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TORUS FIXED POINTS IN SCHUBERT VARIETIES AND

NORMALIZED MEDIAN GENOCCHI NUMBERS

XIN FANG, GHISLAIN FOURIER

Abstract. We give a new proof for the fact that the number of torus fixed points
for the degenerate flag variety is equal to the normalized median Genocchi number,
using the identification with a certain Schubert variety. We further study the torus
fixed points for the symplectic degenerate flag variety and develop a combinatorial
model, symplectic Dellac configurations, so parametrize them. The number of these
symplectic fixed points is conjectured to be the median Euler number.

Introduction

We consider the Schubert variety Xτn associated to the Weyl group element

τn := (snsn+1 · · · s2n−2) · · · (sksk+1 · · · s2k−2) · · · (s3s4)s2 ∈ S2n

in the partial flag variety SL2n/P , where P is the standard parabolic subalgebra as-
sociated to the simple roots {α1, α3, . . . , α2n−1}. Then there is a natural action of a
2n− 1-dimensional torus T2n−1 and we are mainly interested in the fixed points XT2n−1

τn

of this torus action. It is well known that the fixed points are parametrized Weyl groups
elements which are less or equal to τn in the Bruhat order (modulo the stabilizer of the
parabolic, in this case, the subgroup generated by s1, s3, . . . , s2n−1). Our first result is

Theorem A. There is an explicit bijection b from Dellac configurations DCn (Defini-
tion 1) of 2n columns and n rows to XT2n−1

τn
, hence the number of torus fixed points is

equal to the normalized median Genocchi number (see Section 1 for definition).

Here is a an example of the Dellac configuration corresponding to a fixed point for
n = 3:

• •
• • 7→ σ = 124536

• •

We also consider Schubert varieties of the symplectic flag variety, e.g. the Schubert
variety Xsp

τ2n
corresponding to the element (of the symplectic Weyl group):

τ 2n := (r2n · · · rn+1) · · · (r2nr2n−1r2n−2)(r2nr2n−1)r2n(rn · · · r2n−2) · · · (r4r5r6)(r3r4)r2

in the symplectic partial flag variety. In this case, there is a natural action of T2n on the
Schubert variety and we are again interested in the fixed points of this torus action. To
parametrize them similar to the non-symplectic case, we introduce symplectic Dellac
configurations (Definition 2). These are Dellac configurations with 4n columns and 2n
rows, which are invariant under the involution mapping the i-th row to the 2n− i+1-st
row. Our second result is
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Theorem B. The torus fixed points in Xsp
τ2n

are parametrized by the symplectic Dellac
configurations SpDC2n.

We conjecture that the number of symplectic Dellac configurations is equal to the
normalized median Euler number ([K97]).

We should explain here why we are interested in these particular Schubert varieties.
E. Feigin ([Fei11]) defined the degenerate flag variety

F lan := {(U1, . . . , Un−1) ∈

n−1∏

i=1

Gri(C
n) | pri+1 Ui ⊂ Ui+1}

where pri is the endomorphism of Cn setting the i-th coordinate to be zero. This is
in fact a flat degeneration of the classical flag variety F ln, moreover it was shown in
[CFR12, CLL15] that there is an action of T2n−1 on F lan. The symplectic degenerate
flag variety (F la2n)

sp has been defined in [FFiL14] in a similar way.

The degenerate flag variety is one of the main objects in the framework of PBW
filtrations and degenerations on universal enveloping algebras of simple Lie algebras
(see for various aspects [FFoL11a, FFoL11b, FFoL13, FFR15, Hag14, Fou14, Fou15,
CFR12]). Here, one obtains degenerate flag varieties F la(λ) as highest weight orbits
of PBW degenerate modules. In [Fei11, FFiL14] it has been shown that these highest
weight orbits do have an interpretation as a variety of certain flags.

