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Abstract

An explicit formula for the mean spectral measure of a random Jacobi
matrix is derived. The matrix may be regarded as the limit of Gaussian
beta ensemble (GβE) matrices as the matrix size N tends to infinity with
the constraint that Nβ is a constant.
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1 Introduction

The paper studies spectral measures of random (symmetric) Jacobi matrices of
the form

Jα =

N (0, 1) χ̃2α

χ̃2α N (0, 1) χ̃2α

. . .
. . .

. . .

 , (α > 0),

where the diagonal is an i.i.d. (independent identically distributed) sequence of
standard Gaussian N (0, 1) random variables, the off diagonal is also an i.i.d. se-
quence of χ̃2α-distributed random variables. Here χ̃2α = χ2α/

√
2 with χ2α

denoting the chi distribution with 2α degree of freedom. As explained later, Jα
is regarded as the limit of Gaussian beta ensembles (GβE for short) as the ma-
trix size N tends to infinity and the parameter β also varies with the constraint
that Nβ = 2α.

Let us explain some terminologies and introduce main results of the paper.
A (semi-infinite) Jacobi matrix is a symmetric tridiagonal matrix of the form

J =

a1 b1
b1 a2 b2

. . .
. . .

. . .

 , where ai ∈ R, bi > 0.
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For a Jacobi matrix J , there is a probability measure µ on R such that∫
R
xkdµ = 〈Jke1, e1〉 = Jk(1, 1), k = 0, 1, . . . ,

where e1 = (1, 0, . . . )T ∈ `2. Here 〈u, v〉 denotes the inner product of u and
v in `2, while 〈µ, f〉 :=

∫
fdµ will be used to denote the integral of a function

f with respect to a measure µ. Then the measure µ is unique if and only
if J , as a symmetric operator defined on D0 = {x = (x1, x2, . . . .) : xk =
0 for k sufficiently large}, is essentially self-adjoint, that is, J has a unique self-
adjoint extension in `2. When the measure µ is unique, it is called the spectral
measure of J , or more precisely, the spectral measure of (J, e1). It is known
that the condition

∞∑
i=1

1

bi
=∞

implies the essential self-adjointness of J , [6, Corollary 3.8.9].
For the random Jacobi matrix Jα, the above condition holds almost surely

because its off diagonal elements are positive i.i.d. random variables. Thus
spectral measures µα are uniquely determined by the following relations

〈µα, xk〉 = Jkα(1, 1), k = 0, 1, . . . .

Then the mean spectral measure µ̄α is defined to be a probability measure
satisfying

〈µ̄α, f〉 = E[〈µα, f〉],
for all bounded continuous functions f on R. It then follows that

〈µ̄α, xk〉 = E[〈µα, xk〉], k = 0, 1, . . . ,

provided that the right hand side of the above equation is finite for all k.
The purpose of this paper is to identify the mean spectral measure µ̄α. Our

main results are as follows.

Theorem 1. (i) The mean spectral measure µ̄α coincides with the spectral
measure of the non-random Jacobi matrix Aα, where

Aα =

 0
√
α+ 1√

α+ 1 0
√
α+ 2

. . .
. . .

. . .

 .

(ii) The measure µ̄α has the following density function

µ̄α(y) =
e−y

2/2

√
2π

1

|f̂α(y)|2
,

where

f̂α(y) =

√
2

π

∫ ∞
0

fα(t)eiytdt, fα(t) = π

√
α

Γ(α)
tα−1

e−
t2

2

√
2π
.
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Let us sketch out main ideas for the proof of the above theorem. To show
the first statement, the key idea is to regard the Jacobi matrix Jα as the limit
of GβE as the matrix size N tends to infinity with Nβ = 2α. More specifically,
let TN (β) be a finite random Jacobi matrix whose components are (up to the
symmetry constraints) independent and are distributed as

TN (β) =


N (0, 1) χ̃(N−1)β
χ̃(N−1)β N (0, 1) χ̃(N−2)β

. . .
. . .

