Obstructions for three-coloring graphs without induced paths on six vertices

Maria Chudnovsky*1, Jan Goedgebeur ${ }^{\dagger 2}$, Oliver Schaudt ${ }^{3}$, and Mingxian Zhong ${ }^{4}$
${ }^{1}$ Princeton University, Princeton, NJ 08544, USA. E-mail: mchudnov@math.princeton.edu
${ }^{2}$ Ghent University, Ghent, Belgium. E-mail: jan.goedgebeur@ugent.be
${ }^{3}$ Universität zu Köln, Köln, Germany. E-mail: schaudto@uni-koeln.de
${ }^{4}$ Columbia University, New York, NY 10027, USA. E-mail: mz2325@columbia.edu

Abstract

We prove that there are 244 -critical P_{6}-free graphs, and give the complete list. We remark that, if H is connected and not a subgraph of P_{6}, there are infinitely many 4-critical H-free graphs. Our result answers questions of Golovach et al. and Seymour.

1 Introduction

A k-coloring of a graph $G=(V, E)$ is a mapping $c: V \rightarrow\{1, \ldots, k\}$ such that $c(u) \neq c(v)$ for all edges $u v \in E$. If a k-coloring exists, we say that G is k-colorable. We say that G is k-chromatic if it is k-colorable but not $(k-1)$-colorable. A graph is called k-critical if it is k-chromatic, but every proper subgraph is $(k-1)$-colorable. For example, the class of 3 -critical graphs is the family of all chordless odd cycles. The characterization of critical graphs is a notorious problem in the theory of graph coloring, and also the topic of this paper.

Since it is NP-hard to decide whether a given graph admits a k-coloring, assuming $k \geq 3$, there is little hope of giving a characterization of the ($k+1$)-critical graphs that is useful for algorithmic purposes. The picture changes if one restricts the structure of the graphs under consideration.

Let a graph H and a number k be given. An H-free graph is a graph that does not contain H as an induced subgraph. We say that a graph G is k-critical H-free if G is H-free, k-chromatic, and every H-free proper subgraph of G is $(k-1)$-colorable. In this paper we stick to the case of 4 -critical graphs; these graphs we may informally call obstructions.

Bruce et al. 2] proved that there are exactly six 4-critical P_{5}-free graphs, where P_{t} denotes the path on t vertices. Randerath et al. [16] have shown that the only 4 -critical P_{6}-free graph without a triangle is the Grötzsch graph (i.e., the graph F_{18} in Fig. 22. More recently, Hell and Huang 10 proved that there are four 4 -critical P_{6}-free graphs without induced four-cycles.

In view of these results, Golovach et al. 9] posed the question of whether the list of 4 -criticial P_{6}-free graphs is finite (cf. Open Problem 4 in (9). In fact, they ask whether there is a certifying algorithm for the 3 -colorability problem in the class of P_{6}-free graphs, which is an immediate consequence of the finiteness of the list. Our main result answers this question affirmatively.

1.1. There are exactly 24 4-critical P_{6}-free graphs.

These 24 graphs, which we denote here by $F_{1}-F_{24}$, are shown in Fig. 1 and 2 . The list contains several familiar graphs, e.g., F_{1} is K_{4}, F_{2} is the 5 -wheel, F_{3} is the Moser-spindle, and F_{18} is the Grötzsch graph. The adjacency lists of these graphs can be found in the Appendix.

[^0]

Figure 1: The graphs F_{1} to F_{13}, in reading direction

We also determined that there are exactly 804 -vertex-critical P_{6}-free graphs (details on how we obtained these graphs can be found in the Appendix). Table 1 gives an overview of the counts of all 4 -critical and 4 -vertex-critical P_{6}-free graphs. All of these graphs can also be obtained from the House of Graphs 1 by searching for the keywords "4-critical P6-free" or "4-vertex-critical P6-free" where several of their invariants can be found.

In Section 8 we show that there are infinitely many 4 -critical P_{7}-free graphs using a construction due to Pokrovskiy [15]. Note that there are infinitely many 4 -critical claw-free graphs. For example, this follows from the existence of 4-regular bipartite graphs of arbitrary large girth (cf. 12 for an explicit construction of these), whose line graphs are then 4 -chromatic. Also, there are 4 -chromatic graphs of arbitrary large girth, which follows from a classical result of Erdős [5]. This together with 1.1 yields the following dichotomy theorem, which answers a question of Seymour [17].
1.2. Let H be a connected graph. There are finitely many 4-critical H-free graphs if and only if H is a subgraph of P_{6}.

We will next give a sketch of the proof of our main result, thereby explaining the structure of this paper.

Figure 2: The graphs F_{14} to F_{24}, in reading direction

1.1 Sketch of the proof

Given a 4-critical P_{6}-free graph, our aim is to show that it is contained in our list of 24 graphs. Our proof is based on the contraction (and uncontraction) of a particular kind of subgraph called tripod. Tripods have been used before in the design of 3-coloring algorithms for P_{7}-free graphs 3]. In Section 2 tripods are defined, and it is shown that contracting a maximal tripod to a single triangle is a safe operation for our purpose.

When all maximal tripods are just single triangles, we are left with a (P_{6}, diamond)-free graph, a diamond being the graph obtained by removing an edge from K_{4}. The second step of our proof consists of determining all 4 -critical (P_{6}, diamond)-free graphs, which we do in Section 3 . Our proof is computeraided, and builds on a substantial strengthening of a method by Hoàng et al. 11.

In Section 4 we show the following. Let G be a non-3-colorable P_{6}-free graph that is obtained from another graph G^{\prime} by contracting a tripod. If G contains one of our 24 obstructions, then so does G^{\prime} (we need a few additional assumptions if G contains K_{4}, but we will not list them here). The proof is done by a structural analysis by hand, and it does not use a computer.

Vertices	Critical graphs	Vertex-critical graphs
4	1	1
6	1	1
7	2	7
8	3	6
9	4	16
10	6	34
11	2	3
12	1	1
13	3	9
16	1	2
total	24	80

Table 1: Counts of all 4-critical and 4-vertex-critical P_{6}-free graphs.

Finally, in Section 5 we deal with the exceptionally difficult case of uncontracting a triangle in K_{4}. For this, we again use an automatic proof, though completely different than in the (P_{6}, diamond)-free case. We design an algorithm that performs an exhaustive generation of all possible 1-vertex extensions of tripods that are 4 -critical P_{6}-free. The algorithm mimicks the way that a tripod can be traversed, thereby applying a set of strong pruning rules that exploit the minimality of the obstruction.

We wrap up the whole proof in Section 7
As mentioned earlier, in Section 8 we show that there are infinitely many 4 -critical P_{7}-free graphs, which results in our dichotomy theorem.

2 Tripods

A tripod in a graph G is a triple $T=\left(A_{1}, A_{2}, A_{3}\right)$ of disjoint stable sets with the following properties:
(a) $A_{1} \cup A_{2} \cup A_{3}=\left\{v_{1}, \ldots, v_{k}\right\}$;
(b) $v_{i} \in A_{i}$ for $i=1,2,3$;
(c) $v_{1} v_{2} v_{3}$ is a triangle, the root of T; and
(d) for all $i \in\{1,2,3\},\{\ell, k\}=\{1,2,3\} \backslash\{i\}$, and $j \in\{4, \ldots, k\}$ with $v_{j} \in A_{i}$, the vertex v_{j} has neighbors in both $\left\{v_{1}, \ldots, v_{j-1}\right\} \cap A_{\ell}$ and $\left\{v_{1}, \ldots, v_{j-1}\right\} \cap A_{k}$.
Assuming that G admits a 3-coloring, it follows right from the definition above that each A_{i} is contained in a single color class. Moreover, since $v_{1} v_{2} v_{3}$ is a triangle, A_{1}, A_{2}, A_{3} are pairwise contained in distinct color classes.

To better reference the ordering of the tripod, we put $t\left(v_{1}\right)=t\left(v_{2}\right)=t\left(v_{3}\right)=0$, and $t\left(v_{i}\right)=i-3$ for all $4 \leq i \leq k$. For each $u \in A_{i}$, let $n_{j}(u)$ be the neighbor v of u in A_{j} with $t(v)$ minimum, where $i, j \in\{1,2,3\}, i \neq j$. We write $T(t)=G \mid\{v \in V(T): t(v) \leq t\}$, i.e., the subgraph induced by G on the vertex set $\{v \in V(T): t(v) \leq t\}$. Moreover, we write T_{i} for the graph $G \mid\left(A_{j} \cup A_{k}\right)$ where $\{i, j, k\}=\{1,2,3\}$, and finally $T_{i}(t)$ for the graph $G \mid\left\{v \in A_{j} \cup A_{k}: t(v) \leq t\right\}$.

