Free quadri-algebras and dual quadri-algebras

Loïc Foissy
Fédération de Recherche Mathématique du Nord Pas de Calais FR 2956
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville
Université du Littoral Côte d'Opale-Centre Universitaire de la Mi-Voix 50, rue Ferdinand Buisson, CS 80699, 62228 Calais Cedex, France
email: foissy@lmpa.univ-littoral.fr

Abstract

We study quadri-algebras and dual quadri-algebras. We describe the free quadri-algebra on one generator as a subobject of the Hopf algebra of permutations FQSym, proving a conjecture due to Aguiar and Loday, using that the operad of quadri-algebras can be obtained from the operad of dendriform algebras by both black and white Manin products. We also give a combinatorial description of free dual quadri-algebras. A notion of quadri-bialgebra is also introduced, with applications to the Hopf algebras FQSym and WQSym.

AMS CLASSIFICATION.16W10; 18D50; 16T05.
KEYWORDS. Quadri-algebras; Koszul duality; Combinatorial Hopf algebras.

Contents

1 Reminders on quadri-algebras and operads 21.1 Definitions and examples of quadri-algebras2
1.2 Nonsymmetric operads 4
2 The operad of quadri-algebras and its Koszul dual 6
2.1 Dual quadri-algebras 6
2.2 Free quadri-algebra on one generator 10
2.3 Koszulity of Quad 11
3 Quadri-bialgebras 12
3.1 Units and quadri-algebras 12
3.2 Definitions and example of FQSym 13
3.3 Other examples 15

Introduction

An algebra with an associativity splitting is an algebra whose associative product \star can be written as a sum of a certain number of (generally nonassociative) products, satisfying certain compatibilities. For example, dendriform algebras [6, 10] are equipped with two bilinear products $<$ and $>$, such that for all x, y, z :

$$
\begin{aligned}
& (x<y)<z=x<(y<z+y>z), \\
& (x>y)<z=x>(y<z), \\
& (x<y+x>y)>z=x>(y>z) \text {. }
\end{aligned}
$$

Summing these axioms, we indeed obtain that $\star=<+>$ is associative. Another example is given by quadri-algebras, which are equipped with four products $\kappa, \measuredangle, \searrow$ and \nearrow, in such a way that:
$\bullet \leftarrow=\nwarrow+\swarrow$ and $\rightarrow=\downarrow+\nearrow$ are dendriform products,

- $\uparrow=\nwarrow+\nearrow$ and $\downarrow=\swarrow+\searrow$ are dendriform products.

Shuffle algebras or the algebra of free quasi-symmetric functions FQSym are examples of quadrialgebras. No combinatorial description of the operad Quad of quadri-algebra is known, but a formula for its generating formal series is conjectured in [10] and proved in [17], as well as the koszulity of this operad. A description of Quad is given with the help of the black Manin product on nonsymmetric operads \llbracket, namely Quad $=$ Dend $■$ Dend, where Dend is the nonsymmetric operad of dendriform algebras (this product is denoted by \square in [5, 11). It is also suspected that the sub-quadri-algebra of FQSym generated by the permutation (12) is free. We give here a proof of this conjecture (Corollary 7). We use for this that Quad is also equal to Dend \square Dend (Corollary (5), and consequently can be seen as a suboperad of Dend \otimes Dend: hence, free Dend \otimes Dend-algebras contain free quadri-algebras, a result which is applied to FQSym. We also combinatorially describe the Koszul dual Quad ${ }^{!}$of Quad, and prove its koszulity with the rewriting method of [9, 2, 12].

The last section is devoted to a study of the compatibilities between the quadri-algebra structure of FQSym and its dual quadri-coalgebra structure: this leads to the notion of quadribialgebra (Definition (10). Another example of quadri-bialgebra is given by the Hopf algebra of packed words WQSym. It is observed that, unlike the case of dendriform bialgebras, there is no rigidity theorem for quadri-bialgebras; indeed:

- FQSym and WQSym are not free quadri-algebras, nor cofree quadri-coalgebras.
- FQSym and WQSym are not generated, as quadri-algebras, by their primitive elements, in the quadri-coalgebraic sense.

Aknowledgments. The research leading these results was partially supported by the French National Research Agency under the reference ANR-12-BS01-0017. I would like to thank Bruno Vallette for his precious comments, suggestions and help.

Notations.

1. We denote by K a commutative field. All the objects (vector spaces, algebras, coalgebras, operads...) of this text are taken over K.
2. For all $n \geq 1$, we denote by [n] the set of integers $\{1,2, \ldots, n\}$.

1 Reminders on quadri-algebras and operads

1.1 Definitions and examples of quadri-algebras

Definition 1 1. A quadri-algebra is a family $(A, \nwarrow, \swarrow, \searrow, \nearrow)$, where A is a vector space and $\ltimes, \measuredangle, \downarrow, \nearrow$ are products on A, such that for all $x, y, z \in A$:

$$
\begin{aligned}
& (x \nwarrow y) \nwarrow z=x \nwarrow(y \star z), \quad(x \nexists y) \nwarrow z=x \not(y \leftarrow z), \quad(x \uparrow y) \nmid z=x \nmid(y \rightarrow z), \\
& (x \nvdash y) \nwarrow z=x \measuredangle(y \uparrow z), \quad(x \searrow y) \nwarrow z=x \searrow(y \nwarrow z), \quad(x \downarrow y) \nmid z=x \searrow(y \nearrow z), \\
& (x \leftarrow y) \swarrow z=x \nvdash(y \downarrow z), \quad(x \rightarrow y) \swarrow z=x \searrow(y \swarrow z), \quad(x \star y) \searrow z=x \searrow(y \searrow z),
\end{aligned}
$$

where:

$$
\leftarrow=\pi+\swarrow, \quad \rightarrow=\nearrow+\searrow, \quad \uparrow=\pi+\nearrow, \quad \downarrow=\swarrow+\searrow,
$$

These relations will be considered as the entries of a 3×3 matrix, and will be refered as relations $(1,1) \ldots(3,3)$.
2. A quadri-coalgebra is a family $\left(C, \Delta_{\nwarrow}, \Delta_{\nwarrow}, \Delta_{\searrow}, \Delta_{\nearrow}\right)$, where C is a vector space and Δ_{\nwarrow}, $\Delta_{\swarrow}, \Delta_{\searrow}, \Delta_{\nearrow}$ are coproducts on C, such that:

$$
\begin{aligned}
\left(\Delta_{\nwarrow} \otimes I d\right) \circ \Delta_{\nwarrow}=\left(I d \otimes \Delta_{*}\right) \circ \Delta_{\nwarrow}, & \left(\Delta_{\swarrow} \otimes I d\right) \circ \Delta_{\nwarrow}=\left(I d \otimes \Delta_{\uparrow}\right) \circ \Delta_{\swarrow}, \\
\left(\Delta_{\nearrow} \otimes I d\right) \circ \Delta_{\nwarrow}=\left(I d \otimes \Delta_{\leftarrow}\right) \circ \Delta_{\nearrow}, & \left(\Delta_{\searrow} \otimes I d\right) \circ \Delta_{\nwarrow}=\left(I d \otimes \Delta_{\nwarrow}\right) \circ \Delta_{\searrow}, \\
\left(\Delta_{\uparrow} \otimes I d\right) \circ \Delta_{\nearrow}=\left(I d \otimes \Delta_{\rightarrow}\right) \circ \Delta_{\nearrow} ; & \left(\Delta_{\downarrow} \otimes I d\right) \circ \Delta_{\nearrow}=\left(I d \otimes \Delta_{\nearrow}\right) \circ \Delta_{\star} ; \\
& \left(\Delta_{\leftarrow} \otimes I d\right) \circ \Delta_{\swarrow}=\left(I d \otimes \Delta_{\downarrow}\right) \circ \Delta_{\swarrow}, \\
& \left(\Delta_{\rightarrow} \otimes I d\right) \circ \Delta_{\swarrow}=\left(I d \otimes \Delta_{\swarrow}\right) \circ \Delta_{\searrow}, \\
& \left(\Delta_{\star} \otimes I d\right) \circ \Delta_{\searrow}=\left(I d \otimes_{\star}\right) \circ \Delta_{\searrow},
\end{aligned}
$$

with:

$$
\Delta_{\leftarrow}=\Delta_{\searrow}+\Delta_{\nearrow}, \quad \Delta_{\rightarrow}=\Delta_{\nwarrow}+\Delta_{\swarrow}, \quad \Delta_{\uparrow}=\Delta_{\nwarrow}+\Delta_{\nearrow}, \quad \Delta_{\downarrow}=\Delta_{\swarrow}+\Delta_{\searrow},
$$

Remarks

1. If A is a finite-dimensional quadri-algebra, then its dual A^{*} is a quadri-coalgebra, with $\Delta_{\diamond}=\diamond^{*}$ for all $\diamond \in\{\nwarrow, \swarrow, \searrow, \nearrow, \leftarrow, \rightarrow, \uparrow, \downarrow, \star\}$.
2. If C is a quadri-coalgebra (even not finite-dimensional), then C^{*} is a quadri-algebra, with $\diamond=\Delta_{\diamond}^{*}$ for all $\diamond \in\{\pi, \swarrow, \downarrow, \nearrow, \leftarrow, \rightarrow, \uparrow, \downarrow, \star\}$.
3. Let A be a quadri-algebra. Adding each row of the matrix of relations:

$$
\begin{aligned}
& (x \uparrow y) \uparrow z=x \uparrow(y \star z), \\
& (x \downarrow y) \uparrow z=x \downarrow(y \uparrow z), \\
& (x \star y) \downarrow z=x \downarrow(y \downarrow z) .
\end{aligned}
$$

Hence, $(A, \uparrow, \downarrow)$ is a dendriform algebra. Adding each column of the matrix of relations:

$$
(x \leftarrow y) \leftarrow z=x \leftarrow(y \star z), \quad(x \rightarrow y) \leftarrow z=x \rightarrow(y \leftarrow z), \quad(x \star y) \rightarrow z=x \rightarrow(y \rightarrow z)
$$

Hence, $(A, \leftarrow, \rightarrow)$ is a dendriform algebra. The associative (non unitary) product associated to both these dendriform structures is \star.
4. Dually, if C is a quadri-coalgebra, $\left(C, \Delta_{\uparrow}, \Delta_{\downarrow}\right)$ and $\left(C, \Delta_{\leftarrow}, \Delta_{\rightarrow}\right)$ are dendriform coalgebras. The associated coassociative (non counitary) coproduct is Δ_{*}.

