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Abstract

We prove that there are 24 4-critical P6-free graphs, and give the complete list. We remark that, if
H is connected and not a subgraph of P6, there are infinitely many 4-critical H-free graphs. Our result
answers questions of Golovach et al. and Seymour.

1 Introduction

A k-coloring of a graph G = (V,E) is a mapping c : V → {1, . . . , k} such that c(u) 6= c(v) for all
edges uv ∈ E. If a k-coloring exists, we say that G is k-colorable. We say that G is k-chromatic if it is
k-colorable but not (k − 1)-colorable. A graph is called k-critical if it is k-chromatic, but every proper
subgraph is (k−1)-colorable. For example, the class of 3-critical graphs is the family of all chordless odd
cycles. The characterization of critical graphs is a notorious problem in the theory of graph coloring,
and also the topic of this paper.

Since it is NP-hard to decide whether a given graph admits a k-coloring, assuming k ≥ 3, there is
little hope of giving a characterization of the (k+1)-critical graphs that is useful for algorithmic purposes.
The picture changes if one restricts the structure of the graphs under consideration.

Let a graph H and a number k be given. An H-free graph is a graph that does not contain H as
an induced subgraph. We say that a graph G is k-critical H-free if G is H-free, k-chromatic, and every
H-free proper subgraph of G is (k − 1)-colorable. In this paper we stick to the case of 4-critical graphs;
these graphs we may informally call obstructions.

Bruce et al. [2] proved that there are exactly six 4-critical P5-free graphs, where Pt denotes the path
on t vertices. Randerath et al. [16] have shown that the only 4-critical P6-free graph without a triangle
is the Grötzsch graph (i.e., the graph F18 in Fig. 2). More recently, Hell and Huang [10] proved that
there are four 4-critical P6-free graphs without induced four-cycles.

In view of these results, Golovach et al. [9] posed the question of whether the list of 4-criticial P6-free
graphs is finite (cf. Open Problem 4 in [9]). In fact, they ask whether there is a certifying algorithm
for the 3-colorability problem in the class of P6-free graphs, which is an immediate consequence of the
finiteness of the list. Our main result answers this question affirmatively.

1.1. There are exactly 24 4-critical P6-free graphs.

These 24 graphs, which we denote here by F1-F24, are shown in Fig. 1 and 2. The list contains several
familiar graphs, e.g., F1 is K4, F2 is the 5-wheel, F3 is the Moser-spindle, and F18 is the Grötzsch graph.
The adjacency lists of these graphs can be found in the Appendix.
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Figure 1: The graphs F1 to F13, in reading direction

We also determined that there are exactly 80 4-vertex-critical P6-free graphs (details on how we
obtained these graphs can be found in the Appendix). Table 1 gives an overview of the counts of all
4-critical and 4-vertex-critical P6-free graphs. All of these graphs can also be obtained from the House of
Graphs [1] by searching for the keywords “4-critical P6-free” or “4-vertex-critical P6-free” where several
of their invariants can be found.

In Section 8 we show that there are infinitely many 4-critical P7-free graphs using a construction due
to Pokrovskiy [15]. Note that there are infinitely many 4-critical claw-free graphs. For example, this
follows from the existence of 4-regular bipartite graphs of arbitrary large girth (cf. [12] for an explicit
construction of these), whose line graphs are then 4-chromatic. Also, there are 4-chromatic graphs of
arbitrary large girth, which follows from a classical result of Erdős [5]. This together with 1.1 yields the
following dichotomy theorem, which answers a question of Seymour [17].

1.2. Let H be a connected graph. There are finitely many 4-critical H-free graphs if and only if H is a
subgraph of P6.

We will next give a sketch of the proof of our main result, thereby explaining the structure of this
paper.
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Figure 2: The graphs F14 to F24, in reading direction

1.1 Sketch of the proof

Given a 4-critical P6-free graph, our aim is to show that it is contained in our list of 24 graphs. Our proof
is based on the contraction (and uncontraction) of a particular kind of subgraph called tripod. Tripods
have been used before in the design of 3-coloring algorithms for P7-free graphs [3]. In Section 2 tripods
are defined, and it is shown that contracting a maximal tripod to a single triangle is a safe operation for
our purpose.

When all maximal tripods are just single triangles, we are left with a (P6, diamond)-free graph, a
diamond being the graph obtained by removing an edge from K4. The second step of our proof consists
of determining all 4-critical (P6,diamond)-free graphs, which we do in Section 3. Our proof is computer-
aided, and builds on a substantial strengthening of a method by Hoàng et al. [11].

In Section 4 we show the following. Let G be a non-3-colorable P6-free graph that is obtained from
another graph G′ by contracting a tripod. If G contains one of our 24 obstructions, then so does G′ (we
need a few additional assumptions if G contains K4, but we will not list them here). The proof is done
by a structural analysis by hand, and it does not use a computer.
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Vertices Critical graphs Vertex-critical graphs
4 1 1
6 1 1
7 2 7
8 3 6
9 4 16
10 6 34
11 2 3
12 1 1
13 3 9
16 1 2

total 24 80

Table 1: Counts of all 4-critical and 4-vertex-critical P6-free graphs.

Finally, in Section 5 we deal with the exceptionally difficult case of uncontracting a triangle in K4.
For this, we again use an automatic proof, though completely different than in the (P6, diamond)-free
case. We design an algorithm that performs an exhaustive generation of all possible 1-vertex extensions
of tripods that are 4-critical P6-free. The algorithm mimicks the way that a tripod can be traversed,
thereby applying a set of strong pruning rules that exploit the minimality of the obstruction.

We wrap up the whole proof in Section 7.
As mentioned earlier, in Section 8 we show that there are infinitely many 4-critical P7-free graphs,

which results in our dichotomy theorem.

2 Tripods

A tripod in a graph G is a triple T = (A1, A2, A3) of disjoint stable sets with the following properties:

(a) A1 ∪A2 ∪A3 = {v1, . . . , vk};
(b) vi ∈ Ai for i = 1, 2, 3;

(c) v1v2v3 is a triangle, the root of T ; and

(d) for all i ∈ {1, 2, 3}, {`, k} = {1, 2, 3} \ {i}, and j ∈ {4, . . . , k} with vj ∈ Ai, the vertex vj has
neighbors in both {v1, . . . , vj−1} ∩A` and {v1, . . . , vj−1} ∩Ak.

Assuming that G admits a 3-coloring, it follows right from the definition above that each Ai is contained
in a single color class. Moreover, since v1v2v3 is a triangle, A1, A2, A3 are pairwise contained in distinct
color classes.

To better reference the ordering of the tripod, we put t(v1) = t(v2) = t(v3) = 0, and t(vi) = i − 3
for all 4 ≤ i ≤ k. For each u ∈ Ai, let nj(u) be the neighbor v of u in Aj with t(v) minimum, where
i, j ∈ {1, 2, 3}, i 6= j. We write T (t) = G|{v ∈ V (T ) : t(v) ≤ t}, i.e., the subgraph induced by G
on the vertex set {v ∈ V (T ) : t(v) ≤ t}. Moreover, we write Ti for the graph G|(Aj ∪ Ak) where
{i, j, k} = {1, 2, 3}, and finally Ti(t) for the graph G|{v ∈ Aj ∪Ak : t(v) ≤ t}.

We call a tripod (A1, A2, A3) maximal in a given graph if no further vertex can be added to any set
Ai without violating the tripod property.

2.1 Contracting a tripod

By contracting a tripod (A1, A2, A3) we mean the operation of identifying each Ai to a single vertex
ai, for all i = 1, 2, 3. We then make ai adjacent to the union of neighbors of the vertices in Ai, for all
i = 1, 2, 3.

The neighborhood of a vertex v in a graph G we denote NG(v). If G is clear from the context we
might also omit G in the subscript.

2.1. Let G be a graph with a maximal tripod T such that no vertex of G has neighbors in all three classes
of T . Let G′ be the graph obtained from G by contracting T . Then the following holds.
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(a) The graph G is 3-colorable if and only if G′ is 3-colorable, and

(b) if G is P6-free, G′ is P6-free.

Proof. Assertion (a) follows readily from the definition of a tripod, so we just prove (b). For this, suppose
that G is P6-free but G′ contains an induced P6, say P = v1-. . .-v6. Let T = (A1, A2, A3), and let ai be
the vertex of G′ the set Ai is contracted to, for i = 1, 2, 3.

Since P is an induced path, it cannot contain all three of a1, a2, a3. Moreover, if P contains neither
of a1, a2, a3, then G contains a P6, a contradiction.

Suppose that P contains, say, a1 and a2. We may assume that a1 = vi and a2 = vi+1 for some
1 ≤ i ≤ 3. If i = 1, pick b ∈ A1 and c ∈ A2 ∩ NG(v3) with minimum distance in T3. Otherwise, if
i ≥ 2, pick b ∈ A1 ∩ NG(vi−1) and c ∈ A2 ∩ NG(vi+2) again with minimum distance in T3. In both
cases, let Q be the shortest path between b and c in T3. Due to the choice of b and c, the induced path
v1-. . .-b-Q-c-. . .-v6 is induced in G, which means G contains a P6, a contradiction.

So, we may assume that P contains only one of a1, a2, a3, say vi = a1 for some 1 ≤ i ≤ 3. We obtain
an immediate contradiction if i = 1, so suppose that i ≥ 2. Since vi+2 is not contained in T , we may
assume that vi+2 is anticomplete to A2 in G. Pick b ∈ A1 ∩NG(vi−1) and c ∈ A1 ∩NG(vi+1) such that
the distance in T3 between b and c is minimum. Let Q be a shortest path in T3 between b and c. Since
vivi+2 /∈ E(G′), vi+2 is anticomplete to A1 and thus to V (Q) in G. If b = c, then v1-. . .-vi−1-b-vi+1-. . .-v6
is a P6 in G, a contradiction. Otherwise, the induced path vi−1-b-Q-c-vi+1-vi+2 is induced in G and
contains at least six vertices, which is also contradictory.

3 Diamond-free obstructions

Recall that a diamond is the graph obtained by removing an edge from K4. After successively contracting
all maximal tripods in a graph, we are left with a diamond-free graph. In this section we prove the
following statement.

3.1. There are exactly six 4-critical (P6, diamond)-free graphs.

These graphs are F1, F11, F14, F16, F18, and F24 in Fig. 1 and 2.
The proof of 3.1 is computer-aided, and builds upon a method recently proposed by Hoàng et al. [11].

With this method they have shown that there is a finite number of 5-critical (P5, C5)-free graphs. The idea
is to automatize the large number of necessary case distinctions, resulting in an exhaustive enumeration
algorithm. Since we have to deal with a graph class which is substantially less structured, we need to
significantly extend their method.

3.1 Preparation

In order to prove 3.1, we make use of the following tools.
Let G be a k-colorable graph. We define the k-hull of G, denoted Gk, to be the graph with vertex set

V (G) where two vertices u, v are adjacent if and only if there is no k-coloring of G where u and v recieve
the same color. Note that Gk is a simple supergraph of G, since adjacent vertices can never recieve the
same color in any coloring. Moreover, Gk is k-colorable.

It is easy to see that a k-critical graph cannot contain two distinct vertices, u and v say, such that
N(u) ⊆ N(v). The following observation is a proper generalization of this fact.

3.2. Let G = (V,E) be a k-vertex-critical graph and let U,W be two non-empty disjoint vertex subsets of
G. Let H := (G−U)k−1. If there exists a homomorphism φ : G|U 7→ H|W , then NG(u) \U 6⊆ NH(φ(u))
for some u ∈ U .

Note that, in the statement of 3.2, H is well-defined since G is k-vertex-critical.

Proof of 3.2. Suppose that NG(u) \ U ⊆ NH(φ(u)) for all u ∈ U . Fix some (k − 1)-coloring c of H. In
particular, for each u ∈ U , the color of φ(u) is different from that of any member of NH(φ(u)).

We now extend c to a (k − 1)-coloring of G by giving any u ∈ U the color c(φ(u)). It suffices to
show that this is a proper coloring. Clearly there are no conflicts between any two vertices of U , since
φ is a homomorphism. Let u ∈ U and v ∈ NG(u) \ U be arbitrary. Since NG(u) \ U ⊆ NH(φ(u)),
c(v) 6= c(φ(u)), and so u and v receive distinct colors. But this contradicts with the assumption that G
is a k-vertex-critical graph.
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We make use of 3.2 in the following way. Assume that G is a (k−1)-colorable graph that is an induced
subgraph of some k-vertex-critical graph G′. Pick two non-empty disjoint vertex subsets U,W ⊆ V of
G, and let H := (G − U)k−1. Assume there exists a homomorphism φ : G|U 7→ H|W such that
NG(u) \ U ⊆ NH(φ(u)) for all u ∈ U . Then there must be some vertex x ∈ V (G′) \ V (G) which is
adjacent to some u ∈ U but non-adjacent to φ(u) in G′. Moreover, x is non-adjacent to φ(u) in the graph
(G′ − U)k−1.