. . .

χ̃β N (0, 1)

 .

Then it is well known in random matrix theory that the eigenvalues of TN (β)
are distributed as GβE, namely,

(λ1, . . . , λN ) ∝
N∏
l=1

e−λ
2
l /2

∏
1≤j<k≤N

|λk − λj |β .

Moreover, by letting N →∞ with β = 2α/N , the matrices TN (β) converge, in
some sense, to Jα. That crucial observation together with a result on moments
of GβE ([2, Theorem 2.8]) makes it possible to show that µ̄α coincides with the
spectral measure of Aα.

The next step is to establish the following self-convolutive recurrence for
even moments of µ̄α,

un(α) = (2n− 1)un−1(α) + α

n−1∑
i=0

ui(α)un−1−i(α),

where un(α) is the 2nth moment of µ̄α. Note that its odd moments are all
vanishing because the spectral measure of Aα is symmetric. Finally, the explicit
formula for µ̄α is derived by using the method in [4].

The paper is organized as follows. In the next section, we mention some
known results on GβE needed in this paper. In Section 3, we introduce the
matrix model and step by step, prove the main theorem.

2 A result on Gaussian β-ensembles

The Jacobi matrix model for GβE, a finite random Jacobi matrix, was dis-
covered by Dumitriu and Edelman [1]. First of all, let us mention some pre-
liminary facts about finite Jacobi matrices. Assume that J is a finite Jacobi
matrix of order N (with the requirement that the off diagonal elements are
positive). Then the matrix J has exactly N distinct eigenvalues λ1, λ2, . . . , λN .
Let v1, v2, . . . , vN be the corresponding eigenvectors which are chosen to be an
orthonormal basis in RN . Then the spectral measure µ, which is well defined
by 〈µ, xk〉 = Jk(1, 1), k = 0, 1, . . . , can be expressed as

µ =

N∑
j=1

q2j δλj , qj = |vj(1)|,
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where δλ denotes the Dirac measure. It is known that a finite Jacobi matrix of
order N is one-to-one correspondence with a probability measure supported on
N points, or a set of Jacobi matrix parameters {ai}Ni=1, {bj}

N−1
j=1 is one-to-one

correspondence with the spectral data {λi}Ni=1, {qj}Nj=1.

The Jacobi matrix model for GβE is defined as follows. Let {ai}Ni=1 be an
i.i.d. sequence of standard Gaussian N (0, 1) random variables and {bj}N−1j=1 be
a sequence of independent random variables having χ̃ distributions with param-
eters (N − 1)β, (N − 2)β, . . . , 1, respectively, which is independent of {ai}Ni=1.
Here χ̃k, for k > 0, denotes the distribution with the following probability den-
sity function

2

Γ(k/2)
uk−1e−u

2

, u > 0,

which is nothing but χk/
√

2, or the square root of the gamma distribution with
parameter (k/2, 1). We form a random Jacobi matrix TN (β) from {ai}Ni=1 and
{bj}N−1j=1 as follows,

TN (β) =


N (0, 1) χ̃(N−1)β
χ̃(N−1)β N (0, 1) χ̃(N−2)β

. . .
. . .

. . .

χ̃β N (0, 1)

 .

Then the eigenvalues {λi}Ni=1 and the weights {qj}Nj=1 are independent, with
the distribution of the former given by

(λ1, λ2, . . . , λN ) ∝
N∏
l=1

e−λ
2
l /2

∏
1≤j<k≤N

|λk − λj |β ,

and the distribution of the latter given by

(q1, q2, . . . , qN ) ∝ 1

qN

N∏
i=1

qβ−1i , (qi > 0,

N∑
i=1

q2i = 1).

It is also known that q = (q1, . . . , qN ) is distributed as a vector (χ̃β , . . . , χ̃β)
with i.i.d. components, normalized to unit length.

