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Abstract

The Pascal rhombus is a variant of Pascal’s triangle in which each term is a sum of
four earlier terms. Klostermeyer et al. made four conjectures about the Pascal rhombus
modulo 2. In this paper we show how exploration of the stealth shape leads to unified
proofs of all of these conjectures.

1 Introduction

The Pascal rhombus was introduced in 1997 by Klostermeyer et al. [4] as a variant of
Pascal’s triangle. The term rhombus does not refer to this figure’s shape—as with Pascal’s
triangle, the Pascal rhombus forms an infinite triangular wedge. Rather, the term refers
to the rule for recursively constructing the figure. Informally, each element in the Pascal
rhombus is the sum of three adjacent elements in the row immediately above the element,
plus one element from two rows above. The new element, together with the four elements
that contribute to it, lie in the shape of a rhombus. The figure begins with a single 1 in the
top row. Figure 1 shows the first six rows of the Pascal rhombus.

Figure 1: The Pascal rhombus.

More formally, we number the rows and columns of the Pascal rhombus, with [n, k]
denoting the cell in row n, column k, and R[n, k] denoting its contents. The non-zero
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elements are those for which −n < k < n. The initial conditions are that R[0, j] = 0 for all
j, R[1, j] = 0 for j 6= 0, and R[1, 0] = 1. Construction continues with

R[n, k] = R[n− 1, k − 1] +R[n− 1, k] +R[n− 1, k + 1] +R[n− 2, k]

for n ≥ 2. (Note that this indexing is different from that of [4].)
Near the end of [4] the authors consider the Pascal rhombus with entries reduced modulo

2. Figure 2 shows the first 32 rows of the Pascal rhombus (mod 2), with odd entries in
black and even entries in white. The construction rule now becomes: A cell at the bottom
of a 5-cell rhombus is colored black if and only if an odd number of the other four cells are
colored black. Thus every 5-cell rhombus contains an even number of black cells. The only
exception to this rule in the entire infinite grid is the rhombus centered at cell [0, 0] which
contains the single black cell at position [1, 0] that initiates the construction.

Figure 2: The Pascal rhombus (mod 2)

This is of course quite reminiscent of the well-known Pascal’s triangle (mod 2), where
the first 2n rows form a structure consisting of three copies of the 2n−1 row structure.
Properly scaled, these structures approach the fractal known as the Sierpiński gasket. See,
for example, [1, Section 1.2]. No doubt motivated by the properties of this familiar triangle,
Klostermeyer et al. [4] made four conjectures about the structure of the Pascal rhombus
(mod 2).

Conjecture 1 (Klostermeyer et al. [4]). For any n ≥ 1 the triangle in the Pascal rhombus
(mod 2) with corners at [1, 0], [2n−1, −(2n−1 − 1)], and [2n−1, 2n−1 − 1] is identical to the
triangle with corners at [2n+1, −2n], [2n+2n−1, −(2n+2n−1−1)], and [2n+2n−1, −(2n−
2n−1 + 1)], and also identical to the triangle with corners at [2n + 1, 2n], [2n + 2n−1, 2n −
2n−1 + 1], and [2n + 2n−1, 2n + 2n−1 − 1].

For example, with n = 4 in Figure 2, the triangle with corners at [1, 0], [8, −7] and
[8, 7] (the top quarter of the figure) is identical to the triangle with corners at [17, −16],
[24, −23] and [24, −9] (the third quarter down, on the left), and to the triangle with corners
at [17, 16], [24, 9], and [24, 23] (the third quarter down, on the right). The conjecture makes
no mention of a fourth such triangle, with corners at [25, 0], [32, −7] and [32, 7] (the middle
of the bottom quarter of the figure).
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Conjecture 2 (Klostermeyer et al. [4]). Let In be the number of ones in row m = 2n of
the Pascal rhombus (mod 2). Then

In =
1

3

(

2n+2 − (−1)n
)

.

Conjecture 3 (Klostermeyer et al. [4]). For each k ≥ 1, diagonal Dk of the Pascal rhombus
(mod 2) consists of cells [n, −n+ k + 1] for n ≥ (k + 1)/2. Each such diagonal is periodic
with period length 2p, where p = ⌈log2(k)⌉ + 1. The period of the [n, −n + 1] diagonal D0

is 1.

Note that the periods claimed here are not necessarily minimal. The authors illustrate
the conjecture by observing that diagonal D6 begins 11011011, and presumably repeats
these eight values. Conjecture 3, however, only asserts a period of 16.