Examples.

1. Let V be a vector space. The augmentation ideal of the tensor algebra $T(V)$ is given four products defined in the following way: for all $v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+l} \in V, k, l \geq 1$,

$$
\begin{aligned}
& v_{1} \ldots v_{k} \nwarrow v_{k+1} \ldots v_{k+l}=\sum_{\substack{\sigma \in S h(k, l),(1)=1, \sigma^{-1}(k+l)=k}} v_{\sigma^{-1}(1)} \ldots v_{\sigma^{-1}(k+l)}, \\
& v_{1} \ldots v_{k} \swarrow v_{k+1} \ldots v_{k+l}=\sum_{\substack{\sigma \in \operatorname{Sh}(k, l), \sigma^{-1}(k+l)=k}} v_{\sigma^{-1}(1)} \ldots v_{\sigma^{-1}(k+l)}, \\
& v_{1} \ldots v_{k} \searrow v_{k+1} \ldots v_{k+l}=\sum_{\substack{\sigma \in \operatorname{Sh}(k, l), \sigma^{-1}(1)=k+1, \sigma^{-1}(k+)=k}}^{\sum_{\sigma^{-1}(1)=k+1, \sigma^{-1}(k+l)=k+l}} v_{\sigma^{-1}(1)} \ldots v_{\sigma^{-1}(k+l)}, \\
& v_{1} \ldots v_{k} \nearrow v_{k+1} \ldots v_{k+l}=\sum_{\substack{\sigma \in S h(k, l), \sigma^{-1}(1)=1, \sigma^{-1}(k+l)=k+l}} v_{\sigma^{-1}(1)} \ldots v_{\sigma^{-1}(k+l)},
\end{aligned}
$$

where $\operatorname{Sh}(k, l)$ is the set of (k, l)-shuffles, that is to say permutations $\sigma \in \mathfrak{S}_{k+l}$ such that $\sigma(1)<\ldots<\sigma(k)$ and $\sigma(k+1)<\ldots<\sigma(k+l)$. The associated associative product is the usual shuffle product.
2. The augmentation ideal of the Hopf algebra FQSym of permutations introduced in 13 and studied in [4] is also a quadri-algebra, as mentioned in [1]. For all permutations $\alpha \in \mathfrak{S}_{k}$, $\beta \in \mathfrak{S}_{l}, k, l \geq 1:$

$$
\begin{aligned}
& \alpha \nwarrow \beta=\sum_{\substack{\sigma \in S h(k, l), \sigma^{-1}(1)=1, \sigma^{-1}(k+l)=k}}(\alpha \otimes \beta) \circ \sigma^{-1}, \\
& \alpha \swarrow \beta=\sum_{\substack{\sigma \in \operatorname{Sh}(k, l), \sigma^{-1}(1)=k+1, \sigma^{-1}(k+l)=k}}(\alpha \otimes \beta) \circ \sigma^{-1}, \\
& \alpha \searrow \beta=\sum_{\substack{\sigma \in \operatorname{Sh}(k, l),}}(\alpha \otimes \beta) \circ \sigma^{-1}, \\
& \alpha \nearrow \beta=\sum_{\substack{\sigma \in \operatorname{Sh}(k, l), \sigma^{-1}(1)=k+1, \sigma^{-1}(k+l)=k+l}}^{\sigma^{-1}(1)=1, \sigma^{-1}(k+l)=k+l},
\end{aligned}(\alpha \otimes \beta) \circ \sigma^{-1} .
$$

As FQSym is self-dual, its coproduct can also be split into four parts, making it a quadricoalgebra. As the pairing on FQSym is defined by $\langle\sigma, \tau\rangle=\delta_{\sigma, \tau^{-1}}$ for any permutations σ, τ, we deduce that if $\sigma \in \mathfrak{S}_{n}, n \geq 1$, with the notations of [13]:

$$
\begin{aligned}
& \Delta_{\nwarrow}(\sigma)=\sum_{\sigma^{-1}(1), \sigma^{-1}(n) \leq i<n} \operatorname{Std}(\sigma(1) \ldots \sigma(i)) \otimes \operatorname{Std}(\sigma(i+1) \ldots \sigma(n)), \\
& \Delta_{\swarrow}(\sigma)=\sum_{\sigma^{-1}(n) \leq i<\sigma^{-1}(1)} \operatorname{Std}(\sigma(1) \ldots \sigma(i)) \otimes \operatorname{Std}(\sigma(i+1) \ldots \sigma(n)), \\
& \Delta_{\searrow}(\sigma)=\sum_{1 \leq i<\sigma^{-1}(1), \sigma^{-1}(n)} \operatorname{Std}(\sigma(1) \ldots \sigma(i)) \otimes \operatorname{Std}(\sigma(i+1) \ldots \sigma(n)), \\
& \Delta_{\nearrow}(\sigma)=\sum_{\sigma^{-1}(1) \leq i<\sigma^{-1}(n)} \operatorname{Std}(\sigma(1) \ldots \sigma(i)) \otimes \operatorname{Std}(\sigma(i+1) \ldots \sigma(n)),
\end{aligned}
$$

The compatibilites between these products and coproducts will be studied in Proposition 11. For example:

$$
\begin{array}{lll}
(12) \nwarrow(12)=(1342), & \Delta_{\nwarrow}((3412))=(231) \otimes(1), & \Delta_{\nwarrow}((2143))=(213) \otimes(1), \\
(12) \measuredangle(12)=(3142)+(3412), & \Delta_{\measuredangle}((3412))=(12) \otimes(12), & \Delta_{\nwarrow}((2143))=0, \\
(12) \searrow(12)=(3124), & \Delta_{\searrow}((3412))=(1) \otimes(312), & \Delta_{\searrow}((2143))=(1) \otimes(132), \\
(12) \nearrow(12)=(1234)+(1324), & \Delta_{\nearrow}((3412))=0, & \Delta_{\nearrow}((2143))=(21) \otimes(21) .
\end{array}
$$

The dendriform algebra (FQSym $, \leftarrow, \rightarrow$) and the dendriform coalgebra (FQSym, $\Delta_{\leftarrow}, \Delta_{\rightarrow}$) are decribed in [6, 7]; the dendriform algebra (FQSym, \uparrow, \downarrow) and the dendriform coalgebra (FQSym $, \Delta_{\uparrow}, \Delta_{\downarrow}$) are decribed in [8]. Both dendriform algebras are free, and both dendriform coalgebras are cofree, by the dendriform rigidity theorem [6]. Note that FQSym is not free as a quadri-algebra, as $(1) \pi(1)=0$.
3. The dual of the Hopf algebra of totally assigned graphs [3] is a quadri-coalgebra.

1.2 Nonsymmetric operads

We refer to [12, 14, 17] for the usual definitions and properties of operads and nonsymmetric operads.

Notations and reminders.

- Let V be a vector space. The free nonsymmetric operad generated in arity 2 by V is denoted by $\mathbf{F}(V)$. If we fix a basis $\left(v_{i}\right)_{i \in I}$ of V, then for all $n \geq 1$, a basis of $\mathbf{F}(V)_{n}$ is given by the set of planar binary trees with n leaves, whose $(n-1)$ internal vertices are decorated by elements of $\left\{v_{i} \mid i \in I\right\}$. The operadic composition is given by the grafting of trees on leaves. If V is finite-dimensional, then for all $n \geq 1, \mathbf{F}(V)_{n}$ is finite-dimensional, and:

$$
\operatorname{dim}\left(\mathbf{F}(V)_{n}\right)=\frac{1}{n}\binom{2 n-2}{n-1} \operatorname{dim}(V)^{n}
$$

- Let \mathbf{P} a nonsymmetric operad and V a vector space. A structure of \mathbf{P}-algebra on V is a family of maps:

$$
\left\{\begin{array}{rll}
\mathbf{P}(n) \otimes V^{\otimes n} & \longrightarrow & V \\
p \otimes v_{1} \otimes \ldots \otimes v_{n} & \longrightarrow & p \cdot\left(v_{1}, \ldots, v_{n}\right)
\end{array}\right.
$$

satisfying some compatibilities with the composition of \mathbf{P}.

- The free \mathbf{P}-algebra generated by the vector space V is, as a vector space:

$$
F_{\mathbf{P}}(V)=\bigoplus_{n \geq 0} \mathbf{P}(n) \otimes V^{\otimes n}
$$

the action of \mathbf{P} on $F_{\mathbf{P}}(V)$ is given by:

$$
p .\left(p_{1} \otimes w_{1}, \ldots, p_{n} \otimes w_{n}\right)=p \circ\left(p_{1}, \ldots, p_{n}\right) \otimes w_{1} \otimes \ldots \otimes w_{n} .
$$

- Let $\mathbf{P}=\left(\mathbf{P}_{n}\right)_{n \geq 1}$ be a nonsymmetric operad. It is quadratic if :
- It is generated by $G_{\mathbf{P}}=\mathbf{P}_{2}$.
- Let $\pi_{\mathbf{P}}: \mathbf{F}\left(G_{\mathbf{P}}\right) \longrightarrow \mathbf{P}$ be the canonical morphism from $\mathbf{F}\left(G_{\mathbf{P}}\right)$ to \mathbf{P}; then its kernel is generated, as an operadic ideal, by $\operatorname{Ker}\left(\pi_{\mathbf{P}}\right)_{3}=\operatorname{Ker}\left(\pi_{\mathbf{P}}\right) \cap \mathbf{F}\left(G_{\mathbf{P}}\right)_{3}$.

If \mathbf{P} is quadratic, we put $G_{\mathbf{P}}=\mathbf{P}_{2}$, and $R_{\mathbf{P}}=\operatorname{Ker}\left(\pi_{\mathbf{P}}\right)_{3}$. By definition, these two spaces entirely determine \mathbf{P}, up to an isomorphism.