The trace of TN (β)n and TN (β)n(1, 1) can be expressed in term of the spec-
tral data as

Tr(TN (β)n) =

N∑
j=1

λnj , TN (β)n(1, 1) =

N∑
j=1

q2jλ
n
j .

Consequently,

E[TN (β)n(1, 1)] = E[

N∑
j=1

q2jλ
n
j ] =

N∑
j=1

E[q2j ]E[λnj ] =
1

N

N∑
j=1

E[λnj ]

=
1

N
E[Tr(XN (β)n)].
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In the rest of this section, for convenience, we use the parameter β̂ = β/2.

Let mp(N, β̂) = E[TN (2β̂)2p(1, 1)]. It is clear that mp(N, β̂) is a polynomial of

degree p in N , and thus mp(N, β̂) is defined for all N ∈ R. Then a result for

the trace of TN (β)n can be rewritten for mp(N, β̂) as follows.

Theorem 2 (cf. [2, Theorem 2.8] and [7, Theorem 2]). It holds that

mp(N, β̂) = (−1)pβ̂pmp(−β̂N, β̂−1).

Observe that β̂−pmp(N, β̂) is the expectation of the 2pth moment of the
spectral measure of the following Jacobi matrix

1√
β̂

TN (2β̂) =
1√
β̂


N (0, 1) χ̃(N−1)2β̂
χ̃(N−1)2β̂ N (0, 1) χ̃(N−2)2β̂

. . .
. . .

. . .

χ̃2β̂ N (0, 1)

 .

As β̂ →∞, it holds that

N (0, 1)√
β̂

→ 0,
χ̃k2β̂√
β̂

=

(
Γ(kβ̂, 1)

β̂

)1/2

→
√
k (in Lq for any q ≥ 1).

The convergences also hold almost surely. Therefore as β̂ →∞,

1√
β̂

TN (2β̂)→


0

√
N − 1√

N − 1 0
√
N − 2

. . .
. . .

. . .

1 0

 =: HN .

Here the convergence of matrices means the convergence (in Lq) of their ele-
ments. Let hp(N) = H2p

N (1, 1) for N > p. Then hp(N) is a polynomial of
degree p in N so that hp(N) is defined for all N ∈ R. The above convergence
of matrices implies that for fixed p and fixed N ,

hp(N) = lim
β̂→∞

β̂−pmp(N, β̂). (1)

Let

Aα =

 0
√
α+ 1√

α+ 1 0
√
α+ 2

. . .
. . .

. . .

 ,

and let up(α) = A2p
α (1, 1). Then up(α) is also a polynomial of degree p in α. In

addition, it is easy to see that

up(α) = (−1)php(−α). (2)

As a direct consequence of Theorem 2 and relations (1) and (2), we get the
following result.

5



Proposition 3. As N →∞ with β̂ = β̂(N) = α/N ,

mp(N, β̂)→ up(α) = A2p
α (1, 1).

3 Random Jacobi matrices related to Gaussian
β ensembles

3.1 A matrix model and proof of Theorem 1(i)

Consider the following random Jacobi matrix

Jα =

N (0, 1) χ̃2α

χ̃2α N (0, 1) χ̃2α

. . .
. . .

. . .

 ,

where all components are independent random variables. More precisely, the
diagonal {ai}∞i=1 is an i.i.d. sequence of standard Gaussian N (0, 1) random vari-
ables and the off diagonal {bj}∞j=1 is another i.i.d. sequence of χ̃2α random vari-
ables. Then the spectral measure µα of Jα exists and is unique almost surely
because

∞∑
j=1

1

bj
=∞(almost surely).

The mean spectral measure µ̄α is defined to be a probability measure satis-
fying

〈µ̄α, f〉 = E[〈µ, f〉],

for all bounded continuous functions f on R. Then Theorem 1(i) states that
the measure µ̄α coincides with the spectral measure of (Aα, e1).

