}$ such that

$$
\begin{aligned}
3 n+4 & =r^{2}+u^{2}+2 v^{2}=(3 x-1)^{2}+(3 y-1)^{2}+2(3 z-1)^{2} \\
& =3 p_{8}(x)+1+\left(3 p_{8}(y)+1\right)+2\left(3 p_{8}(z)+1\right)
\end{aligned}
$$

and hence $n=p_{8}(x)+p_{8}(y)+2 p_{8}(z)$.
By the above, there are $x, y, z \in \mathbb{Z}$ with $2 n+1=p_{8}(x)+p_{8}(y)+2 p_{8}(z)$. Without loss of generality, we may assume that $p_{8}(x)$ is even and $p_{8}(y)=y(3 y-2)$ is odd. Clearly, $w=(1-y) / 2 \in \mathbb{Z}$ and $p_{8}(y)-1=4 p_{8}(w)$. So, $2 n=p_{8}(x)+2 p_{8}(z)+$ $4 p_{8}(w)$. Note also that

$$
n=\frac{p_{8}(x)}{2}+\frac{p_{8}(y)-1}{2}+p_{8}(z)=\left\lfloor\frac{p_{8}(x)}{2}\right\rfloor+\left\lfloor\frac{p_{8}(y)}{2}\right\rfloor+p_{8}(z)
$$

Therefore (1.13) and (1.14) hold.
(ii) Fix a nonnegative integer n. If $6 n+5 \equiv 7(\bmod 8)$, then $6 n+8 \equiv 2$ $(\bmod 8)$. So, for a suitable choice of $\delta \in\{0,1\}$ we have $6 n+5+3 \delta \notin E\left(x^{2}+\right.$ $\left.y^{2}+z^{2}\right)=\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}$ and hence $6 n+5+3 \delta=u^{2}+v^{2}+w^{2}$ for some $u, v, w \in \mathbb{Z}$. Two of u, v, w have the same parity. Without loss of generality, we assume that $u+v=2 s$ and $u-v=2 t$ for some $s, t \in \mathbb{Z}$. Hence $6 n+5+3 \delta=w^{2}+2 s^{2}+2 t^{2}$. If $(6 n+5+3 \delta)=2 m^{2}$ for some $m \in \mathbb{Z}^{+}$, then by Lemma 4.1 there are $r, s_{1}, t_{1} \in \mathbb{Z}$ with $s_{1}^{2}, t_{1}^{2} \neq m^{2}$ such that $m^{2}=s_{1}^{2}+t_{1}^{2}+2 r^{2}$ and hence $6 n+5+3 \delta=(2 r)^{2}+2 s_{1}^{2}+2 t_{1}^{2}$ with $2 s_{1}^{2}, 2 t_{1}^{2} \neq 6 n+5+3 \delta$. So, we may simply suppose that $6 n+5+3 \delta=w^{2}+2 s^{2}+2 t^{2}$ with $2 s^{2}, 2 t^{2} \neq 6 n+5+3 \delta$. Clearly, one of s and t is not divisible by 3 . Without loss of generality we assume that $t^{2}=(3 x-1)^{2}$ with $x \in \mathbb{Z}$ As $w^{2}+2 s^{2}=6 n+5+3 \delta-2 t^{2}$ is a positive
multiple of 3 , by [S15a, Lemma 2.1] we can write $w^{2}+2 s^{2}$ as $(3 z-1)^{2}+2(3 y-1)^{2}$ with $y, z \in \mathbb{Z}$. Thus
$6 n+5+3 \delta=(3 z-1)^{2}+2(3 y-1)^{2}+2(3 x-1)^{2}=3 p_{8}(z)+1+2\left(3 p_{8}(x)+3 p_{8}(y)+2\right)$
and hence

$$
n=p_{8}(x)+p_{8}(y)+\frac{p_{8}(z)-\delta}{2}=p_{8}(x)+p_{8}(y)+\left\lfloor\frac{p_{8}(z)}{2}\right\rfloor .
$$