Examples.

1. The nonsymmetric operad Quad of quadri-algebras is quadratic. It is generated by $G_{\text {Quad }}=\operatorname{Vect}(\nwarrow, \swarrow, \searrow, \nearrow)$, and $R_{\text {Quad }}$ is the linear span of the nine following elements:

As $\operatorname{dim}\left(F\left(G_{\mathbf{Q u a d}}\right)_{3}\right)=32, \operatorname{dim}\left(\mathbf{Q u a d}_{3}\right)=32-9=23$.
2. The nonsymmetric operad Dend of dendriform algebras is quadratic. It is generated by $G_{\text {Dend }}=\operatorname{Vect}(<,>)$, and $R_{\text {Dend }}$ is the linear span of the three following elements:

The nonsymmetric-operad Quad of quadri-algebras, being quadratic, has a Koszul dual Quad ${ }^{!}$. The following formulas for the generating formal series of Quad and Quad ${ }^{\text {! has been }}$ conjectured in [1] and proved in [17], as well as the koszulity:

Proposition 2 1. For all $n \geq 1$, $\operatorname{dim}(\operatorname{Quad}(n))=\sum_{j=n}^{2 n-1}\binom{3 n}{n+1+j}\binom{j-1}{j-n}$. This is sequence A007297 in [16].
2. For all $n \geq 1, \operatorname{dim}\left(\operatorname{Quad}^{!}(n)\right)=n^{2}$.
3. The operad of quadri-algebras is Koszul.

2 The operad of quadri-algebras and its Koszul dual

2.1 Dual quadri-algebras

Algebras on Quad ${ }^{!}$will be called dual quadri-algebras. This operad Quad ${ }^{!}$is described in [17] in terms of the white Manin product. Let us give an explicit description.

Proposition $3 A$ dual quadri-algebra is a family $(A, \nwarrow, \swarrow, \searrow, \nearrow)$, where A is a vector space and $\nwarrow, \measuredangle, \searrow, \nearrow: A \otimes A \longrightarrow A$, such that for all $x, y, z \in A$:

$$
\begin{aligned}
& (x \nwarrow y) \nwarrow z=x \nwarrow(y \nwarrow z)=x \nwarrow(y \swarrow z)=x \nwarrow(y \searrow z)=x \nwarrow(y \nearrow z), \\
& (x \nearrow y) \nwarrow z=x \nearrow(y \nwarrow z)=x \nearrow(y \swarrow z), \\
& (x \nwarrow y) \nexists z=(x \nearrow y) \nexists z=x \nearrow(y \searrow z)=x \nearrow(y \nearrow z), \\
& (x \swarrow y) \nwarrow z=x \swarrow(y \nwarrow z)=x \swarrow(y \nearrow z), \\
& (x \searrow y) \nwarrow z=x \searrow(y \nwarrow z), \\
& (x \swarrow y) \nexists z=(x \searrow y) \nearrow z=x \searrow(y \nearrow z) \text {, } \\
& (x \ltimes y) \swarrow z=(x \swarrow y) \swarrow z=x \swarrow(y \swarrow z)=x \nvdash(y \searrow y), \\
& (x \searrow y) \swarrow z=x(\nearrow y) \swarrow z=x \searrow(y \swarrow z) \text {, } \\
& (x \nwarrow y) \downarrow z=(x \swarrow y) \searrow z=(x \searrow y) \searrow z=(x \nearrow y) \searrow z=x \searrow(y \searrow z) \text {. }
\end{aligned}
$$

These groups of relations are denoted by $(1)^{!}, \ldots,(9)^{!}$. Note that the four products $\nwarrow, \swarrow, \downarrow, \nearrow$ are associative.

Proof. We put $G=\operatorname{Vect}(\pi, \swarrow, \searrow, \nearrow)$ and E the component of arity 3 of the free nonsymmetric operad generated by G, that is to say:

$$
E=V e c t\left(Y_{f}^{g},{ }_{f}^{g} \nmid f, g \in\{\pi, \swarrow, \searrow, \nearrow\}\right) .
$$

We give G a pairing, such that the four products form an orthonormal basis of G. This induces a pairing on E : for all $x, y, z, t \in G$,

The quadratic nonsymmetric operad Quad is generated by $G=V \operatorname{ect}(\nwarrow, \swarrow, \downarrow, \nearrow)$ and the subspace of relations R of E corresponding to the nine relations $(1,1) \ldots(3,3)$. The quadratic nonsymmetric operad Quad ${ }^{!}$is generated by $G \approx G^{*}$ and the subspaces of relations R^{\perp} of E. As $\operatorname{dim}(R)=9$ and $\operatorname{dim}(E)=32, \operatorname{dim}\left(R^{\perp}\right)=23$. A direct verification shows that the 23 relations given in $(1)^{!}, \ldots,(9)^{!}$are elements of R^{\perp}. As they are linearly independent, they form a basis of R^{\perp}.

Notations. We consider:

$$
\mathcal{R}=\bigsqcup_{n=1}^{\infty}[n]^{2} .
$$

The element $(i, j) \in[n]^{2} \subset \mathcal{R}$ will be denoted by $(i, j)_{n}$ in order to avoid the confusions. We graphically represent $(i, j)_{n}$ by putting in grey the boxes of coordinates $(a, b), 1 \leq a \leq i, 1 \leq b \leq j$, of a $n \times n$ array, the boxes $(1,1),(1, n),(n, 1)$ and (n, n) being respectively up left, down left, up right and down right. For example:

$$
(2,1)_{3}=\sharp
$$

$$
(1,1)_{2}=\boxminus
$$

$(3,2)_{4}=$

Proposition 4 Let $A_{\mathcal{R}}=\operatorname{Vect}(\mathcal{R})$. We define four products $\pi, \measuredangle, \searrow, \nearrow$ on $A_{\mathcal{R}}$ by:

$$
\begin{array}{ll}
(i, j)_{p} \nwarrow(k, l)_{q}=(i, j)_{p+q}, & (i, j)_{p} \nearrow(k, l)_{q}=(k+p, j)_{p+q}, \\
(i, j)_{p} \measuredangle(k, l)_{q}=(i, p+l)_{p+q}, & (i, j)_{p} \searrow(k, l)_{q}=(k+p, l+p)_{p+q} .
\end{array}
$$

Then $\left(A_{\mathcal{R}}, \nwarrow, \swarrow, \searrow, \nearrow\right)$ is a dual quadri-algebra. It is graded by putting the elements of $[n]^{2} \in \mathcal{R}$ homogeneous of degree n, and the generating formal series of $A_{\mathcal{R}}$ is:

$$
\sum_{n=1}^{\infty} n^{2} X^{n}=\frac{X(1+X)}{(1-X)^{3}} .
$$

Moreover, $A_{\mathcal{R}}$ is freely generated as a dual quadri-algebra by $(1,1)_{1}$.
Proof. Let us take $(i, j)_{p},(k, l)_{q}$ and $(m, n)_{r} \in \mathcal{R}$. Then:

- Each computation in $(1)^{!}$gives $(i, j)_{p+q+r}$.
- Each computation in (2)! gives $(p+k, j)_{p+q+r}$.
- Each computation in (3)! gives $(p+q+m, j)_{p+q+r}$.
- Each computation in (4)! gives $(i, p+l)_{p+q+r}$.
- Each computation in (5) ! gives $(p+k, p+l)_{p+q+r}$.
- Each computation in $(6)^{!}$gives $(p+q+m, p+l)_{p+q+r}$.
- Each computation in $(7)^{!}$gives $(i, p+q+n)_{p+q+r}$.
- Each computation in (8)! gives $(p+k, p+q+n)_{p+q+r}$.
- Each computation in (9)! gives $(p+q+m, p+q+n)_{p+q+r}$.

So $A_{\mathcal{R}}$ is a dual quadri-algebra. We now prove that $A_{\mathcal{R}}$ is generated by $(1,1)_{1}$. Let B be the dual quadri-subalgebra of $A_{\mathcal{R}}$ generated by $(1,1)_{1}$, and let us prove that $(i, j)_{n} \in B$ by induction on n for all $(i, j)_{n} \in \mathcal{R}$. This is obvious in $n=1$, as then $(i, j)_{n}=(1,1)_{1}$. Let us assume the result at rank $n-1$, with $n>1$.

- If $i \geq 2$ and $j \leq n-1$, then $(1,1)_{1} \not \subset(i-1, j)_{n-1}=(i, j)_{n}$. By the induction hypothesis, $(i-1, j)_{n-1} \in B$, so $(i, j)_{n} \in B$.
- If $i \leq n-1$ and $j \geq 2$, then $(1,1)_{1} \measuredangle(i, j-1)_{n-1}=(i, j)_{n}$. By the induction hypothesis, $(i, j-1)_{n-1} \in B$, so $(i, j)_{n} \in B$.
- Otherwise, $\left(i=1\right.$ or $j=n$) and ($i=n$ or $j=1$), that is to say $(i, j)_{n}=(1,1)_{n}$ or $(i, j)_{n}=$ $(n, n)_{n}$. We remark that $(1,1) \star(1,1)_{n-1}=(1,1)_{n}$ and $(1,1)_{1} \searrow(n-1, n-1)_{n-1}=(n, n)_{n}$. By the induction hypothesis, $(1,1)_{n-1}$ and $(n-1, n-1)_{n} \in B$, so $(1,1)_{n}$ and $(n, n)_{n} \in B$.

Finally, B contains \mathcal{R}, so $B=A_{\mathcal{R}}$.
Let C be the free $\mathbf{Q u a d}{ }^{!}$-algebra generated by a single element x, homogeneous of degree 1 . As a graded vector space:

$$
C=\bigoplus_{n \geq 1} \operatorname{Quad}_{n}^{!} \otimes V^{\otimes n}
$$

where $V=V e c t(x)$. So for all $n \geq 1$, by Proposition 2, $\operatorname{dim}\left(C_{n}\right)=n^{2}=\operatorname{dim}\left(A_{n}\right)$. There exists a surjective morphism of Quad'-algebras θ from C to A, sending x to $(1,1)_{1}$. As x and $(1,1)_{1}$ are both homogeneous of degree $1, \theta$ is homogeneous of degree 0 . As A and C have the same generating formal series, θ is bijective, so A is isomorphic to C.