We call a tripod (A_{1}, A_{2}, A_{3}) maximal in a given graph if no further vertex can be added to any set A_{i} without violating the tripod property.

2.1 Contracting a tripod

By contracting a tripod $\left(A_{1}, A_{2}, A_{3}\right)$ we mean the operation of identifying each A_{i} to a single vertex a_{i}, for all $i=1,2,3$. We then make a_{i} adjacent to the union of neighbors of the vertices in A_{i}, for all $i=1,2,3$.

The neighborhood of a vertex v in a graph G we denote $N_{G}(v)$. If G is clear from the context we might also omit G in the subscript.
2.1. Let G be a graph with a maximal tripod T such that no vertex of G has neighbors in all three classes of T. Let G^{\prime} be the graph obtained from G by contracting T. Then the following holds.
(a) The graph G is 3-colorable if and only if G^{\prime} is 3-colorable, and
(b) if G is P_{6}-free, G^{\prime} is P_{6}-free.

Proof. Assertion (a) follows readily from the definition of a tripod, so we just prove (b). For this, suppose that G is P_{6}-free but G^{\prime} contains an induced P_{6}, say $P=v_{1}-\ldots-v_{6}$. Let $T=\left(A_{1}, \overline{A_{2}}, A_{3}\right)$, and let a_{i} be the vertex of G^{\prime} the set A_{i} is contracted to, for $i=1,2,3$.

Since P is an induced path, it cannot contain all three of a_{1}, a_{2}, a_{3}. Moreover, if P contains neither of a_{1}, a_{2}, a_{3}, then G contains a P_{6}, a contradiction.

Suppose that P contains, say, a_{1} and a_{2}. We may assume that $a_{1}=v_{i}$ and $a_{2}=v_{i+1}$ for some $1 \leq i \leq 3$. If $i=1$, pick $b \in A_{1}$ and $c \in A_{2} \cap N_{G}\left(v_{3}\right)$ with minimum distance in T_{3}. Otherwise, if $i \geq 2$, pick $b \in A_{1} \cap N_{G}\left(v_{i-1}\right)$ and $c \in A_{2} \cap N_{G}\left(v_{i+2}\right)$ again with minimum distance in T_{3}. In both cases, let Q be the shortest path between b and c in T_{3}. Due to the choice of b and c, the induced path $v_{1}-\ldots-b-Q-c-\ldots-v_{6}$ is induced in G, which means G contains a P_{6}, a contradiction.

So, we may assume that P contains only one of a_{1}, a_{2}, a_{3}, say $v_{i}=a_{1}$ for some $1 \leq i \leq 3$. We obtain an immediate contradiction if $i=1$, so suppose that $i \geq 2$. Since v_{i+2} is not contained in T, we may assume that v_{i+2} is anticomplete to A_{2} in G. Pick $b \in A_{1} \cap N_{G}\left(v_{i-1}\right)$ and $c \in A_{1} \cap N_{G}\left(v_{i+1}\right)$ such that the distance in T_{3} between b and c is minimum. Let Q be a shortest path in T_{3} between b and c. Since $v_{i} v_{i+2} \notin E\left(G^{\prime}\right), v_{i+2}$ is anticomplete to A_{1} and thus to $V(Q)$ in G. If $b=c$, then $v_{1}-\ldots-v_{i-1}-b-v_{i+1}-\ldots-v_{6}$ is a P_{6} in G, a contradiction. Otherwise, the induced path $v_{i-1}-b-Q-c-v_{i+1}-v_{i+2}$ is induced in G and contains at least six vertices, which is also contradictory.

3 Diamond-free obstructions

Recall that a diamond is the graph obtained by removing an edge from K_{4}. After successively contracting all maximal tripods in a graph, we are left with a diamond-free graph. In this section we prove the following statement.

3.1. There are exactly six 4 -critical (P_{6}, diamond)-free graphs.

These graphs are $F_{1}, F_{11}, F_{14}, F_{16}, F_{18}$, and F_{24} in Fig. 1 and 2
The proof of 3.1 is computer-aided, and builds upon a method recently proposed by Hoàng et al. [11. With this method they have shown that there is a finite number of 5 -critical (P_{5}, C_{5})-free graphs. The idea is to automatize the large number of necessary case distinctions, resulting in an exhaustive enumeration algorithm. Since we have to deal with a graph class which is substantially less structured, we need to significantly extend their method.

3.1 Preparation

In order to prove 3.1 we make use of the following tools.
Let G be a k-colorable graph. We define the k-hull of G, denoted G_{k}, to be the graph with vertex set $V(G)$ where two vertices u, v are adjacent if and only if there is no k-coloring of G where u and v recieve the same color. Note that G_{k} is a simple supergraph of G, since adjacent vertices can never recieve the same color in any coloring. Moreover, G_{k} is k-colorable.

It is easy to see that a k-critical graph cannot contain two distinct vertices, u and v say, such that $N(u) \subseteq N(v)$. The following observation is a proper generalization of this fact.
3.2. Let $G=(V, E)$ be a k-vertex-critical graph and let U, W be two non-empty disjoint vertex subsets of G. Let $H:=(G-U)_{k-1}$. If there exists a homomorphism $\phi: G|U \mapsto H| W$, then $N_{G}(u) \backslash U \nsubseteq N_{H}(\phi(u))$ for some $u \in U$.

Note that, in the statement of $3.2 H$ is well-defined since G is k-vertex-critical.
Proof of 3.2. Suppose that $N_{G}(u) \backslash U \subseteq N_{H}(\phi(u))$ for all $u \in U$. Fix some ($k-1$)-coloring c of H. In particular, for each $u \in U$, the color of $\phi(u)$ is different from that of any member of $N_{H}(\phi(u))$.

We now extend c to a $(k-1)$-coloring of G by giving any $u \in U$ the color $c(\phi(u))$. It suffices to show that this is a proper coloring. Clearly there are no conflicts between any two vertices of U, since ϕ is a homomorphism. Let $u \in U$ and $v \in N_{G}(u) \backslash U$ be arbitrary. Since $N_{G}(u) \backslash U \subseteq N_{H}(\phi(u))$, $c(v) \neq c(\phi(u))$, and so u and v receive distinct colors. But this contradicts with the assumption that G is a k-vertex-critical graph.

We make use of 3.2 in the following way. Assume that G is a $(k-1)$-colorable graph that is an induced subgraph of some k-vertex-critical graph G^{\prime}. Pick two non-empty disjoint vertex subsets $U, W \subseteq V$ of G, and let $H:=(G-U)_{k-1}$. Assume there exists a homomorphism $\phi: G|U \mapsto H| W$ such that $N_{G}(u) \backslash U \subseteq N_{H}(\phi(u))$ for all $u \in U$. Then there must be some vertex $x \in V\left(G^{\prime}\right) \backslash V(G)$ which is adjacent to some $u \in U$ but non-adjacent to $\phi(u)$ in G^{\prime}. Moreover, x is non-adjacent to $\phi(u)$ in the graph $\left(G^{\prime}-U\right)_{k-1}$.

We also make use of the following well-known fact.
3.3. A k-vertex-critical graph has minimum degree at least k.

Another fact we need is the following.
3.4. Any $\left(P_{6}\right.$, diamond)-free 4-critical graph other than K_{4} contains an induced C_{5}.

Proof. By the Strong Perfect Graph Theorem [4, every 4-critical graph different from K_{4} must contain an odd hole or an anti-hole as an induced subgraph. A straightforward argumentation shows that only the 5 -hole, C_{5}, can possibly appear.

3.2 The enumeration algorithm

Generally speaking, our algorithm constructs a graph G^{\prime} with $n+1$ vertices from a graph G with n vertices by adding a new vertex and connecting it to vertices of G in all possible ways. So, all graphs constructed from G contain G as an induced subgraph. Since 3-colorability and (P_{6}, diamond)-freeness are both hereditary properties, we do not need to expand G if it is not 3-colorable, contains a P_{6} or a diamond.