Proof of Theorem 1(i). Note that the spectral measure ofAα, a probability mea-
sure µ satisfying

〈µ, xk〉 = Akα(1, 1), k = 0, 1, . . . ,

is unique because
∞∑
j=1

1√
α+ j

=∞.

Also, it is clear that

〈µ̄α, xk〉 = E[〈µα, xk〉], k = 0, 1, . . . ,

because E[〈µα, |x|k〉] < ∞ for all k = 0, 1, . . . . Therefore, our task is now to
show that for all k = 0, 1, . . . ,

〈µ̄α, xk〉 = Akα(1, 1). (3)

6



We consider the case of even k first. For any fixed j, all moments of the
χ̃(N−j)2β̂ distribution converge to those of the χ̃2α distribution as N →∞ with

β̂ = α/N . Thus for fixed p, as N →∞ with β̂ = α/N ,

mp(N, β̂) = E[TN (2β̂)2p(1, 1)]→ E[J2p
α (1, 1)] = E[〈µα, x2p〉].

Consequently, for even k, namely, k = 2p,

〈µ̄α, xk〉 = Akα(1, 1),

by taking into account Proposition 3.
For odd k, both sides of the equation (3) are zeros. Indeed, Akα(1, 1) = 0

when k is odd because the diagonal of Aα is zero. Also all odd moments of µ̄α
are vanishing,

〈µ̄α, x2p+1〉 = E[〈µα, x2p+1〉] = 0,

because the expectation of odd moments of any diagonal element of Jα are zero.
The proof is completed.

3.2 Moments of the spectral measure of Aα

Recall that
un(α) = A2n

α (1, 1), n = 0, 1, . . . .

Proposition 4. (i) un(α) is a polynomial of degree n in α and satisfies the
following relations{

un(α) = (α+ 1)
∑n−1
i=0 ui(α+ 1)un−1−i(α), n ≥ 1,

u0(α) = 1.
(4)

(ii) {un(α)}∞n=0 also satisfies the following relations{
un(α) = (2n− 1)un−1(α) + α

∑n−1
i=0 ui(α)un−1−i(α), n ≥ 1,

u0(α) = 1.
(5)

Remark 5. The sequences {un(α)}n≥0, for α = 1 and α = 2, are the sequences
A000698 and A167872 in the On-line Encyclopedia of Integer Sequences [5],
respectively. Relations (4) and (5) as well as many interesting properties for
those sequences can be found in the above reference. In the proof below, we
give another explanation of un(α) as the total sum of weighted Dyck paths of
length 2n.

Proof. In this proof, for convenience, let the index of the matrix Aα start from
0. Since the diagonal of Aα is zero, it follows that

A2n
α (0, 0) =

∑
{i0,i1,...,i2n}∈D2n

2n−1∏
j=0

Aα(ij , ij+1),

7



where D2n denotes the set of indices {i0, i1, . . . , i2n} satisfying that

i0 = 0, i2n = 0, ij ≥ 0,

|ij+1 − ij | = 1, j = 0, 1, . . . , 2n− 1.

Each element in D2n corresponds to a path of length 2n consisting of rise steps
or rises and fall steps or falls which starts at (0, 0) and ends at (2n, 0), and stays
above the x-axis, called a Dyck path. We also use D2n to denote the set of all
Dyck paths of length 2n.

A Dyck path p is assigned a weight w(p) as follows. We assign a weight
(α + k + 1) for each rise step from level k to k + 1, and the weight w(p) is the
product of all those weights. Then

un(α) = A2n
α (0, 0) =

∑
p∈D2n

w(p).

α+1

α+2

α+3

α+4

2 4 6 8 10 12 14

1

2

3

4

Figure 1: A Dyck path p with weight w(p) = (α+ 1)2(α+ 2)3(α+ 3)(α+ 4).

Let D∗2n be the set of all Dyck paths of length 2n which do not meet the
x-axis except the starting and the ending points. Let

vn(α) =
∑
p∈D∗

2n

w(p).