Examples. Here are graphical examples of products. The result of the product is drawn in light gray:

Roughly speaking, the products of $x \in[m]^{2} \subset \mathcal{R}$ and $y \in[n]^{2} \subset \mathcal{R}$ are obtained by putting x and y diagonally in a common array of size $(m+n) \times(m+n)$. This array is naturally decomposed in four parts denoted by $n w, s w$, se and ne according to their direction. Then:

1. $x \nwarrow y$ is given by the black boxes in the $n w$ part.
2. $x \measuredangle y$ is given by the boxes in the $s w$ part which are simultaneously under a black box and to the left of a black box.
3. $x \searrow y$ is given by the black boxes in the se part.
4. $x \nearrow y$ is given by the boxes in the ne part which are simultaneously over a black box and to the right of a black box.

Here are the results of the nine relations applied to $x=\sharp, y=\sharp$ and $z=\#$:
(1)!

(2)! :

(3) ${ }^{!}$

(4) ${ }^{!}$

(5)! :

(6) !

(7) ${ }^{!}$

(8)! :

(9) ${ }^{\text {! }}$

Remarks.

1. A description of the free Quad $^{!}$-algebra generated by any set \mathcal{D} is done similarly. We put:

$$
\mathcal{R}(\mathcal{D})=\bigsqcup_{n=1}^{\infty}[n]^{2} \times \mathcal{D}^{n}
$$

The four products are defined by:

$$
\begin{aligned}
& \left((i, j)_{p}, d_{1}, \ldots, d_{p}\right) \nwarrow\left((k, l)_{q}, e_{1}, \ldots, e_{q}\right)=\left((i, j)_{p+q}, d_{1}, \ldots, d_{p}, e_{1}, \ldots, e_{q}\right), \\
& \left((i, j)_{p}, d_{1}, \ldots, d_{p}\right) \swarrow\left((k, l)_{q}, e_{1}, \ldots, e_{q}\right)=\left((i, p+l)_{p+q} d_{1}, \ldots, d_{p}, e_{1}, \ldots, e_{q}\right), \\
& \left((i, j)_{p}, d_{1}, \ldots, d_{p}\right) \searrow\left((k, l)_{q}, e_{1}, \ldots, e_{q}\right)=\left((k+p, l+p)_{p+q} d_{1}, \ldots, d_{p}, e_{1}, \ldots, e_{q}\right) \\
& \left((i, j)_{p}, d_{1}, \ldots, d_{p}\right) \nearrow\left((k, l)_{q}, e_{1}, \ldots, e_{q}\right)=\left((k+p, j)_{p+q} d_{1}, \ldots, d_{p}, e_{1}, \ldots, e_{q}\right) .
\end{aligned}
$$

2. We can also deduce a combinatorial description of the nonsymmetric operad Quad!. As a vector space, Quad $_{n}^{!}=\operatorname{Vect}\left([n]^{2}\right)$ for all $n \geq 1$. The composition is given by:

$$
(i, j)_{m} \circ\left(\left(k_{1}, l_{1}\right)_{n_{1}}, \ldots,\left(k_{n}, l_{n}\right)_{n_{m}}\right)=\left(n_{1}+\ldots+n_{i-1}+k_{i}, n_{1}+\ldots+n_{j-1}+l_{j}\right)_{n_{1}+\ldots+n_{m}} .
$$

In particular:

$$
\nwarrow=(1,1)_{2}, \quad \measuredangle=(1,2)_{2}, \quad \searrow=(2,2)_{2}, \quad \nearrow=(2,1)_{2} .
$$

Corollary 5 We define a nonsymmetric operad Dias in the following way:

- For all $n \geq 1, \operatorname{Dias}_{n}=\operatorname{Vect}([n])$. The elements of $[n] \subseteq \operatorname{Dias}_{n}$ are denoted by $(1)_{n}, \ldots,(n)_{n}$ in order to avoid confusions.
- The composition is given by:

$$
(i)_{m} \circ\left(\left(j_{1}\right)_{n_{1}}, \ldots,\left(j_{m}\right)_{n_{m}}\right)=\left(n_{1}+\ldots+n_{i-1}+j_{i}\right)_{n_{1}+\ldots+n_{m}} .
$$

This is the nonsymmetric operad of associative dialgebras [10], that is to say algebras A with two products \vdash and \dashv such that for all $x, y, z \in A$:

$$
\begin{aligned}
& x \dashv(y \dashv z)=x \dashv(y \vdash z)=(x \dashv y) \dashv z, \\
& (x \vdash y) \dashv z=x \vdash(y \dashv z), \\
& (x \dashv y) \vdash z=(x \vdash y) \vdash z=x \vdash(y \vdash z) .
\end{aligned}
$$

We denote by \square and \square the two Manin products on nonsymmetric-operads of [17]. Then:

$$
\begin{aligned}
& \text { Quad }^{!}=\text {Dias } \otimes \text { Dias }=\text { Dias } \square \text { Dias }=\text { Dias } \llbracket \text { Dias }, \\
& \text { Quad }=\text { Dend } ■ \text { Dend }=\text { Dend } \square \text { Dend. } .
\end{aligned}
$$

Proof. We denote by Dias' the nonsymmetric operad generated by \dashv and \vdash and the relations:

First, observe that:
$(1)_{2} \circ\left(I,(1)_{2}\right)=(1)_{2} \circ\left(I,(2)_{2}\right)=(1)_{2} \circ\left((1)_{2}, I\right)=(1)_{3}$,
$(1)_{2} \circ\left((2)_{2}, I\right)=(2)_{2} \circ\left(I,(1)_{2}\right)=(2)_{3}$,
$(2)_{2} \circ\left(I,(2)_{2}\right)=(2)_{2} \circ\left((1)_{2}, I\right)=(2)_{2} \circ\left((2)_{2}, I\right)=(3)_{3}$.
So there exists a morphism θ of nonsymmetric operad from Dias' to Dias, sending \dashv to $(1)_{2}$ and \vdash to $(2)_{2}$. Note that $\theta(I)=(1)_{1}$.

Let us prove that θ is surjective. Let $n \geq 1, i \in[n]$, we show that $(i)_{n} \in \operatorname{Im}(\theta)$ by induction on n. If $n \leq 2$, the result is obvious. Let us assume the result at $\operatorname{rank} n-1, n \geq 3$. If $i=1$, then:

$$
(1)_{2} \circ\left((1)_{1},(1)_{n-1}\right)=(1)_{n} .
$$

By the induction hypothesis, $(1)_{n-1} \in \operatorname{Im}(\theta)$, so $(1)_{n} \in \operatorname{Im}(\theta)$. If $i \geq 2$, then:

$$
(2)_{2} \circ\left((1)_{1},(i-1)_{n-1}\right)=(i)_{n} .
$$

By the induction hypothesis, $(1)_{n-1} \in \operatorname{Im}(\theta)$, so $(i)_{n} \in \operatorname{Im}(\theta)$.

It is proved in [10] that $\operatorname{dim}\left(\mathbf{D i a s}_{n}^{\prime}\right)=\operatorname{dim}\left(\mathbf{D i a s}_{n}\right)=n$ for all $n \geq 1$. As θ is surjective, it is an isomorphism. Moreover, let us consider the following map:

$$
\left\{\begin{array}{rll}
\text { Dias } \otimes \text { Dias } & \longrightarrow & \text { Quad }^{!} \\
(i)_{n} \otimes(j)_{n} & \longrightarrow & (i, j)_{n}
\end{array}\right.
$$

It is clearly an isomorphism of nonsymmetric operads. It is proved in [17] that Dias $\square \mathbf{D i a s}=$ Quad ${ }^{!}$. As $R_{\text {Dias }}$ is generated the quadratic nonsymmetric algebra generated by $(1)_{2}$ and $(2)_{2}$ and the following relations:

$$
{ }_{a}{ }_{b} Y-Y_{c}^{y_{d}^{d}},(a, b, c, d) \in E=\left\{\begin{array}{c}
\left((1)_{2},(1)_{2},(1)_{2},(1)_{2}\right),\left((1)_{2},(1)_{2},(1)_{2},(2)_{2}\right), \\
\left((2)_{2},(1)_{2},(2)_{2},(1)_{2}\right),\left((1)_{2},(2)_{2},(2)_{2},(2)_{2}\right), \\
\left((2)_{2},(2)_{2},(2)_{2},(2)_{2}\right)
\end{array}\right\},
$$

Dias■ Dias is generated by $(1,1)_{2},(1,2)_{2},(2,1)_{2}$ and $(2,2)_{2}$ with the relations:

$$
\begin{aligned}
& { }_{a}{ }_{b} Y_{c}^{\text {d }},(a, b, c, d) \in E^{\prime}, \\
& E^{\prime}=\left\{\left(\left(a_{1}, a_{2}\right)_{2},\left(b_{1}, b_{2}\right)_{2},\left(c_{1}, c_{2}\right)_{2},\left(d_{1}, d_{2}\right)_{2}\right) \mid\left(a_{1}, b_{1}, c_{1}, d_{1}\right),\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \in E\right\} .
\end{aligned}
$$

This gives 25 relations, which are not linearly independent, and can be regrouped in the following way:
${ }_{11} 11$

${ }^{11}{ }_{21}=Y_{21}^{1 / 21}={ }_{21}^{21}$

${ }_{22}^{22}=Y_{11}^{Y / 11}$,
${ }_{11}^{11} Y=Y_{12}^{12}=Y_{12}^{Y / 2}={ }_{12}^{12} Y$,

${ }_{21}{ }_{12}\left(=Y_{22}^{12}={ }_{12}^{22}(\right.$,
$Y_{22}{ }_{22}={ }_{22}^{11} Y={ }_{22}^{12} Y={ }_{21}^{21} Y={ }_{22}{ }_{22} Y$.
where we denote $i j$ instead of $(i, j)_{2}$. So Dias■Dias is isomorphic to Quad' via the isomorphism given by:

$$
\left\{\begin{aligned}
\text { Quad }^{!} & \longrightarrow \text { Dias■ Dias } \\
\nwarrow & \longrightarrow(1,1)_{2}, \\
\swarrow & \longrightarrow(1,2)_{2}, \\
\searrow & \longrightarrow(2,2)_{2}, \\
\nearrow & \longrightarrow(2,1)_{2} .
\end{aligned}\right.
$$

By Koszul duality, as Dias! = Dend, we obtain the results for Quad.