This proves (1.15). In view of (1.12), both (1.16) and (1.17) follow from (1.15).
(iii) Let $n \in \mathbb{N}$. As $12 n+9 \equiv 1(\bmod 4)$, by the Gauss-Legendre theorem we can write $12 n+9$ as the sum of three squares. In view of [S16, Lemma 2.2], there are $u, v, w \in \mathbb{Z}$ with $3 \nmid u v w$ such that $12 n+9=u^{2}+v^{2}+w^{2}$. Clearly, exactly one of u, v, w is odd. Without loss of generality we may assume that $u=2(3 x-1)$, $v=2(3 y-1)$ and $w=3 z-1$ with $x, y, z \in \mathbb{Z}$. Thus

$$
12 n+9=4(3 x-1)^{2}+4(3 y-1)^{2}+(3 z-1)^{2}=12 p_{8}(x)+12 p_{8}(y)+3 p_{8}(z)+9
$$

and hence (1.18) follows.
(iv) By Dickson [D39, pp. 112-113],

$$
E\left(5 x^{2}+5 y^{2}+z^{2}\right)=\bigcup_{k \in \mathbb{N}}\{5 k+2,5 k+3\} \cup\left\{4^{k}(8 l+7): k, l \in \mathbb{N}\right\}
$$

If $15 n+11+3 r$ belongs to this set for all $r=0,1,3$, then $15 n+11$ is odd, hence $15 n+11 \equiv 7(\bmod 8)$ and $15 n+11+3 \equiv 2(\bmod 8)$ which leads a contradiction. So, there is a choice of $r \in\{0,1,3\}$ such that $15 n+11+3 r \notin E\left(5 x^{2}+5 y^{2}+z^{2}\right)$. Hence, for some $u, v, w \in \mathbb{Z}$ we have $15 n+11+3 r=5 u^{2}+5 v^{2}+w^{2}$. If $15 n+$ $11+3 r=5 m^{2}$ for some positive integer m which is not a power of two, then by Lemma 4.2 there are $u_{1}, v_{1}, w_{1} \in \mathbb{Z}$ with $u_{1}^{2}, v_{1}^{2} \neq m^{2}$ such that $m^{2}=u_{1}^{2}+v_{1}^{2}+5 w_{1}^{2}$ and hence $15 n+11+3 r=5 u_{1}^{2}+5 v_{1}^{2}+\left(5 w_{1}\right)^{2}$ with $5 u_{1}^{2}, 5 v_{1}^{2} \neq 15 n+11+3 r$. If $15 n+11+3 r=5 \times 2^{a}$ for some $a \in \mathbb{N}$, then $a \geqslant 2, r=3,15 n+11+3 \times 1=$ $5 \times 2^{a}-6 \equiv 2(\bmod 4)$ and hence $15 n+11+3 \notin E\left(5 x^{2}+5 y^{2}+z^{2}\right)$. So, we may simply assume that $15 n+11+3 r=5 u^{2}+5 v^{2}+w^{2}$ with $5 u^{2}, 5 v^{2}<15 n+11+3 r$. Clearly, u or v is not divisible by 3 . Without loss of generality we suppose that $u^{2}=(3 x-1)^{2}$ for some $x \in \mathbb{Z}$. As $5 v^{2}+w^{2}=15 n+11+3 r-5 u^{2}>0$ is a positive multiple of 3 , by [S15a, Lemma 2.1] we can write $5 v^{2}+w^{2}$ as $5(3 y-1)^{2}+(3 z-1)^{2}$ with $y, z \in \mathbb{Z}$. Thus

$$
\begin{aligned}
15 n+11+3 r & =5(3 x-1)^{2}+5(3 y-1)^{2}+(3 z-1)^{2} \\
& =5\left(3 p_{8}(x)+1\right)+5\left(3 p_{8}(y)+1\right)+3 p_{8}(z)+1
\end{aligned}
$$

and hence

$$
n=p_{8}(x)+p_{8}(y)+\frac{p_{8}(z)-r}{5}=p_{8}(x)+p_{8}(y)+\left\lfloor\frac{p_{8}(z)}{5}\right\rfloor .
$$

This proves (1.19). In view of (1.12), (1.20) follows from (1.19).
The proof of Theorem 1.5 is now complete.

5. Some further conjectures

Conjecture 5.1. For any $n \in \mathbb{N}$, there are $x, y, z \in \mathbb{N}$ such that $8 n+3=$ $x^{2}+y^{2}+z^{2}$ and $x \equiv 1,3(\bmod 8)$. Also, for any $n \in \mathbb{N}$ with $n \neq 20$, there are $x, y, z \in \mathbb{Z}$ with $x \equiv \pm 3(\bmod 8)$ such that $x^{2}+y^{2}+z^{2}=8 n+3$.