Recently, it was shown in [CL15] that these degenerate flag varieties are in fact our
particular Schubert varieties:

Theorem. (Cerulli Irelli-Lanini)

(1) In the sln-case, the degenerate flag variety F lan is isomorphic to the Schubert

variety Xτn , moreover the isomorphism ζ : F lan
∼

−→ Xτn is T2n−1-equivariant.
(2) In the sp2n-case the degenerate symplectic flag variety is isomorphic to Xsp

τ2n
and

again the isomorphism ζsp : Xsp
τ2n

∼
−→ (F la2n)

sp is torus-equivariant.

The torus fixed points of the degenerate flag variety in type An have been studied
in [Fei11]. In that paper, an explicit bijection f to the set of Dellac configurations has
been provided. Hence it was shown that the number of torus fixed points is equal to
the normalized median Genocchi number.

Combining the theorem by Cerulli Irelli and Lanini with Theorem A, we obtain an-
other proof of this fact, using the classical set up of Schubert varieties only. Moreover,
we can show that the following diagram commutes (here α denotes the natural identi-
fication of W J

≤τn
with XT2n−1

τn
)

(F lan)
Tn

f
//

ζ

��

DCn

b

��

XT2n−1

τn
W J

≤τn

α
oo

.
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In the symplectic case, the map f is not present, mainly because the construction of
symplectic Dellac configurations has not been seen in the literature before. Nevertheless
we obtain a similar picture, namely the number of torus fixed points in the symplectic
degenerate flag variety are parametrized by SpDC2n. We should mention here that E.
Feigin (via the symplectic degenerate flag variety [FFiL14]) as well as G. Cerulli Irelli
(via quiver Grassmannian [CFR12]) also conjectured the number of torus fixed points
to be the normalized median Euler number.

This paper is organized as follow, in Section 1 we prove our first theorem for the sln,
in Section 2 we consider the symplectic case. In Section 3 we relate our results to the
framework of degenerate flag varieties.

Acknowledgments The work of Xin Fang is supported by the Alexander von Hum-
boldt Foundation. The work of Ghislain Fourier is funded by the DFG priority program
1388 ”Representation Theory”. The authors would like to thank Evgeny Feigin and
Bruce Sagan for their helpful comments.

1. Symmetric groups and Median Genocchi numbers

1.1. Let W = S2n be the symmetric group generated by S = {s1, s2, · · · , s2n−1} where
si = (i, i + 1). Let J = {s1, s3, · · · , s2n−1} ⊂ S and WJ be the subgroup generated by
J , W J be the set of minimal representatives of right cosets of WJ in W . We define

τn = (snsn+1 · · · s2n−2) · · · (sksk+1 · · · s2k−2) · · · (s3s4)s2 ∈ W,

then for t = 1, 2, · · · , 2n:

τn(t) =

{
k, t = 2k − 1;

n + k, t = 2k.
(1.1)

By construction, τn is a representative of minimal length in W/WJ , so τn ∈ W J . We
define

W≤τn = {w ∈ W | w ≤ τn}, W J
≤τn

= {w ∈ W J | w ≤ τn},

where ≤ is the Bruhat order.

Definition 1. A Dellac configuration C is a board of 2n columns and n rows with 2n
marked cells such that

(1) each column contains exactly one marked cell;
(2) each row contains exactly two marked cells;
(3) if the (i, j)-cell is marked, then i ≤ j ≤ n+ i.

Let DCn denote the set of such configurations.

It is worthy of pointing out that the definition of a Dellac configuration given above
differs from that in [Fei11] by rotating the board by 90◦.

The cardinality hn of the set DCn is called a normalized median Genocchi number (see
[Fei11, Fei12] and the references therein). Consider the following polynomial defined by
recursion: H0(x) = 1,

Hn(x) =
1

2
(x+ 1)((x+ 1)Hn−1(x+ 1)− xHn−1(x)).
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Then it is proved in [DR94] that hn = Hn(1).
The following theorem is originally proved by Cerulli Irelli and Lanini in [CL15] as a

corollary of their main result and a result of Feigin [Fei11] (see Remark 4 for details).