We also make use of the following well-known fact.

3.3. A k-vertex-critical graph has minimum degree at least k.

Another fact we need is the following.

3.4. Any (P6, diamond)-free 4-critical graph other than K4 contains an induced C5.

Proof. By the Strong Perfect Graph Theorem [4], every 4-critical graph different from K4 must contain
an odd hole or an anti-hole as an induced subgraph. A straightforward argumentation shows that only
the 5-hole, C5, can possibly appear.

3.2 The enumeration algorithm

Generally speaking, our algorithm constructs a graph G′ with n + 1 vertices from a graph G with n
vertices by adding a new vertex and connecting it to vertices of G in all possible ways. So, all graphs
constructed from G contain G as an induced subgraph. Since 3-colorability and (P6, diamond)-freeness
are both hereditary properties, we do not need to expand G if it is not 3-colorable, contains a P6 or a
diamond.

We use Algorithm 1 below to enumerate all (P6, diamond)-free 4-critical graphs. In order to keep
things short, we use the following conventions for a graph G. We call a pair (u, v) of distinct vertices for
which NG(u) ⊆ N(G−u)3(v) similar vertices. Similarly, we call a 4-tuple (u, v, u′, v′) of distinct vertices
with uv, u′v′ ∈ E(G) such that NG(u)\{v} ⊆ N(G−{u,v})3(u′) and NG(v)\{u} ⊆ N(G−{u,v})3(v′) similar
edges. Finally, we define similar triangles in an analogous fashion.

Algorithm 1 Generate (P6,diamond)-free 4-critical graphs

1: Let F be an empty list
2: Add K4 to the list F
3: Construct(C5) // i.e. perform Algorithm 2
4: Output F

We now prove that Algorithm 1 is correct.

3.5. Assume that Algorithm 1 terminates, and outputs the list of graphs F . Then F is the list of all
(P6, diamond)-free 4-critical graphs.

Proof. In view of lines 1 and 3 of Algorithm 2, it is clear that all graphs of F are 4-critical (P6, diamond)-
free. So, it remains to prove that F contains all (P6, diamond)-free 4-critical graphs. To see this, we first
prove the following claim.

3.6. For every (P6, diamond)-free 4-critical graph F other than K4, Algorithm 2 applied to C5 generates
an induced subgraph of F with i vertices for every 5 ≤ i ≤ |V (F )|.

We prove this inductively, as an invariant of our algorithm. Due to 3.4, we know that F contains an
induced C5, so the claim holds true for i = 5.

So assume that the claim is true for some i ≥ 5 with i < |V (F )|. Let G be the induced subgraph
of F with |V (G)| = i. First assume that G contains similar vertices (u, v). Then, by 3.2, NF (u) \ U 6⊆
N(F−u)3(v). Hence, there is some vertex x ∈ V (F ) \ V (G) which is adjacent to u in F , but not to v
in (F − u)k−1. Following the statement of line 10, Construct(F |(V (G) ∪ {x})) is called. We omit the
discussion of the lines 16 and 20, as they are analogous.

So assume that G contains a vertex u of degree at most 2. Then, since the minimum degree of any
4-vertex-critical graph is at least 3, there is some vertex x ∈ V (F ) \ V (G) adjacent to u. Following the
statement of line 26, Construct(F |(V (G) ∪ {x})) is called.
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Algorithm 2 Construct(Graph G)

1: if G is (P6,diamond)-free AND not generated before then
2: if G is not 3-colourable then
3: if G is 4-critical P6-free then
4: add G to the list F
5: end if
6: return
7: else
8: if G contains similar vertices (u, v) then
9: for every graph H obtained from G by attaching a new vertex x and incident edges in all possible

ways, such that ux ∈ E(H), but vx /∈ E((H − u)3) do
10: Construct(H)
11: end for
12: else if G contains a vertex u of degree at most 2 then
13: for every graph H obtained from G by attaching a new vertex x and incident edges in all possible

ways, such that ux ∈ E(H) do
14: Construct(H)
15: end for
16: else if G contains similar edges (u, v, u′, v′) then
17: for every graph H obtained from G by attaching a new vertex x and incident edges in all possible

ways, such that ux ∈ E(H) and u′x /∈ E((H−{u, v})3), or vx ∈ E(H) and v′x /∈ E((H−{u, v})3)
do

18: Construct(H)
19: end for
20: else if G contains similar triangles (u, v, w, u′, v′, w′) then
21: for every graph H obtained from G by attaching a new vertex x and incident edges in all possible

ways, such that ux ∈ E(H) and vx /∈ E((H − {u, v, w})3), vx ∈ E(H) and v′x /∈ E((H −
{u, v, w})3), or wx ∈ E(H) and w′x /∈ E((H − {u, v, w})3) do

22: Construct(H)
23: end for
24: else
25: for every graph H obtained from G by attaching a new vertex x and incident edges in all possible

ways do
26: Construct(H)
27: end for
28: end if
29: end if
30: end if

Finally, if none of the above criteria apply to G, the algorithm attaches a new vertex to G in all
possible ways, and calls Construct for all of these new graphs. Since |V (F )| > |V (G)|, among these
graphs there is some induced subgraph of F , and of course this graph has i+ 1 vertices. This completes
the proof of 3.6.

Given that the algorithm terminates and K4 is added to the list F , 3.6 implies that F must contain
all 4-critical (P6, diamond)-free graphs.

We implemented this algorithm in C with some further optimizations. To make sure that no isomor-
phic graphs are accepted (cf. line 1 of Algorithm 2), we use the program nauty [13, 14] to compute a
canonical form of the graphs. We maintain a list of the canonical forms of all non-isomorphic graphs
which were generated so far and only accept a graph if it was not generated before (and then add its
canonical form to the list).
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Our program does indeed terminate (in about 2 seconds), and outputs the six graphs F1, F11, F14,
F16, F18, and F24 from Fig. 1 and 2. Together with 3.5 this proves 3.1. Let us stress the fact that in
order for the algorithm to terminate, all proposed expansion rules are needed.

Table 2 shows the number of non-isomorphic graphs generated by the program. The source code of
the program can be downloaded from [6] and in the Appendix we describe how we extensively tested the
correctness of our implementation.

The second and third author also extended this algorithm which allowed to determine all k-critical
graphs for several other cases as well (see [8]).

|V (G)| 5 6 7 8 9 10 11 12 13 14 15 16
# graphs generated 1 4 16 55 130 230 345 392 395 279 211 170
|V (G)| 17 18 19 20 21 22 23 24 25 26 27 28
# graphs generated 112 95 74 53 40 32 20 15 12 3 1 0

Table 2: Counts of the number of non-isomorphic (P6,diamond)-free graphs generated by our implementation
of Algorithm 1.

4 Uncontracting a triangle to a tripod

Let G be a P6-free graph. Let C be a hole in G. A leaf for C is a vertex v ∈ V (G) \ V (C) with exactly
one neighbor in V (G). Similarly, a hat for C is a vertex in V (G) \ V (C) with exactly two neighbors
u, v ∈ V (C), where u is adjacent to v.

The following observation is immediate from the fact that G is P6-free.

4.1. No C6 in G has a leaf or a hat.

Let T = (A1, A2, A3) be a maximal tripod of G with A1 ∪A2 ∪A3 = {v1, . . . , vk}.
4.2. The graph Ti(t) is connected, for all i ∈ {1, 2, 3} and 0 ≤ t ≤ k.

Proof. This follows readily from the definition of a tripod.

4.3. Let a ∈ A1, and let y, z ∈ V (G) \ (A1 ∪ A2 ∪ A3) such that a-y-z is an induced path, and z is
anticomplete to A2 ∪ A3. Then (A2 ∪ A3) \ N(a) is stable, and in particular, for i = 2, 3 there exist
ni ∈ N(a) ∩Ai such that n2 is adjacent to n3.

Proof. By the maximality of the tripod, y is anticomplete to A2 ∪A3. Suppose there are pi ∈ Ai \N(a),
i = 2, 3, such that p2 is adjacent to p3. Since T1 is connected, we can choose p2, p3 such that, possibly
exchanging A2 and A3, p2 has a neighbor q3 in A3∩N(a). But now z-y-a-q3-p2-p3 is a P6, a contradiction.
Since T3 is connected, the second statement of the theorem follows.

A 2-edge matching are two disjoint edges ab, cd where ac, bd are non-edges.

4.4. Let X be a stable set in V (G) \ (A1 ∪ A2 ∪ A3), such that for every x, x′ ∈ X there exists p ∈
V (G) \ (A1 ∪ A2 ∪ A3) such that p is anticomplete to A1 and adjacent to exactly one of x, x′. Assume
that there is a 2-edge matching ax, a′x′ between A1 and X. Then

(a) there do not exists n2 ∈ A2, and n3 ∈ A3 such that {a, a′} is complete to {n2, n3}, and

(b) there exists a′′ ∈ A1, with t(a′′) < max(t(a), t(a′)) such that a′′ is complete to X ∩ (N(a) ∪N(a′)).

Proof. Suppose ax, a′x′ is such a matching. We may assume that xp is an edge. Let P be an induced
path from a to a′ with interior in A2 ∪ A3. Such a path exists since T1 is connected, and both a, a′

have neighbors in A2 ∪ A3. If P has at least three edges, then x-a-P -a′-x′ is a P6, so we may assume
that a, a′ have a common neighbor n2 ∈ A2. If p is non-adjacent to n2, then p-x-a-n2-a′-x′ is a P6, a
contradiction. So p is adjacent to n2, and therefore p has no neighbor in A3. By symmetry, a, a′ have
no common neighbor in A3, and so (a) follows.

Since a, a′ do not have a common neighbor in A3, there is an induced path a-b-c-d-a′ from a to a′ in
T2. Since z-a-b-c-d-a′ and a-b-c-d-a′-z′ are not a P6 for any z ∈ N(a) \ N(a′), and z′ ∈ N(a′) \ N(a),
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we deduce that c is complete to (N(a) \ N(a′)) ∪ (N(a′) \ N(a)). We may assume that there exists
x′′ ∈ X ∩ N(a) ∩ N(a′) such that c is non-adjacent to x′′, for otherwise (b) holds. Now if p is non-
adjacent to x′′, then p-x-c-d-a′-x′′ is a P6, and if p is adjacent to x′′, then p-x′′-a-b-c-x′ is a P6, in both
cases a contradiction. This proves (b).

4.5. Let X,Y be two disjoint stable sets in V (G) \ (A1 ∪A2 ∪A3), such that every vertex of X ∪ Y has
a neighbor in A1. Moreover, assume that the following assertions hold.

1. For every x ∈ X and y ∈ Y , either

(i) x is adjacent to y,

(ii) x has a neighbor in V (G) anticomplete to A1, or

(iii) y has a neighbor in V (G) anticomplete to A1.

2. For every x, x′ ∈ X there exists p ∈ V (G) \ (A1 ∪A2 ∪A3) such that

(i) p is anticomplete to A1, and

(ii) p is adjacent to exactly one of x, x′.

3. The above assertion holds for Y in an analogous way.

4. Let u, v ∈ X ∪ Y be distinct and non-adjacent. Then N(u) \A1 and N(v) \A1 are incomparable.

Then either

(a) there is a vertex p ∈ A1 which is complete to X ∪ Y , or

(b) there exist c, d ∈ A1, p ∈ A2 and q ∈ A3, such that p and q are adjacent, c is complete to X, d is
complete to Y , and {c, d} is complete to {p, q}.

Proof. After deleting all vertices of V (G) \ (X ∪ Y ∪A1 ∪A2 ∪A3) with a neighbor in A1 (this does not
change the hypotheses or the outcomes), we may assume that no vertex of V (G) \ (A2 ∪A3 ∪X ∪Y ) has
a neighbor in A1.

There exist a, b ∈ A1 such that a is complete to X, and b is complete to Y . (1)

To see (1), it is enough to show that a exists, by symmetry. So, suppose not that such an a does not
exist. Pick a ∈ A1 with N(a) ∩X maximal, and note that a is not complete to X by assumption. By
assumption, there exists a′ ∈ A1 and x, x′ ∈ X such that ax, a′x′ is a 2-edge matching. But now by
4.4.(b), there exists a′′ ∈ A1 complete to (N(a) ∩X) ∪ x′, contrary to the choice of a. This proves (1).