Remark 5.1. In [S15a] the author conjectured that any $n \in \mathbb{N}$ can be written as the sum of two triangular numbers and a hexagonal number, equivalently, $8 n+3=(4 x-1)^{2}+y^{2}+z^{2}$ for some $x, y, z \in \mathbb{N}$.

Conjecture 5.2. Let $a>2$ be an integer with $a \neq 4,6$. Then any positive integer can be written as the sum of three elements of the set $\left\{\left\lfloor x^{2} / a\right\rfloor: x \in \mathbb{Z}\right\}$ one of which is odd.

Remark 5.2. This is a refinement of Farhi's conjecture for $a \neq 4,6$.
Conjecture 5.3. Let

$$
T:=\left\{x^{2}+\left\lfloor\frac{x}{2}\right\rfloor: x \in \mathbb{Z}\right\}=\left\{\left\lfloor\frac{k(k+1)}{4}\right\rfloor: k \in \mathbb{N}\right\}
$$

Then each $n=2,3,4, \ldots$ can be expressed as $r+s+t$, where r, s, t are elements of T with $r \leqslant s \leqslant t$ and $2 \nmid s$. Also, for any ordered pair (b, c) among

$$
(1,2),(1,3),(1,4),(1,5),(1,6),(1,8),(1,9),(2,2),(2,3),
$$

each $n \in \mathbb{N}$ can be written as $x+b y+c z$ with $x, y, z \in T$.
Remark 5.3. It is easy to see that $\left\{T_{x}: x \in \mathbb{Z}\right\}=\left\{p_{6}(-x)=x(2 x+1): x \in \mathbb{Z}\right\}$.
Conjecture 5.4. (i) Let α be a positive real number with $\alpha \neq 1$ and $\alpha \leqslant 1.5$. Define

$$
S(\alpha):=\left\{x^{2}+\lfloor\alpha x\rfloor: x \in \mathbb{Z}\right\} .
$$

Then any positive integer can be written as the sum of three elements of $S(\alpha)$ one of which is odd.
(ii) Let $0<\alpha \leqslant \beta \leqslant \gamma \leqslant 1.5$ such that two of α, β, γ are different from 1 or $\{\alpha, \beta, \gamma\}=\{1,1 / m\}$ for some $m=2,3,4, \ldots$. Then any $n \in \mathbb{N}$ can be written as $x^{2}+y^{2}+z^{2}+\lfloor\alpha x\rfloor+\lfloor\beta y\rfloor+\lfloor\gamma z\rfloor$ with $x, y, z \in \mathbb{Z}$. In particular, if $a, b, c \in \mathbb{Z}^{+}$ are not all equal to one, then

$$
\left\{x^{2}+y^{2}+z^{2}+\left\lfloor\frac{x}{a}\right\rfloor+\left\lfloor\frac{y}{b}\right\rfloor+\left\lfloor\frac{z}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

Remark 5.4. Note that 2 cannot be written as the sum of three elements of $S(11 / 4)$, and 4 cannot be written as the sum of three elements of $S(8 / 5)$ one of which is odd.

Conjecture 5.5. Any integer $n>1$ can be written as $p+\lfloor k(k+1) / 4\rfloor$, where p is a prime and k is a positive integer.

Remark 5.5. The author [S09] conjectured that 216 is the only natural number not representable by $p+T_{x}$, where p is prime or zero, and x is an integer.

Motivated by Theorem 1.5, we pose the following conjecture.
Conjecture 5.6. Let $a, b, c \in \mathbb{Z}^{+}$. Then

$$
\left\{\left\lfloor\frac{p_{5}(x)}{a}\right\rfloor+\left\lfloor\frac{p_{5}(y)}{b}\right\rfloor+\left\lfloor\frac{p_{5}(z)}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

When $(a, b, c) \neq(1,1,1),(1,1,2),(2,2,2)$, we have

$$
\left\{\left\lfloor\frac{p_{7}(x)}{a}\right\rfloor+\left\lfloor\frac{p_{7}(y)}{b}\right\rfloor+\left\lfloor\frac{p_{7}(z)}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

If $(a, b, c) \neq(1,1,1),(2,2,2)$, then

$$
\left\{\left\lfloor\frac{p_{8}(x)}{a}\right\rfloor+\left\lfloor\frac{p_{8}(y)}{b}\right\rfloor+\left\lfloor\frac{p_{8}(z)}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