Theorem 1. For any integer n ≥ 1, hn = #W J
≤τn

.

We provide in this section a purely combinatorial bijective proof of the theorem.

1.2. Rook arrangements. Consider a board of n rows and columns. A rook arrange-
ment R is a filling of the cells by n marks such that each row and each column have
exactly one mark. Let Rn denote the set of all rook arrangements. There is a bijection

ϕ : Rn
∼

−→ Sn (1.2)

sending a rook arrangement R to the permutation σR satisfying: for i = 1, · · · , n,
σR(i) = j if and only if the cell (i, j) is marked in R. For σ ∈ Sn, we denote Rσ :=
ϕ−1(σ).

Let R be a rook arrangement. The convex hull of the marked cells in R is the smallest
right-aligned skew-Ferrers board containing all marks in R.

From now on we consider S2n: Rτn is a board of 2n columns and rows. A restricted
rook arrangement with respect to τn is a rook arrangement such that all marked cells in
the board are contained in the convex hull (it is called the right hull in [Sjo07]) of the
marked cells in Rτn . Let R≤τn denote the set of all restricted rook arrangements with
respect to τn.

Example 1. We consider an example where n = 3, then τ3 = 142536 and the shadowed
area is the called the convex hull of the marked cells in Rτ3 . We fix σ = 124536, then
the rook arrangement of σ is (given by the dots):

Rσ =

•
•

•
•

•
•

Rσ is the restricted rook arrangement with respect to τ3.

It is clear that τn avoids the patterns 4231, 35142, 42513, and 351624. The following
result is a special case of Theorem 4 in [Sjo07].

Theorem 2 ([Sjo07]). The restriction of ϕ on R≤τn gives a bijection R≤τn

∼
−→W≤τn .

1.3. From rook arrangements to Dellac configurations. We define two maps m :
R≤τn → DCn called the melt map and b : DCn → R≤τn called the blow map.

Let R ∈ R≤τn be a restricted rook arrangement. Consider a board CR of 2n columns
and n rows defined by: the cell (k, l) of CR is marked if and only if either the cell
(2k − 1, l) or the cell (2k, l) is marked in R. Intuitively, the k-th row of CR is obtained
by merging the (2k − 1)-th and the 2k-th rows in R.

Lemma 1. The board CR is a Dellac configuration.
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Proof. By the definition of a rook arrangement, each row of CR has exactly two marked
cells; each column of CR has exactly one marked cell. When moreover R is restricted
with respect to τn, by (1.1), CR has the following property: if the cell (r, s) in CR is
marked, then r ≤ s ≤ n + r. �

By using the lemma we obtain a well-defined melt map

m(R) := CR.

Let C ∈ DCn be a Dellac configuration. A board RC of 2n rows and columns is
associated to C in the following way: the cells (i, j) and (i, k) with j < k are marked in
C if and only if the cells (2i− 1, j) and (2i, k) are marked in RC . Intuitively, the i-th
row in C is splitted into two rows where the first row bears the first marked point and
the second row admits the second one.

Example 2. Let σ = 124536 be the permutation in Example 1. The corresponding
Dellac configuration via the melt procedure is given by:

• •
• •

• •

Lemma 2. The board RC is a restricted rook arrangement with respect to τn.

Proof. Conditions (1) and (2) in the definition of the Dellac configuration guarantees
that RC is a rook arrangement. The condition (3) means that RC is restricted with
respect to τn. �

By defining b(C) = RC , the blow map is well-defined by Lemma 2.

Lemma 3. The following statements hold:

(1) the map b is injective with im(b) = ϕ−1(W J
≤τn

);
(2) we have m ◦ b = id.

Proof. By construction, the only thing to be prove is im(b) = ϕ−1(W J
≤τn

). It holds by

the following description of W J :

W J = {σ ∈ W | σ(2k − 1) < σ(2k) for any 1 ≤ k ≤ n}.

�

As an application of these maps, we give a bijective proof of Theorem 1:

Proof of Theorem 1. By Lemma 3, the blow map b induces a bijection DCn
∼

−→W J
≤τn

.