2.2 Free quadri-algebra on one generator

As Quad $=$ Dend \square Dend, Quad is the suboperad of $\operatorname{Dend} \otimes$ Dend generated by the component of arity 2. An explicit injection of Quad into Dend \otimes Dend is given by:

Proposition 6 The following defines a injective morphism of nonsymmetric operads:

$$
\Theta:\left\{\begin{array}{rll}
\text { Quad } & \longrightarrow \text { Dend } \otimes \text { Dend } \\
K & \longrightarrow<\otimes< \\
\swarrow & \longrightarrow<\otimes> \\
\searrow & \longrightarrow>\otimes> \\
\nearrow & \longrightarrow>\otimes<
\end{array}\right.
$$

Corollary 7 The quadri-subalgebra of (FQSym, $\nwarrow,\llcorner, \downarrow, \nearrow)$ generated by (12) is free.
Proof. Both dendriform algebras (FQSym $, \downarrow, \uparrow$) and (FQSym $, \leftarrow, \rightarrow$) are free. So the Dend \otimes Dend-algebra (FQSym \otimes FQSym $\uparrow \uparrow \otimes \leftarrow, \downarrow \otimes \leftarrow, \downarrow \otimes \rightarrow, \uparrow \otimes \rightarrow$) is free. By restriction, the $\mathbf{D e n d} \otimes$ Dend-subalgebra of $\mathbf{F Q S y m} \otimes \mathbf{F Q S y m}$ generated by $(1) \otimes(1)$ is free. By restriction, the quadri-subalgebra A of $\mathbf{F Q S y m} \otimes$ FQSym generated by (1) $\otimes(1)$ is free.

Let B be the quadri-subalgebra of FQSym generated by (12) and let $\phi: A \longrightarrow B$ be the unique morphism sending $(1) \otimes(1)$ to (12). We denote by FQSym $_{\text {even }}$ the subspace of FQSym formed by the homogeneous components of even degrees. It is clearly a quadri-subalgebra of FQSym. As $(12) \in \mathbf{F Q S y m}_{\text {even }}, A \subseteq \mathbf{F Q S y m}_{\text {even }}$. We consider the map:

Let $\sigma \in \mathfrak{S}_{2 m}, \tau \in \mathfrak{S}_{2 n}$. Let us prove that $\psi(\sigma \diamond \tau)=\psi(\sigma) \diamond \psi(\tau)$ for $\diamond \in\{\pi, \swarrow, \searrow, \tau\}$.
First case. Let us assume that $\psi(\sigma)=0$. There exists $1 \leq i \leq m$, such that $\sigma(i)$ is even, and an element $m+1 \leq j \leq m+n$, such that $\sigma(j)$ is odd. Let $\tau \in \mathfrak{S}_{2 n}$. Let α be obtained by a shuffle of σ and $\tau[2 n]$. If the letter $\sigma(i)$ appears in α in one of the position $1, \ldots, m+n$, then $\psi(\alpha)=0$. Otherwise, the letter $\sigma(i)$ appears in one of the positions $m+n+1, \ldots, 2 m+2 n$, so $\sigma(j)$ also appears in one of these positions, as $i<j$, and $\psi(\alpha)=0$. In both case, $\psi(\alpha)=0$, and we deduce that $\psi(\sigma \diamond \tau)=0=\psi(\sigma) \diamond \psi(\tau)$.

Second case. Let us assume that $\psi(\tau)=0$. By a similar argument, we show that $\psi(\sigma \diamond \tau)=$ $0=\psi(\sigma) \diamond \psi(\tau)$.

Last case. Let us assume that $\psi(\sigma) \neq 0$ and $\psi(\tau) \neq 0$. We put $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ and $\tau=\left(\tau_{1}, \tau_{2}\right)$, where the letters of σ_{1} and τ_{1} are odd and the letters of σ_{2} and τ_{2} are even. Then $\psi(\sigma \nwarrow \tau)$ is obtained by shuffling σ and $\tau[2 n]$, such that the first and last letters are letters of σ, and keeping only permutations such that the $(m+n)$ first letters are odd (and the $(m+n)$ last letters are even). These words are obtained by shuffling σ_{1} and $\tau_{1}[2 m]$ such that the first letter is a letter of σ_{1}, and by shuffling σ_{2} and $\tau_{2}[2 m]$, such that the last letter is a letter of σ_{2}. Hence:

$$
\psi(\sigma \ltimes \tau)=\psi(\sigma) \uparrow \otimes \leftarrow \psi(\tau)=\psi(\sigma) \approx \psi(\tau)
$$

The proof for the three other quadri-algebra products is similar.
Consequently, ψ is a quadri-algebra morphism. Moreover, $\psi \circ \phi((1) \otimes(1))=\psi(12)=(1) \otimes(1)$. As A is generated by $(1) \otimes(1), \psi \circ \phi=I d_{A}$, so ϕ is injective, and A is isomorphic to B.

2.3 Koszulity of Quad

The koszulity of Quad is proved in [17] by the poset method. Let us give here a second proof, with the help of the rewriting method of [9, 2, (12).

Theorem 8 The operads $\mathbf{Q u a d}$ and $\mathbf{Q u a d}^{!}$are Koszul.

Proof. By Koszul duality, it is enough to prove that Quad ${ }^{!}$is Koszul. We choose the order $\searrow<\pi<\swarrow<\pi$ for the four operations, and the order
of arity 3. Relations $(1)^{!}, \ldots,(9)^{!}$give 23 rewriting rules:

There are 156 critical monomials, and the 156 corresponding diagrams are confluent. Hence, Quad ${ }^{\text {! }}$ is Koszul. We used a computer to find the critical monomials and to verify the confluence of the diagrams.

3 Quadri-bialgebras

3.1 Units and quadri-algebras

Let A, B be a vector spaces. We put $A \bar{\otimes} B=(K \otimes B) \oplus(A \otimes B) \oplus(A \otimes K)$. Clearly, if A, B, C are three vector spaces, $(A \bar{\otimes} B) \bar{\otimes} C=A \bar{\otimes}(B \bar{\otimes} C)$.

Proposition 9 1. Let A be a quadri-algebra. We extend the four products on $A \bar{\otimes} A$ in the following way: if $a, b \in A$,
$a \nwarrow 1=a$,
$a \nearrow 1=0$,
$1 \nwarrow a=0$,
$1 \nearrow a=0$,
$a \swarrow 1=0$,
$a \searrow 1=0$,
$1 \swarrow a=0$,
$1 \searrow a=a$.

The nine relations defining quadri-algebras are true on $A \bar{\otimes} A \bar{\otimes} A$.
2. Let A, B be two quadri-algebras. Then $A \bar{\otimes} B$ is a quadri-algebra with the following products:

- if $a, a^{\prime} \in A \sqcup K, b, b^{\prime} \in B \sqcup K$, with $\left(a, a^{\prime}\right) \notin K^{2}$ and $\left(b, b^{\prime}\right) \notin K^{2}$:

$$
\begin{array}{ll}
(a \otimes b) \nwarrow\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \uparrow a^{\prime}\right) \otimes\left(b \leftarrow b^{\prime}\right), & (a \otimes b) \nearrow\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \uparrow a^{\prime}\right) \otimes\left(b \rightarrow b^{\prime}\right), \\
(a \otimes b) \measuredangle\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \downarrow a^{\prime}\right) \otimes\left(b \leftarrow b^{\prime}\right), & (a \otimes b) \searrow\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \downarrow a^{\prime}\right) \otimes\left(b \rightarrow b^{\prime}\right) .
\end{array}
$$

- If $a, a^{\prime} \in A$:

$$
\begin{array}{ll}
(a \otimes 1) \nwarrow\left(a^{\prime} \otimes 1\right)=\left(a \nwarrow a^{\prime}\right) \otimes 1, & \\
(a \otimes 1) \nearrow\left(a^{\prime} \otimes 1\right)=\left(a \nearrow a^{\prime}\right) \otimes 1, \\
(a \otimes 1) \swarrow\left(a^{\prime} \otimes 1\right)=\left(a \swarrow a^{\prime}\right) \otimes 1, & \\
(a \otimes 1) \searrow\left(a^{\prime} \otimes 1\right)=\left(a \searrow a^{\prime}\right) \otimes 1 .
\end{array}
$$

- If $b, b^{\prime} \in B$:

$$
\begin{array}{ll}
(1 \otimes b) \nwarrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \nwarrow b^{\prime}\right), & \\
(1 \otimes b) \nearrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \nearrow b^{\prime}\right), \\
(1 \otimes b) \swarrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \ltimes b^{\prime}\right), & \\
(1 \otimes b) \searrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \searrow b^{\prime}\right) .
\end{array}
$$

Proof. 1. It is shown by direct verifications.
2. As $(A, \uparrow, \downarrow)$ and $(B, \leftarrow, \rightarrow)$ are dendriform algebras, $A \otimes B$ is a Dend \otimes Dend-algebra, so is a quadri-algebra by Proposition 6, with $\nwarrow=\uparrow \otimes \leftarrow, \swarrow=\downarrow \otimes \leftarrow, \downarrow=\downarrow \otimes \rightarrow$ and $\nearrow=\uparrow \otimes \rightarrow$. The extension of the quadri-algebra axioms to $A \bar{\otimes} B$ is verified by direct computations.