Now we present a general conjecture related to Theorems 1.1-1.3.
Conjecture 5.7. (i) Let a and b be positive integers. If $c \in \mathbb{Z}^{+}$is large enough, then

$$
\left\{a x^{2}+b y^{2}+\left\lfloor\frac{z^{2}}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\left\{a x^{2}+b y^{2}+\left\lceil\frac{z^{2}}{c}\right\rceil: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

Also, for any sufficiently large $c \in \mathbb{Z}^{+}$we have

$$
\left\{a x^{2}+b y^{2}+\left\lfloor\frac{z(z+1)}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

and

$$
\left\{a x^{2}+b y^{2}+\left\lceil\frac{z(z+1)}{c}\right\rceil: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

(ii) For $a, b, c \in \mathbb{Z}^{+}$with $2 a \leqslant b+c$, if $(a, b, c) \neq(1,1,1),(3,3,3),(4,2,6)$ then

$$
\left\{a x^{2}+\left\lfloor\frac{y^{2}}{b}\right\rfloor+\left\lfloor\frac{z^{2}}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

For $a, b \in \mathbb{Z}^{+}$, we define

$$
\begin{aligned}
& S^{*}(a, b):=\left\{c \in \mathbb{Z}^{+}:\left\{a x^{2}+b y^{2}+\left\lceil\frac{z^{2}}{c}\right\rceil: x, y, z \in \mathbb{Z}\right\} \neq \mathbb{N}\right\} \\
& S_{*}(a, b):=\left\{c \in \mathbb{Z}^{+}:\left\{a x^{2}+b y^{2}+\left\lfloor\frac{z^{2}}{c}\right\rceil: x, y, z \in \mathbb{Z}\right\} \neq \mathbb{N}\right\} \\
& T^{*}(a, b):=\left\{c \in \mathbb{Z}^{+}:\left\{a x^{2}+b y^{2}+\left\lceil\frac{z(z+1)}{c}\right\rceil: x, y, z \in \mathbb{Z}\right\} \neq \mathbb{N}\right\} \\
& T_{*}(a, b):=\left\{c \in \mathbb{Z}^{+}:\left\{a x^{2}+b y^{2}+\left\lfloor\frac{z(z+1)}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\} \neq \mathbb{N}\right\} .
\end{aligned}
$$

Based on our computation we conjecture that

$$
\begin{gathered}
S^{*}(1,1)=\{1,2,5\}, S^{*}(1,2)=\{1,3\}, S^{*}(1,3)=\{1,4\}, S^{*}(1,4)=\{1,2,3,5\}, \\
S^{*}(1,5)=\{1,2,3,5\}, S^{*}(1,6)=\{1,2,3,4\}, S^{*}(1,7)=\{1,2,4,8\}, \\
S^{*}(1,8)=\{1, \ldots, 6,9\}, S^{*}(1,9)=\{1, \ldots, 6\}, S^{*}(1,10)=\{1, \ldots, 6,8,12\}, \\
S^{*}(2,2)=\{1, \ldots, 5,9,10\}, S^{*}(2,3)=\{1,2,8\} ; \\
S_{*}(1,2)=\{1\}, S_{*}(1,3)=\{1,2,10\}, S_{*}(1,4)=\{1,2,3,5\}, S_{*}(1,5)=\{1,2,3,4,5\}, \\
S_{*}(1,6)=\{1,3\}, S_{*}(1,7)=\{1,2,3,4,5\}, S_{*}(1,8)=\{1,2,3,5,9\}, \\
S_{*}(1,9)=\{1,2,3,4,5,7\}, S_{*}(1,10)=\{1,2,3,4,12\}, \\
S_{*}(1,11)=\{1,2,3,4,5,6,9\}, S_{*}(1,12)=\{1,2,3,4,5,6,10\} \\
S_{*}(2,2)=\{1,2,3,4,5,6,10\}, S_{*}(2,3)=\{1,2,8\} \\
S_{*}(2,4)=\{1,2,5,6\}, S_{*}(2,5)=\{1,2,3,5\} ; \\
T^{*}(1,1)=T^{*}(1,2)=\emptyset, T^{*}(1,3)=1, T^{*}(1,4)=\{3\}, T^{*}(1,5)=T^{*}(1,6)=\{1,2\}, \\
T^{*}(1,7)=\{1,2,4\}, T^{*}(1,8)=\{1\}, T^{*}(1,9)=T^{*}(1,10)=T^{*}(1,11)=\{1,2,3\}, \\
T^{*}(2,2)=\{1,3\}, T^{*}(2,3)=\{1,2\}, T^{*}(2,4)=\{1,2,3\}, T^{*}(3,4)=\{1,2,3\} ; \\
T_{*}(1,2)=\emptyset, T_{*}(1,3)=\{1\}, T_{*}(1,5)=\{1,2,3\}, T_{*}(1,6)=\{1,2\}, \\
T_{*}(1,7)=\{1,2,4\}, T_{*}(1,8)=\{1\}, T_{*}(1,10)=T_{*}(2,3)=\{1,2,3\} .
\end{gathered}
$$