By counting numbers we proved hn = #W J
≤τn

. �

Remark 1. The normalized median Genocchi numbers hn count a combinatorial struc-
ture in S2n+2 called normalized Dumont permutation. Although a posteriori there ex-
ists a bijection between the normalized Dumont permutation and W J

≤τn
, our approach

is different from the one in [K97], see also [Fei11].
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2. Symplectic case

2.1. Notations. Let W̃ = S4n be the symmetric group, J̃ = {s1, s3, · · · , s4n−1}. Let ι

be the involution of W̃ defined by:

ι(σ)(k) = 4n+ 1− σ(4n+ 1− k) for σ ∈ W̃ and 1 ≤ k ≤ 4n.

The Weyl group W of the symplectic group Sp4n with generators {r1, r2, · · · , r2n} can

be embedded into W̃ via the map κ : W → W̃ , ri 7→ sis4n−i for 1 ≤ i ≤ 2n − 1 and

r2n 7→ s2n. The image of κ are the ι-fixed elements W̃ ι inW . Let J = {r1, r3, · · · , r2n−1}.
We denote

τ2n = (r2n · · · rn+1) · · · (r2nr2n−1r2n−2)(r2nr2n−1)r2n(rn · · · r2n−2) · · · (r4r5r6)(r3r4)r2 ∈ W.

It is observed in [CLL15] that κ(τ 2n) = τ2n.
By Corollary 8.1.9 in [GTM05] (notice the differences between the indices here and

those in the reference), the restriction of κ to W≤τ2n gives a bijection

α :W≤τ2n

∼
−→ (W̃≤τ2n)

ι.

By passing to the right cosets, α induces a bijection α′ : W J
≤τ2n

∼
−→ (W̃ J̃

≤τ2n
)ι.

2.2. Symplectic Dellac configurations.

Definition 2. A symplectic Dellac configuration C is a board of 4n columns and 2n
rows with 4n marked cells such that

(1) each column contains exactly one marked cell;
(2) each row contains exactly two marked cells;
(3) if the (i, j)-cell is marked, then i ≤ j ≤ 2n+ i;
(4) for 1 ≤ i, j ≤ 2n, the (i, j)-cell is marked if and only if the (2n−i+1, 4n−j+1)-

cell is marked.

Let SpDC2n denote the set of such configurations and en its cardinality.

We have e1 = 1, e2 = 2, e3 = 10, e4 = 98, e5 = 1594. Consider the sequence of
polynomials defined by recursion: E0(x) = 1,

En(x) =
1

2
(x+ 1)((x+ 2)En−1(x+ 2)− xEn−1(x)).

Conjecture 1. For any n ≥ 0, en+1 = En(1).

Remark 2. Giovanni Cerulli Irelli and Evgeny Feigin kindly informed us that they
have also a similar conjecture.

If this conjecture were true, these numbers en coincide with the numbers rn in
[RZ96] (see A098279 in OEIS), where their continued fraction developments are studied
(Théorème 29 in loc. cit.).
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2.3. Main result. The main result of this section is the following

Theorem 3. For any integer n ≥ 1, en = #W J
≤τ2n

.

Proof. We prove the theorem by establishing a bijection between W J
≤τ2n

and SpDC2n,
following the strategy in the proof of Theorem 1.

A symplectic rook arrangement C is a board of 4n columns and rows with 4n marked
points satisfying:

(1) C is a rook arrangement;
(2) for any 1 ≤ i ≤ 4n and 1 ≤ j ≤ 2n, the cell (i, j) is marked if and only if the

cell (4n+ 1− i, 4n+ 1− j) is marked.

The set of symplectic rook arrangements is denoted by SR4n. Similarly to Section 1.2 we
can define the restricted symplectic rook arrangements with respect to τ2n: SR≤τ2n :=
SR4n ∩R≤τ2n .

Consider the bijection ϕ : R4n
∼

−→ S4n from (1.2).