We may assume that no vertex of A1 is complete to X ∪ Y , for otherwise 4.5.(a) holds. Moreover,
we may assume that there exist x ∈ X, and y ∈ Y such that ax, by is a 2-edge matching. We choose a, b
with t(a) + t(b) minimum, and subject to that x and y are chosen adjacent if possible.

There is no p ∈ A1, with t(p) < max(t(a), t(b)) such that p is complete to (X \N(b)) ∪ (Y \
N(a)).

(2)

Suppose such a p exists. We may assume that t(a) > t(b), and hence t(p) < t(a). By the choice of a
and b, p is not complete to X, and so there is a 2-edge matching between {b, p} and X. Thus by 4.4.(b),
there exists a vertex p′ with t(p′) < max(t(b), t(p)) < t(a) that is complete to X, again contrary to the
choice of a and b. This proves (2).

Either a is adjacent to n2(b), or b is adjacent to n2(a). (3)

Suppose that this is false. We may assume that t(n2(a)) > t(n2(b)). Let P be an induced path from n2(a)
to n2(b) in T3(t(n2(a))). Then n2(a) is the unique neighbor of a in P . Since a-n2(a)-P -n2(b) is not a P6,
we may deduce that P has length two, say P = n2(a)-p-n2(b). Moreover, since x′-a-n2(a)-p-n2(b)-b is not
a P6 for any x′ ∈ X \N(b), we know that X \N(b) is complete to p. Finally, since y′-b-n2(b)-p-n2(a)-a
is not a P6 for any y′ ∈ Y \N(a), p is complete to Y \N(a). But since p ∈ T3(t(n2(a)), we know that
t(p) < t(a) ≤ max(t(a), t(b)), contrary to (2). This proves (3).

By (3) and using the symmetry between A2 and A3, we may deduce that for i = 2, 3 there exists
ni ∈ Ai such that {a, b} is complete to {n2, n3}, and each ni is the smallest neighbor of one of a, b in Ai

w.r.t. their value of t. We may assume that n2 is non-adjacent no n3, for otherwise 4.5.(b) holds.

Let z ∈ V (G) \ (A1 ∪ A2 ∪ A3 ∪X ∪ Y ) be anticomplete to A1. Then z is not mixed on any
non-edge with one end in X\N(b) and the other in Y \N(a). In particular, either x is adjacent
to y, or some z ∈ V (G)\ (A1 ∪A2 ∪A3 ∪{x, y}) is complete to {x, y} and anticomplete to A1.

(4)
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Suppose z is mixed on a non-edge x′, y′ with x′ ∈ X \ N(b), and y′ ∈ Y \ N(a). From the maximality
of the tripod, we may assume that z is anticomplete to A2. Now one of the induced paths z-x′-a-n2-b-y′

and z-y′-b-n2-a-x′ is a P6, a contradiction. The second statement follows from assumption 1. This proves
(4).

By symmetry, we may assume that t(n2) > t(n3), and that n2 = n2(a). Thus, there is an induced
path n2-n′3-c-n3 in T1(t(n2)). Hence t(c) < t(n2), and so a is non-adjacent to c.

Vertex a is adjacent to n′3, and b has a neighbor among the set {c, n′3}. (5)

Suppose first that x is adjacent to y. If a is non-adjacent to n′3, then y-x-a-n2-n′3-c is a P6, a contradiction.
Moreover, if b is anticomplete to {c, n′3}, then x-y-b-n2-n′3-c is a P6, a contradiction. So we may assume
that x is non-adjacent to y, and thus, by the choice of x and y, deduce that X \N(b) is anticomplete to
Y \N(a).

Now it follows from (4) that every z ∈ V (G) \ (A1 ∪ A2 ∪ A3 ∪ X ∪ Y ) that is anticomplete to A1

and that has a neighbor in (X \ N(b)) ∪ (Y \ N(a)) is already complete to (X \ N(b)) ∪ (Y \ N(a)).
By assumption 2.(ii), we deduce that X \ N(b) = {x}, and similarly Y \ N(a) = {y}. Moreover, by
assumption 4, there exist x′ ∈ X ∩N(b) and y′ ∈ Y ∩N(a) such that xy′ and yx′ are edges. Now if a is
non-adjacent to n′3, then y-x′-a-n2-n′3-c is a P6, and if b is anticomplete to {c, n′3}, then x-y′-b-n2-n′3-c is
a P6, in both cases a contradiction. This proves (5).

If b is adjacent to n′3, then (a) holds, and thus we may assume the opposite. By (5), b is adjacent to
c. Since x-a-n′3-c-b-y is not a P6, we may deduce that x is adjacent to y. Similarly, X \N(b) is complete
to Y \N(a).

Let d = n1(n′3). Then t(d) ≤ t(n2) < t(a), and therefore a 6= d. Since d-n′3-a-x-y-b is not a P6, we
deduce that d is complete to one of X \N(a) and Y \N(b).

By (2), d is not complete to both X \N(b) and Y \N(a). Suppose first that d is complete to X \N(b).
Then there is some y′ ∈ Y \N(a) that is non-adjacent to d. Since n′3-d-x-y′-b-n3 is not a P6, we deduce
that d is adjacent to n3. Since t(d) < t(a), d is not complete to X, and so there is x′ ∈ X ∩N(b) that
is non-adjacent to d. Since x′-b-c-n′3-d-x is not a P6, d is adjacent to c. But dx, bx′ is a 2-edge matching
between {d, b} and X, and {d, b} is complete to {c, n′3}, contrary to 4.4.(a).

This proves that d is not complete to X \ N(b), and thus d is complete to Y \ N(a) and has a
non-neighbor x′ ∈ X \ N(b). Suppose that d is non-adjacent to n2. Since t(n2(d)) ≤ t(d) ≤ t(n2),
we may deduce that t(n2(d)) < t(n2), and a is non-adjacent to n2(d) (since n2 = n2(a)). But now
n2(d)-d-y-x′-a-n2 is a P6, a contradiction. This proves that d is adjacent to n2.

Since {a, d} is complete to {n2, n
′
3}, we deduce that there is no 2-edge matching between Y and

{a, d}, by 4.4.(a). But then d is complete to Y , and (b) holds, since n2 is adjacent to n′3. This completes
the proof.

4.6. Let G′ be the graph obtained from G by contracting (A1, A2, A3) to a triangle a1a2a3. Let H ′ be
an induced subgraph of G′ with a1 ∈ V (H ′). Assume that no two non-adjacent neighbors of a1 dominate
each other in H ′. Moreover, assume also that for every v ∈ V (H ′), either

1. NH′(v) = X ′ ∪ Y ′, each of X ′, Y ′ is stable,

(i) for every x ∈ X ′ and y ∈ Y ′, either

(A) x is adjacent to y,

(B) x has a neighbor in V (H ′) \ (NH′(v) ∪ {v}), or

(C) y has a neighbor in V (H ′) \ (NH′(v) ∪ {v});

(ii) for every x, x′ ∈ X there exists p ∈ V (H ′) \ {v} such that p is non-adjacent to v, and p is
adjacent to exactly one of x, x′;

(iii) (1ii) holds for Y in an analogous way.

2. NH′(v) is a triangle, or

3. NH′(v) induces a C5.

Then either

(a) some a ∈ A1 is complete to N ′H(a1) \ {a2, a3}; or

(b) assumption 1 holds, and no vertex of A1 is complete to NH′(a1)\{a2, a3}, and there exist a, b ∈ A1,
n2 ∈ A2, and n3 ∈ A3 such that a is complete to X ′ \ {a2, a3}, b is complete to Y ′ \ {a2, a3}, {a, b}
is complete to {n2, n3}, and n2 is adjacent to n3;
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(c) assumption 2 or 3 holds, and G contains a non-3-colorable graph with seven or eight vertices; or

(d) assumption 2 or 3 holds, there exists a set A ⊆ A1, with |A| ≤ 3, n2 ∈ A2, and n3 ∈ A3 such that
every vertex of NH′(a1) has a neighbor in A, A is complete to {n2, n3}, and n2 is adjacent to n3.

Moreover, suppose A2, A3 are in V (H ′). If (a) holds, let H = G|((V (H ′) \ {a1}) ∪ {a}). Then H is
isomorphic to H ′. If (b) holds, let H = G|((V (H ′) \ {a1}) ∪ {a, b, n1, n2}). Then in every coloring of
H, a and b have the same color. If (d) holds, let H = G|((V (H ′) \ {a1})∪A∪ {n1, n2}). Then in every
coloring of H, A is monochromatic.

In all cases, H is 3-colorable if and only if H ′ is.

Proof. Suppose (a) does not hold.
Assume first that assumption 1 holds for a1. Let X = X ′ \ {a2, a3} and Y = Y ′ \ {a2, a3}. We now

quickly check that the assumptions of 4.5 hold for A1, X, Y (in G).

• Every vertex v ∈ X ∪ Y has a neighbor in A1, since every such v is adjacent to a1 in H ′.

• Assumption 1 of 4.5 follows from assumption 1.(i) of 4.6.

• Assumption 2 holds since there is such a p by assumption 1.(ii) of 4.6. Since p is non-adjacent to
a1, we deduce that p 6∈ {a2, a3}, and so p ∈ V (G) \ (A1 ∪A2 ∪A3), as desired.

• Assumption 3 of 4.5 follows analogously.

• Assumption 4 of 4.5 is seen like this: N(u) \ {a1} and N(v) \ {a1} are incomparable in H ′, and
{u, v} is anticomplete to {a2, a3} by the maximality of the tripod.

Now 4.6 follows from 4.5.
Next assume that assumption 2 holds for a1, and N(a1) = {x1, x2, x3}. We observe that by the

maximality of the tripod, {x1, x2, x3} ∩ {a2, a3} = ∅.
Assume first that there exist b1, b2, b3 ∈ A1 such that bi is complete to {xj , xk} (where {1, 2, 3} =

{i, j, k}). Since (a) does not hold, bi is non-adjacent to xi, i = 1, 2, 3. If some n2 ∈ A2 is complete to
{b1, b2, b3}, then (c) holds. So we may assume that there is a 2-edge matching from A2 to {b1, b2, b3}, say
n2b1, n

′
2b2. But then n2-b1-x2-x1-b2-n′2 is a P6, a contradiction. So we may assume that no vertex of A1

is adjacent to both x1 and x2. For i = 1, 2, let c′i be the smallest vertex in A1 adjacent to xi w.r.t. their
value of t. By 4.5 applied with X = {x1} and Y = {x2}, and since no vertex of A1 is adjacent to both
x1 and x2, we deduce that there exist a neighbor ci of xi, and vertices n2 ∈ A2 and n3 ∈ A3, such that
{c1, c2} is complete to {n2, n3}, and n2 is adjacent to n3. If x3 is adjacent to one of c1, c2, then (b)
holds, so we may supppose this is not the case. Let c3 be a neighbor of x3 in A. We may assume that
c3 is non-adjacent to x1. Now c3-x3-x1-c1-n2-c2 is not a P6, and so c3 is adjacent to n2. Similarly, c3 is
adjacent to n3. But now (c) holds. This finishes the case when assumption 2 holds.

Finally, assume that 3 holds. Let N ′H(a1) = {x1, . . . , x5} = X, where x1-x2-. . .-x5-x1 is a C5. Since
H ′|X is connected, the maximality of the tripod implies that a2, a3 6∈ X. Let A be a minimum size
subset of A1 such that each of x1, . . . , x5 has a neighbor in A. Since every a ∈ A has a neighbor in A2, we
deduce that every a ∈ A has two non-adjacent neighbors in X, due to P6-freeness. We may assume that
|A| > 1, or (d) holds, and so every a ∈ A is either a clone (i.e., has two non-adjacent or three consecutive
neighbors in X), a star (i.e., has four neighbors in X), or a pyramid for G|X (i.e., has three neighbors
in X, one of which is non-adjacent to the other two).

Suppose some a ∈ A is a clone. We may assume a is adjacent to x2 and x5. If a is mixed on A2 ∪A3,
then, since T3 is connected, there is an induced path a-p-q where p, q ∈ A2∪A3. There is also an induced
path a-x2-x3-x4, so q-p-a-x2-x3-x4 is a P6, a contradiction. So a is complete to A2 ∪ A3. If at most one
vertex of A is not a clone and |A| ≤ 3, then by 4.3 outcome (d) holds. So we may assume that if |A| ≤ 3,
then there are at least two non-clones in A.