We use Algorithm 1 below to enumerate all (P_{6}, diamond)-free 4 -critical graphs. In order to keep things short, we use the following conventions for a graph G. We call a pair (u, v) of distinct vertices for which $N_{G}(u) \subseteq N_{(G-u)_{3}}(v)$ similar vertices. Similarly, we call a 4-tuple ($u, v, u^{\prime}, v^{\prime}$) of distinct vertices with $u v, u^{\prime} v^{\prime} \in E(G)$ such that $N_{G}(u) \backslash\{v\} \subseteq N_{(G-\{u, v\})_{3}}\left(u^{\prime}\right)$ and $N_{G}(v) \backslash\{u\} \subseteq N_{(G-\{u, v\})_{3}}\left(v^{\prime}\right)$ similar edges. Finally, we define similar triangles in an analogous fashion.

```
Algorithm 1 Generate ( \(P_{6}\), diamond)-free 4-critical graphs
    Let \(\mathcal{F}\) be an empty list
    Add \(K_{4}\) to the list \(\mathcal{F}\)
    Construct \(\left(C_{5}\right)\) // i.e. perform Algorithm 2
    Output \(\mathcal{F}\)
```

We now prove that Algorithm 1 is correct.
3.5. Assume that Algorithm 1 terminates, and outputs the list of graphs \mathcal{F}. Then \mathcal{F} is the list of all (P_{6}, diamond)-free 4-critical graphs.

Proof. In view of lines 1 and 3 of Algorithm 2 it is clear that all graphs of \mathcal{F} are 4 -critical (P_{6}, diamond)free. So, it remains to prove that \mathcal{F} contains all (P_{6}, diamond)-free 4 -critical graphs. To see this, we first prove the following claim.
3.6. For every (P_{6}, diamond)-free 4-critical graph F other than K_{4}, Algorithm 2 applied to C_{5} generates an induced subgraph of F with i vertices for every $5 \leq i \leq|V(F)|$.

We prove this inductively, as an invariant of our algorithm. Due to 3.4 we know that F contains an induced C_{5}, so the claim holds true for $i=5$.

So assume that the claim is true for some $i \geq 5$ with $i<|V(F)|$. Let G be the induced subgraph of F with $|V(G)|=i$. First assume that G contains similar vertices (u, v). Then, by $3.2, N_{F}(u) \backslash U \nsubseteq$ $N_{(F-u)_{3}}(v)$. Hence, there is some vertex $x \in V(F) \backslash V(G)$ which is adjacent to u in F, but not to v in $(F-u)_{k-1}$. Following the statement of line 10 . Construct $(F \mid(V(G) \cup\{x\}))$ is called. We omit the discussion of the lines 16 and 20, as they are analogous.

So assume that G contains a vertex u of degree at most 2 . Then, since the minimum degree of any 4-vertex-critical graph is at least 3, there is some vertex $x \in V(F) \backslash V(G)$ adjacent to u. Following the statement of line 26. Construct $(F \mid(V(G) \cup\{x\}))$ is called.

```
Algorithm 2 Construct(Graph \(G\) )
    if \(G\) is \(\left(P_{6}\right.\), diamond)-free AND not generated before then
        if \(G\) is not 3 -colourable then
            if \(G\) is 4 -critical \(P_{6}\)-free then
                add \(G\) to the list \(\mathcal{F}\)
            end if
            return
        else
            if \(G\) contains similar vertices \((u, v)\) then
                for every graph \(H\) obtained from \(G\) by attaching a new vertex \(x\) and incident edges in all possible
                ways, such that \(u x \in E(H)\), but \(v x \notin E\left((H-u)_{3}\right)\) do
                    Construct ( \(H\) )
                end for
            else if \(G\) contains a vertex \(u\) of degree at most 2 then
                for every graph \(H\) obtained from \(G\) by attaching a new vertex \(x\) and incident edges in all possible
                ways, such that \(u x \in E(H)\) do
                    Construct ( \(H\) )
                end for
            else if \(G\) contains similar edges \(\left(u, v, u^{\prime}, v^{\prime}\right)\) then
                for every graph \(H\) obtained from \(G\) by attaching a new vertex \(x\) and incident edges in all possible
                ways, such that \(u x \in E(H)\) and \(u^{\prime} x \notin E\left((H-\{u, v\})_{3}\right)\), or \(v x \in E(H)\) and \(v^{\prime} x \notin E\left((H-\{u, v\})_{3}\right)\)
                do
                    Construct ( \(H\) )
                end for
            else if \(G\) contains similar triangles \(\left(u, v, w, u^{\prime}, v^{\prime}, w^{\prime}\right)\) then
                for every graph \(H\) obtained from \(G\) by attaching a new vertex \(x\) and incident edges in all possible
                ways, such that \(u x \in E(H)\) and \(v x \notin E\left((H-\{u, v, w\})_{3}\right), v x \in E(H)\) and \(v^{\prime} x \notin E((H-\)
                \(\{u, v, w\})_{3}\) ), or \(w x \in E(H)\) and \(w^{\prime} x \notin E\left((H-\{u, v, w\})_{3}\right)\) do
                    Construct ( \(H\) )
                end for
            else
                for every graph \(H\) obtained from \(G\) by attaching a new vertex \(x\) and incident edges in all possible
                ways do
                    Construct( \(H\) )
                end for
            end if
        end if
    end if
```

Finally, if none of the above criteria apply to G, the algorithm attaches a new vertex to G in all possible ways, and calls Construct for all of these new graphs. Since $|V(F)|>|V(G)|$, among these graphs there is some induced subgraph of F, and of course this graph has $i+1$ vertices. This completes the proof of 3.6

Given that the algorithm terminates and K_{4} is added to the list $\mathcal{F}, 3.6$ implies that \mathcal{F} must contain all 4-critical (P_{6}, diamond)-free graphs.

We implemented this algorithm in C with some further optimizations. To make sure that no isomorphic graphs are accepted (cf. line 1 of Algorithm 2), we use the program nauty [13, 14] to compute a canonical form of the graphs. We maintain a list of the canonical forms of all non-isomorphic graphs which were generated so far and only accept a graph if it was not generated before (and then add its canonical form to the list).

Our program does indeed terminate (in about 2 seconds), and outputs the six graphs F_{1}, F_{11}, F_{14}, F_{16}, F_{18}, and F_{24} from Fig. 1 and 2 Together with 3.5 this proves 3.1 Let us stress the fact that in order for the algorithm to terminate, all proposed expansion rules are needed.

Table 2 shows the number of non-isomorphic graphs generated by the program. The source code of the program can be downloaded from [6] and in the Appendix we describe how we extensively tested the correctness of our implementation.

The second and third author also extended this algorithm which allowed to determine all k-critical graphs for several other cases as well (see [8).

$\|V(G)\|$	5	6	7	8	9	10	11	12	13	14	15	16
\# graphs generated	1	4	16	55	130	230	345	392	395	279	211	170
$\|V(G)\|$	17	18	19	20	21	22	23	24	25	26	27	28
$\#$ graphs generated	112	95	74	53	40	32	20	15	12	3	1	0

Table 2: Counts of the number of non-isomorphic (P_{6}, diamond)-free graphs generated by our implementation of Algorithm 1 .

4 Uncontracting a triangle to a tripod

Let G be a P_{6}-free graph. Let C be a hole in G. A leaf for C is a vertex $v \in V(G) \backslash V(C)$ with exactly one neighbor in $V(G)$. Similarly, a hat for C is a vertex in $V(G) \backslash V(C)$ with exactly two neighbors $u, v \in V(C)$, where u is adjacent to v.

The following observation is immediate from the fact that G is P_{6}-free.
4.1. No C_{6} in G has a leaf or a hat.

Let $T=\left(A_{1}, A_{2}, A_{3}\right)$ be a maximal tripod of G with $A_{1} \cup A_{2} \cup A_{3}=\left\{v_{1}, \ldots, v_{k}\right\}$.
4.2. The graph $T_{i}(t)$ is connected, for all $i \in\{1,2,3\}$ and $0 \leq t \leq k$.

Proof. This follows readily from the definition of a tripod.
4.3. Let $a \in A_{1}$, and let $y, z \in V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$ such that $a-y-z$ is an induced path, and z is anticomplete to $A_{2} \cup A_{3}$. Then $\left(A_{2} \cup A_{3}\right) \backslash N(a)$ is stable, and in particular, for $i=2,3$ there exist $n_{i} \in N(a) \cap A_{i}$ such that n_{2} is adjacent to n_{3}.