Also, our computation suggests that

$$
\left\{4 x^{2}+4 y^{2}+\left\lfloor\frac{z^{2}}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

for any integer $c>42$, and that

$$
\left\{4 x^{2}+4 y^{2}+\left\lfloor\frac{z(z+1)}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

for any integer $c>27$. Note that $179 \neq 4 x^{2}+4 y^{2}+\left\lfloor z^{2} / 42\right\rfloor$ for any $x, y, z \in \mathbb{Z}$ and that $29 \neq 4 x^{2}+4 y^{2}+\lfloor z(z+1) / 27\rfloor$ for all $x, y, z \in \mathbb{Z}$.

Motivated by Theorem 1.4(i), we pose the following conjecture similar to Conjecture 1.1.

Conjecture 5.8. Let a, b, c be positive integers with $a \leqslant b \leqslant c$. If $c>1$, then

$$
\left\{\left\lfloor\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N}
$$

If $(a, b, c) \neq(1,1,1),(1,1,3),(1,1,7),(1,3,3)$, then

$$
\left\{\left\lfloor\frac{x(x+1)}{a}+\frac{y(y+1)}{b}+\frac{z(z+1)}{c}\right\rfloor: x, y, z \in \mathbb{Z}\right\}=\mathbb{N} .
$$

Conjecture 5.9. We have

$$
\left\{w^{3}+\left\lfloor\frac{x^{3}}{2}\right\rfloor+\left\lfloor\frac{y^{3}}{3}\right\rfloor+\left\lfloor\frac{z^{3}}{4}\right\rfloor: x, y, z \in \mathbb{N}\right\}=\mathbb{N}
$$

and

$$
\left\{w^{3}+\left\lfloor\frac{x^{3}}{2}\right\rfloor+\left\lfloor\frac{y^{3}}{4}\right\rfloor+\left\lfloor\frac{z^{3}}{8}\right\rfloor: x, y, z \in \mathbb{N}\right\}=\mathbb{N} .
$$

Our following conjecture is a natural extension of Goldbach's Conjecture.
Conjecture 5.10. For any positive integers a and b with $a+b>2$, any integer $n>2$ can be written as $\lfloor p / a\rfloor+\lfloor q / b\rfloor$ with p and q both prime.

Remark 5.6. In the case $\{a, b\}=\{1,2\}$, Conjecture 5.10 reduces to Lemoine's Conjecture which states that any odd number greater than 5 can be written as $p+2 q$ with p and q both prime. In the case $a=b=2$, Conjecture 5.10 reduces to the Goldbach Conjecture.

Let us conclude this paper with one more conjecture.
Conjecture 5.11. Let

$$
\begin{aligned}
S & =\left\{\left\lfloor\frac{x}{9}\right\rfloor: x-1 \text { and } x+1 \text { are twin prime }\right\} \\
& =\left\{\left\lfloor\frac{x}{3}\right\rfloor: 3 x-1 \text { and } 3 x+1 \text { are twin prime }\right\} .
\end{aligned}
$$

Then, any positive integer can be written as the sum of two distinct elements of S one of which is even. Also, any positive integer can be expressed as the sum of an element of S and a positive generalized pentagonal number.
Remark 5.7. Clearly either of the two assertions in Conjecture 5.11 implies the Twin Prime Conjecture.

Conjecture 5.12. Any integer $n>1$ can be written as $x^{2}+y^{2}+\varphi\left(z^{2}\right)$ with $x, y \in \mathbb{N}, z \in \mathbb{Z}^{+}$, and $\max \{x, y\}$ or z prime. Also, any $n \in \mathbb{Z}^{+}$can be written as $x^{3}+y^{2}+T_{z}$ with $x, y \in \mathbb{N}$ and $z \in \mathbb{Z}^{+}$.

