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1 Introduction

A noncrossing graph is a graph with its vertices drawn on a circle and its edges

drawn in the interior such that no two edges cross each other. This note is

concerned with noncrossing acyclic digraphs. Examples of such structures are

given in Figure 1. I present an algorithm that, given a number n ≥ 1, computes

a compact representation of the set of all noncrossing acyclic digraphs with n

nodes. This compact representation can be used as the basis for a wide range

of dynamic programming algorithms on these graphs. As an illustration, along

with this note I am releasing the implementation of an algorithm for counting

the number of noncrossing acyclic digraphs of a given size.1 This number is

given by the following integer sequence (starting with n = 1); this is A246756

in the OEIS [OEIS Foundation Inc., 2011]:

1, 3, 25, 335, 5521, 101551, 1998753, 41188543, 877423873, 19166868607, . . .

Another application of the tabulation technique is in semantic dependency pars-

ing [Oepen et al., 2014], where it can be used to compute the highest-scoring

dependency graph for a given sentence under an edge-factored model.

1https://github.com/khlmnn/ncdags
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Figure 1: Some (out of 335) noncrossing acyclic digraphs of size 4.
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2 Preliminaries

Before presenting the tabulation I introduce some terminology for special types

of noncrossing acylic digraphs, as well as a set of operations on graphs that will

be useful for the understanding of the technique.

2.1 Classification

The proposed tabulation is based on a classification of noncrossing acyclic di-

graphs into 7 different types. To simplify the presentation I only consider graphs

with at least 2 nodes.

A graph is called edge-covered if there is an edge connecting its extremal

vertices. Thus there are 2 types of edge-covered graphs:

• The covering edge goes from the minimal vertex to the maximal vertex.

In this case, I say that the graph is minmax-covered.

• The covering edge goes from the minimal vertex to the maximal vertex.

In this case, I say that the graph is maxmin-covered.

If a graph is not edge-covered, I distinguish two cases depending on whether

or not the graph is weakly connected – that is, whether there exists a path

(consisting of two or more edges) between the extremal vertices. In the following

I use the term connected in the sense ‘weakly connected but not edge-covered’.

I distinguish 3 types of connected graphs:

• There is a directed path from the minimal vertex to the maximal vertex.

In this case, I say that the graph is minmax-connected.

• There is a directed path from the maximal vertex to the minimal vertex.

In this case, I say that the graph is maxmin-connected. Note that because

of acyclicity, a graph cannot be both minmax-connected and maxmin-

connected.

• There is no directed path between the two extremal vertices, implying

that there is a path consisting of edges with mixed directions. In this case,

I say that the graph is mix-connected.

The last two types are the graphs that are neither edge-covered nor connected.

In the following I refer to these graphs as unconnected. I distinguish 2 types:

• The graph has 2 nodes. In this case, the graph is uniquely determined;

it is the graph with 2 nodes and no edges. I refer to this graph as the

elementary graph.

• The graph has more than 2 nodes. I say that the graph is non-elementary.

Note that this classification is exhaustive, meaning that every noncrossing acyc-

lic digraph falls into (exactly) one of the 7 classes.
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2.2 Operations

The proposed tabulation takes an algebraic view on noncrossing acyclic digraphs

where every graph is composed from ‘smaller’ graphs by means of three opera-

tions:

• Concatenate two graphs, identifying the last vertex of the first graph with

the first vertex of the second graph. This operation is perhaps easiest

illustrated by drawing the graphs on a straight line rather than on a circle.

(With this layout, the non-crossing condition means that the edges can be

drawn in the half-plane above the line without crossings.)

concatenating 1 2 3 4 and 4 5 yields 1 2 3 4 5

Here the vertices and edges contributed by the first graph are drawn in

blue, those contributed by the second graph are drawn in red, and the

joint vertex (simultaneously the last vertex of the first graph and the first

vertex of the second graph) is highlighted in yellow.