Remark. There is a second way to give $A \bar{\otimes} B$ a structure of quadri-algebra with the help of the associativity of \star :

$$
\begin{aligned}
& \text { If } a \in A \text { or } a^{\prime} \in A, b, b^{\prime} \in K \oplus B,\left\{\begin{array}{l}
(a \otimes b) \nwarrow\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \nwarrow a^{\prime}\right) \otimes\left(b \star b^{\prime}\right), \\
(a \otimes b) \swarrow\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \swarrow a^{\prime}\right) \otimes\left(b \star b^{\prime}\right), \\
(a \otimes b) \searrow\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \searrow a^{\prime}\right) \otimes\left(b \star b^{\prime}\right), \\
(a \otimes b) \nearrow\left(a^{\prime} \otimes b^{\prime}\right)=\left(a \nearrow a^{\prime}\right) \otimes\left(b \star b^{\prime}\right) ;
\end{array}\right. \\
& \text { if } b, b^{\prime} \in K \oplus B,\left\{\begin{array}{l}
(1 \otimes b) \nwarrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \nwarrow b^{\prime}\right), \\
(1 \otimes b) \swarrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \swarrow b^{\prime}\right), \\
(1 \otimes b) \searrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \searrow b^{\prime}\right), \\
(1 \otimes b) \nearrow\left(1 \otimes b^{\prime}\right)=1 \otimes\left(b \nearrow b^{\prime}\right) .
\end{array}\right.
\end{aligned}
$$

$A \otimes K$ and $K \otimes B$ are quadri-subalgebras of $A \bar{\otimes} B$, respectively isomorphic to A and B.

3.2 Definitions and example of FQSym

Definition 10 A quadri-bialgebra is a family $\left(A, \nwarrow, \swarrow, \downarrow, \nearrow, \tilde{\Delta}_{\nwarrow}, \tilde{\Delta}_{\swarrow}, \tilde{\Delta}_{\searrow}, \tilde{\Delta}_{\nearrow}\right)$ such that:

- $(A \nwarrow, \swarrow, \downarrow, \nearrow)$ is a quadri-algebra.
- $\left(A, \tilde{\Delta}_{\star}, \tilde{\Delta}_{\swarrow}, \tilde{\Delta}_{\star}, \tilde{\Delta}_{\nearrow}\right)$ is a quadri-coalgebra.
- We extend the four coproducts in the following way:

For all $a, b \in A$: For all $a, b \in A$:

$$
\begin{aligned}
& \Delta_{\nwarrow}(a \nwarrow b)=\Delta_{\uparrow}(a) \nwarrow \Delta_{\leftarrow}(b) \\
& \Delta_{\nwarrow}(a \swarrow b)=\Delta_{\uparrow}(a) \swarrow \Delta_{\leftarrow}(b) \\
& \Delta_{\nwarrow}(a \searrow b)=\Delta_{\uparrow}(a) \searrow \Delta_{\leftarrow}(b) \\
& \Delta_{\nwarrow}(a \nearrow b)=\Delta_{\uparrow}(a) \nearrow \Delta_{\leftarrow}(b) \\
& \Delta_{\swarrow}(a \nwarrow b)=\Delta_{\downarrow}(a) \nwarrow \Delta_{\leftarrow}(b) \\
& \Delta_{\swarrow}(a \measuredangle b)=\Delta_{\downarrow}(a) \swarrow \Delta_{\leftarrow}(b) \\
& \Delta_{\swarrow}(a \searrow b)=\Delta_{\downarrow}(a) \searrow \Delta_{\leftarrow}(b) \\
& \Delta_{\swarrow}(a \nearrow b)=\Delta_{\downarrow}(a) \nearrow \Delta_{\leftarrow}(b)
\end{aligned}
$$

$$
\Delta_{\nearrow}(a \nwarrow b)=\Delta_{\uparrow}(a) \nwarrow \Delta_{\rightarrow}(b)
$$

$$
\Delta_{\nearrow}(a \swarrow b)=\Delta_{\uparrow}(a) \swarrow \Delta_{\rightarrow}(b)
$$

$$
\Delta_{\nearrow}(a \searrow b)=\Delta_{\uparrow}(a) \searrow \Delta_{\rightarrow}(b)
$$

$$
\Delta_{\nearrow}(a \nearrow b)=\Delta_{\uparrow}(a) \not \nearrow \Delta_{\rightarrow}(b)
$$

$$
\begin{aligned}
& \Delta_{\searrow}(a \nwarrow b)=\Delta_{\downarrow}(a) \nwarrow \Delta_{\rightarrow}(b) \\
& \Delta_{\searrow}(a \swarrow b)=\Delta_{\downarrow}(a) \swarrow \Delta_{\rightarrow}(b) \\
& \Delta_{\searrow}(a \searrow b)=\Delta_{\downarrow}(a) \searrow \Delta_{\rightarrow}(b) \\
& \Delta_{\searrow}(a \nearrow b)=\Delta_{\downarrow}(a) \nearrow \Delta_{\rightarrow}(b)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\nwarrow}: \begin{cases}A & \longrightarrow A \otimes A \\
a & \longrightarrow \tilde{\Delta}_{\nwarrow}(a)+a \otimes 1,\end{cases} \\
& \Delta_{\measuredangle}: \begin{cases}A & \longrightarrow A \otimes A \\
a & \longrightarrow \tilde{\Delta}_{\measuredangle}(a),\end{cases} \\
& \Delta_{\nearrow}: \begin{cases}A & \longrightarrow A \otimes A \\
a & \longrightarrow \tilde{\Delta}_{\nearrow}(a),\end{cases} \\
& \Delta_{\searrow}: \begin{cases}A & \longrightarrow A \otimes A \\
a & \longrightarrow \tilde{\Delta}_{\searrow}(a)+1 \otimes a .\end{cases}
\end{aligned}
$$

Remark. In other words, for all $a, b \in A$:

$$
\begin{aligned}
& \tilde{\Delta}_{\nwarrow}(a \nwarrow b)=a_{\uparrow}^{\prime} \uparrow b \otimes a_{\uparrow}^{\prime \prime}+a_{\uparrow}^{\prime} \uparrow b_{\leftarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \leftarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\leftarrow}(a \nwarrow b)=a_{\downarrow}^{\prime} \uparrow b \otimes a_{\downarrow}^{\prime \prime}+a_{\downarrow}^{\prime} \uparrow b_{\leftarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \leftarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\searrow}(a \nwarrow b)=a_{\downarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \leftarrow b+a_{\downarrow}^{\prime} \uparrow b_{\rightarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \leftarrow b_{\rightarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\nearrow}(a \nwarrow b)=a_{\uparrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \leftarrow b+a_{\uparrow}^{\prime} \uparrow b_{\rightarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \leftarrow b_{\rightarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\nwarrow}(a \swarrow b)=a_{\uparrow}^{\prime} \downarrow b \otimes a_{\uparrow}^{\prime \prime}+a_{\uparrow}^{\prime} \downarrow b_{\leftarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \leftarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\swarrow}(a \swarrow b)=b \otimes a+b_{\leftarrow}^{\prime} \otimes a \leftarrow b_{\leftarrow}^{\prime \prime}+a_{\downarrow}^{\prime} \downarrow b \otimes a_{\downarrow}^{\prime \prime}+a_{\downarrow}^{\prime} \downarrow b_{\leftarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \leftarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\searrow}(a \swarrow b)=b_{\rightarrow}^{\prime} \otimes a \leftarrow b_{\rightarrow}^{\prime \prime}+a_{\downarrow}^{\prime} \downarrow b_{\rightarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \leftarrow b_{\rightarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\nearrow}(a \swarrow b)=a_{\uparrow}^{\prime} \downarrow b_{\rightarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \leftarrow b_{\rightarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\nwarrow}(a \searrow b)=a \downarrow b_{\leftarrow}^{\prime} \otimes b_{\leftarrow}^{\prime \prime}+a_{\uparrow}^{\prime} \downarrow b_{\leftarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \rightarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\leftarrow}(a \searrow b)=b_{\leftarrow}^{\prime} \otimes a \rightarrow b_{\leftarrow}^{\prime \prime}+a_{\downarrow}^{\prime} \downarrow b_{\leftarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \rightarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\downarrow}(a \searrow b)=b_{\rightarrow}^{\prime} \otimes a \rightarrow b_{\rightarrow}^{\prime \prime}+a_{\downarrow}^{\prime} \downarrow b_{\rightarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \rightarrow b_{\rightarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\nearrow}(a \searrow b)=a \downarrow b_{\rightarrow}^{\prime \prime} \otimes b_{\rightarrow}^{\prime \prime}+a_{\uparrow}^{\prime} \downarrow b_{\rightarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \rightarrow b_{\rightarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\nwarrow}(a \nearrow b)=a \uparrow b_{\leftarrow}^{\prime} \otimes b_{\leftarrow}^{\prime \prime}+a_{\uparrow}^{\prime} \uparrow b_{\leftarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \rightarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\swarrow}(a \nearrow b)=a_{\downarrow}^{\prime} \uparrow b_{\leftarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \rightarrow b_{\leftarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\searrow}(a \nearrow b)=a_{\downarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \rightarrow b+a_{\downarrow}^{\prime} \uparrow b_{\rightarrow}^{\prime} \otimes a_{\downarrow}^{\prime \prime} \rightarrow b_{\rightarrow}^{\prime \prime}, \\
& \tilde{\Delta}_{\nearrow}(a \nearrow b)=a \otimes b+a_{\uparrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \rightarrow b+a \uparrow b_{\rightarrow}^{\prime \prime} \otimes b_{\rightarrow}^{\prime \prime}+a_{\uparrow}^{\prime} \uparrow b_{\rightarrow}^{\prime} \otimes a_{\uparrow}^{\prime \prime} \rightarrow b_{\rightarrow}^{\prime \prime} .
\end{aligned}
$$

Consequently, we obtain four dendriform bialgebras [6]:

$$
\left(A, \leftarrow, \rightarrow, \Delta_{\leftarrow}, \Delta_{\rightarrow}\right), \quad\left(A, \downarrow^{o p}, \uparrow^{o p}, \Delta_{\downarrow}^{o p}, \Delta_{\uparrow}^{o p}\right), \quad\left(A, \rightarrow^{o p}, \leftarrow^{o p}, \Delta_{\uparrow}, \Delta_{\downarrow}\right), \quad\left(A, \uparrow, \downarrow, \Delta_{\rightarrow}^{o p}, \Delta_{\leftarrow}^{o p}\right)
$$

Proposition 11 The augmentation ideal of FQSym is a quadri-bialgebra.
Proof. As an example, let us prove the last compatibility. Let σ, τ be two permutations, of respective length k and l. Then $\Delta_{\nearrow}(\sigma \nearrow \tau)$ is obtained by shuffling in all possible ways the words σ and the shifting $\tau[k]$ of τ, such that the first letter comes from σ and the last letter comes from $\tau[k]$, and then cutting the obtained words in such a way that 1 is in the left part and $k+l$ in the right part. Hence, the left part should contain letters coming from σ, including 1 , and starts by the first letter of σ, and the right part should contain letters coming from $\tau[k]$, including $k+l$, and ends with the last letter of $\tau[k]$. there are four possibilities:

- The left part contains only letters from σ and the right part contains only letters form $\tau[k]$. This gives the term $\sigma \otimes \tau$.
- The left part contains only letters from σ, and the right part contains letters from σ and $\tau[k]$. This gives the term $\sigma_{\uparrow}^{\prime} \otimes \sigma_{\uparrow}^{\prime \prime} \rightarrow \tau$.
- The left part contains letters from σ and $\tau[k]$, and the right part contains only letters form $\tau[k]$. This gives the term $\sigma \uparrow \tau_{\rightarrow}^{\prime} \otimes \tau_{\rightarrow}^{\prime \prime}$.
- Both parts contains letters from σ and $\tau[k]$. This gives the term $\sigma_{\uparrow}^{\prime} \uparrow \tau_{\rightarrow}^{\prime} \otimes \sigma_{\uparrow}^{\prime \prime} \rightarrow \tau_{\rightarrow}^{\prime \prime}$.