Lemma 4. (1) The restriction of the map ϕ induces a bijection ϕ′ : SR4n
∼

−→

W̃ ι = W .
(2) The restriction of the map ϕ′ induces a bijection ψ : SR≤τ2n

∼
−→ (W̃≤τ2n)

ι.

Proof. (1) Take a board R in SR4n, the condition (2) in its definition implies that
ϕ(R) is invariant under the involution ι. It suffices to show that ϕ′ is surjective:

let σ ∈ W̃ , by definition of ι, σ is fixed by the involution ι if and only if
σ(4n+ 1 − k) = 4n + 1− σ(k) for any 1 ≤ k ≤ 4n, i.e., for any 1 ≤ i ≤ 4n and
1 ≤ j ≤ 2n, σ(i) = j if and only if σ(4n + 1 − i) = 4n + 1 − j. It implies that
ϕ−1(σ) is in SR4n.

(2) Since SR≤τ2n = SR4n ∩ R≤τ2n and (W̃≤τ2n)
ι = W̃ ι ∩ W̃≤τ2n , the bijectivity of ψ

follows from (1) and Theorem 2.
�

Moreover, consider the restriction of the melt map m : R≤τ2n → DC2n on SR≤τ2n .
Since the condition (2) in the definition of the symplectic rook arrangement translates
to the condition (4) in the definition of the symplectic Dellac configuration under the
melt map, m induces a map m′ : SR≤τ2n → SpDC2n.

Example 3. Let us consider an example where n = 2 and the permutation is giving
by the following rook arrangement:

•
•

•
•

•
•

•
•

where the shadowed area is the convex hull of the marked cells in Rτ4 . It is straight-
forward to see that the rook arrangement is fixed by ι and hence symplectic. The
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corresponding symplectic Dellac configuration via the melt map m is given by:

• •
• •

• •
• •

continue the proof of Theorem 3:

The restriction of the blow map b : DC2n → R≤τ2n to SpDC2n gives a map b′ :

SpDC2n → SR≤τ2n . By Lemma 3, b is injective with im(b) = ϕ−1(W̃ J̃
≤τ2n

). It implies
that b′ is injective with

im(b′) = ϕ−1(W̃ J̃
≤τ2n

∩ W̃ ι) = ψ−1((W̃ J̃
≤τ2n

)ι)

and m′ ◦ b′ = id.
By the above argument, the blow map b′ gives a bijection SpDC2n

∼
−→ (W̃ J̃

≤τ2n
)ι,

composing with (ϕ′)−1 we get a bijection SpDC2n
∼

−→ W J
≤τ2n

. �

3. Application to torus fixed points

We show how the construction in Section 1 is related to the study of the torus fixed
points in the degenerate flag variety.

3.1. Schubert varieties. Let σn ∈ S2n be the permutation defined as follows:

σn(r) =

{
k, r = 2k;

n+ 1 + r, r = 2k + 1.
(3.1)

We see that σn can be obtained by restricting τn+1 ∈ S2n+2 to the set {2, . . . , 2n+ 1}.
We denoteXσn

the Schubert variety corresponding to σn in the projective variety SLn/P
where P is the standard parabolic subalgebra defined as the stabilizer of the highest
weight line of weight ̟1 + ̟3 + · · · + ̟2n−1. The maximal torus T2n−1 of SL2n acts
naturally on Xσn

: let XT2n−1

σn

be the set of torus fixed points.

It is a standard result that the torus fixed points XT2n−1

σn

can be identified with the
quotient W J

≤σn

where W = S2n and J = {2, 4, · · · , 2n − 2}: for τ ∈ W J
≤σn

, the corre-

sponding torus fixed point in XT2n−1

σn

is:

〈eτ(1)〉C ⊂ 〈eτ(1), eτ(2), eτ(3)〉C ⊂ · · · ⊂ 〈eτ(1), eτ(2), · · · , eτ(2n−1)〉C ∈ Xσn

where e1, e2, · · · , e2n is a fixed basis of C2n.