We claim that a is adjacent to x1. Suppose that this is false, and let b ∈ A be adjacent to x1. By
the minimality of A, b is not complete to {x2, x5}. Since b has two non-adjacent neighbors in X, by
symmetry we may assume that b is adjacent to x4. If b is adjacent to x3, then, by the minimality of A,
A = {a, b} and b is the unique non-clone in A, so b is non-adjacent to x3. Now |A \ {a, b}| = 1, and so b
is not a clone. Therefore b is adjacent to x2.

By the minimality of A, b is non-adjacent to x5. Let c ∈ A be adjacent to x3. Then A = {a, b, c}. By
the minimality of A, c is non-adjacent to x5, and to at least one of x1, x4. But now c is a clone, and b is
the unique non-clone in A, a contradiction. So a is adjacent to x1. This implies that A = {a, b, c}, b is
adjacent to x4 but not to x5, c is adjacent to x5 but not x4, neither of b, c is a clone, and no vertex of
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A1 is complete to {x3, x4}. By 4.5, there exist b′, c′ ∈ A1, n2 ∈ A2 and n3 ∈ A3, such that b′x4 and c′x5
are edges, n2 is adjacent to n3, and {b′, c′} is complete to {n2, n3}. Now (d) holds. So we may assume
that A does not contain a clone.

If A = {a, b} and there exist x, y, z ∈ X such that z-a-x-y-b or a-x-y-b-z is an induced path,
then (b) holds.

(6)

Since p-a-x-y-b-q is not a P6 for any p, q ∈ A2, we deduce that either N(a) ∩ A2 ⊆ N(b) ∩ A2, or
N(b) ∩A2 ⊆ N(a) ∩A2, and the same holds in A3. Since we may assume (b) does not hold, 4.3 implies
that, up to symmetry, there exist n2 ∈ N(a)∩A2 and n3 ∈ N(b)∩A3 such that a is non-adjacent to n3,
and b is non-adjacent to a2. Then n2 is adjacent to n3 (or n2-a-x-y-b-n3 is a P6). But now z-a-n2-n3-b-y
or z-b-n3-n2-a-x is a P6, a contradiction. This proves (6).

Suppose some a ∈ A is a star, say a is adjacent to x1, . . . , x4, and not to x5. Let b ∈ A be adjacent
to x5. Then we know that A = {a, b}. If b is adjacent to both x1 and x4, then (c) holds, and so we may
assume that b is non-adjacent to x1. Since b is not a clone, b is adjacent to x2. If b is adjacent to x3,
then (c) holds, so b is non-adjacent to x3; since b is not a clone, b is adjacent to x4. But now (6) holds
with x = x1, y = x5 and z = x3. So we may assume that no a ∈ A is a star, and so every vertex of A is
a pyramid.

Let a ∈ A. We may assume that a is adjacent to x1, x3, x4 and not to x2, x5. Let b ∈ A be adjacent
to x2. If N(b) ∩ X = {x2, x4, x5}, then (b) holds by (6) applied with x = x3, y = x2 and z = x5. If
N(b)∩X = {x2, x3, x5}, then we obtain the previous case by exchanging the roles of a and b. So we may
assume that N(b) ∩X = {x1, x2, x4}.

Hence, there exists c ∈ A \ {a, b} adjacent to x5 with N(c) ∩X = {x1, x3, x5}. But now every x ∈ X
has a neighbor in A \ {a}, contrary to the minimality of A. This shows how the statement of 4.6 follows
from assumption 3, completing the proof.

4.7. Every graph H ′ on the list F1-F24 satisfies the assumptions of 4.6.

Proof. Since H ′ is a minimal obstruction to 3-coloring, H ′ has no dominated vertex, meaning any two
neighborhoods of vertices are incomparable. Let v ∈ V (H ′). If N(v) is not bipartite, then v contains a
triangle or C5, and so V (H ′) = {v} ∪ N(v), and assumptions 2 or 3 of 4.6 hold. So N(v) is bipartite
with a bipartition (X,Y ).

We implemented a straightforward program which we used to verify that assumption 1 of 4.6 indeed
holds for all 24 4-critical P6-free graphs from 1.1 where N(v) is bipartite. The source code of this program
can be downloaded from [7].

4.8. Let G′ be obtained from G by contracting (A1, A2, A3) to a triangle a1a2a3. Let H ′ be an induced
subgraph of G′, with a1, a2 ∈ V (H ′). For i = 1, 2, let Zi = N(ai) \ {a1, a2, a3}.

Assume that

1. no two non-adjacent neighbors of a1 dominate each other, and no two non-adjacent neighbors of a2
dominate each other, and

2. H ′|N(a1) and H ′|N(a2) are bipartite.

If 4.6.(a) holds for a1, let c1 be the vertex a of 4.6.(a), set A = {c1} and Z = ∅. If 4.6.(b) holds for a1,
let a, b, n2(a1), n3(a1) be the vertices as in 4.6.(b). Moreover, set A = {a, b}, and Z = {n2(a1), n3(a1)}.

If 4.6.(a) holds for a2, let c2 be the vertex a of 4.6.(a), set C = {c2}, and W = ∅. If 4.6.(b) holds for
a2, let c, d, n1(a2), n3(a2) be the vertices as in 4.6.(b), set C = {c, d}, and W = {n1(a2), n3(a2)}.

Then one of the following holds.

(a) Outcome 4.6.(a) holds for a1, there is c ∈ C, and an induced path c1-c′-a′-c in T3(t) where t =
max(t(c1), t(c)), such that a′ is complete to Z1. Or the analog statement holds for a2.

(b) There is an edge between A and C.

(c) In H ′, there is an induced path a1-q1-q2-a2, and a vertex complete to {a1, q1, q2} or to {a2, q2, q1}.
(d) There are vertices n1 ∈ A1 and n2 ∈ A2, such that n1 is complete to C, n2 is complete to A, and

some vertex s ∈ A3 is complete to A ∪ {n1, n2} or C ∪ {n1, n2}. Moreover, if max(|A|, |C|) > 1,
then |V (H ′)| ≤ 13.
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If (a) holds, let A = {a′}. If (b) or (c) holds, let

H = (H ′ − {a1, a2}) ∪A ∪ C ∪ Z ∪W.

If (d) holds, we may assume that n1 is complete to A, and put

H = (H ′ − {a1, a2}) ∪A ∪ C ∪ {n1, n2, s} ∪W.

In all cases, in every 3-coloring of H, A and C are monochromatic, and no color appears in both A
and C. Therefore H is 3-colorable if and only if H ′ is 3-colorabe.

Proof. We may assume that no vertex of V (G) \ (Z1 ∪ A2 ∪ A3) has a neighbor in A1, and no vertex
of V (G) \ (Z2 ∪ A1 ∪ A3) has a neighbor in A2 (otherwise we may delete such vertices from G without
changing the hypotheses or the outcomes).

Moreover, we may assume that A is anticomplete to C, as otherwise (b) holds. Pick a ∈ A and c ∈ C.
Let t = max(t(a), t(c)), and let c-a′-c′-a be an induced path from a to c in T3(t). If possible, we choose
a′ to be complete to C, and c′ complete to A.

Assuming (a) does not hold, we derive the following.

Vertex a′ is not complete to Z1, and c′ is not complete to Z2. (7)

We also make use of the following fact.

Vertex c′ is complete to A, and a′ to C. (8)

To see this, suppose c′ is not complete to A. Then A = {a, b}, and c′ is non-adjacent to b. By the
choice of c′, we deduce that n2(a1) is non-adjacent to a′ (otherwise we may replace c′ with n2(a1)). Now
b-n2(a)-a-c′-a′-c is a P6, a contradiction. Similarly, a′ is complete to C. This proves (8).

Let p ∈ Z1 be non-adjacent to a′. Then p has no neighbor in V (H ′) \ ({a1, a2, a3} ∪Z1 ∪Z2),
and p has a neighbor q ∈ Z1.

(9)

Since a2 does not dominate p, p has a neighbor q ∈ H ′ non-adjacent to a2. Then in G, q is anticomplete
to A2. Let z ∈ A be adjacent to p. If q is not in Z1, then q is anticomplete to A1, and so, by (8),
q-p-z-c′-a′-c is a P6 in G, a contradiction. This proves (9).

By (7), (9) and the symmetry between A1 and A2, there exist p, q ∈ Z1 and s, t ∈ Z2 such that pq, st
are edges, a′ is non-adjacent to p, and c′ is non-adjacent to s. Let r ∈ A be adjacent to p, and let u ∈ C
be adjacent to s. Since p-r-c′-a′-u-s is not a P6, we may deduce that p is adjacent to s.

Let D be the following C6: r-c′-a′-u-s-p-r.

Vertex p is complete to A, and s is complete to C. (10)

Suppose p has a non-neighbor r′ ∈ A. Then, since A is anticomplete to C, r′ is a leaf for D, in
contradiction to 4.1. Similarly, s is complete to C. This proves (10).

By (10), we may assume that r is adjacent to q, and u is adjacent to t. If q is adjacent to s, then (c)
holds, which we may assume not to be the case. Similarly, t is non-adjacent to p. Since q, t are not hats
for D, by 4.1, we may deduce that q is adjacent to a′, and t to c′.

Suppose that |A| > 1. Then a′ is not complete to Z1. By (3) and (4), a′ is complete to Z1 \ (N(r) ∩
N(r′)). Let (X1, Y1) be a bipartition of Z1 such that p ∈ X. We may assume r′ is complete to X1,
and hence that r is not complete to X1. Thus there is a vertex p′ ∈ X1 such that a′p, rp′ is 2-edge
matching. If G has 16 vertices, then there is a 3-edge induced path p-f -g-p′ in H ′ \ ({a1} ∪N(a1)), and
so a-p-f -g-p′-r is a P6, a contradiction.

Let d ∈ A3 be adjacent to a′. If d is adjacent to c′, then, since d is not a hat for D, we may deduce
that d is adjacent to at least one of r, u. Similarly, d is complete to one of A,C and (d) holds. So d is
non-adjacent to c′. But now d-a′-c′-t-s-p is a P6, a contradiction. This completes the proof.

By W5 we denote the graph that is C5 with a center.

4.9. Every H on the list except K4 and W5 satisfies the assumptions of 4.8.
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Proof. Let H be a graph on the list. Since H is minimal non-3-colorable, H has no dominated vertices,
and so assumption 1 of 4.8 holds. If H|N(v) is not bipartite for some v ∈ V (H), then H|N(v) contains
a triangle or a C5, and so H = K4 or H = W5.

4.10. Let G′ be obtained from G by contracting a maximal tripod (A1, A2, A3) to a triangle {a1, a2, a3}.
Let H ′ from our list of 24 obstructions be an induced subgraph of G′. If H ′ = K4, assume that |V (H ′)∩
{a1, a2, a3}| < 3. Then there exists an induced subgraph H of G that is not 3-colorable with at most
|V (H ′)|+ 9 vertices if |V (H ′)| = 16 and at most |V (H ′)|+ 15 vertices if |V (H ′)| ≤ 13.

Proof. We may assume that at least one of a1, a2, a3 is in V (H ′). If |V (H ′) ∩ {a1, a2, a3}| = 1, we are
done using 4.6 and 4.7, so we may assume that |V (H ′) ∩ {a1, a2, a3}| ≥ 2. Note that if H ′ = K4, every
edge is in a triangle, and if H ′ = W5, then every triangle is in a diamond. Hence, the maximality of
(A1, A2, A3) implies that H ′ 6= K4,W5.

By 4.9, H ′ satisfies the assumptions of 4.8. Suppose that either |V (H ′) ∩ {a1, a2, a3}| = 2, or
|V (H ′) ∩ {a1, a2, a3}| = 3, and one of 4.8.(b), 4.8.(c), 4.8.(d) holds for each pair a1a2, a2a3, a1a3. For
i = 1, 2, 3 let Ci ⊆ Ai be as in 4.6.(a) or 4.6.(b), and let Wi be as in 4.6.(b) (in the notation of 4.8).

Let Zi be the set of neighbors of ai in H ′ − {a1, a2, a3}. If 4.8.(d) holds for ai, aj , let Nk be like
{ni, nj , s} in 4.8.(d). Otherwise let Nk = ∅, and note that in both cases |Nk| ≤ 3. As usual, we may
assume V (G) = A1 ∪A2 ∪A3 ∪ (V (H ′) \ {a1, a2, a3}).

Construct H as in 4.8, modifying H ′ accordingly for each pair a1a2, a2a3, a1a3. Observe that the sets
of vertices added in each modification are far from disjoint.

More precisely,

• If 4.6.(a) holds for each of a1, a2, a3, then |V (H)| ≤ |V (H ′)|+ 9, as follows.

We observe |Ci| = 1 and |Wi| = 0 for each i. Since H = H ′ − {a1, a2, a3} ∪ Ci ∪ Wi ∪ Ni,
|V (H)| ≤ |V (H ′)| − 3 + 3 + 9 = |V (H ′)|+ 9.