So:

$$
\Delta_{\nearrow}(\sigma \nearrow \tau)=\sigma \otimes \tau+\sigma_{\uparrow}^{\prime} \otimes \sigma_{\uparrow}^{\prime \prime} \rightarrow \tau+\sigma \uparrow \tau_{\rightarrow}^{\prime} \otimes \tau_{\rightarrow}^{\prime \prime}+\sigma_{\uparrow}^{\prime} \uparrow \tau_{\rightarrow}^{\prime} \otimes \sigma_{\uparrow}^{\prime \prime} \rightarrow \tau_{\rightarrow}^{\prime \prime}
$$

The other compatibilities are proved following the same lines.

3.3 Other examples

Let $F_{\text {Quad }}(V)$ be the free quadri-algebra generated by V. As it is free, it is possible to define four coproducts satisfying the quadri-bialgebra axioms in the following way: for all $v \in V$,

$$
\tilde{\Delta}_{\nwarrow}(v)=\tilde{\Delta}_{\swarrow}(v)=\tilde{\Delta}_{\searrow}(v)=\tilde{\Delta}_{\nearrow}(v)=0 .
$$

It is naturally graded by puting the elements of V homogeneous of degree 1 .
Proposition 12 For any vector space $V, F_{\mathbf{Q u a d}}(V)$ is a quadri-bialgebra.
Proof. We only have to prove the nine compatibilities of quadri-coalgebras. We consider:

$$
B_{(1,1)}=\left\{a \in F_{\text {Quad }}(V) \mid\left(\Delta_{\nwarrow} \otimes I d\right) \circ \Delta_{\nwarrow}(a)=(I d \otimes \Delta) \circ \Delta_{\nwarrow}(a)\right\} .
$$

First, for all $v \in V$:

$$
\left(\Delta_{\nwarrow} \otimes I d\right) \circ \Delta_{\nwarrow}(v)=v \otimes 1 \otimes 1=(I d \otimes \Delta) \circ \Delta_{\nwarrow}(v),
$$

so $V \subseteq B_{(1,1)}$. If $a, b \in B_{(1,1)}$ and $\diamond \in\{\pi, \swarrow, \searrow, \nearrow\}$:

$$
\begin{aligned}
\left(\Delta_{\nwarrow} \otimes I d\right) \circ \Delta_{\nwarrow}(a \diamond b) & \left.=\left(\left(\Delta_{\uparrow} \otimes I d\right) \circ \Delta_{\uparrow}(a)\right) \diamond\left(\Delta_{\leftarrow} \otimes I d\right) \circ \Delta_{\leftarrow}(b)\right) \\
& =\left((I d \otimes \Delta) \circ \Delta_{\uparrow}(a)\right) \diamond\left((I d \otimes \Delta) \circ \Delta_{\leftarrow}(b)\right) \\
& =(I d \otimes \Delta)\left(\Delta_{\uparrow}(a) \diamond \Delta_{\leftarrow}(b)\right) \\
& =(I d \otimes \Delta) \circ \Delta_{\nwarrow}(a \diamond b) .
\end{aligned}
$$

So $a \diamond b \in B_{(1,1)}$, and $B_{(1,1)}$ is a quadri-subalgebra of $F_{\mathbf{Q u a d}}(V)$ containing $V: B_{(1,1)}=F_{\mathbf{Q u a d}}(V)$, and the quadri-coalgebra relation (1.1) is satisfied. The eight other relations can be proved in the same way. Hence, $F_{\mathbf{Q u a d}}(V)$ is a quadri-bialgebra.

Remarks.

1. We deduce that $\left(F_{\text {Quad }}(V), \leftarrow, \rightarrow, \Delta_{\leftarrow}, \Delta_{\rightarrow}\right)$ and $\left(F_{\mathbf{Q u a d}}(V), \uparrow, \downarrow, \Delta_{\rightarrow}^{o p}, \Delta_{\leftarrow}^{o p}\right)$ are bidendriform bialgebras, in the sense of [6, 7]; consequently, $\left(F_{\mathbf{Q u a d}}(V), \leftarrow, \rightarrow\right)$ and $\left(F_{\text {Quad }}(V), \uparrow, \downarrow\right)$ are free dendriform algebras.
2. When V is one-dimensional, here are the respective dimensions a_{n}, b_{n} and c_{n} of the homogeneous components, of the primitive elements, and of the dendriform primitive elements, of degree n, for these two dendriform bialgebras:

n	1	2	3	4	5	6	7	8	9	10
a_{n}	1	4	23	156	1162	9162	75819	644908	5616182	49826712
b_{n}	1	3	16	105	768	6006	49152	415701	3604480	31870410
c_{n}	1	2	10	64	462	3584	29172	245760	2124694	18743296

These are sequences A007297, A085614 and A078531 of [16].
3. Let V be finite-dimensional. The graded dual $F_{\mathbf{Q u a d}}(V)^{*}$ of $F_{\mathbf{Q u a d}}(V)$ is also a quadribialgebra. By the bidendriform rigidity theorem [6, 7], $\left(F_{\text {Quad }}(V)^{*}, \leftarrow, \rightarrow\right)$ and $\left(F_{\text {Quad }}(V)^{*}, \uparrow\right.$,\downarrow) are free dendriform algebras. Moreover, for any $x, y \in V$, nonzero, $x \ltimes y$ and $x \searrow y$ are nonzero elements of $\operatorname{Prim}_{\mathbf{Q u a d}}\left(F_{\mathbf{Q u a d}}(V)\right)$, which implies that $\left(F_{\mathbf{Q u a d}}(V)^{*}, \nwarrow, \swarrow, \downarrow, \nearrow\right)$ is not generated in degree 1 , so is not free as a quadri-algebra. Dually, the quadri-coalgebra $F_{\text {Quad }}(V)$ is not cofree.

We now give a similar construction on the Hopf algebra of packed words WQSym, see [15] for more details on this combinatorial Hopf algebra.

Theorem 13 For any nonempty packed word w of length n, we put:

$$
m(w)=\max \{i \in[n] \mid w(i)=1\}, \quad M(w)=\max \{i \in[n] \mid w(i)=\max (w)\}
$$

We define four products on the augmentation ideal of WQSym in the following way: if u, v are packed words of respective lengths $k, l \geq 1$:

We define four coproducts on the augmentation ideal of WQSym in the following way: if u is a packed word of length $n \geq 1$,

$$
\begin{aligned}
& \Delta_{\nwarrow}(u)=\sum_{u(1), u(n) \leq i<\max (u)} u_{\mid[i]} \otimes \operatorname{Pack}\left(u_{\mid[\max (u)] \backslash[i]}\right), \\
& \Delta_{\swarrow}(u)=\sum_{u(n) \leq i<u(1)} u_{\mid[i]} \otimes \operatorname{Pack}\left(u_{\mid[\max (u)] \backslash[i]}\right), \\
& \Delta_{\searrow}(u)=\sum_{1 \leq i<u(1), u(n)} u_{\mid[i]} \otimes \operatorname{Pack}\left(u_{\mid[\max (u)] \backslash[i]}\right), \\
& \Delta_{\nearrow}(u)=\sum_{u(1) \leq i<u(n)} u_{\mid[i]} \otimes \operatorname{Pack}\left(u_{\mid[\max (u)] \backslash[i]}\right) .
\end{aligned}
$$

These products and coproducts make WQSym a quadri-bialgebra. The induced Hopf algebra structure is the usual one.