Remark 5.8. We have verified this for all $n=1, \ldots, 10^{5}$. See [S15c, A262311 and A262813] for related data.

Conjecture 5.13. Any integer m can be written as $x^{4}-y^{3}+z^{2}$ with $x, y, z \in \mathbb{Z}^{+}$.
Remark 5.9. We have verified this for all $m \in \mathbb{Z}$ with $|m| \leqslant 10^{5}$, see [S15c] for related data. For example,
$0=4^{4}-8^{3}+16^{2}, \quad 6=36^{4}-139^{3}+1003^{2}, \quad$ and $11019=4325^{4}-71383^{3}+3719409^{2}$.
Conjecture 5.14. Any $n \in \mathbb{N}$ can be written as $w^{2}+x^{3}+y^{4}+2 z^{4}$ with $w, x, y, z \in$ \mathbb{N}. Also, any $n \in \mathbb{N}$ can be written as $w^{2}+2 x^{2}+y^{3}+2 z^{3}$ with $w, x, y, z \in \mathbb{N}$.

Remark 5.10. We have verified this for all $n=1, \ldots, 4 \times 10^{6}$, see [S15c, A262827 and A262857] for related data.

References

[CP] S. Cooper and H. Y. Lam, On the diophantine equation $n^{2}=x^{2}+b y^{2}+c z^{2}$, J. Number Theory 133 (2013), 719-737.
[D39] L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago, 1939.
[D99] L. E. Dickson, History of the Theory of Numbers, Vol. II, AMS Chelsea Publ., 1999.
[F13] B. Farhi, On the representation of the natural numbers as the sums of three terms of the sequence $\left\lfloor n^{2} / a\right\rfloor$, J. Integer Seq. 16 (2013), Article 13.6.4.
[F14] B. Farhi, An elemetary proof that any natural number can be written as the sum of three terms of the sequence $\left\lfloor n^{2} / 3\right\rfloor$, J. Integer Seq. 16 (2013), Article 13.6.4.
[G] E. Grosswald, Representation of Integers as Sums of Squares, Springer, New York, 1985.
[GPS] S. Guo, H. Pan and Z.-W. Sun, Mixed sums of squares and triangular numbers (II), Integers 7 (2007), \#A56, 5pp (electronic).
[GPQ] X. Guo, Y. Peng and H. Qin, On the representation numbers of ternary quadratic forms and modular forms of weight 3/2, J. Number Theory 140 (2014), 235-266.
[Gu] R. K. Guy, Every number is expressible as the sum of how many polygonal numbers? Amer. Math. Monthly 101 (1994), 169-172.
[HKR] S. T. Holdum, F. R. Klausen and P. M. R. Rasmussen, On a conjecture on the representation of positive integers as the sum of three terms of the sequence $\left\lfloor n^{2} / a\right\rfloor$, J. Integer Seq. 18 (2015), Article 15.6.3.
[JP] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), 165-191.
[MAZ] S. Mezroui, A. Azizi and M. Ziane, On a conjecture of Farhi, J. Integer Seq. 17 (2014), Article 14.1.8.
[MW] C. J. Moreno and S. S. Wagstaff, Sums of Squares of Integers, Chapman \& Hall/CRC, New York, 2005.
[N96] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math., vol. 164, Springer, New York, 1996.
[OS] B.-K. Oh and Z.-W. Sun, Mixed sums of squares and triangular numbers (III), J. Number Theory 129 (2009), 964-969.
[P] L. Panaitopol, On the representation of natural numbers as sums of squares, Amer. Math. Monthly 112 (2005), 168-171.
[S07] Z.-W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), 103-113.
[S09] Z.-W. Sun, On sums of primes and triangular numbers, J. Comb. Number Theory 1 (2009), 65-76.
[S15a] Z.-W. Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), 13671396.
[S15b] Z.-W. Sun, On $x(a x+1)+y(b y+1)+z(c z+1)$ and $x(a x+b)+y(a y+c)+z(a z+d)$, preprint, arXiv:1505., 2015.
[S15c] Z.-W. Sun, Sequences A262311, A262813, A262827, A262857, A266152 and A266153 in OEIS, http://oeis.org.
[S16] Z.-W. Sun, A result similar to Lagrange's theorem, J. Number Theory 162 (2016), 190-211.