• If 4.6.(a) holds for exactly two of a1, a2, a3, then |V (H)| ≤ |V (H ′)| + 6 if |V (H ′)| = 16, and
|V (H)| ≤ |V (H ′)|+ 13 if |V (H ′)| ≤ 13, as follows.

Assume 4.6.(a) holds for a1 and a2. If |V (H ′)| = 16, then 4.8.(b) or 4.8.(c) happens for a2a3 and
a1a3, hence N1 = N2 = ∅, |C1| = |C2| = 1, |W1| = |W2| = 0, |N3| ≤ 3, |C3| = |W3| = 2, and so
|V (H)| ≤ |V (H ′)|−3+4+2+3 = |V (H ′)|+6. If |V (H ′)| ≤ 13, then |C1| = |C2| = 1, |W1| = |W2| =
0, |C3| = |W3| = 2, and |Ni| ≤ 3 for any i, and hence |V (H)| ≤ |V (H ′)|−3+4+2+9 = |V (H ′)|+12.

• If 4.6.(a) holds for exactly one of a1, a2, a3, then |V (H)| ≤ |V (H ′)| + 6 if |V (H ′)| = 16, and
|V (H)| ≤ |V (H ′)|+ 15 if |V (H ′)| ≤ 13, as follows.

Assume 4.6.(a) holds for a1. If |V (H ′)| = 16, then 4.8.(b) or 4.8.(c) happens for a1a2, a2a3 and
a1a3, and hence N1 = N2 = N3 = ∅, |C1| = 1, |W1| = 0, |C2| = |C3| = |W2| = |W3| = 2, and
so |V (H)| ≤ |V (H ′)| − 3 + 5 + 4 + 0 = |V (H ′)| + 6. If |V (H ′)| ≤ 13, then |C1| = 1, |W1| = 0,
|C2| = |C3| = |W2| = |W3| = 2, |Ni| ≤ 3 for any i = 1, 2, 3, hence |V (H)| ≤ |V (H ′)|−3+5+4+9 =
|V (H ′)|+ 15.

• If 4.6.(b) holds for all of a1, a2, a3, then |V (H)| ≤ |V (H ′)| + 9 if |V (H ′)| = 16, and |V (H)| ≤
|V (H ′)|+ 15 if |V (H ′)| ≤ 13, as follows.

If |V (H ′)| = 16, then 4.8.(b) or 4.8.(c) happens for a1a2, a2a3 and a1a3, hence N1 = N2 = N3 = ∅,
|C1| = |W1| = |C2| = |C3| = |W2| = |W3| = 2, and |V (H)| ≤ |V (H ′)| − 3 + 6 + 6 + 0 = |V (H ′)|+ 9.
If |V (H ′)| ≤ 13, |C1| = |W1| = |C2| = |C3| = |W2| = |W3| = 2, and |Ni| ≤ 3 for any i. Moreover, if
4.8.(d) holds for at most two pairs, then |V (H)| ≤ |V (H ′)| − 3 + 6 + 6 + 6 = |V (H ′)|+ 15.

Otherwise 4.8.(d) holds for all three pairs. Considering a1a2, we may assume that W3 = {n1, n2, s3}
and s3 is complete to C1. Thus W1 is not needed since {s3, n2} is enough to ensure that C1 is
monochromatic. Similarly, considering a2a3, we may assume W2 is not needed. Hence |V (H)| ≤
|V (H ′)| − 3 + 6 + 2 + 9 = |V (H ′)|+ 14.

Thus we may assume that |V (H ′) ∩ {a1, a2, a3}| = 3, and 4.8.(a) holds for at least one of the pairs.
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Let us call the outcomes (b), (c), (d) of 4.8 good.

Permuting the indices if necessary, there exist b2, b3 ∈ A1, and C2 ⊆ A2, C3 ⊆ C3 such that
the following holds.

• {b2, b3} is complete to Z1,

• C2 and C3 are as in 4.6.(a) or 4.6.(b),

• b2 has a neighbor in C2 and none in C3,

• b3 has a neighbor in C3 and none in C2, and

• one of the good outcomes holds for the pair C2, C3.

• b2 and b3 have a common neighbor in A3.

(11)

In order to prove (11), we first prove a sufficient condition for (11).

If there exist C′i ⊆ Ai as in 4.6.(a) or 4.6.(b) such that there is an edge between C′1 and C′2,
and an edge between C′2 and C′3, then (11) holds.

(12)

To see this, apply 4.8 to C′1, C
′
3. If one of the good outcomes holds, then a good outcome holds for all

three pairs among C′1, C
′
2, C

′
3, and so we may assume that this is not the case. There is a symmetry

between C′1 and C′3, so we may assume that |C′1| = 1 and that there is an induced path c′1-c′′3 -c′′1 -c′3 in
T2, where {c′1} = C′1, c′3 ∈ C′3, and c′′1 is complete to Z1. If c′′1 has a neighbor in C2, or c′1 has a neighbor
in C3, then a good outcome holds for all pairs among {c′′1}, C′2, C′3 or C′1, C

′
2, C

′
3. Hence, we may assume

that this is not the case. Now (11) holds, and this proves (12).
We may assume that outcome 4.8.(a) holds for the pair C2, C3. By modifying C2, C3 we may assume

that there is an edge between C2 and C3 and outcome 4.8.(b) holds for (C2, C3). If a good outcome holds
for both C1, C2, and C1, C3, then a good outcome holds for all three pairs, so we may assume that this
is not the case.

So, assume that outcome (a) holds when 4.8 is applied to C1, C2. If there is c1 ∈ A1 that is complete
to Z1 and has a neighbor in C2, then (11) holds by (12). So we may assume that there is a vertex c′2 ∈ A2

that is complete to Z2, and an induced path c1-c′2-c′1-c2 in T3, where c1 ∈ C1 and C2 = {c2}. If a good
outcome holds for C1, C3, then either (11) holds, or a good out come holds for all three pairs among
C1, {c2}, C3 or C1, {c′2}, C3.

So, we may assume that 4.8.(a) holds for C1, C3. By the symmetry between C1 and C3, we may
assume that there is d1 ∈ A1 and an induced path c1-c′3-d1-c3 where c3 ∈ C3, C1 = {c1}, and d1 is
complete to Z1. But now there is an edge between C3 and {d1}, and between C3 and C2, and (11)
follows from (12). This proves (11).

If 4.8.(b) or 4.8.(c) holds for the pair C2, C3, let

H = G|((V (H ′) \ {a1, a2, a3}) ∪ {b2, b3} ∪ C2 ∪ C3 ∪W2 ∪W3),

and let
H ′′ = G|((V (H ′) \ {a1, a2, a3}) ∪ {b2, b3} ∪ C2 ∪ C3).

If 4.8.(d) holds for the pair C2, C3, let

H = G|((V (H ′) \ {a1, a2, a3}) ∪ {b2, b3} ∪ C2 ∪ C3 ∪ {n1, n2, s}),

and let
H ′′ = G|((V (H ′) \ {a1, a2, a3}) ∪ {b2, b3} ∪ C2 ∪ C3).

Then |V (H)| ≤ |V (H ′)|+ 7, and so we may assume that H is 3-colorable.
Let us call a 3-coloring of H ′′ promising if C2 is monochromatic, C3 is monocromatic, and no color

appears in both of C2, C3. We observe that by 4.6 and 4.8, every 3-coloring of H gives a promising
3-coloring of H ′′. Since H ′ is not 3-colorable, in every promising coloring of H ′′ the vertices b2 and b3
recieve different colors.

Let c be a 3-coloring of H. We may assume that c(bi) = i, c is constantly 1 or 3 on C2, and c is
constantly 1 or 2 on C3. Then c(z) = 1 for every z ∈ Z1. If c is 1 on C2, then we recolor b2 with color 3,
and get a coloring of H ′, a contradiction. So we may assume that c is 3 on C2, and c is 2 on C3. If no
vertex of Z2 has color 1, we recolor C2 with color 1, and recolor b2 with color 3. We obtain coloring of
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H with b2, b3 colored in the same color, a contradiction. So, for some z2 ∈ Z2, c(z2) = 1. Similarly, for
some z3 ∈ Z3, c(z3) = 1.

For i = 2, 3 let Z′i be the set of all vertices z ∈ Zi with c(zi) = 1. Then Z1 ∪ Z′2 ∪ Z′3 is a stable set.
Let ci ∈ Ci be adjacent to bi.

Z′2 is anticomplete to V (G) \ (Z2 ∪A2). (13)

Suppose p ∈ V (G) \ (Z2 ∪ A2) has a neighbor z2 ∈ Z′2. Then p 6∈ Z1. Let c′2 ∈ C2 be adjacent to z2.
Suppose first that b2 is non-adjacent to c′2. Then c′2 6= c2. Let n1 ∈ A1 be complete to {c2, c′2}, a possible
choice by b. Now p-z2-c′2-n1-c2-b2 is a P6, a contradiction. So c′2 is adjacent to b2. Let n2 ∈ A2 be
adjacent to b2 and b3 (as in (11), with the roles of A2 and A3 exchanged). Then p-z2-c′2-b2-n2-b3 is a P6,
again a contradiction. This proves (13).

Now, by (13), we can recolor H ′′ by putting c′(C2) = 1 and c′(Z′2) = 3, c′(b2) = 3, which yields a
3-coloring of H ′, a contradiction. This completes the proof.

5 Obstructions that are 1-vertex extensions of a tripod

In this section, we prove the following statement.

5.1. Let G be a 4-critical P6-free graph. Assume that there is a tripod T = (A1, A2, A3) in G and some
vertex x which has a neighbor in each Ai, i = 1, 2, 3. Then |V (G)| ≤ 18.

To see this, let G, T = (A1, A2, A3), and x be as in 5.1. Let a1, a2, a3 be the root of T . It is clear
that V (G) = V (T ) ∪ {x}. We call G a 1-vertex extension of a tripod.

5.1 Preparation

We may assume that the ordering A1 ∪A2 ∪A3 = {v1, . . . , vk} has the following property.

5.2. Let u ∈ A` and v ∈ Ak for some `, k ∈ {1, 2, 3}. Moreover, let {`, `′, `′′} = {1, 2, 3} and {k, k′, k′′} =
{1, 2, 3}. Assume that max(t(nk′(v)), t(nk′′(v))) < max(t(n`′(u)), t(n`′′(u))). Then t(v) < t(u).

Let bi be the neighbor of x in Ai with t(bi) maximum, for all i = 1, 2, 3. We may assume that
t(b1) > t(b2) > t(b3).

5.3. We may assume that N(x) ∩A1 = {b1} and N(x) ∩Ai = {bi} for some i ∈ {2, 3}.

Proof. Since G|(V (T (t(b1)))∪{x}) is 4-chromatic we know that V (G) = V (T (t(b1)))∪{x}. In particular,
N(x) ∩A1 = {b1}.

To see the second statement, assume that |N(x) ∩A2|, |N(x) ∩A3| ≥ 2. Suppose for a contradiction
that |N(b1) ∩ A2|, |N(b1) ∩ A3| ≥ 2, and let u be the vertex in the set {b2, b3, n2(b1), n3(b1)} with t(u)
maximum. Then G− u is still 4-chromatic, a contradiction.

So we may assume that |N(b1)∩Ai| = 1 for some i ∈ {2, 3}. Note that T ′ = (A1 \ {b1}∪{x}, A2, A3)
is a tripod. Consequently, b1 has neighbors in all three classes of T ′. Since |N(b1) ∩ (A1 ∪ {x})| =
|N(b1) ∩Ai| = 1, we are done.

5.2 The enumeration algorithm

Consider the following way of traversing the tripod T . Initially, the vertices b1, b2, b3 are labeled active,
and all other vertices are unlabeled. Then, we label the vertices a1, a2, a3 as inactive. Consequently, if
b3 = a3, say, then b3 is labeled inactive.

Iteratively, pick an active vertex, say u ∈ Ai with {i, j, k} = {1, 2, 3}. Make nj(u) and nk(u) active,
unless they are labeled already, whether active or inactive. Then label u as inactive and re-iterate, picking
another active vertex, if possible.

5.4. Regardless of which active vertex is picked in the successive steps, this procedure terminates and,
moreover, every vertex of T is visited during this procedure.
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Proof. Clearly this procedure terminates when there is no active vertex left. Since every vertex is labeled
active at most once, this proves the first assertion.

Assume now the procedure has terminated. The latter assertion follows from the fact that, if W is
the collection of inactive vertices, G|W is already a tripod. Thus, since b1, b2, b3 ∈ W , G|(W ∪ {x}) is
4-chromatic and so G|(W ∪ {x}) = G, due to the choice of G.