Since each Dyck path p = (i0, i1, . . . , i2n−1, i2n) ∈ D∗2n is one-to-one correspon-
dence with a Dyck path q = (i1 − 1, i2 − 1, . . . , i2n−1 − 1) of length 2(n− 1), it
follows that

vn(α) = (α+ 1)un−1(α+ 1).

Moreover, let 2i be the first time that the Dyck path p meets the x-axis. Then
either i = n or the Dyck path p is the concatenation of a Dyck path in D∗2i, (1 ≤

8



i < n), and another Dyck path of length 2(n− i). Thus,

un(α) = vn(α) +

n−1∑
i=1

vi(α)un−i(α)

= (α+ 1)un−1(α+ 1) +

n−1∑
i=1

(α+ 1)ui−1(α+ 1)un−i(α)

= (α+ 1)

n−1∑
i=0

ui(α+ 1)un−1−i(α).

The proof of (i) is complete. We will prove the second statement after the next
lemma.

Lemma 6. Let α ≥ 0 be fixed. Let {an} be a sequence defined recursively by{
an = (2n− 1)an−1 + α

∑n−1
i=0 aian−1−i, n ≥ 1,

a0 = 1.
(6)

Let {bn} be a sequence defined by the following relations b0 = 1,

an = (α+ 1)

n−1∑
i=0

bian−1−i, n ≥ 1. (7)

Then {bn} satisfies an analogous recursive relation as {an},{
bn = (2n− 1)bn−1 + (α+ 1)

∑n−1
i=0 bibn−1−i, n ≥ 1,

b0 = 1.
(8)

Proof. Consider the field of formal Laurent series over R, denoted by R((X)),

R((X)) =

{
f(X) =

∑
n∈Z

cnX
n : cn ∈ R, cn = 0 for n < n0

}
.

The addition is defined as usual and the multiplication is well defined as

f(X)g(X) =
∑
n∈Z

(∑
i∈Z

cidn−i

)
Xn,

for f(X) =
∑
cnX

n, g(X) =
∑
dnX

n ∈ R((X)). The quotient f(X)/g(X) is
understood as f(X)g(X)−1 for g(X) 6= 0. The formal derivative is also defined
as

f ′(X) =
∑
n∈Z

cnnX
n−1 ∈ R((X)).

Now let

f(X) =

∞∑
n=0

anX
n, g(X) =

∞∑
n=0

bnX
n.

9



It is straightforward to show that the recursive relation (6) is equivalent to the
following equation

f(X)− 1 = 2X2f ′(X) +Xf(X) + αXf2(X).

In addition, the relation (7) leads to

g(X) =
f(X)− 1

(α+ 1)Xf(X)
.

Finally, we can easily check that g(X) satisfies

g(X)− 1 = 2X2g′(X) +Xg(X) + (α+ 1)Xg2(X),

which is equivalent to the recursive relation (8). The proof is complete.

Proof of Proposition 4(ii). When α = 0, it is well known that un(0) is the 2nth
moment of the standard Gaussian distribution, and is given by

un(0) = (2n− 1)!!.

Consequently, the conditions in Lemma 6 are satisfied for an = un(0), bn =
un(1) and α = 0. It follows that the recursive relation (5) then holds for
α = 1. Continue this way, it follows that the recursive relation (5) holds for any
α ∈ N. We conclude that it holds for all α because of the fact that {un(α)} is
a polynomial of degree n in α. The proof is complete.

3.3 Explicit formula for the spectral measure of Aα, proof
of Theorem 1(ii)

In this section, by using the method of Martin and Kearney [4], we derive the
explicit formula for the mean spectral measure µ̄α from the relation (5),{

un(α) = (2n− 1)un−1(α) + α
∑n−1
i=0 ui(α)un−1−i(α), n ≥ 1,

u0(α) = 1.