Conjecture 4 (Klostermeyer et al. [4]). Let Gn and Hn be the number of odd and even
entries, respectively, in the first n rows of the Pascal rhombus. Then limn→∞Gn/Hn = 0.

In a subsequent paper by many of the same authors, Goldwasser et al. [3] proved the
correctness of Conjectures 2 and 4, using an elaborate decomposition of the Pascal rhombus
based on odd and even values of the indices n and k. In the next two sections we show how
one key observation leads to unified proofs of all four conjectures.

2 The stealth shape

A standard way to analyze structures such as the Pascal triangle (mod 2) and their fractal
limits is to exploit the fact that such structures can be decomposed into a finite union of
lower order structures. Unfortunately, there is no way to decompose the first 2n rows of the
Pascal rhombus (mod 2) into a finite number of smaller, similar copies of these triangles.
Conjecture 1 suggests how far we are from this desirable situation. However, truncating the
Pascal rhombus (mod 2) along a zig-zag line produces a structure that can be decomposed
into five lower order copies of itself. We call this resulting structure a stealth configuration
because of its vague resemblance to the B2 stealth bomber. See Figure 3.

Definition 1. The order n stealth configuration Sn, for n ≥ 2, is that part of the Pascal
rhombus (mod 2) strictly within the octagon with edges linking cells [0, 0], [2n, −2n],
[2n + 2n−1, −2n−1], [2n + 2n−2, −2n−2] [2n + 2n−1, 0], [2n + 2n−2, 2n−2], [2n + 2n−1, 2n−1],
[2n, 2n], and back to [0, 0]. The order 1 stealth configuration S1 consists of cells [1, 0], [2,−1],
[2, 0] and [2, 1] in the Pascal rhombus (mod 2), and the order 0 stealth configuration S0

consist of just cell [1, 0].

We will refer to translations and rotations of stealth configurations as stealth configu-
rations as well, and will sometimes refer to those growing down from cell [1, 0] as being in
standard position.

Figure 3 shows the stealth configuration S5, strictly inside the octagon passing through
[0, 0], [32, −32], [48, −16], [40, −8], [48, 0], [40, 8], [48, 16], [32, 32], and back to [0, 0]. It
consists of an order 4 stealth configuration growing down from [1, 0] (the nose), an order 4
stealth configuration growing to the right from [32, −31] (the left wing), an order 4 stealth
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Figure 3: The Stealth Configuration and Stealth Decomposition.

configuration growing to the left from [32, 31] (the right wing), an order 3 stealth config-
uration growing down from [25, 0] (the main body), and an order 3 stealth configuration
growing up from [47, 0] (the tail).

Theorem 1. For all n ≥ 2, the order n stealth configuration Sn in standard position can
be decomposed into the disjoint union of 5 smaller stealth configurations: an order n − 1
stealth configuration growing down from [1, 0] (the nose), an order n−1 stealth configuration
growing to the right from [2n, −(2n−1)] (the left wing), an order n−1 stealth configuration
growing to the left from [2n, 2n − 1] (the right wing), an order n − 2 stealth configuration
growing down from [2n−2n−2+1, 0] (the main body), and an order n−2 stealth configuration
growing up from [2n + 2n−1 − 1, 0] (the tail).

We need two temporary definitions before we prove Theorem 1. First, the order n
pseudo-stealth configuration S′

n is defined as follows: For n = 0 and n = 1, the order n
pseudo-stealth configuration S′

n is the same as the order n stealth configuration Sn from
Definition 1. For n ≥ 2, S′

n is the configuration formed from copies of lower order pseudo-
stealth configurations S′

n−1 and S′

n−2 in accordance with Theorem 1. Our task is to prove
that the cut-and-paste pseudo-stealth configuration S′

n is identical to the rhombus rule
stealth configuration Sn for all n ≥ 0.

Second, we call a grid cell exceptional with respect to a stealth or pseudo-stealth config-
uration if it is the center cell of a 5-cell rhombus containing an odd number of ones. We will
show, for example, that that the exceptional cells with respect to the order 5 configuration
in Figure 3 are [0, 0]. [32, −32], [48, −16], [48, 0], [48, 16], and [32, 32] (the acute corners
of the bounding octagon).

Lemma 1. The exceptional cells with respect to the order n pseudo-stealth configuration S′

n

in standard position, for n ≥ 1, are at [0, 0], [2n, −2n], [2n + 2n−1, −2n−1], [2n + 2n−1, 0],
[2n + 2n−1, 2n−1], and [2n, 2n].