Instead of traversing a given tripod, we use this method to enumerate all possible 4-critical P6-free
1-vertex extensions of a tripod. The idea is to successively generate the possible subgraphs induced by
the labeled vertices only. This is done by Algorithm 3. Starting from all relevant graphs on the vertex
set {x, b1, b2, b3, a1, a2, a3}, we iteratively add new vertices, mimicking the iterative labeling procedure
mentioned above. The following list contains all of these start graphs.

5.5. We may assume that the graph G′ := G|{x, b1, b2, b3, a1, a2, a3} has the following properties.

(a) If b1 = a1, then G = G′ is K4.

(b) If b1 6= a1 and b2 = a2, then b3 = a3. Moreover,

E(G′) ⊇ {xb1, xa2, xa3, a1a2, a1a3, a2a3} := F

E(G′) ⊆ F ∪ {b1a2, b1a3}.

(c) If b1 6= a1, b2 6= a2 and b3 = a3, then

E(G′) ⊇ {xb1, xb2, xa3, a1a2, a1a3, a2a3} := F

E(G′) ⊆ F ∪ {xa2, b1a2, b1b2, b1a3, b2a1, b2a3}.

(d) If b1 6= a1, b2 6= a2 and b3 6= a3, then

E(G′) ⊇ {xb1, xb2, xb3, a1a2, a1a3, a2a3} := F

E(G′) ⊆ F ∪ {xa2, xa3, b1a2, b1b2, b1a3, b1b3, b2a1, b2a3, b2b3, b3a1, b3a2}.

Proof. This follows readily from our assumption t(b3) < t(b2) < t(b1) with 5.2 and 5.3.

In our algorithm, we do not only consider graphs, but rather tuples containing a graph together with
its list of vertex labels and a linear vertex ordering. The algorithm is split into three parts.

• Algorithm 3 initializes all relevant tuples according to 5.5.

• Algorithm 4 is the main procedure, where a certain tuple is extended in all possible relevant ways.
This corresponds to a labeling step in our tripod traversal algorithm.

• Algorithm 5 is a subroutine we use to prune tuples we do not need to consider. We call a tuple
prunable if Algorithm 5 applied to it returns the value false.

We now come to the correctness proof of these algorithms.

5.6. Assume that Algorithm 3 terminates and does never generate a tuple whose graph has k+ 1 or k+ 2
vertices, for some k ≥ 4. Then any 4-critical P6-free graph which is a 1-vertex extension of a tripod has
at most k vertices.

To see this, let G be a 4-critical P6-free graph other than K4 that is a 1-vertex extension of a tripod,
with the notation from above. We need the following claim.

5.7. There is a sequence of tuples Γi = (Gi = (V i, Ei), Ai
1, A

i
2, A

i
3,Ordi,Acti), i = 0, . . . , r, and a way of

traversing the tripod T in r steps, in the way described above, for which the following holds, after possibly
renaming vertices. Let V (i) be set of all labeled vertices after the i-th iteration of the traversal, together
with x, and let Act(i) be the set of vertices which are active after the i-th iteration of the traversal, for
i = 0, . . . , r.

(a) At some point during the algorithm, Expand(Γ0) is called.

(b) During the procedure Expand(Γi), Γi+1 is generated and so Expand(Γi+1) is called, for all i =
0, . . . , r − 1.

(c) The following holds, for all i = 0, . . . , r.
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Algorithm 3 Generate 4-critical P6-free 1-vertex extension of a tripod

1: set V := {x, b1, a1, a2, a3} // in this case, b2 = a2 and b3 = a3
2: set Emust := {xb1, xa2, xa3, a1a2, a1a3, a2a3}
3: set Emay := {b1a2, b1a3}
4: set Ord := (a3, a2, a1, b1, x) and Act := {b1}
5: set A1 := {a1, b1}, A2 := {a2}, and A3 := {a3}
6: for each E ⊆ Emust ∪ Emay with Emust ⊆ E do
7: Expand(G = (V,E), A1, A2, A3,Ord,Act)
8: end for
9: set V := {x, b1, b2, a1, a2, a3} // in this case, b2 6= a2 and b3 = a3

10: set Emust := {xb1, xb2, xa3, a1a2, a1a3, a2a3}
11: set Emay := {xa2, b1b2, b1a2, b1a3, b2a1, b2a3}
12: set Ord := (a3, a2, a1, b2, b1, x) and Act := {b1, b2}
13: set A1 := {a1, b1}, A2 := {a2, b2}, and A3 := {a3}
14: for each E ⊆ Emust ∪ Emay with Emust ⊆ E do
15: Expand(G = (V,E), A1, A2, A3,Ord,Act)
16: end for
17: set V := {x, b1, b2, b3, a1, a2, a3} // in this case, b2 6= a2 and b3 6= a3
18: set Emust := {xb1, xb2, xb3, a1a2, a1a3, a2a3}
19: set Emay := {xa2, xa3, b1b2, b1b3, b2b3, b1a2, b1a3, b2a1, b2a3, b3a1, b3a2}
20: set Ord := (a3, a2, a1, b3, b2, b1, x) and Act := {b1, b2, b3}
21: set A1 := {a1, b1}, A2 := {a2, b2}, and A3 := {a3, b3}
22: for each E ⊆ Emust ∪ Emay with Emust ⊆ E do
23: Expand(G = (V,E), A1, A2, A3,Ord,Act)
24: end for

(i) G|V (i) = Gi, and in particular Aj ∩ V (i) = Ai
j, for all j = 1, 2, 3,

(ii) Acti = Act(i), and

(iii) for any two u, v ∈ V (i) with t(u) < t(v), u <Ordi v.

Proof. Since G is not K4 we may assume that b1 6= a1, by 5.5.
If b2 = a2, then 5.5 implies b3 = a3, and Γ0 is generated by Algorithm 3. Here, Γ0 = (G0 =

(V 0, E0), A0
1, A

0
2, A

0
3,Ord0,Act0) with

• V 0 = {a1, b1, a2, a3, x} and E0 = E(G|V 0),

• A0
1 = {a1, b1}, A0

2 = {a2}, and A0
3 = {a3}, and

• Ord0 = (a3, a2, a1, b1, x), and Act0 = {b1}.
By 5.5, Emust ⊆ E0 ⊆ Emust ∪ Emay. The cases when a2 6= b2 but a3 = b3 resp. a3 6= b3 are dealt with
similarly. This proves (c) for i = 0.

For the inductive step assume that for some s ∈ {0, . . . , r − 1} the tuple Γs has the properties
mentioned in (c). We first prove that Γs+1 is generated while Expand(Γs) is processed, and that Γs+1

has the properties mentioned in (c).
First we discuss why Algorithm 5 returns true on the input Γs. Clearly Gs = G|V (s) 6= G is 3-

colorable and P6-free, and so the if-conditions in lines 4 and 1 both do not apply. Also, the if-conditions
in the lines 7 and 10 does not apply to Γs due to 5.3 applied to G together with (c).(i) in the case i = s.

During the steps 13-23, the if-condition in line 19 never applies due to 5.2. To see this, pick two distinct
vertices u, v ∈ (V s \ {x}) with u < v and u /∈ Acts. Let {i, j, k} = {1, 2, 3} be such that u ∈ As

i , let uj

be the <Ords -minimal neighbor of u in As
j , and let uk be defined accordingly, let {i′, j′, k′} = {1, 2, 3}

be such that v ∈ As
i′ , and let vj′ be the <Ords -minimal neighbor of v in As

j′ , if existent, and let vk′ be
defined accordingly.

Due to property (c).(iii), t(u) < t(v). Since u ∈ V s \Acts, we know that u ∈ V (s) \Act(s), by (c).(i).
Thus, nj(u), nk(u) ∈ V (s). Moreover, by (c).(i), nj(u) = uj and nk(u) = uk. Now, if vj′ , vk′ both
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Algorithm 4 Expand(Graph G = (V,E), Set A1, Set A2, Set A3, List Ord, Set Act)

1: if not Feasible(G, A1, A2, A3, Ord, Act) then
2: return
3: end if
4: pick a vertex u from the set Act and let {i, j, k} = {1, 2, 3} be such that u ∈ Ai

5: let uj be the <Ord-minimal neighbor of u in Aj , if existent, and let uk be defined accordingly
// we write u <Ord v whenever u appears before v in the list Ord

6: let vj , vk be two entirely new vertices
7: for all ways of inserting vj and vk into the list Ord such that

(a) a1 <Ord vj , vk <Ord u,

(b) vj <Ord uj , if existent, and vk <Ord uk, if existent

do
8: put

E∗ := {wvj : w ∈ Ai ∪Ak is active} ∪ {wvk : w ∈ Ai ∪Aj is active} ∪ {xvj , xvk} ∪ {vj , vk}
∪ {wvj : w ∈ Ai ∪Ak is inactive and has a neighbor w′ ∈ Aj with w′ <Ord vj}
∪ {wvk : w ∈ Ai ∪Ak is inactive and has a neighbor w′ ∈ Ak with w′ <Ord vk}

9: for all subsets E′ of E∗ do
10: put A′i := Ai, A

′
j := Aj ∪ {vj}, A′k := Ak ∪ {vk}, and Act′ := (Act \ {u}) ∪ {vj , vk}

11: let Ord′ be Ord where vj and vk are inserted in the position we currently consider
12: Expand((V ∪ {vj , vk}, E ∪ E′), A′1, A

′
2, A

′
3,Ord′,Act′)

13: end for
14: end for
15: for r = j, k do
16: if ur is existent and ur <Ord u then
17: let {r, s} = {j, k}
18: for all ways of inserting vs into the list Ord such that a1 <Ord vs <Ord u do
19: put

E∗ := {wvs : w ∈ Ai ∪Ar is active} ∪ {xvs}
∪ {wvs : w ∈ Ai ∪Ar is inactive and has a neighbor w′ ∈ As with w′ <Ord vs}

20: for all subsets E′ of E∗ do
21: put A′i := Ai, A

′
s := As ∪ {vs}, A′r := Ar, and Act′ := (Act \ {u}) ∪ {vs}

22: let Ord′ be Ord where vs is inserted in the position we currently consider
23: Expand((V ∪ {vs}, E ∪ E′), A′1, A

′
2, A

′
3,Ord′,Act′)

24: end for
25: end for
26: end if
27: end for
28: if both uj and uk exist and uj , uk <Ord u then
29: Expand(G,A1, A2, A3,Ord,Act \ {u})
30: end if

exist and vj′ , vk′ <Ords ur for some r ∈ {j, k}, then in particular t(nj′(v)), t(nk′(v)) < t(nr(u)), in
contradiction to 5.2.

Finally, Γs is not pruned in the lines 24-34 since G− u is 3-colorable for every u ∈ V .
Now we argue why Γs+1 is constructed and carries the desired properties. If s = 0, the case is clear,
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Algorithm 5 Feasible(Graph G = (V,E), Set A1, Set A2, Set A3, List Ord, Set Act)

1: if G contains a P6 then
2: return false
3: end if
4: if G is not 3-colourable then
5: return false
6: end if
7: if x has at least two neighbors in A1 then
8: return false
9: end if

10: if x has at least two neighbors in A2 and at least two neighbors in A3 then
11: return false
12: end if
13: for any two distinct vertices u, v ∈ (V \ {x}) with u <Ord v do
14: if u /∈ Act then
15: let {i, j, k} = {1, 2, 3} be such that u ∈ Ai

16: let uj be the <Ord-minimal neighbor of u in Aj , and let uk be defined accordingly
17: let {i′, j′, k′} = {1, 2, 3} be such that v ∈ Ai′

18: let vj′ be the <Ord-minimal neighbor of v in Aj′ , if existent, and let vk′ be defined accordingly
19: if the following hold:

(a) {uj , uk} 6⊆ {a1, a2, a3},
(b) vj′ and vk′ both exist, and

(c) vj′ , vk′ <Ord ur for some r ∈ {j, k}
then

20: return false
21: end if
22: end if
23: end for
24: for each u ∈ (V \ {x}) do
25: put W := {v ∈ V : v <Ord u}
26: put Bi := Ai ∩W for each i = 1, 2, 3
27: while there is a vertex v ∈ V \ (B1 ∪B2 ∪B3 ∪ {u}) with neighbors in at least two of B1, B2, B3 do
28: if v has neighbors in all three of B1, B2, B3 then
29: return false
30: else
31: put Bi := Bi ∪ {v}, where Bi is the set that v does not have neighbors in
32: end if
33: end while
34: end for
35: return true

so we may assume that s > 0. Say that, in the procedure Expand(Γs), vertex u is picked in line 4 of
Algorithm 4. Let us say that u ∈ As

i , where {i, j, k} = {1, 2, 3}. In the traversal procedure, nj(u) and
nk(u) are now visited and made active, in case they are not in V (s) already.