Recall that un(α) = 〈µ̄α, x2n〉 and µ̄α is a symmetric probability measure.
Let us extract here the main result of [4]. The problem is to find a function

ν for which ∫ ∞
0

xn−1ν(x)dx = un, n = 1, 2, . . . ,

where the sequence {un} is given by a general self-convolutive recurrence{
un = (α1n+ α2)un−1 + α3

∑n−1
i=1 uiun−i, n ≥ 2,

u1 = 1,
(9)

α1, α2 and α3 being constants. Then the solution is given by (Eq. (13)–Eq. (16)
in [4]),

ν(x) =
k(kx)−be−kx

Γ(a+ 1)Γ(a− b+ 1)

1

UR(kx)2 + UI(kx)2
,

10



where,

UR(x) = e−x
(

Γ(1− b)
Γ(a− b+ 1)

1F1(b− a; b;x)

− (cosπb)
Γ(b− 1)

Γ(a)
x1−b1F1(1− a; 2− b;x)

)
,

UI(x) = (sinπb)e−x
Γ(b− 1)

Γ(a)
x1−b1F1(1− a; 2− b;x),

and k = 1/α1, a = α3/α1, b = −1−α2/α1, provided α1 6= 0. Here 1F1(a; b; z) is
the Kummer function.

The sequence {un(α)}n≥0 is a particular case of the self-convolutive recur-
rence (9) with parameters α1 = 2, α2 = −3 and α3 = α. Note that our sequence
{un(α)} starts from n = 0, and thus α2 = −3. By direct calculation, we
get k = 1/2, a = α/2, and b = 1/2. Therefore, the function να(x) for which
un(α) =

∫∞
0
xndνα(x)dx, n = 0, 1, . . . , is given by

να(x) =
1√

2Γ(α2 + 1)Γ(α2 + 1
2 )

1√
x
e−

x
2

1

UR(x/2)2 + UI(x/2)2
, x > 0,

where

UR(x) = e−x
Γ( 1

2 )

Γ(α2 + 1
2 )

1F1(
1

2
− α

2
;

1

2
;x), (10)

UI(x) = e−x
Γ(− 1

2 )

Γ(α2 )
x1/21F1(1− α

2
;

3

2
;x). (11)

It is clear that να(x) > 0 for any x > 0. Now it is easy to check that the function
µ̄α(y) defined by

µ̄α(y) = |y|να(y2), y ∈ R,
satisfies the following relations∫

R
y2n+1µ̄α(y)dy = 0,

∫
R
y2nµ̄α(y)dy = un(α), n = 0, 1, . . . ,

In other words, µ̄α(y) is the density of the mean spectral measure µ̄α with
respect to the Lebesgue measure.

We are now in a position to simplify the explicit formula of µ̄α. Let

VR(y) =

(
Γ(α2 + 1)Γ(α2 + 1

2 )

Γ( 1
2 )

)1/2

UR(y2/2),

= 2−
α
2 Γ(α+ 1)

1
2

Γ( 1
2 )

Γ(α2 + 1
2 )
e−

y2

2 1F1(
1

2
− α

2
;

1

2
;
y2

2
),

VI(y) = −
(

Γ(α2 + 1)Γ(α2 + 1
2 )

Γ( 1
2 )

)1/2

UI(y
2/2)

= −2−
α
2−

1
2 Γ(α+ 1)

1
2

Γ(− 1
2 )

Γ(α2 )
ye−

y2

2 1F1(1− α

2
;

3

2
;
y2

2
).
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Here, in the above expressions, we have used the following relation for Gamma
function

Γ(α2 + 1
2 )Γ(α2 + 1)

Γ( 1
2 )

= 2−αΓ(α+ 1). (12)

Then µ̄α(y) can be written as

µ̄α(y) =
e−

y2

2

√
2π

1

VR(y)2 + VI(y)2
.