Proof of Lemma 1. The proof is by induction. The cases n = 1 and n = 2 can be confirmed
by hand. We assume that the statement is true for all pseudo-stealth configurations of order
less than n, for some arbitrary n ≥ 3, and consider an order n pseudo-stealth configuration
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S′

n of order n, in standard position. Configuration S′

n is the union of the following: An order
n− 1 pseudo-stealth configuration (the nose) with exceptional cells at [0, 0], [2n−1, −2n−1],
[2n−2n−2, −2n−2], [2n−2n−2, 0], [2n−2n−2, 2n−2], and [2n−1, 2n−1]; an order n−1 pseudo-
stealth configuration (the left wing) with exceptional cells at [2n, −2n], [2n +2n−1, −2n−1],
[2n + 2n−2, −2n−2], [2n, −2n−2], [2n − 2n−2, −2n−2], and [2n−1, −2n−1]; an order n − 1
pseudo-stealth configuration (the right wing) with exceptional cells at [2n, 2n], [2n−1, 2n−1],
[2n−2n−2, 2n−2], [2n, 2n−2], [2n+2n−2, 2n−2], and [2n+2n−1, 2n−1]; an order n−2 pseudo-
stealth configuration (the main body) with exceptional cells at [2n − 2n−2, 0], [2n, −2n−2],
[2n+2n−3,−2n−3], [2n+2n−3, 0], [2n+2n−3, 2n−3], and [2n, 2n−2]; and on order n−2 pseudo-
stealth configuration (the tail) with exceptional cells at [2n + 2n−1, 0], [2n + 2n−2, 2n−2],
[2n + 2n−3, 2n−3], [2n + 2n−3, 0], [2n + 2n−3, −2n−3], and [2n + 2n−2, −2n−2].

It is easy to see that a cell in the union of several pseudo-stealth configurations is
exceptional if and only if it is exceptional in an odd number of the component pseudo-
stealth configurations. Of the 30 exceptional cells listed above, 24 pair off and cancel out,
leaving configuration S′

n with just the six exceptional cells specified in the statement of the
lemma.

Proof of Theorem 1. We will show that for all n ≥ 0, the order n stealth configuration Sn

is identical to the order n pseudo-stealth configuration S′

n. For n = 0 and n = 1, this is true
by definition. For arbitrary n ≥ 2, let S′

n+1 be the order n+1 pseudo-stealth configuration
in standard position. Consider the nose section of S′

n+1. On the one hand, from Lemma 1
we know all the exceptional cells of S′

n+1, and all the cells in the nose of S′

n+1 are closer
to the exceptional cell [0, 0] than to any other. Thus the nose of S′

n+1 is contained in the
Pascal Rhombus (mod 2) that grows down from cell [1, 0] without interruption, using the
rhombus rule. That is, it is the order n stealth configuration Sn. On the other hand, the
nose of S′

n+1 is, by construction, the order n pseudo-stealth configuration S′

n as well.

3 Proving the conjectures

Armed with Theorem 1, we can readily prove the conjectures of Klostermeyer et al.[4] stated
in Section 1.

Proof of Conjecture 1. Let Sn+1 be the order n+1 stealth configuration in standard position
for some n ≥ 1. It contains an order n − 1 stealth configuration growing down from [1, 0]
(the nose of the nose of Sn+1), an order n − 1 stealth configuration growing down from
[2n+1, −2n] (the right wing component of the left wing of Sn+1), and an order n−1 stealth
configuration growing down from [2n + 1, 2n] (the left wing component of the right wing
of Sn+1). The three triangles of Conjecture 1 consist of the first 2n−1 rows of these three
order n− 1 stealth configurations.

The fourth identical triangle noted in Section 1 consists of the first 2n−1 rows of the order
n− 2 stealth configuration growing down from [2n +2n−1+1, 0] (the body of configuration
Sn+1).

Proof of Conjecture 2. For n ≥ 1 let An denote the number of ones (black cells) in the
central column of the order n stealth configuration in standard position, from [1, 0] down
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to [2n + 2n−1, 0]. By inspection we have A1 = 2 and A2 = 4. From Theorem 1 we have
that An = An−1 + 2An−2 for n ≥ 3. It is easy to see that

An = 2n (1)

is the solution to this recurrence relation. For completeness we set A0 = 1. This is sequence
A000079 in the OEIS [7].