3.2. Degenerate flag varieties. We fix a basis {f1, f2, · · · , fn+1} of Cn+1. Let F lan+1

be the degenerate flag variety of SLn+1 (see [Fei11] for details):

F lan+1 = {(V1, V2, · · · , Vn) ∈

n∏

i=1

Gri(C
n+1)| pri+1(Vi) ⊂ Vi+1 for any i = 1, · · · , n},

where pri : C
n+1 → C

n+1 is the linear projection along the line generated by fi. By
[CFR12], the torus T2n−1 acts on F lan+1: let (F lan+1)

T2n−1 be the corresponding set of
torus fixed points.
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In [CL15], it is shown that there exists a T2n−1-equivariant isomorphism of projective

varieties ζ : F lan+1
∼

−→ Xσn
⊂ SL2n/P . We are especially interested in the image of

torus fixed points under ζ :
Fix a basis {e1, e2, · · · , e2n} of C2n. For any i = 1, 2, · · · , n, we denote the coordinate
subspace Un+i = 〈e1, e2, · · · , en+i〉 ⊂W . The surjection πi : Un+i → Cn+1 is defined by:

πi(ek) =





0 if 1 ≤ k ≤ i− 1;
fk if i ≤ k ≤ n+ 1;

fk−n−1 if n+ 2 ≤ k ≤ n + i.
(3.2)

Define ζi : Gri(C
n+1) → Gr2i−1(C

2n) to be the concatenation of the following maps:

Gri(C
n+1) → Gr2i−1(Un+i) → Gr2i−1(C

2n), U 7→ π−1
i (U) 7→ π−1

i (U).

Then ζ : F lan+1 → Xσn
is given by

∏n

i=1 ζi (see Section 2 of [CL15] for details).
It is clear that the torus Tn of SLn+1 acts naturally on F lan+1. By results in Section

7.2 of [CFR12], any T2n−1 fixed point in F lan+1 is in fact a Tn-fixed point. In [Fei11], an
explicit bijection f between the T2n−1-fixed points and Dellac configuration is provided.

3.3. A commutative diagram. As a summary, starting with a Tn-fixed point in
F lan+1, there are two ways to obtain a Dellac configuration:

(1) via the bijection f given by [Fei11];
(2) consider this fixed point as a fixed point in the Schubert variety Xσn

, hence iden-
tify it with an element in W J

≤σn

, then melt the corresponding rook arrangement
to get a Dellac configuration.

It is natural to ask whether the following diagram commutes:

(F lan+1)
T2n−1 = (F lan+1)

Tn
f

//

β

��

DCn+1

b

��

XT2n+1

τn+1
= XT2n−1

σn

W J
≤τn+1

α
oo

.

where the map α is given as follows:
for σ ∈ W J

≤τn+1
where W = S2n+2, we define the map α as follows: α(σ) is the sequence

of subspaces W1 ⊂ W2 ⊂ · · · ⊂ Wn such that Wi is the subspace of C2n generated by
eσ(1), eσ(2), · · · , eσ(2i−1), where σ is the (well-defined) restriction of σ to S2n. We can
identify this element in XT2n−1

σn

with n subsets J1, · · · , Jn of {1, 2, · · · , 2n} such that
Ji = {σ(1), σ(2), · · · , σ(2i− 1)}.

It remains to consider restriction of the map ζ to fixed points. Here we have to include
an extra twist, since the definition of the degenerate flag variety is slightly different
in [Fei11] and [CL15]: let (V1, V2, · · · , Vn) ∈ (F lan+1)

Tn , it can be identified ([Fei11],
Corollary 2.11) with n subsets I1, I2, · · · , In of {1, 2, · · · , n+ 1} such that #Ik = k and
for any k = 1, 2, · · · , n, Ik\{k + 1} ⊂ Ik+1.