Proof. For all packed words u, v of respective lengths $k, l \geq 1$:

$$
u \star v=\sum_{\substack{\operatorname{Pack}(w(1) \ldots w(k))=u, \operatorname{Pack}(w(k+1) \ldots w(k+l)=v}} w .
$$

So \star is the usual product of WQSym, and is associative. In particular, if u, v, w are packed words of respective lengths $k, l, n \geq 1$:

$$
u \star(v \star w)=(u \star v) \star w=\sum_{\substack{\operatorname{Pack}(x(1) \ldots x(k))=u, \operatorname{Pack}(x(k+1) \ldots x(k+l)=v, \operatorname{Pack}(x(k+l+1), \ldots, x(k+l+n))=w}} x .
$$

Then each side of relations $(1,1) \ldots(3,3)$ is the sum of the terms in this expression such that:

$$
\begin{array}{lll}
m(x), M(x) \leq k & m(x) \leq k<M(x) \leq k+l & m(x) \leq k<k+l<M(x) \\
M(x) \leq k<m(x) \leq k+l & k<m(x), M(x) \leq k+l & k<m(x) \leq k+l<M(x) \\
M(x) \leq k<k+l<m(x) & k<M(x) \leq k+l<m(x) & k+l<m(x), M(x)
\end{array}
$$

So (WQSym, $\pi, \swarrow, \downarrow, \nearrow)$ is a quadri-algebra.
For all packed word u of length $n \geq 1$:

$$
\tilde{\Delta}(u)=\sum_{1 \leq i<\max (u)} u_{\mid[i]} \otimes \operatorname{Pack}\left(u_{\mid[\max (u)] \backslash[i]}\right) .
$$

So $\tilde{\Delta}$ is the usual coproduct of WQSym and is coassociative. Moreover:

$$
(\tilde{\Delta} \otimes I d) \circ \tilde{\Delta}(u)=(I d \otimes \tilde{\Delta}) \circ \tilde{\Delta}(u)=\sum_{1 \leq i<j<\max (u)} u_{\mid[i]} \otimes \operatorname{Pack}\left(u_{[j j] \backslash[i]}\right) \otimes \operatorname{Pack}\left(u_{[[\max (u)] \backslash[j]]}\right) .
$$

Then each side of relations $(1,1) \ldots(3,3)$ is the sum of the terms in this expression such that:

$$
\begin{array}{lll}
u(1), u(n) \leq i & u(1) \leq i<u(n) \leq j & u(1) \leq i<j<u(n) \\
u(n) \leq i<u(1) \leq j & i<u(1), u(n) \leq j & i<u(1) \leq j<u(n) \\
u(n) \leq i<j<u(1) & i<u(n) \leq j<u(1) & j<u(1), u(n)
\end{array}
$$

So (WQSym, $\Delta_{\star}, \Delta_{\swarrow}, \Delta_{\star}, \Delta_{\nearrow}$) is a quadri-coalgebra.
Let us prove, as an example, one of the compatibilities between the products and the coproducts. If u, v are packed words of respective lengths $k, l \geq 1, \Delta_{\nearrow}(u \nearrow v)$ is obtained as follows:

- Consider all the packed words w such that $\operatorname{Pack}(w(1) \ldots w(k))=u, \operatorname{Pack}(w(k+1) \ldots w(k+$ $l))=v$, such that $1 \notin\{w(k+1), \ldots, w(k+l)\}$ and $\max (w) \in\{w(k+1), \ldots, w(k+l)\}$.
- Cut all these words into two parts, by separating the letters into two parts according to their orders, such that the first letter of w in the left (smallest) part, and the last letter of w is in the right (greatest) part, and pack the two parts.

If $u^{\prime} \otimes u^{\prime \prime}$ is obtained in this way, before packing, u^{\prime} contains 1 , so contains letters $w(i)$ with $i \leq k$, and $u^{\prime \prime}$ contains $\max (w)$, so contains letters $w(i)$, with $i>k$. Four cases are possible.

- u^{\prime} contains only letters $w(i)$ with $i \leq k$, and $u^{\prime \prime}$ contains only letters $w(i)$ with $i>k$. Then $w=\left(u(1) \ldots u(k)(v(1)+\max (u)) \ldots(v(l)+\max (u))\right.$ and $u^{\prime} \otimes u^{\prime \prime}=u \otimes v$.
- u^{\prime} contains only letters $w(i)$ with $i \leq k$, whereas $u^{\prime \prime}$ contains letters $w(i)$ with $i \leq k$ and letters $w(j)$ with $j>k$. Then u^{\prime} is obtained from u by taking letters $<i$, with $i \geq u(1)$, and $u^{\prime \prime}$ is a term appearing in $\operatorname{Pack}\left(u_{[[k] \backslash[i]}\right) \star v$, such that there exists $j>k-i$, with $u^{\prime \prime}(j)=\max \left(u^{\prime \prime}\right)$. Summing all the possibilities, we obtain $u_{\uparrow}^{\prime} \otimes u_{\uparrow}^{\prime \prime} \rightarrow v$.
- u^{\prime} contains letters $w(i)$ with $i \leq k$ and letters $w(j)$ with $j>k$, whereas $u^{\prime \prime}$ contains only letters $w(i)$ with $i>k$. With the same type of analysis, we obtain $u \uparrow v_{\rightarrow}^{\prime} \otimes v_{\rightarrow}^{\prime \prime}$.
- Both u^{\prime} and $u^{\prime \prime}$ contain letters $w(i)$ with $i \leq k$ and letters $w(j)$ with $j>k$. We obtain $u_{\uparrow}^{\prime} \uparrow v_{\rightarrow}^{\prime} \otimes u_{\uparrow}^{\prime \prime} \rightarrow v_{\rightarrow}^{\prime \prime}$.

Finally:

$$
\Delta_{\nearrow}(u \nexists v)=u \otimes v+u_{\uparrow}^{\prime} \otimes u_{\uparrow}^{\prime \prime} \rightarrow v+u \uparrow v_{\rightarrow}^{\prime} \otimes v_{\rightarrow}^{\prime \prime}+u_{\uparrow}^{\prime} \uparrow v_{\rightarrow}^{\prime} \otimes u_{\uparrow}^{\prime \prime} \rightarrow v_{\rightarrow}^{\prime \prime} .
$$

The fifteen remaining compatibilites are proved following the same lines.

Examples.

$(12) \nwarrow(12)=(1423)$,
$(12) \measuredangle(12)=(1312)+(2312)+(2413)+(3412)$,
(12) $\searrow(12)=(1212)+(1213)+(2313)+(2314)$,
$(12) \pi(12)=(1223)+(1234)+(1323)+(1324)$.
Corollary 14 (WQSym, \rightarrow, \leftarrow) and (WQSym, \downarrow, \uparrow) are free dendriform algebras.

Remarks.

1. If A is a quadri-algebra, we put:

$$
\operatorname{Prim}_{\text {Quad }}(A)=\operatorname{Ker}\left(\tilde{\Delta}_{\star}\right) \cap \operatorname{Ker}\left(\tilde{\Delta}_{\star}\right) \cap \operatorname{Ker}\left(\tilde{\Delta}_{\star}\right) \cap \operatorname{Ker}\left(\tilde{\Delta}_{\nearrow}\right) .
$$

For any vector space $V, A=F_{\mathbf{Q u a d}}(V)$ is obviously generated by $\operatorname{Prim}_{\mathbf{Q u a d}}(A)$, as $V \subseteq$ $\operatorname{Prim}_{\text {Quad }}(A)$.
2. Let us consider the quadri-bialgebra FQSym. Direct computations show that:

$$
\begin{aligned}
& \operatorname{Prim}_{\mathbf{Q u a d}}(\mathbf{F Q S y m})_{1}=\operatorname{Vect}(1), \\
& \operatorname{Prim}_{\mathbf{Q u a d}}(\mathbf{F Q S y m})_{2}=(0), \\
& \operatorname{Prim}_{\mathbf{Q u a d}}(\mathbf{F Q S y m})_{3}=(0), \\
& \operatorname{Prim}_{\mathbf{Q u a d}}(\mathbf{F Q S y m})_{4}=\operatorname{Vect}((2413)-(2143),(2413)-(3412)) ;
\end{aligned}
$$

moreover, the homogeneous component of degree 4 of the quadri-subalgebra generated by $\operatorname{Prim}_{\text {Quad }}($ FQSym $)$ has dimension 23, with basis:

$$
\begin{gathered}
(1234),(1243),(1324),(1342),(1423),(1432),(2134),(2314),(2314),(2431), \\
(3124),(3214),(3241),(3421),(4123),(4132),(4213),(4231),(4312),(4321), \\
(2143)+(2413),(3142)+(3412),(2143)-(3142) .
\end{gathered}
$$

So FQSym is not generated by $\operatorname{Prim}_{\mathbf{Q u a d}}(\mathbf{F Q S y m})$, so is not isomorphic, as a quadribialgebra, to any $F_{\mathbf{Q u a d}}(V)$. A similar argument holds for WQSym.

References

[1] Marcelo Aguiar and Jean-Louis Loday, Quadri-algebras, J. Pure Appl. Algebra 191 (2004), no. 3, 205-221, arXiv:math/0309171.
[2] Vladimir Dotsenko and Anton Khoroshkin, Gröbner bases for operads, Duke Math. J. 153 (2010), no. 2, 363-396, arXiv:0812.4069.
[3] G. H. E. Duchamp, L. Foissy, N. Hoang-Nghia, D. Manchon, and A. Tanasa, A combinatorial non-commutative Hopf algebra of graphs, Discrete Mathematics \& Theoretical Computer Science 16 (2014), no. 1, 355-370, arXiv:1307.3928.
[4] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon, Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), no. 5, 671-717.
[5] Kurusch Ebrahimi-Fard and Li Guo, On products and duality of binary quadratic regular operads, J. Pure Appl. Algebra 200 (2005), no. 3, 293-317, arXiv:math/0407162.
[6] Loïc Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra 209 (2007), no. 2, 439-459, arXiv:math/0505207.
[7] _, Primitive elements of the Hopf algebra of free quasi-symmetric functions, Combinatorics and physics, Contemp. Math., vol. 539, Amer. Math. Soc., Providence, RI, 2011, pp. 79-88.
[8] Loïc Foissy and Frédéric Patras, Natural endomorphisms of shuffle algebras, Internat. J. Algebra Comput. 23 (2013), no. 4, 989-1009, arXiv:1311.1464.
[9] Eric Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math. 131 (2010), no. 1-2, 87-110, arXiv:0709.2286.
[10] Jean-Louis Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, arXiv:math/0102053, pp. 7-66.
[11] Jean-Louis Loday, Completing the operadic butterfly, arXiv:math.RA/0409183, 2004.
[12] Jean-Louis Loday and Bruno Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012.
[13] Clauda Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967-982.
[14] Martin Mark, Steve Schnider, and Jim Stasheff, Operads in Algebra, Topology and Physics, American Mathematical Society, 2002.
[15] Jean-Christophe Novelli, Frédéric Patras, and Jean-Yves Thibon, Natural endomorphisms of quasi-shuffle Hopf algebras, Bull. Soc. Math. France 141 (2013), no. 1, 107-130, arXiv:1101.0725.
[16] N. J. A Sloane, On-line encyclopedia of integer sequences, http://oeis.org/.
[17] Bruno Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, Journal für die reine und angewandte Mathematik 620 (2008), 105-164, arXiv:math/0609002.