Next, we will show that VR(y) and VI(y) are the Fourier cosine transform
and Fourier sine transform of

fα(t) = π

√
α

Γ(α)
tα−1

e−
t2

2

√
2π
,

respectively. Let us now give definitions of Fourier transforms. The Fourier
transform of a function f : R→ C is defined to be

F(f)(y) =
1√
2π

∫ ∞
−∞

f(t)eiytdt, (y ∈ R),

and the Fourier cosine transform, the Fourier sine transform are defined to be

Fc(f)(y) =

√
2

π

∫ ∞
0

f(t) cos(yt)dt, (y > 0),

Fs(f)(y) =

√
2

π

∫ ∞
0

f(t) sin(yt)dt, (y > 0),

respectively. Then those transforms are related as follows{
F(f)(y) = Fc(f)(y), (y ≥ 0), if f(t) is even,

F(f)(y) = iFs(f)(y), (y ≥ 0), if f(t) is odd.

For α > 0, we have (cf. Formula 3.952(8) in [3])

Fc(tα−1e−
t2

2 ) =
2
α
2−

1
2 Γ(α2 )
√
π

e−
y2

2 1F1(
1

2
− α

2
;

1

2
;
y2

2
).

Then by some simple calculations, we arrive at the following relation

VR(y) = Fc(fα(t))(y), y ≥ 0.

Similarly,
VI(y) = Fs(fα(t))(y), y ≥ 0,

by using Formula 3.952(7) in [3],

Fs(tα−1e−
t2

2 ) =
2
α
2 Γ(α2 + 1

2 )
√
π

ye−
y2

2 1F1(1− α

2
;

3

2
;
y2

2
).
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By definitions, VR(y) is an even function and VI(y) is an odd function. Thus
the following expression holds for all y ∈ R,

VR(y) + iVI(y) =

√
2

π

∫ ∞
0

fα(t)(cos(yt) + i sin(yt)dt

=

√
2

π

∫ ∞
0

fα(t)eiytdt =: f̂α(y).

Consequently,
VR(y)2 + VI(y)2 = |f̂α(y)|2,

which completes the proof of Theorem 1(ii).
We plot the graph of the density µ̄α(y) for several values α as in the following

figure by using Mathematica. It follows from the Jacobi matrix form that the
spectral measure of 1√

α
Aα converges weakly to the semicircle law as α tends

to infinity. Note that the semicircle law, the probability measure supported on
[−2, 2] with the density

1

2π

√
4− x2, (−2 ≤ x ≤ 2),

is the spectral measure of the following Jacobi matrix
0 1
1 0 1

1 0 1
. . .

. . .
. . .

 .

α=0.5

α=1.0

α=1.2

α=2.0

-6 -4 -2 2 4 6

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2: The density µ̄α(y) for several values α.
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Remark 7. When α in a positive integer number, we can give even more explicit
expressions for VR(y) and VI(y).

(i) α = 2n, n ∈ N. In this case, fα(t) is an odd function. Therefore

VI(y) = Fs(fα(t)) = −iF(fα(t)).

Note that

F(e−
t2

2 ) = e−
y2

2 .

Therefore, for integer α ≥ 1,

F(tα−1e−
t2

2 ) = (i)α−1
dα−1

dyα−1
(e−

y2

2 ).

Consequently,

VI(y) = −iαπ
√

α

Γ(α)

dα−1

dyα−1
(e−

y2

2 )
1√
2π

= −iαπ
√

α

Γ(α)
e
y2

2
dα−1

dyα−1
(e−

y2

2 )
e−

y2

2

√
2π

= −iαπ
√

α

Γ(α)
Heα−1

e−
y2

2

√
2π

.

Here Hem denotes probabilists’ Hermite polynomials.

(ii) α = 2n + 1. This case is very similar. Since fα(t) is an even function, it
follows that

VR(y) = Fc(fα(t))(y) = F(fα(t)) = iα−1π

√
α

Γ(α)
Heα−1

e−
y2

2

√
2π

.
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