• Cover a graph by adding a new edge (with two possible directions) between

the first vertex and the last vertex. In the following illustration, the new

edges are drawn in red:

covering 1 2 3 4 yields 1 2 3 4 or 1 2 3 4

Note that the set of noncrossing acyclic digraphs is not closed under these

operations. In particular, the cover operations may introduce cycles and even

multiple edges.

3 Tabulation

I present the proposed tabulation as a deduction system in the sense of Shieber et al.

[1995]. Tabulation is viewed as a deductive process in which rules of inference

are used to derive statements about sets of graphs from other such statements.

Statements are represented by formulas called items.

Notation Recall that I assume that n ≥ 2. In the following, 1 ≤ i ≤ j ≤ k ≤

n.

3.1 Items

Following the classification given in Section 2.1, the items of the deduction

system take one of 7 possible forms. I represent these items using a graphical

notation that is intended to be mnemonic.
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• Items for edge-covered graphs. For j − i ≥ 1:

i j i j

The intended interpretation of these items is: ‘It is possible to construct

an edge-covered noncrossing acyclic digraph on the vertices i, . . . , j.’

• Items for connected graphs. For j − i ≥ 2:

· · ·

i j

· · ·

i j

· · ·

i j

The intended interpretation of these items is: ‘It is possible to construct an

minmax-connected, maxmin-connected, mix-connected noncrossing acyc-

lic digraph on the vertices i, . . . , j.’

• Items for elementary graphs. For j − i = 1:

i j

The intended interpretation of these items is: ‘The elementary graph on

the vertices i, j is a noncrossing acyclic digraph.’

• Items for unconnected graphs. For j − i ≥ 2:

· · ·//

i j

The intended interpretation of these items is: ‘It is possible to construct

an unconnected noncrossing acyclic digraph on the vertices i, . . . , j.’

3.2 Axioms

The axioms of the deduction system are the items for the elementary graphs.

3.3 Rules

The deduction system has 26 rules. Each of these rules simulates a concatena-

tion or cover operation on the 7 different types of noncrossing acyclic digraphs

specified in Section 2.1.
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Concatenate two edge-covered graphs The first four rules simulate the

concatenation of two edge-covered graphs. The result of such a concatenation

is a connected graph:

i j j k

· · ·

i k

01

i j j k

· · ·

i k

02

i j j k

· · ·

i k

03

i j j k

· · ·

i k

04

For instance, rule 03 states that the concatenation of a minmax-covered graph

on the vertices i, . . . , j and an maxmin-covered graph on the vertices j, . . . , k

yields a mix-connected graph on the vertices i, . . . , k.

Concatenate an edge-covered graph and the elementary graph The

next rules simulate the concatenation of an edge-covered graph and the element-

ary graph. The result of such a concatenation is an unconnected graph. There

are 4 cases:

i j j k

· · ·//

i k

05

i j j k

· · ·//

i k

06

i j j k

· · ·//

i k

07

i j j k

· · ·//

i k

08

Concatenate a connected graph and an edge-covered graph The fol-

lowing rules simulate the concatenation of a connected graph and an edge-

covered graph. The result of such a concatenation is a connected graph. There

are 6 cases; I group them based on the type of the first argument of the concat-

enation operation.

Group 1: The first argument is minmax-connected

· · ·

i j j k

· · ·

i k

09

· · ·

i j j k

· · ·

i k

10

Group 2: The first argument is maxmin-connected

· · ·

i j j k

· · ·

i k

11

· · ·

i j j k

· · ·

i k

12
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Group 3: The first argument is mix-connected

· · ·

i j j k

· · ·

i k

13

· · ·

i j j k

· · ·

i k

14

Concatenate a connected graph and the elementary graph The next

rules simulate the concatenation of a connected graph and the elementary graph.

The result of such a concatenation is an unconnected graph. There are 3 cases:

· · ·

i j j k

· · ·//

i k

15

· · ·

i j j k

· · ·//

i k

16

· · ·

i j j k

· · ·//

i k

17

Concatenate to an unconnected graph The next rules simulate the con-

catenation to an unconnected graph. The result of such a concatenation is

another unconnected graph. I consider 3 cases:

· · ·//

i j j k

· · ·//

i k

18

· · ·//

i j j k

· · ·//

i k

19

· · ·//

i j j k

· · ·//

i k

20

Cover a graph The rules in the final set simulate the cover operations. The

result of such an operation is an edge-covered graph. There are 6 cases; I group

them based on the direction of the covering edge.