Now for n ≥ 1 let Bn denote the number of ones (black cells) on the row from left
wingtip to right wingtip of the order n stealth configuration in standard position, from
[2n, −(2n − 1)] to [2n, 2n − 1]. By inspection we have B1 = 3 and B2 = 5. From Theorem
1 we have that Bn = 2An−1 + Bn−2 for n ≥ 3, or Bn = 2n + Bn−2. Standard methods for
recurrence relations yield the solution

Bn =
1

3

(

2n+2 − (−1)n
)

, (2)

which can be confirmed by induction. For completeness we set B0 = 1. This result was
first derived, using different methods and different recurrences, by Goldwasser et al. [3] as
a special case of their Theorem 1. This is sequence A001045 in the OEIS; its first few terms
are 1, 3, 5, 11, 21, 43, 85, 171, . . . .

Let Sn be the stealth configuration of order n ≥ 1. We call the set of cells strictly
within the rhombus linking cells [0, 0], [2n−1, −2n−1], [2n, 0], and [2n−1, 2n−1] the upper
rhombus of Sn. Likewise, we call the set of cells strictly within the rhombus linking cells
[2n−1, −2n−1], [2n, −2n], [2n + 2n−1, −2n−1], and [2n, 0] the left rhombus of Sn.

Lemma 2. For all n ≥ 1, the upper rhombus of stealth configuration Sn is the mirror
image of the left rhombus of Sn, reflected along the line of cells [2n−1 + k, −2n−1 + k] for
0 ≤ k ≤ 2n−1.

Proof. The proof is by induction on n. The claim is easily confirmed for n = 1 and 2. We
suppose the claim is true for all stealth configurations of order less than n, for some arbitrary
n ≥ 2, and examine the stealth configuration Sn of order n. Clearly the upper rhombus of
Sn consists of the order n− 1 stealth configuration forming the nose section of Sn, together
with the upper rhombus of the order n − 2 configuration forming the main body section
of Sn. Likewise, the left rhombus of Sn consists of the order n − 1 configuration forming
the left wing section of Sn, together with the left rhombus of the order n− 2 configuration
forming the main body section of Sn. The basic bilateral symmetry of stealth configurations
insures that the nose section of Sn reflects onto the left wing section of Sn, and the inductive
hypothesis insures that the upper rhombus of the main body section of Sn reflects onto the
left rhombus of the main body section of Sn.

Proof of Conjecture 3. We will prove the somewhat stronger claim that for all k ≥ 1, di-
agonal Dk is periodic with period 2m+1, where m = ⌊log2(k)⌋. In particular, we will show
that within every stealth configuration Sm+n with n ≥ 1, diagonal Dk is both periodic with
period 2m+1 and a palindrome. The proof is by induction on n.

Let Dk be a diagonal, with m = ⌊log2(k)⌋. We assume k is even; the odd case is
slightly different and left to the reader. Dk contains 2m cells within the upper rhombus
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of configuration Sm+1. These are reflected onto the next 2m cells of Dk, lying within the
left rhombus of Sm+1. Together these 2m+1 cells, the intersection of Dk and Sm+1, form a
palindrome and by default are periodic of period 2m+1. This establishes the claim within
Sm+1.

Now assume the claim is true within configuration Sm+n for some arbitrary n ≥ 1. By
hypothesis, we know that within configuration Sm+n, diagonal Dk is a palindrome and pe-
riodic of period 2m+1. Now configuration Sm+n is contained within the upper rhombus of
configuration Sm+n+1 and thus reflects onto the left rhombus of Sm+n+1 forming a palin-
drome twice as long. But the mirror image of a palindrome is itself, so the intersection of
Dk and Sm+n+1 is just the doubling of Dk within Sm+n. It is both periodic with period
2m+1 and a palindrome, confirming that the claim is true within Sm+n+1.

Before proving Conjecture 4, we examine the density of ones in the order n stealth
configuration.

Theorem 2. The density of ones in the order n stealth configuration approaches a limit of
0 as n approaches infinity.

Proof. Let Cn denote the total number of ones (black entries) in the order n stealth con-
figuration. By inspection we have C0 = 1 and C1 = 4. From Theorem 1 we know that
Cn = 3Cn−1 + 2Cn−2 for all n ≥ 2. The solution to this recurrence relation is

Cn =
17 + 5

√
17

34

(

3 +
√
17

2

)n

+
17− 5

√
17

34

(

3−
√
17

2

)n

(3)

which can be confirmed by induction. This is sequence A055099 in the OEIS; its first few
terms are 1, 4, 14, 50, 178, 634, 2258, 8042, . . . .