Proof. By the maximality of the tripod, y is anticomplete to $A_{2} \cup A_{3}$. Suppose there are $p_{i} \in A_{i} \backslash N(a)$, $i=2,3$, such that p_{2} is adjacent to p_{3}. Since T_{1} is connected, we can choose p_{2}, p_{3} such that, possibly exchanging A_{2} and A_{3}, p_{2} has a neighbor q_{3} in $A_{3} \cap N(a)$. But now $z-y-a-q_{3}-p_{2}-p_{3}$ is a P_{6}, a contradiction. Since T_{3} is connected, the second statement of the theorem follows.

A 2-edge matching are two disjoint edges $a b, c d$ where $a c, b d$ are non-edges.
4.4. Let X be a stable set in $V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$, such that for every $x, x^{\prime} \in X$ there exists $p \in$ $V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$ such that p is anticomplete to A_{1} and adjacent to exactly one of x, x^{\prime}. Assume that there is a 2-edge matching ax, $a^{\prime} x^{\prime}$ between A_{1} and X. Then
(a) there do not exists $n_{2} \in A_{2}$, and $n_{3} \in A_{3}$ such that $\left\{a, a^{\prime}\right\}$ is complete to $\left\{n_{2}, n_{3}\right\}$, and
(b) there exists $a^{\prime \prime} \in A_{1}$, with $t\left(a^{\prime \prime}\right)<\max \left(t(a), t\left(a^{\prime}\right)\right)$ such that $a^{\prime \prime}$ is complete to $X \cap\left(N(a) \cup N\left(a^{\prime}\right)\right)$.

Proof. Suppose $a x, a^{\prime} x^{\prime}$ is such a matching. We may assume that $x p$ is an edge. Let P be an induced path from a to a^{\prime} with interior in $A_{2} \cup A_{3}$. Such a path exists since T_{1} is connected, and both a, a^{\prime} have neighbors in $A_{2} \cup A_{3}$. If P has at least three edges, then $x-a-P-a^{\prime}-x^{\prime}$ is a P_{6}, so we may assume that a, a^{\prime} have a common neighbor $n_{2} \in A_{2}$. If p is non-adjacent to n_{2}, then $p-x-a-n_{2}-a^{\prime}-x^{\prime}$ is a P_{6}, a contradiction. So p is adjacent to n_{2}, and therefore p has no neighbor in A_{3}. By symmetry, a, a^{\prime} have no common neighbor in A_{3}, and so (a) follows.

Since a, a^{\prime} do not have a common neighbor in A_{3}, there is an induced path $a-b-c-d-a^{\prime}$ from a to a^{\prime} in T_{2}. Since $z-a-b-c-d-a^{\prime}$ and $a-b-c-d-a^{\prime}-z^{\prime}$ are not a P_{6} for any $z \in N(a) \backslash N\left(a^{\prime}\right)$, and $z^{\prime} \in N\left(a^{\prime}\right) \backslash N(a)$,
we deduce that c is complete to $\left(N(a) \backslash N\left(a^{\prime}\right)\right) \cup\left(N\left(a^{\prime}\right) \backslash N(a)\right)$. We may assume that there exists $x^{\prime \prime} \in X \cap N(a) \cap N\left(a^{\prime}\right)$ such that c is non-adjacent to $x^{\prime \prime}$, for otherwise bolds. Now if p is nonadjacent to $x^{\prime \prime}$, then $p-x-c-d-a^{\prime}-x^{\prime \prime}$ is a P_{6}, and if p is adjacent to $x^{\prime \prime}$, then $p-x^{\prime \prime}-a-b-c-x^{\prime}$ is a P_{6}, in both cases a contradiction. This proves b).
4.5. Let X, Y be two disjoint stable sets in $V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$, such that every vertex of $X \cup Y$ has a neighbor in A_{1}. Moreover, assume that the following assertions hold.

1. For every $x \in X$ and $y \in Y$, either
(i) x is adjacent to y,
(ii) x has a neighbor in $V(G)$ anticomplete to A_{1}, or
(iii) y has a neighbor in $V(G)$ anticomplete to A_{1}.
2. For every $x, x^{\prime} \in X$ there exists $p \in V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$ such that
(i) p is anticomplete to A_{1}, and
(ii) p is adjacent to exactly one of x, x^{\prime}.
3. The above assertion holds for Y in an analogous way.
4. Let $u, v \in X \cup Y$ be distinct and non-adjacent. Then $N(u) \backslash A_{1}$ and $N(v) \backslash A_{1}$ are incomparable.

Then either
(a) there is a vertex $p \in A_{1}$ which is complete to $X \cup Y$, or
(b) there exist $c, d \in A_{1}, p \in A_{2}$ and $q \in A_{3}$, such that p and q are adjacent, c is complete to X, d is complete to Y, and $\{c, d\}$ is complete to $\{p, q\}$.

Proof. After deleting all vertices of $V(G) \backslash\left(X \cup Y \cup A_{1} \cup A_{2} \cup A_{3}\right)$ with a neighbor in A_{1} (this does not change the hypotheses or the outcomes), we may assume that no vertex of $V(G) \backslash\left(A_{2} \cup A_{3} \cup X \cup Y\right)$ has a neighbor in A_{1}.

There exist $a, b \in A_{1}$ such that a is complete to X, and b is complete to Y.
To see (1), it is enough to show that a exists, by symmetry. So, suppose not that such an a does not exist. Pick $a \in A_{1}$ with $N(a) \cap X$ maximal, and note that a is not complete to X by assumption. By assumption, there exists $a^{\prime} \in A_{1}$ and $x, x^{\prime} \in X$ such that $a x, a^{\prime} x^{\prime}$ is a 2-edge matching. But now by 4.4 bb, there exists $a^{\prime \prime} \in A_{1}$ complete to $(N(a) \cap X) \cup x^{\prime}$, contrary to the choice of a. This proves (1).

We may assume that no vertex of A_{1} is complete to $X \cup Y$, for otherwise 4.5 holds. Moreover, we may assume that there exist $x \in X$, and $y \in Y$ such that $a x, b y$ is a 2 -edge matching. We choose a, b with $t(a)+t(b)$ minimum, and subject to that x and y are chosen adjacent if possible.

There is no $p \in A_{1}$, with $t(p)<\max (t(a), t(b))$ such that p is complete to $(X \backslash N(b)) \cup(Y \backslash$ $N(a))$.

Suppose such a p exists. We may assume that $t(a)>t(b)$, and hence $t(p)<t(a)$. By the choice of a and b, p is not complete to X, and so there is a 2-edge matching between $\{b, p\}$ and X. Thus by 4.4 b), there exists a vertex p^{\prime} with $t\left(p^{\prime}\right)<\max (t(b), t(p))<t(a)$ that is complete to X, again contrary to the choice of a and b. This proves (22).

$$
\begin{equation*}
\text { Either } a \text { is adjacent to } n_{2}(b) \text {, or } b \text { is adjacent to } n_{2}(a) \text {. } \tag{3}
\end{equation*}
$$

Suppose that this is false. We may assume that $t\left(n_{2}(a)\right)>t\left(n_{2}(b)\right)$. Let P be an induced path from $n_{2}(a)$ to $n_{2}(b)$ in $T_{3}\left(t\left(n_{2}(a)\right)\right)$. Then $n_{2}(a)$ is the unique neighbor of a in P. Since $a-n_{2}(a)-P-n_{2}(b)$ is not a P_{6}, we may deduce that P has length two, say $P=n_{2}(a)-p-n_{2}(b)$. Moreover, since $x^{\prime}-a-n_{2}(a)-p-n_{2}(b)-b$ is not a P_{6} for any $x^{\prime} \in X \backslash N(b)$, we know that $X \backslash N(b)$ is complete to p. Finally, since $y^{\prime}-b-n_{2}(b)-p-n_{2}(a)-a$ is not a P_{6} for any $y^{\prime} \in Y \backslash N(a), p$ is complete to $Y \backslash N(a)$. But since $p \in T_{3}\left(t\left(n_{2}(a)\right)\right.$, we know that $t(p)<t(a) \leq \max (t(a), t(b))$, contrary to (2). This proves (3).

By (3) and using the symmetry between A_{2} and A_{3}, we may deduce that for $i=2,3$ there exists $n_{i} \in A_{i}$ such that $\{a, b\}$ is complete to $\left\{n_{2}, n_{3}\right\}$, and each n_{i} is the smallest neighbor of one of a, b in A_{i} w.r.t. their value of t. We may assume that n_{2} is non-adjacent no n_{3}, for otherwise 4.5 holds.