Group 1: The covering edge goes from the minimal vertex to the maximal vertex

· · ·

i j

i j

21

· · ·

i j

i j

22

· · ·//

i j

i j

23
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Group 2: The covering edge goes from the maximal vertex to the minimal vertex

· · ·

i j

i j

24

· · ·

i j

i j

25

· · ·//

i j

i j

26

This completes the presentation of the rules.

3.4 Goal Items

In contrast to the deduction systems of Shieber et al. [1995], the proposed tabu-

lation does not have a unique goal item but 7 different goal items, corresponding

to the 7 types of noncrossing acyclic digraphs (Section 2.1).

1 n 1 n 1 n

· · ·

1 n

· · ·

1 n

· · ·

1 n

· · ·//

1 n

3.5 Properties

While I shall not provide a complete formal analysis of the tabulation, I briefly

mention some crucial properties:

• The runtime of the tabulation is in O(n3) and the space required for it is

in O(n2). This can be seen by counting the number of possible instances

of each inference rule and item.

• The deduction system is sound, meaning that for each rule, if the state-

ments encoded by the antecedents hold, then the statement encoded by

the consequent holds as well. To see this, one can check the soundness of

each rule.

• The deduction system is complete, meaning that every noncrossing acyclic

digraph can be constructed in a way that can be simulated by the inference

rules. The completeness argument starts from the observation that the

classification given in Section 2.1 is exhaustive, and then checks for each

rule that undoing the operation simulated by that rule decomposes a graph

represented by the consequent item into the graphs represented by the

antecedents.

• Every noncrossing acyclic digraph has a unique derivation in the deduc-

tion system. This property is useful because it means that we do not need

to distinguish between graphs and their derivations. In particular, we
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can count graphs by counting their derivations. The uniqueness argument

makes use of the observations that the graph types distinguished in Sec-

tion 2.1 are non-overlapping, and that the backward application of rules

is deterministic in the sense that for each graph there is at most one rule

in which this graph appears as the consequent item.

4 Derived Tabulations

I conclude this note by noting how tabulation techniques for other classes of

noncrossing graphs can be derived from the proposed technique.

4.1 Enforcing Weak Connectivity

To obtain a deduction system for weakly connected noncrossing acyclic digraphs

one removes rule 20 (concatenate an unconnected graph and the elementary

graph) and deletes the item for unconnected graphs from the list of goal items.

Along with this change comes a revised intended interpretation for the items for

unconnected graphs: ‘It is possible to construct a noncrossing acyclic digraph

on the vertices i, . . . , j that is not edge-covered and has exactly two weakly

connected components.’ The integer sequence for weakly connected noncrossing

acyclic digraphs is:

1, 2, 18, 242, 3890, 69074, 1306466, 25809826, 526358946, 10997782882, . . .

4.2 Unrestricted Noncrossing Digraphs

To obtain a deduction system for unrestricted (not necessarily acyclic) non-

crossing digraphs, one does away with the items for minmax-connected and

maxmin-connected graphs, and deletes all rules that reference them – with the

exception of rules 01 and 02 (concatenating two edge-covered graphs with the

same directionality of the covering edge), which should be changed to produce

mix-connected items. This yields the following integer sequence for unrestricted

noncrossing digraphs:

1, 4, 64, 1792, 62464, 2437120, 101859328, 4459528192, 201889939456, . . .

4.3 Noncrossing Undirected Graphs

By removing rules 24–26 (or 21–23), one obtains a tabulation of noncrossing

undirected graphs. This is also known as the class of (undirected) graphs with

pagenumber 1 under a fixed ordering of the vertices along the spine. This class

is counted by A054726 resp. A007297 (if additionally one requires the graph to

be connected) in the OEIS [OEIS Foundation Inc., 2011]:

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, . . .

1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, . . .
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