Let us first assume that nj(u), nk(u) /∈ V (s), and let vj , vk be the two entirely new vertices picked in
line 6. Due to the definition of tripods, t(a1) < t(nj(u)), t(nk(u)) < t(u), and

t(n`(u)) < min({t(w) : w ∈ NG(u) ∩A`} ∪ {∞}) for ` = j, k.

Consequently, the algorithm considers in line 7 inserting the two new vertices vj and vk into Ords such
that (c).(iii) holds, where we identify vj with nj(u) and vk with nk(u). Moreover, E∗ in line 8 contains

20



all edges incident to nj(u) and nk(u) in G|V (s), due to the definition of nj(u) and nk(u). Due to steps 10
and 11, the tuple Γs+1 is indeed generated, and Expand(Γs+1) is called, where

• Gs+1 = G|(V (s) ∪ {nj(u), nk(u)}) = G|V (s + 1), and in particular As+1
i = As

i = V (s) ∩ Ai =
V (s+ 1) ∩Ai, and As+1

` = As
` ∪ {v` = n`(u)} = V (s+ 1) ∩A` for ` = j, k,

• Acts+1 = (Acts+1 \ {u}) ∪ {vj , vk} = (Act(s) \ {u}) ∪ {nj(u), nk(u)} = Act(s+ 1), and

• for any two vertices u, v ∈ V (s+ 1) with t(u) < t(v), u <Ords+1 v.

The cases when nj(u) and/or nk(u) have been active before are handled analogously. This completes
the proof of 5.7.

Next we derive 5.6.

Proof of 5.6. Like above, Γr is not pruned in step 1 during the procedure of Expand(Γr). Since Gr =
G|V (r) = G, G is indeed generated by the algorithm. As |V (Gs)|+2 ≥ |V (Gs+1)| for all s = 0, . . . , r−1,
G has at most k vertices.

We implemented this set of algorithms in C with some further optimizations. A crucial detail is how
the active vertex is picked in line 4 of Algorithm 4. The following choice seemed to terminate most
quickly.

• If the graph which is currently expanded has at most 12 vertices, we pick the Ord-maximal active
vertex in line 4.

• If the graph has more than 12 vertices, we pick the active vertex for which the number of non-
prunable tuples generated from it is minimum. This is done by trying to extend every active vertex
once without iterating any further and counting the number of non-prunable tuples generated.

With this choice, our program does indeed terminate (in about 60 hours) and the largest non-prunable
generated graph has 18 vertices. Together with 5.6, we arrive at 5.1. Table 3 shows the number of
non-prunable tuples generated by the program.

|V (G)| 5 6 7 8 9
# non-prunable tuples 3 67 2,010 11,726 81,523
|V (G)| 10 11 12 13 14
# non-prunable tuples 388,190 1,234,842 3,380,785 10,669,960 16,322,798
|V (G)| 15 16 17 18 19, 20
# non-prunable tuples 137,031 49,506 2,865 330 0

Table 3: Counts of the number of non-prunable tuples generated by our implementation of Algorithm 3.

In order to be sure the algorithm is implemented correctly, we also modified the program so it collects
all 4-critical graphs found along the way, similar to line 3 of Algorithm 2. As expected, all 4-critical
P6-free 1-vertex extensions of a tripod from our list were found. In the Appendix we describe into more
detail how we tested the correctness of our implementation and the source code of the program can be
downloaded from [7].

6 Obstructions up to 28 vertices

In this section we prove the following result.

6.1. Let G be a 4-critical P6-free graph. If |V (G)| ≤ 28, then G is contained in our list.

For the proof of this result, we run the enumeration algorithm of Section 1, with the following
modifications. In line 1 of Algorithm 2, we do not discard a graph if it contains a diamond, only when
it is not P6-free. Moreover, we discard a graph if it contains more than 28 vertices. This procedure
terminates exactly with our list (note that the largest graph in our list has 16 vertices). Table 4 shows
the number of graphs generated by the algorithm on each relevant number of vertices. This computation
took approximately 9 CPU years on a cluster.
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|V (G)| 5 6 7 8 9 10
# graphs generated 1 7 45 253 1,385 5,402
|V (G)| 11 12 13 14 15 16
# graphs generated 12,829 24,802 36,435 41,422 42,769 46,176
|V (G)| 17 18 19 20 21 22
# graphs generated 54,001 70,205 99,680 145,968 233,687 382,762
|V (G)| 23 24 25 26 27 28
# graphs generated 696,462 1,430,280 3,002,407 6,410,184 13,703,206 30,764,536

Table 4: Counts of the number of P6-free graphs generated by our implementation of Algorithm 1 without
testing for induced diamonds.

7 Proof of 1.1

Let G be a 4-critical P6-free graph. If G is diamond-free, we are done by 3.1. We may thus assume that
there is a maximal tripod T = (A1, A2, A3) in G which is not just a triangle.

Suppose that there is some vertex x ∈ V (G) \ V (T ) with a neighbor in each Ai, i = 1, 2, 3. Then
V (G) = V (T ) ∪ {x}, and so |V (G)| ≤ 18 by 5.1. By 6.1, G is one of F1-F24.

So, we may assume that no vertex has a neighbor in all three classes of T . Let G′ be the graph
obtained by contracting T in G. By 2.1, we know that G′ is P6-free and not 3-colorable. We may thus
pick a 4-critical P6-free subgraph H of G′. Inductively, H is one of F1-F24. Thus, using 4.10, we see that
|V (G)| ≤ 28. By 6.1, G is one of F1-F24.

8 P7-free obstructions

This section is devoted to the following unpublished observation by Pokrovskiy [15].

8.1. There are infinitely many 4-critical P7-free graphs.

In the proof we construct an infinite family of 4-vertex-critical P7-free graphs, i.e., P7-free graphs
which are 4-chromatic but every proper induced subgraph is 3-colorable. This means that there is also
an infinite number of 4-critical P7-free graphs. Note that, indeed, not all members of our family are
4-critical P7-free.

Proof of 8.1. Consider the following construction. For each r ≥ 1, Gr is a graph defined on the vertex
set v0, . . . , v3r. The graph G16 is shown in Fig. 3. A vertex vi, where i ∈ {0, 1, . . . , 3r}, is adjacent to
vi−1, vi+1, and vi+3j+2, for all j ∈ 0, 1, . . . , r−1. Here and throughout the proof, we consider the indices
to be taken modulo 3r + 1.

First we observe that, up to permuting the colors, there is exacly one 3-coloring of Gr − v0. Indeed,
we may w.l.o.g. assume that vi recieves color i, for i = 1, 2, 3, since {v1, v2, v3} forms a triangle in Gr.
Similarly, v4 recieves color 1, v5 recieves color 2 and so on. Finally, v3r recieves color 3. Since the coloring
was forced, our claim is proven.

In particular, Gr is not 3-colorable, since v0 is adjacent to all of v1, v2, v3r. As the choice of v0 was
arbitrary, we know that Gr is 4-vertex-critical.

It remains to prove that Gr is P7-free. Suppose that P = x1-x2-. . .-x7 is an induced P7 in Gr. To
simplify the argumentation, we assume Gr to be equipped with the proper coloring described above.
That is, v0 is has color 4, and, for all i = 0, . . . , r − 1 and j = 1, 2, 3, the vertex v3i+j is colored with
color j. Let Xi denote the set of vertices of color i, for i = 1, 2, 3, 4.

If r ≤ 2, |V (Gr)| ≤ 7, and so we are done since obviously G2 is not isomorphic to P7. Therefore, we
may assume r ≥ 3 and, since Gr is vertex-transitive, w.l.o.g. v0 /∈ V (P ). Hence, P is an induced P7 in
the graph H := Gr − v0, which we consider from now on.

First we suppose that some vertices of P appear consecutively in the ordering v1, . . . , v3r. That
is, w.l.o.g. xi = vj and xi+1 = vj+1 for some i ∈ {1, . . . , 6} and j ∈ {1, . . . , 3r − 1}. Since P is an
induced path, we know that neither of vj−1 and vj+2, if existent, are contained in P . Thus, we may
assume that j = 1, and so v3 /∈ V (P ). Recall that NH(v1) \ {v2} = X3 and NH(v2) \ {v3} = X1.
Thus, |NH(xi) ∩ V (P )| ≤ 2 implies |X3 ∩ V (P )| ≤ 1, and similarly |NH(xi+1) ∩ V (P )| ≤ 2 implies

22



|X1 ∩ V (P )| ≤ 2. Therefore, |X2 ∩ V (P )| = 4, which means that x1, x3, x5, x7 ∈ X2. But this is a
contradiction to the fact that NH(v1) \ {v2} = X3.

Hence, no two vertices of P appear consecutively in the ordering v1, . . . , v3r. For simplicity, let us
say that a vertex vi is left of (right of ) a vertex vj if i < j (if i > j). We now know the following. Let
x ∈ V (P ) be left of y ∈ V (P ). Then xy ∈ E if and only if x ∈ X1 and y ∈ X3, x ∈ X2 and y ∈ X1, or
x ∈ X3 and y ∈ X2. Below we make frequent use of this fact without further reference.

W.l.o.g. x1 ∈ X1 and x2 ∈ X2. In particular, x2 is left of x1. We now distinguish the possible
colorings of the remaining vertices of P , obtaining a contradiction in each case.

Case 1. x3 ∈ X1.
In this case, x3 must be right of x2.
Case 1.1. x4 ∈ X2.
In this case, x4 is right of x1, and in turn x3 is right of x4. Hence, x5 cannot be in X1, since then it

must be right of x4 but left of x2. So, x5 ∈ X3, and thus x5 is between x2 and x1.
Case 1.1.1. x6 ∈ X1.
Then x6 must be left of x2. If x7 ∈ X2, it must be left of x6 but right of x3, a contradiction. Otherwise

if x7 ∈ X3, it must be left of x1 but right of x4, another contradiction.
Case 1.1.2. x6 ∈ X2.
In this case x6 must be right of x3. If x7 ∈ X1, it must be left of x4 but right of x6, a contradiction.

Otherwise if x7 ∈ X3, it must be left of x1 but right of x4, again a contradiction.
Case 1.2. x4 ∈ X3.
In this case, x4 is right of x3, and in turn x1 is right of x4.
Case 1.2.1. x5 ∈ X1.
So, x5 must be left of x2. Hence, x6 cannot be in X2, since then x6 must be left of x5 and right of

x1. Thus, x6 ∈ X3, which means that x6 is between x2 and x3.
If x7 ∈ X1, it must be left of x6 but right of x1, a contradiction. Otherwise if x7 ∈ X2, it must be

left of x4 but right of x1, another contradiction.
Case 1.2.2. x5 ∈ X2.
So, x5 must be right of x1. Clearly x6 /∈ X1, for then it must be left of x2 but right of x5. So,

x6 ∈ X3, and thus x6 is between x2 and x3.
If x7 ∈ X1, it must be left of x6 but right of x4, a contradiction. Otherwise if x7 ∈ X2, it must be

left of x4 but right of x1, another contradiction.
Case 2. x3 ∈ X3.
In this case, x3 must be left of x2.
Case 2.1. x4 ∈ X1.
Then x4 is left of x3, and thus also x1 and x2.
If x5 ∈ X2, x5 must be left of x4 but right of x1, a contradiction. So, x5 ∈ X3. Then x2 must be

between x2 and x1. If x6 ∈ X2, it must be right of x5 but left of x3, a contradiction. So, x6 ∈ X1, and
thus x6 must be between x3 and x2.

If x7 ∈ X2, it must be left of x6 but right of x1, a contradiction. Hence, x7 ∈ X3. But now x7 must
be right of x6 and left of x4, another contradiction.

Case 2.2. x4 ∈ X2.
Then x4 must be right of x1.
If x5 ∈ X1, it must be right of x4 but left of x2, a contradiction. So, x5 ∈ X3, and thus x5 is between

x2 and x1.
If x6 ∈ X1, it must be between x3 and x2. If, moreover, x7 ∈ X2, x7 is left of x6 but right of x1, a

contradiction. Similarly, if x7 ∈ X3, x7 is left of x1 but right of x4, another contradiction.
We thus know x6 ∈ X2. But then x6 must be left of x3 and right of x5, a contradiction.
Summing up, Gr is P7-free, and this completes the proof.