Let $z \in V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3} \cup X \cup Y\right)$ be anticomplete to A_{1}. Then z is not mixed on any non-edge with one end in $X \backslash N(b)$ and the other in $Y \backslash N(a)$. In particular, either x is adjacent to y, or some $z \in V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3} \cup\{x, y\}\right)$ is complete to $\{x, y\}$ and anticomplete to A_{1}.

Suppose z is mixed on a non-edge x^{\prime}, y^{\prime} with $x^{\prime} \in X \backslash N(b)$, and $y^{\prime} \in Y \backslash N(a)$. From the maximality of the tripod, we may assume that z is anticomplete to A_{2}. Now one of the induced paths $z-x^{\prime}-a-n_{2}-b-y^{\prime}$ and $z-y^{\prime}-b-n_{2}-a-x^{\prime}$ is a P_{6}, a contradiction. The second statement follows from assumption 1 This proves (4).

By symmetry, we may assume that $t\left(n_{2}\right)>t\left(n_{3}\right)$, and that $n_{2}=n_{2}(a)$. Thus, there is an induced path $n_{2}-n_{3}^{\prime}-c-n_{3}$ in $T_{1}\left(t\left(n_{2}\right)\right)$. Hence $t(c)<t\left(n_{2}\right)$, and so a is non-adjacent to c.

Vertex a is adjacent to n_{3}^{\prime}, and b has a neighbor among the set $\left\{c, n_{3}^{\prime}\right\}$.
Suppose first that x is adjacent to y. If a is non-adjacent to n_{3}^{\prime}, then $y-x-a-n_{2}-n_{3}^{\prime}-c$ is a P_{6}, a contradiction. Moreover, if b is anticomplete to $\left\{c, n_{3}^{\prime}\right\}$, then $x-y-b-n_{2}-n_{3}^{\prime}-c$ is a P_{6}, a contradiction. So we may assume that x is non-adjacent to y, and thus, by the choice of x and y, deduce that $X \backslash N(b)$ is anticomplete to $Y \backslash N(a)$.

Now it follows from (4) that every $z \in V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3} \cup X \cup Y\right)$ that is anticomplete to A_{1} and that has a neighbor in $(X \backslash N(b)) \cup(Y \backslash N(a))$ is already complete to $(X \backslash N(b)) \cup(Y \backslash N(a))$. By assumption 2 (ii), we deduce that $X \backslash N(b)=\{x\}$, and similarly $Y \backslash N(a)=\{y\}$. Moreover, by assumption 4 there exist $x^{\prime} \in X \cap N(b)$ and $y^{\prime} \in Y \cap N(a)$ such that $x y^{\prime}$ and $y x^{\prime}$ are edges. Now if a is non-adjacent to n_{3}^{\prime}, then $y-x^{\prime}-a-n_{2}-n_{3}^{\prime}-c$ is a P_{6}, and if b is anticomplete to $\left\{c, n_{3}^{\prime}\right\}$, then $x-y^{\prime}-b-n_{2}-n_{3}^{\prime}-c$ is a P_{6}, in both cases a contradiction. This proves (5).

If b is adjacent to n_{3}^{\prime}, then (a) holds, and thus we may assume the opposite. By (5), b is adjacent to c. Since $x-a-n_{3}^{\prime}-c-b-y$ is not a P_{6}, we may deduce that x is adjacent to y. Similarly, $X \backslash N(b)$ is complete to $Y \backslash N(a)$.

Let $d=n_{1}\left(n_{3}^{\prime}\right)$. Then $t(d) \leq t\left(n_{2}\right)<t(a)$, and therefore $a \neq d$. Since $d-n_{3}^{\prime}-a-x-y-b$ is not a P_{6}, we deduce that d is complete to one of $X \backslash N(a)$ and $Y \backslash N(b)$.

By (2), d is not complete to both $X \backslash N(b)$ and $Y \backslash N(a)$. Suppose first that d is complete to $X \backslash N(b)$. Then there is some $y^{\prime} \in Y \backslash N(a)$ that is non-adjacent to d. Since $n_{3}^{\prime}-d-x-y^{\prime}-b-n_{3}$ is not a P_{6}, we deduce that d is adjacent to n_{3}. Since $t(d)<t(a), d$ is not complete to X, and so there is $x^{\prime} \in X \cap N(b)$ that is non-adjacent to d. Since $x^{\prime}-b-c-n_{3}^{\prime}-d-x$ is not a P_{6}, d is adjacent to c. But $d x, b x^{\prime}$ is a 2-edge matching between $\{d, b\}$ and X, and $\{d, b\}$ is complete to $\left\{c, n_{3}^{\prime}\right\}$, contrary to 4.4 (a).

This proves that d is not complete to $X \backslash N(b)$, and thus d is complete to $Y \backslash N(a)$ and has a non-neighbor $x^{\prime} \in X \backslash N(b)$. Suppose that d is non-adjacent to n_{2}. Since $t\left(n_{2}(d)\right) \leq t(d) \leq t\left(n_{2}\right)$, we may deduce that $t\left(n_{2}(d)\right)<t\left(n_{2}\right)$, and a is non-adjacent to $n_{2}(d)$ (since $n_{2}=n_{2}(a)$). But now $n_{2}(d)-d-y-x^{\prime}-a-n_{2}$ is a P_{6}, a contradiction. This proves that d is adjacent to n_{2}.

Since $\{a, d\}$ is complete to $\left\{n_{2}, n_{3}^{\prime}\right\}$, we deduce that there is no 2 -edge matching between Y and $\{a, d\}$, by 4.4 . But then d is complete to Y, and holds, since n_{2} is adjacent to n_{3}^{\prime}. This completes the proof.
4.6. Let G^{\prime} be the graph obtained from G by contracting $\left(A_{1}, A_{2}, A_{3}\right)$ to a triangle $a_{1} a_{2} a_{3}$. Let H^{\prime} be an induced subgraph of G^{\prime} with $a_{1} \in V\left(H^{\prime}\right)$. Assume that no two non-adjacent neighbors of a_{1} dominate each other in H^{\prime}. Moreover, assume also that for every $v \in V\left(H^{\prime}\right)$, either

1. $N_{H^{\prime}}(v)=X^{\prime} \cup Y^{\prime}$, each of X^{\prime}, Y^{\prime} is stable,
(i) for every $x \in X^{\prime}$ and $y \in Y^{\prime}$, either
(A) x is adjacent to y,
(B) x has a neighbor in $V\left(H^{\prime}\right) \backslash\left(N_{H^{\prime}}(v) \cup\{v\}\right)$, or
(C) y has a neighbor in $V\left(H^{\prime}\right) \backslash\left(N_{H^{\prime}}(v) \cup\{v\}\right)$;
(ii) for every $x, x^{\prime} \in X$ there exists $p \in V\left(H^{\prime}\right) \backslash\{v\}$ such that p is non-adjacent to v, and p is adjacent to exactly one of x, x^{\prime};
(iii) 1iii holds for Y in an analogous way.
2. $N_{H^{\prime}}(v)$ is a triangle, or
3. $N_{H^{\prime}}(v)$ induces a C_{5}.

Then either

(a) some $a \in A_{1}$ is complete to $N_{H}^{\prime}\left(a_{1}\right) \backslash\left\{a_{2}, a_{3}\right\}$; or
(b) assumption 1 holds, and no vertex of A_{1} is complete to $N_{H^{\prime}}\left(a_{1}\right) \backslash\left\{a_{2}, a_{3}\right\}$, and there exist $a, b \in A_{1}$, $n_{2} \in A_{2}$, and $n_{3} \in A_{3}$ such that a is complete to $X^{\prime} \backslash\left\{a_{2}, a_{3}\right\}, b$ is complete to $Y^{\prime} \backslash\left\{a_{2}, a_{3}\right\},\{a, b\}$ is complete to $\left\{n_{2}, n_{3}\right\}$, and n_{2} is adjacent to n_{3};
(c) assumption 2 or 3 holds, and G contains a non-3-colorable graph with seven or eight vertices; or
(d) assumption 2 or 3 holds, there exists a set $A \subseteq A_{1}$, with $|A| \leq 3, n_{2} \in A_{2}$, and $n_{3} \in A_{3}$ such that every vertex of $N_{H^{\prime}}\left(a_{1}\right)$ has a neighbor in A, A is complete to $\left\{n_{2}, n_{3}\right\}$, and n_{2} is adjacent to n_{3}.
Moreover, suppose A_{2}, A_{3} are in $V\left(H^{\prime}\right)$. If (a) holds, let $H=G \mid\left(\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}\right\}\right) \cup\{a\}\right)$. Then H is isomorphic to H^{\prime}. If (b) holds, let $H=G \mid\left(\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}\right\}\right) \cup\left\{a, b, n_{1}, n_{2}\right\}\right)$. Then in every coloring of H, a and b have the same color. If (d) holds, let $H=G \mid\left(\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}\right\}\right) \cup A \cup\left\{n_{1}, n_{2}\right\}\right)$. Then in every coloring of H, A is monochromatic.