We denote κ = (12 · · ·n + 1)−1 be the inverse of the longest cycle in Sn+1. Suppose
that Il = {il,1, il,2, · · · , il,l}, we denote Iκl = {κ(il,1), κ(il,2), · · · , κ(il,l)}. We define a
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map pl : {1, 2, · · · , n+ l} → {1, 2, · · · , n+ 1} by

pl(s) =





0 if 1 ≤ s ≤ l − 1;
s if l ≤ k ≤ n + 1;

s− n− 1 if n + 2 ≤ k ≤ n+ l.
(3.3)

Then β((I1, I2, · · · , In)) = (T1, T2, · · · , Tn) where Tl = p−1
l (Iκl ).

Theorem 4. The diagram above commutes, i.e., ζ = α ◦ b ◦ f .

The proof is given by a case-by-case examination, we will only give a sketch.

Proof. We pick I = (I1, I2, · · · , In) ∈ (F lan+1)
Tn+1. Recall that the map f is given in

[Fei11, Proposition 3.1].

(1) Suppose that l /∈ Il−1, then Il\Il−1 = {j}. We consider the case j > l: in
the Dellac configuration f(I), the cells (l, l) and (l, j) are marked. Then by
definition, σ = b(f(I)) satisfies σ(2l − 1) = l and σ(2l) = j. Hence in α(σ),
Jl\Jl−1 = {l − 1, j − 1}.
We compute β(I): it is clear that Iκl \I

κ
l−1 = {j−1}, then p−1

l (Iκl )\p
−1
l−1(I

κ
l−1) =

p−1
l ({l−1, j−1}) = {l−1, j−1}. Therefore Tl\Tl−1 = {l−1, j−1}, i.e., Jl = Tl.
It is similar to deal with the case j < l.

(2) Suppose that l ∈ Il−1 and l ∈ Il, then Il\Il−1 = {j}. We study the case j < l: in
the corresponding Dellac configuration, the cells (l, l+n+1) and (l, j+n+1) are
marked. The associated permutation σ = b(f(I)) satisfies σ(2l− 1) = j + n+1
and σ(2l) = l + n+ 1. Hence in α(σ), Jl\Jl−1 = {j + n, l + n}.
For β(I): l ∈ Il−1 ∩ Il and Il\Il−1 = {j} imply that l − 1 ∈ Iκl−1 ∩ Iκl and

Iκl \I
κ
l−1 = {κ(j)}. Notice that no matter j = 1 or j > 1, p−1

l (κ(j)) = j + n. By
the assumption j < l,

p−1
l (Iκl )\p

−1
l−1(I

κ
l−1) = p−1

l ({l − 1, κ(j)}) = {j + n, l + n},

which proved Jl = Tl.
The case where j > l can be similarly proved.

(3) Suppose that l ∈ Il−1 and l /∈ Il, then there exists j1 and j2 such that Il\Il−1 =
{j1, j2}. We assume that j1 < l and j2 > l, in the corresponding Dellac con-
figuration, the cells (l, j1 + n + 1) and (l, j2) are marked, hence in α(b(f(I))),
Jl\Jl−1 = {j1 + n, j2 − 1}.
For β(I), we have

p−1
l (Iκl )\p

−1
l−1(I

κ
l−1) = p−1

l ({κ(j1), j2 − 1}) = {j1 + n, j2 − 1},

therefore Jl = Tl.
All other cases can be proved in the same way.

�

Remark 3. A similar diagram without the map f exists in the symplectic case by
changing

(1) the degenerate flag variety to the symplectic degenerate flag variety (see [FFiL14]);
(2) the Schubert variety of SL2n by the Schubert variety in the symplectic group

(see [CL15]);
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(3) the Dellac configuration by the symplectic Dellac configuration;
(4) the set W J

≤τn+1
by W J

≤τ2n+2
.

Remark 4. The original proof of Theorem 1 is given by showing the composition
α−1 ◦ β ◦ f−1 is a bijection: f is a bijection is shown in [Fei11]; by the main theorem of
[CL15], β is a bijection; α is a well-known bijection. Our proof of the theorem uses an
intuitive map b to avoid the geometrical proof.
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