We also modified Algorithm 2 to generate 4-critical P7-free graphs. As one would expect, the number
of obstructions is much larger than in the P6-free case. Table 5 contains the counts of all 4-critical and
4-vertex-critical P7-free graphs up to 15 vertices.
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Figure 3: A circular drawing of G16

Vertices Critical graphs Vertex-critical graphs
4 1 1
6 1 1
7 2 7
8 5 8
9 21 124
10 99 2,263
11 212 1,771
12 522 6,293
13 679 15,064
14 368 4,521
15 304 2,914
≤ 15 2,214 32,967

Table 5: Counts of all 4-critical and 4-vertex-critical P7-free graphs up to 15 vertices.
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Appendix 1: Correctness testing

Since several results obtained in this paper rely on computations, it is very important that the correctness
of our programs has been thoroughly verified to minimize the chance of programming errors. In the
following subsections we explain how we tested the correctness of our implementations.

Since all of our consistency tests passed, we believe that this is strong evidence for the correctness of
our implementations.

Appendix 1.1: Correctness testing of critical Pt-free graph generator

We performed the following consistency tests to verify the correctness of our generator for k-critical
Pt-free graphs (i.e. Algorithm 1). The source code of this program can be downloaded from [6].

• We applied the program to generate critical graphs for cases which were already settled before in
the literature and verified that our program indeed obtained the same results. More specifically we
verified that our program yielded exactly the same results in the following cases:

– There are six 4-critical P5-free graphs [2].

– There are eight 5-critical (P5, C5)-free graphs [11].

– The Grötzsch graph is the only 4-critical (P6, C3)-free graph [16].

– There are four 4-critical (P6, C4)-free graphs [10].

• We developed an independent generator for k-critical Pt-free graphs by starting from the program
geng [13, 14] (which is a generator for all graphs) and adding pruning routines to it for colorability
and Pt-freeness. This generator cannot terminate, but we were able to independently verify the
following results with it:
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– We executed this program to generate all 4-critical (P6, diamond)-free graphs up to 16 vertices
and it indeed yielded the same 6 critical graphs from 3.1.

– We executed this program to generate all 4-critical and 4-vertex-critical P6-free graphs up to
16 vertices and it indeed yielded the same graphs from 1.1 and Table 1.

– We executed this program to generate all 4-critical and 4-vertex-critical P7-free graphs up to
13 vertices and it indeed yielded the same graphs from Table 5.

• We modified our program to generate all Pt-free graphs and compared it with the known counts
of Pt-free graphs for t = 4, 5 on the On-Line Encyclopedia of Integer Sequences [18] (i.e. sequences
A000669 and A078564).

• We modified our program to generate all k-colourable graphs and compared it with the known
counts of k-colourable graphs for k = 3, 4 on the On-Line Encyclopedia of Integer Sequences [18]
(i.e. sequences A076322 and A076323).

• We determined all k-vertex-critical graphs in two independent ways and both methods yielded
exactly the same results:

1. By modifying line 3 of Algorithm 2 so it tests for k-vertex-criticality instead of k-criticality.

2. By recursively adding edges in all possible ways to the set of critical graphs (as long as the
graphs remain k-vertex-critical) and testing if the resulting graphs are Pt-free.

Appendix 1.2: Correctness testing of tripod generator

We performed the following consistency tests to verify the correctness of our generator for 4-critical P6-
free 1-vertex extensions of tripods (i.e. Algorithm 3). The source code of this program can be downloaded
from [7].

• We wrote a program to test if a graph is a 1-vertex extension of a tripod and applied it to the 24
4-critical P6-free graphs from Theorem 1.1. 11 of those graphs are 1-vertex extensions of a tripod
(i.e. F1, F2, F4, F6, F7, F9, F10, F17, F21, F22 and F23). We verified that our implementation
of Algorithm 3 indeed yielded exactly those 11 graphs which are a 1-vertex extension of a tripod
(except K4).

• We used Algorithm 1 to generate all 4-critical P7-free graphs up to 14 vertices. There are 1910 such
graphs and 595 of them are 1-vertex extensions of a tripod (see Table 6 for details). We modified
our implementation of Algorithm 3 to generate 4-critical P7-free 1-vertex extensions of tripods and
executed it up to 14 vertices. We verified that this indeed yields exactly those 595 graphs which
are a 1-vertex extension of a tripod (except K4).

Vertices Critical graphs 1-vertex extensions
4 1 1
6 1 1
7 2 1
8 5 4
9 21 14
10 99 56
11 212 87
12 522 141
13 679 196
14 368 94
≤ 14 1,910 595

Table 6: Counts of 4-critical P7-free graphs up to 14 vertices and the number of those graphs which are
1-vertex extensions of a tripod.
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Appendix 2: Adjacency lists

This section contains the adjacency lists of the 24 4-critical P6-free graphs from Theorem 1.1. The graphs
are listed in the same order as in Fig. 1 and 2.

• Graph F1: {0 : 1 2 3; 1 : 0 2 3; 2 : 0 1 3; 2 : 0 1 3}
• Graph F2: {0 : 2 3 5; 1 : 3 4 5; 2 : 0 4 5; 3 : 0 1 5; 4 : 1 2 5; 5 : 0 1 2 3 4}
• Graph F3: {0 : 2 4 5; 1 : 3 5 6; 2 : 0 4 6; 3 : 1 5 6; 4 : 0 2 6; 5 : 0 1 3; 6 : 1 2 3 4}
• Graph F4: {0 : 3 4 5; 1 : 3 5 6; 2 : 4 5 6; 3 : 0 1 4 6; 4 : 0 2 3 6; 5 : 0 1 2; 6 : 1 2 3 4}
• Graph F5: {0 : 3 4 5; 1 : 4 6 7; 2 : 5 6 7; 3 : 0 6 7; 4 : 0 1 5; 5 : 0 2 4; 6 : 1 2 3 7; 7 : 1 2 3 6}
• Graph F6: {0 : 3 5 6; 1 : 4 5 7; 2 : 5 6 7; 3 : 0 6 7; 4 : 1 6 7; 5 : 0 1 2; 6 : 0 2 3 4 7; 7 : 1 2 3 4 6}
• Graph F7: {0 : 3 4 5 7; 1 : 4 5 6; 2 : 5 6 7; 3 : 0 6 7; 4 : 0 1 7; 5 : 0 1 2; 6 : 1 2 3 7; 7 : 0 2 3 4 6}
• Graph F8: {0 : 3 5 7; 1 : 4 7 8; 2 : 5 6 7; 3 : 0 6 8; 4 : 1 7 8; 5 : 0 2 8; 6 : 2 3 8; 7 : 0 1 2 4; 8 : 1

3 4 5 6}
• Graph F9: {0 : 4 5 8; 1 : 4 7 8; 2 : 5 6 8; 3 : 6 7 8; 4 : 0 1 6 8; 5 : 0 2 7; 6 : 2 3 4 8; 7 : 1 3 5; 8 :

0 1 2 3 4 6}
• Graph F10: {0 : 4 5 7; 1 : 4 7 8; 2 : 5 6 7; 3 : 6 7 8; 4 : 0 1 6 8; 5 : 0 2 8; 6 : 2 3 4 8; 7 : 0 1 2 3; 8

: 1 3 4 5 6}
• Graph F11: {0 : 3 4 5 8; 1 : 4 5 6; 2 : 5 6 7 8; 3 : 0 6 7; 4 : 0 1 7 8; 5 : 0 1 2; 6 : 1 2 3 8; 7 : 2 3 4;

8 : 0 2 4 6}
• Graph F12: {0 : 3 6 9; 1 : 4 6 7; 2 : 5 7 8; 3 : 0 6 9; 4 : 1 8 9; 5 : 2 7 8; 6 : 0 1 3 8; 7 : 1 2 5 9; 8 :

2 4 5 6; 9 : 0 3 4 7}
• Graph F13: {0 : 4 6 9; 1 : 5 6 8; 2 : 6 8 9; 3 : 7 8 9; 4 : 0 7 8; 5 : 1 7 9; 6 : 0 1 2 7; 7 : 3 4 5 6; 8 :

1 2 3 4 9; 9 : 0 2 3 5 8}
• Graph F14: {0 : 4 5 7 9; 1 : 5 6 7; 2 : 6 7 8; 3 : 7 8 9; 4 : 0 6 8; 5 : 0 1 8 9; 6 : 1 2 4 9; 7 : 0 1 2 3;

8 : 2 3 4 5; 9 : 0 3 5 6}
• Graph F15: {0 : 4 5 8 9; 1 : 4 7 8 9; 2 : 5 6 8; 3 : 6 7 8; 4 : 0 1 6 9; 5 : 0 2 7; 6 : 2 3 4 9; 7 : 1 3 5;

8 : 0 1 2 3; 9 : 0 1 4 6}
• Graph F16: {0 : 5 6 7; 1 : 5 6 9; 2 : 5 8 9; 3 : 6 7 8; 4 : 7 8 9; 5 : 0 1 2 7 8; 6 : 0 1 3 8 9; 7 : 0 3 4

5 9; 8 : 2 3 4 5 6; 9 : 1 2 4 6 7}
• Graph F17: {0 : 3 5 6 9; 1 : 4 6 8; 2 : 5 6 7 8 9; 3 : 0 7 8 9; 4 : 1 7 9; 5 : 0 2 7 8; 6 : 0 1 2; 7 : 2 3

4 5; 8 : 1 2 3 5 9; 9 : 0 2 3 4 8}
• Graph F18: {0 : 5 6 10; 1 : 5 9 10; 2 : 6 7 10; 3 : 7 8 10; 4 : 8 9 10; 5 : 0 1 7 8; 6 : 0 2 8 9; 7 : 2 3

5 9; 8 : 3 4 5 6; 9 : 1 4 6 7; 10 : 0 1 2 3 4}
• Graph F19: {0 : 4 6 7 10; 1 : 5 9 10; 2 : 6 8 9 10; 3 : 7 8 9 10; 4 : 0 8 9; 5 : 1 9 10; 6 : 0 2 7; 7 : 0

3 6; 8 : 2 3 4 10; 9 : 1 2 3 4 5; 10 : 0 1 2 3 5 8}
• Graph F20: {0 : 5 10 11; 1 : 6 7 10 11; 2 : 6 9 10 11; 3 : 7 8 10 11; 4 : 8 9 10 11; 5 : 0 10 11; 6 : 1

2 8 10; 7 : 1 3 9; 8 : 3 4 6 11; 9 : 2 4 7; 10 : 0 1 2 3 4 5 6; 11 : 0 1 2 3 4 5 8}
• Graph F21: {0 : 4 6 7 10 11; 1 : 5 6 7 8 11; 2 : 6 8 10 11 12; 3 : 7 8 9 10 11 12; 4 : 0 8 9 12; 5 : 1

9 10 11 12; 6 : 0 1 2 9 10 12; 7 : 0 1 3 12; 8 : 1 2 3 4; 9 : 3 4 5 6 11; 10 : 0 2 3 5 6; 11 : 0 1 2 3 5
9; 12 : 2 3 4 5 6 7}

• Graph F22: {0 : 4 6 8 9 11 12; 1 : 5 6 7 10 11 12; 2 : 6 7 8 9 11 12; 3 : 9 10 11 12; 4 : 0 7 10 11
12; 5 : 1 8 9 12; 6 : 0 1 2 10; 7 : 1 2 4 9; 8 : 0 2 5 10 11; 9 : 0 2 3 5 7 10; 10 : 1 3 4 6 8 9; 11 : 0 1
2 3 4 8; 12 : 0 1 2 3 4 5}

• Graph F23: {0 : 4 6 7 9 10; 1 : 5 7 8 9; 2 : 6 7 9 10 11; 3 : 7 8 9 10 11 12; 4 : 0 8 9 10 11 12; 5 : 1
10 11 12; 6 : 0 2 8 11 12; 7 : 0 1 2 3 11 12; 8 : 1 3 4 6; 9 : 0 1 2 3 4 12; 10 : 0 2 3 4 5; 11 : 2 3 4 5
6 7; 12 : 3 4 5 6 7 9}

• Graph F24: {0 : 4 8 13 14 15; 1 : 5 8 10 14 15; 2 : 6 8 9 10 15; 3 : 7 8 9 10 11; 4 : 0 9 10 11 12; 5 :
1 9 11 12 13; 6 : 2 11 12 13 14; 7 : 3 12 13 14 15; 8 : 0 1 2 3 11 12 13; 9 : 2 3 4 5 13 14 15; 10 : 1 2
3 4 12 13 14; 11 : 3 4 5 6 8 14 15; 12 : 4 5 6 7 8 10 15; 13 : 0 5 6 7 8 9 10; 14 : 0 1 6 7 9 10 11; 15 :
0 1 2 7 9 11 12}
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