In all cases, H is 3-colorable if and only if H^{\prime} is.
Proof. Suppose (a) does not hold.
Assume first that assumption 1 holds for a_{1}. Let $X=X^{\prime} \backslash\left\{a_{2}, a_{3}\right\}$ and $Y=Y^{\prime} \backslash\left\{a_{2}, a_{3}\right\}$. We now quickly check that the assumptions of 4.5 hold for A_{1}, X, Y (in G).

- Every vertex $v \in X \cup Y$ has a neighbor in A_{1}, since every such v is adjacent to a_{1} in H^{\prime}.
- Assumption 1 of 4.5 follows from assumption 1 (i) of 4.6 .
- Assumption 2 holds since there is such a p by assumption 1 (ii) of 4.6 Since p is non-adjacent to a_{1}, we deduce that $p \notin\left\{a_{2}, a_{3}\right\}$, and so $p \in V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)$, as desired.
- Assumption 3 of 4.5 follows analogously.
- Assumption 4 of 4.5 is seen like this: $N(u) \backslash\left\{a_{1}\right\}$ and $N(v) \backslash\left\{a_{1}\right\}$ are incomparable in H^{\prime}, and $\{u, v\}$ is anticomplete to $\left\{a_{2}, a_{3}\right\}$ by the maximality of the tripod.
Now 4.6 follows from 4.5
Next assume that assumption 2 holds for a_{1}, and $N\left(a_{1}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$. We observe that by the maximality of the tripod, $\left\{x_{1}, x_{2}, x_{3}\right\} \cap\left\{a_{2}, a_{3}\right\}=\emptyset$.

Assume first that there exist $b_{1}, b_{2}, b_{3} \in A_{1}$ such that b_{i} is complete to $\left\{x_{j}, x_{k}\right\}$ (where $\{1,2,3\}=$ $\{i, j, k\}$). Since (a) does not hold, b_{i} is non-adjacent to $x_{i}, i=1,2,3$. If some $n_{2} \in A_{2}$ is complete to $\left\{b_{1}, b_{2}, b_{3}\right\}$, then (c) holds. So we may assume that there is a 2 -edge matching from A_{2} to $\left\{b_{1}, b_{2}, b_{3}\right\}$, say $n_{2} b_{1}, n_{2}^{\prime} b_{2}$. But then $n_{2}-b_{1}-x_{2}-x_{1}-b_{2}-n_{2}^{\prime}$ is a P_{6}, a contradiction. So we may assume that no vertex of A_{1} is adjacent to both x_{1} and x_{2}. For $i=1,2$, let c_{i}^{\prime} be the smallest vertex in A_{1} adjacent to x_{i} w.r.t. their value of t. By 4.5 applied with $X=\left\{x_{1}\right\}$ and $Y=\left\{x_{2}\right\}$, and since no vertex of A_{1} is adjacent to both x_{1} and x_{2}, we deduce that there exist a neighbor c_{i} of x_{i}, and vertices $n_{2} \in A_{2}$ and $n_{3} \in A_{3}$, such that $\left\{c_{1}, c_{2}\right\}$ is complete to $\left\{n_{2}, n_{3}\right\}$, and n_{2} is adjacent to n_{3}. If x_{3} is adjacent to one of c_{1}, c_{2}, then (b) holds, so we may supppose this is not the case. Let c_{3} be a neighbor of x_{3} in A. We may assume that c_{3} is non-adjacent to x_{1}. Now $c_{3}-x_{3}-x_{1}-c_{1}-n_{2}-c_{2}$ is not a P_{6}, and so c_{3} is adjacent to n_{2}. Similarly, c_{3} is adjacent to n_{3}. But now (C) holds. This finishes the case when assumption 2 holds.

Finally, assume that 3 holds. Let $N_{H}^{\prime}\left(a_{1}\right)=\left\{x_{1}, \ldots, x_{5}\right\}=X$, where $x_{1}-x_{2}-\ldots-x_{5}-x_{1}$ is a C_{5}. Since $H^{\prime} \mid X$ is connected, the maximality of the tripod implies that $a_{2}, a_{3} \notin X$. Let A be a minimum size subset of A_{1} such that each of x_{1}, \ldots, x_{5} has a neighbor in A. Since every $a \in A$ has a neighbor in A_{2}, we deduce that every $a \in A$ has two non-adjacent neighbors in X, due to P_{6}-freeness. We may assume that $|A|>1$, or (d) holds, and so every $a \in A$ is either a clone (i.e., has two non-adjacent or three consecutive neighbors in X), a star (i.e., has four neighbors in X), or a pyramid for $G \mid X$ (i.e., has three neighbors in X, one of which is non-adjacent to the other two).

Suppose some $a \in A$ is a clone. We may assume a is adjacent to x_{2} and x_{5}. If a is mixed on $A_{2} \cup A_{3}$, then, since T_{3} is connected, there is an induced path $a-p-q$ where $p, q \in A_{2} \cup A_{3}$. There is also an induced path $a-x_{2}-x_{3}-x_{4}$, so $q-p-a-x_{2}-x_{3}-x_{4}$ is a P_{6}, a contradiction. So a is complete to $A_{2} \cup A_{3}$. If at most one vertex of A is not a clone and $|A| \leq 3$, then by 4.3 outcome (d) holds. So we may assume that if $|A| \leq 3$, then there are at least two non-clones in A.

We claim that a is adjacent to x_{1}. Suppose that this is false, and let $b \in A$ be adjacent to x_{1}. By the minimality of A, b is not complete to $\left\{x_{2}, x_{5}\right\}$. Since b has two non-adjacent neighbors in X, by symmetry we may assume that b is adjacent to x_{4}. If b is adjacent to x_{3}, then, by the minimality of A, $A=\{a, b\}$ and b is the unique non-clone in A, so b is non-adjacent to x_{3}. Now $|A \backslash\{a, b\}|=1$, and so b is not a clone. Therefore b is adjacent to x_{2}.

By the minimality of A, b is non-adjacent to x_{5}. Let $c \in A$ be adjacent to x_{3}. Then $A=\{a, b, c\}$. By the minimality of A, c is non-adjacent to x_{5}, and to at least one of x_{1}, x_{4}. But now c is a clone, and b is the unique non-clone in A, a contradiction. So a is adjacent to x_{1}. This implies that $A=\{a, b, c\}, b$ is adjacent to x_{4} but not to x_{5}, c is adjacent to x_{5} but not x_{4}, neither of b, c is a clone, and no vertex of
A_{1} is complete to $\left\{x_{3}, x_{4}\right\}$. By 4.5, there exist $b^{\prime}, c^{\prime} \in A_{1}, n_{2} \in A_{2}$ and $n_{3} \in A_{3}$, such that $b^{\prime} x_{4}$ and $c^{\prime} x_{5}$ are edges, n_{2} is adjacent to n_{3}, and $\left\{b^{\prime}, c^{\prime}\right\}$ is complete to $\left\{n_{2}, n_{3}\right\}$. Now (d) holds. So we may assume that A does not contain a clone.

If $A=\{a, b\}$ and there exist $x, y, z \in X$ such that $z-a-x-y-b$ or $a-x-y-b-z$ is an induced path, then (b) holds.

Since $p-a-x-y-b-q$ is not a P_{6} for any $p, q \in A_{2}$, we deduce that either $N(a) \cap A_{2} \subseteq N(b) \cap A_{2}$, or $N(b) \cap A_{2} \subseteq N(a) \cap A_{2}$, and the same holds in A_{3}. Since we may assume (b) does not hold, 4.3 implies that, up to symmetry, there exist $n_{2} \in N(a) \cap A_{2}$ and $n_{3} \in N(b) \cap A_{3}$ such that a is non-adjacent to n_{3}, and b is non-adjacent to a_{2}. Then n_{2} is adjacent to n_{3} (or $n_{2}-a-x-y-b-n_{3}$ is a P_{6}). But now $z-a-n_{2}-n_{3}-b-y$ or $z-b-n_{3}-n_{2}-a-x$ is a P_{6}, a contradiction. This proves (6).