Now letDn denote the total number of entries, both zeros and ones, in the order n stealth
configuration Sn. Note that a triangle of k rows contains 1 + 3 + 5 + · · · + (2k − 1) = k2

cells. For n ≥ 2, the top 2n rows of Sn contain (2n)2 cells. The bottom part of Sn consists
of a triangle of 2n−1 rows, minus a triangle of 2n−1 rows, minus two triangles of 2n−2 rows.
Adding and subtracting all the parts, we have

Dn = (2n)2 + (2n − 1)2 − (2n−1)2 − 2(2n−2)2

=
13

8
(4n)− 2 (2n) + 1

(4)

for n ≥ 2, with D0 = 1 and D1 = 4. This is sequence A256959 in the OEIS; its first few
terms are 1, 4, 19, 89, 385, 1601, 6529, 26369, . . . .

The density of the order n stealth configuration is Cn/Dn, which clearly approaches a
limit of 0.

Proof of Conjecture 4. Let En denote the number of ones in the first 2n rows of the order n
stealth configuration. From Theorem 1 we know that this triangle consists of an order n−1
stealth configuration for its nose section, containing Cn−1 ones; the first 2n−2 rows of an
order n−2 stealth configuration for its middle section, containing En−2 ones; approximately
half of an order n − 1 stealth configuration for its left part; and approximately half of an
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Figure 4: Decomposing the first 2n rows

order n − 1 stealth configuration for its right part. We say “approximately” here because
both the left part and the right part contain the spine of the order n−1 stealth configuration,
so the left and right parts together contain Cn−1 +An−1 ones. See Figure 4.

Summing, we have
En = 2Cn−1 + En−2 +An−1

for n ≥ 2, with E0 = 1 and E1 = 4. The solution to this recurrence relation is

En =
17 + 7

√
17

68

(

3 +
√
17

2

)n

+
17− 7

√
17

68

(

3−
√
17

2

)n

+
2n+2 − (−1)n

6
.

(5)

This result was first derived, using different methods and different recurrences, by Gold-
wasser et al. [3, Equation (21)]. This is sequence A256960 in the OEIS; its first few terms
are 1, 4, 11, 36, 119, 408, 1419, 4988, 17631, ... .

From the discussion above we know that Fn, the total number of cells in the first 2n

rows of the Pascal rhombus (mod 2), is

Fn = 4n, (6)

which is sequence A000302. The density of ones in the first 2n rows is then En/Fn, which
approaches a limit of 0.

Now let m be any positive integer, and let n = ⌊log2(m)⌋, so that 2n ≤ m < 2n+1. The
first m rows of the Pascal rhombus (mod 2) contain fewer than En+1 ones out of at least
Fn total cells. The density of ones in the first m rows is thus less than En+1/Fn, which
approaches 0 as a limit. This is equivalent to the statement of Conjecture 4.

4 Other work

Moshe [5] placed the Pascal rhombus (mod 2) in the general context of double linear recur-
rence sequences over finite fields. Using extensions of the methods of Goldwasser et al. [3],
he proved that the number of ones, say, in the first qn rows of such a structure, where q is
the order of the field, can be determined from the n-th power of a certain square matrix.
The 5×5 matrix corresponding to the Pascal rhombus (mod 2) is explicitly displayed in
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Finch [2]. The expression in Equation (5) for the sequence En can be derived from these
two works.

In a later paper, Moshe [6] proved that the number of ones in row m of the structure can
be determined from a product of matrices, one for each digit in the base-q representation
of m. Again, the relevant 5×5 matrices are displayed in Finch [2]. From these it is possible
to compute the sequence 1, 3, 2, 5, 5, 6, 3, 11, 4, 15, 7, 10, . . . , (sequence A059319), but
no nice closed form expression for these numbers is known.

More recently, stealth configurations have been independently discovered by Sloane [8]
in his exploration of 2-dimensional cellular automata. In examining the evolution of the
“odd-rule” cellular automaton using the centered von Neumann neighborhood and starting
with a single ON cell at time 0, he found that the ON cells in generation 2n − 1 form a
diamond shaped pattern Hn consisting of four order n− 1 stealth configurations Sn−1, one
in each corner facing out, together with a copy of Hn−2 in the center. Alternatively, we
can view Sloane’s Hn pattern as the diamond formed from the first 2n rows of the Pascal
rhombus (mod 2) and its reflection in its bottom row. Sloane calls our stealth configurations
haystacks, and indicates the decomposition of a haystack into five smaller haystack in [8,
Line (35)]. The appearance of our stealth configurations and his haystacks in rather different
settings, analyzing different problems, seems quite remarkable.
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