Suppose some $a \in A$ is a star, say a is adjacent to x_{1}, \ldots, x_{4}, and not to x_{5}. Let $b \in A$ be adjacent to x_{5}. Then we know that $A=\{a, b\}$. If b is adjacent to both x_{1} and x_{4}, then (c) holds, and so we may assume that b is non-adjacent to x_{1}. Since b is not a clone, b is adjacent to x_{2}. If b is adjacent to x_{3}, then (c) holds, so b is non-adjacent to x_{3}; since b is not a clone, b is adjacent to x_{4}. But now (6) holds with $x=x_{1}, y=x_{5}$ and $z=x_{3}$. So we may assume that no $a \in A$ is a star, and so every vertex of A is a pyramid.

Let $a \in A$. We may assume that a is adjacent to x_{1}, x_{3}, x_{4} and not to x_{2}, x_{5}. Let $b \in A$ be adjacent to x_{2}. If $N(b) \cap X=\left\{x_{2}, x_{4}, x_{5}\right\}$, then (b) holds by (6) applied with $x=x_{3}, y=x_{2}$ and $z=x_{5}$. If $N(b) \cap X=\left\{x_{2}, x_{3}, x_{5}\right\}$, then we obtain the previous case by exchanging the roles of a and b. So we may assume that $N(b) \cap X=\left\{x_{1}, x_{2}, x_{4}\right\}$.

Hence, there exists $c \in A \backslash\{a, b\}$ adjacent to x_{5} with $N(c) \cap X=\left\{x_{1}, x_{3}, x_{5}\right\}$. But now every $x \in X$ has a neighbor in $A \backslash\{a\}$, contrary to the minimality of A. This shows how the statement of 4.6 follows from assumption 3 completing the proof.
4.7. Every graph H^{\prime} on the list $F_{1}-F_{24}$ satisfies the assumptions of 4.6.

Proof. Since H^{\prime} is a minimal obstruction to 3-coloring, H^{\prime} has no dominated vertex, meaning any two neighborhoods of vertices are incomparable. Let $v \in V\left(H^{\prime}\right)$. If $N(v)$ is not bipartite, then v contains a triangle or C_{5}, and so $V\left(H^{\prime}\right)=\{v\} \cup N(v)$, and assumptions 2 or 3 of 4.6 hold. So $N(v)$ is bipartite with a bipartition (X, Y).

We implemented a straightforward program which we used to verify that assumption 1 of 4.6 indeed holds for all 244 -critical P_{6}-free graphs from 1.1 where $N(v)$ is bipartite. The source code of this program can be downloaded from [7.
4.8. Let G^{\prime} be obtained from G by contracting $\left(A_{1}, A_{2}, A_{3}\right)$ to a triangle $a_{1} a_{2} a_{3}$. Let H^{\prime} be an induced subgraph of G^{\prime}, with $a_{1}, a_{2} \in V\left(H^{\prime}\right)$. For $i=1,2$, let $Z_{i}=N\left(a_{i}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$.

Assume that

1. no two non-adjacent neighbors of a_{1} dominate each other, and no two non-adjacent neighbors of a_{2} dominate each other, and
2. $H^{\prime} \mid N\left(a_{1}\right)$ and $H^{\prime} \mid N\left(a_{2}\right)$ are bipartite.

If 4.6.(a) holds for a_{1}, let c_{1} be the vertex a of 4.6. (a), set $A=\left\{c_{1}\right\}$ and $Z=\emptyset$. If 4.6. (b) holds for a_{1},

If 4.6. (a) holds for a_{2}, let c_{2} be the vertex a of 4.6.(a), set $C=\left\{c_{2}\right\}$, and $W=\emptyset$. If 4.6. (b) holds for a_{2}, let $c, d, n_{1}\left(a_{2}\right), n_{3}\left(a_{2}\right)$ be the vertices as in 4.6. b), set $C=\{c, d\}$, and $W=\left\{n_{1}\left(a_{2}\right), n_{3}\left(a_{2}\right)\right\}$.

Then one of the following holds.
(a) Outcome 4.6 (a) holds for a_{1}, there is $c \in C$, and an induced path $c_{1}-c^{\prime}-a^{\prime}-c$ in $T_{3}(t)$ where $t=$ $\max \left(t\left(c_{1}\right), t(c)\right)$, such that a^{\prime} is complete to Z_{1}. Or the analog statement holds for a_{2}.
(b) There is an edge between A and C.
(c) In H^{\prime}, there is an induced path $a_{1}-q_{1}-q_{2}-a_{2}$, and a vertex complete to $\left\{a_{1}, q_{1}, q_{2}\right\}$ or to $\left\{a_{2}, q_{2}, q_{1}\right\}$.
(d) There are vertices $n_{1} \in A_{1}$ and $n_{2} \in A_{2}$, such that n_{1} is complete to C, n_{2} is complete to A, and some vertex $s \in A_{3}$ is complete to $A \cup\left\{n_{1}, n_{2}\right\}$ or $C \cup\left\{n_{1}, n_{2}\right\}$. Moreover, if $\max (|A|,|C|)>1$, then $\left|V\left(H^{\prime}\right)\right| \leq 13$.

If (a) holds, let $A=\left\{a^{\prime}\right\}$. If (b) or (c) holds, let

$$
H=\left(H^{\prime}-\left\{a_{1}, a_{2}\right\}\right) \cup A \cup C \cup Z \cup W .
$$

If (d) holds, we may assume that n_{1} is complete to A, and put

$$
H=\left(H^{\prime}-\left\{a_{1}, a_{2}\right\}\right) \cup A \cup C \cup\left\{n_{1}, n_{2}, s\right\} \cup W \text {. }
$$

In all cases, in every 3-coloring of H, A and C are monochromatic, and no color appears in both A and C. Therefore H is 3-colorable if and only if H^{\prime} is 3-colorabe.

Proof. We may assume that no vertex of $V(G) \backslash\left(Z_{1} \cup A_{2} \cup A_{3}\right)$ has a neighbor in A_{1}, and no vertex of $V(G) \backslash\left(Z_{2} \cup A_{1} \cup A_{3}\right)$ has a neighbor in A_{2} (otherwise we may delete such vertices from G without changing the hypotheses or the outcomes).

Moreover, we may assume that A is anticomplete to C, as otherwise b holds. Pick $a \in A$ and $c \in C$. Let $t=\max (t(a), t(c))$, and let $c-a^{\prime}-c^{\prime}-a$ be an induced path from a to c in $T_{3}(t)$. If possible, we choose a^{\prime} to be complete to C, and c^{\prime} complete to A.

Assuming (a) does not hold, we derive the following.

$$
\begin{equation*}
\text { Vertex } a^{\prime} \text { is not complete to } Z_{1} \text {, and } c^{\prime} \text { is not complete to } Z_{2} \text {. } \tag{7}
\end{equation*}
$$

We also make use of the following fact.

$$
\begin{equation*}
\text { Vertex } c^{\prime} \text { is complete to } A \text {, and } a^{\prime} \text { to } C \text {. } \tag{8}
\end{equation*}
$$

To see this, suppose c^{\prime} is not complete to A. Then $A=\{a, b\}$, and c^{\prime} is non-adjacent to b. By the choice of c^{\prime}, we deduce that $n_{2}\left(a_{1}\right)$ is non-adjacent to a^{\prime} (otherwise we may replace c^{\prime} with $n_{2}\left(a_{1}\right)$). Now $b-n_{2}(a)-a-c^{\prime}-a^{\prime}-c$ is a P_{6}, a contradiction. Similarly, a^{\prime} is complete to C. This proves (8).

Let $p \in Z_{1}$ be non-adjacent to a^{\prime}. Then p has no neighbor in $V\left(H^{\prime}\right) \backslash\left(\left\{a_{1}, a_{2}, a_{3}\right\} \cup Z_{1} \cup Z_{2}\right)$, and p has a neighbor $q \in Z_{1}$.

Since a_{2} does not dominate p, p has a neighbor $q \in H^{\prime}$ non-adjacent to a_{2}. Then in G, q is anticomplete to A_{2}. Let $z \in A$ be adjacent to p. If q is not in Z_{1}, then q is anticomplete to A_{1}, and so, by (8), $q-p-z-c^{\prime}-a^{\prime}-c$ is a P_{6} in G, a contradiction. This proves (9).

By (7), (9) and the symmetry between A_{1} and A_{2}, there exist $p, q \in Z_{1}$ and $s, t \in Z_{2}$ such that $p q$, st are edges, a^{\prime} is non-adjacent to p, and c^{\prime} is non-adjacent to s. Let $r \in A$ be adjacent to p, and let $u \in C$ be adjacent to s. Since $p-r-c^{\prime}-a^{\prime}-u-s$ is not a P_{6}, we may deduce that p is adjacent to s.

Let D be the following $C_{6}: r-c^{\prime}-a^{\prime}-u-s-p-r$.

$$
\begin{equation*}
\text { Vertex } p \text { is complete to } A \text {, and } s \text { is complete to } C \text {. } \tag{10}
\end{equation*}
$$

Suppose p has a non-neighbor $r^{\prime} \in A$. Then, since A is anticomplete to C, r^{\prime} is a leaf for D, in contradiction to 4.1. Similarly, s is complete to C. This proves 10 .

By (10), we may assume that r is adjacent to q, and u is adjacent to t. If q is adjacent to s, then (c) holds, which we may assume not to be the case. Similarly, t is non-adjacent to p. Since q, t are not hats for D, by 4.1 we may deduce that q is adjacent to a^{\prime}, and t to c^{\prime}.

Suppose that $|A|>1$. Then a^{\prime} is not complete to Z_{1}. By (3) and (4), a^{\prime} is complete to $Z_{1} \backslash(N(r) \cap$ $\left.N\left(r^{\prime}\right)\right)$. Let $\left(X_{1}, Y_{1}\right)$ be a bipartition of Z_{1} such that $p \in X$. We may assume r^{\prime} is complete to X_{1}, and hence that r is not complete to X_{1}. Thus there is a vertex $p^{\prime} \in X_{1}$ such that $a^{\prime} p, r p^{\prime}$ is 2-edge matching. If G has 16 vertices, then there is a 3-edge induced path $p-f-g-p^{\prime}$ in $H^{\prime} \backslash\left(\left\{a_{1}\right\} \cup N\left(a_{1}\right)\right)$, and so $a-p-f-g-p^{\prime}-r$ is a P_{6}, a contradiction.

Let $d \in A_{3}$ be adjacent to a^{\prime}. If d is adjacent to c^{\prime}, then, since d is not a hat for D, we may deduce that d is adjacent to at least one of r, u. Similarly, d is complete to one of A, C and (d) holds. So d is non-adjacent to c^{\prime}. But now $d-a^{\prime}-c^{\prime}-t-s-p$ is a P_{6}, a contradiction. This completes the proof.

By W_{5} we denote the graph that is C_{5} with a center.
4.9. Every H on the list except K_{4} and W_{5} satisfies the assumptions of 4.8.

Proof. Let H be a graph on the list. Since H is minimal non-3-colorable, H has no dominated vertices, and so assumption 1 of 4.8 holds. If $H \mid N(v)$ is not bipartite for some $v \in V(H)$, then $H \mid N(v)$ contains a triangle or a C_{5}, and so $H=K_{4}$ or $H=W_{5}$.
4.10. Let G^{\prime} be obtained from G by contracting a maximal tripod $\left(A_{1}, A_{2}, A_{3}\right)$ to a triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$. Let H^{\prime} from our list of 24 obstructions be an induced subgraph of G^{\prime}. If $H^{\prime}=K_{4}$, assume that $\mid V\left(H^{\prime}\right) \cap$ $\left\{a_{1}, a_{2}, a_{3}\right\} \mid<3$. Then there exists an induced subgraph H of G that is not 3 -colorable with at most $\left|V\left(H^{\prime}\right)\right|+9$ vertices if $\left|V\left(H^{\prime}\right)\right|=16$ and at most $\left|V\left(H^{\prime}\right)\right|+15$ vertices if $\left|V\left(H^{\prime}\right)\right| \leq 13$.

Proof. We may assume that at least one of a_{1}, a_{2}, a_{3} is in $V\left(H^{\prime}\right)$. If $\left|V\left(H^{\prime}\right) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=1$, we are done using 4.6 and 4.7. so we may assume that $\left|V\left(H^{\prime}\right) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right| \geq 2$. Note that if $H^{\prime}=K_{4}$, every edge is in a triangle, and if $H^{\prime}=W_{5}$, then every triangle is in a diamond. Hence, the maximality of $\left(A_{1}, A_{2}, A_{3}\right)$ implies that $H^{\prime} \neq K_{4}, W_{5}$.

By 4.9. H^{\prime} satisfies the assumptions of 4.8. Suppose that either $\left|V\left(H^{\prime}\right) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=2$, or $\left|V\left(H^{\prime}\right) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=3$, and one of 4.8 (b), 4.8. (c), 4.8. (d) holds for each pair $a_{1} a_{2}, a_{2} a_{3}, a_{1} a_{3}$. For $i=1,2,3$ let $C_{i} \subseteq A_{i}$ be as in 4.6 (a) or 4.6 (b), and let W_{i} be as in 4.6 (b) (in the notation of 4.8).

Let Z_{i} be the set of neighbors of a_{i} in $H^{\prime}-\left\{a_{1}, a_{2}, a_{3}\right\}$. If 4.8. dd holds for a_{i}, a_{j}, let N_{k} be like $\left\{n_{i}, n_{j}, s\right\}$ in 4.8 d . Otherwise let $N_{k}=\emptyset$, and note that in both cases $\left|N_{k}\right| \leq 3$. As usual, we may assume $V(G)=A_{1} \cup A_{2} \cup A_{3} \cup\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}\right)$.

Construct H as in 4.8 modifying H^{\prime} accordingly for each pair $a_{1} a_{2}, a_{2} a_{3}, a_{1} a_{3}$. Observe that the sets of vertices added in each modification are far from disjoint.

More precisely,

- If 4.6 (a) holds for each of a_{1}, a_{2}, a_{3}, then $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|+9$, as follows. We observe $\left|C_{i}\right|=1$ and $\left|W_{i}\right|=0$ for each i. Since $H=H^{\prime}-\left\{a_{1}, a_{2}, a_{3}\right\} \cup C_{i} \cup W_{i} \cup N_{i}$, $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|-3+3+9=\left|V\left(H^{\prime}\right)\right|+9$.
- If 4.6 (a) holds for exactly two of a_{1}, a_{2}, a_{3}, then $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|+6$ if $\left|V\left(H^{\prime}\right)\right|=16$, and $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|+13$ if $\left|V\left(H^{\prime}\right)\right| \leq 13$, as follows.
Assume 4.6 (a) holds for a_{1} and a_{2}. If $\left|V\left(H^{\prime}\right)\right|=16$, then 4.8. b) or 4.8. (C) happens for $a_{2} a_{3}$ and $a_{1} a_{3}$, hence $N_{1}=N_{2}=\emptyset,\left|C_{1}\right|=\left|C_{2}\right|=1,\left|W_{1}\right|=\left|W_{2}\right|=0,\left|N_{3}\right| \leq 3,\left|C_{3}\right|=\left|W_{3}\right|=2$, and so $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|-3+4+2+3=\left|V\left(H^{\prime}\right)\right|+6$. If $\left|V\left(H^{\prime}\right)\right| \leq 13$, then $\left|C_{1}\right|=\left|C_{2}\right|=1,\left|W_{1}\right|=\left|W_{2}\right|=$ $0,\left|C_{3}\right|=\left|W_{3}\right|=2$, and $\left|N_{i}\right| \leq 3$ for any i, and hence $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|-3+4+2+9=\left|V\left(H^{\prime}\right)\right|+12$.
- If 4.6 a holds for exactly one of a_{1}, a_{2}, a_{3}, then $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|+6$ if $\left|V\left(H^{\prime}\right)\right|=16$, and $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|+15$ if $\left|V\left(H^{\prime}\right)\right| \leq 13$, as follows.
Assume 4.6 (a) holds for a_{1}. If $\left|V\left(H^{\prime}\right)\right|=16$, then 4.8. (b) or 4.8. (C) happens for $a_{1} a_{2}, a_{2} a_{3}$ and $a_{1} a_{3}$, and hence $N_{1}=N_{2}=N_{3}=\emptyset,\left|C_{1}\right|=1,\left|W_{1}\right|=0,\left|C_{2}\right|=\left|C_{3}\right|=\left|W_{2}\right|=\left|W_{3}\right|=2$, and so $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|-3+5+4+0=\left|V\left(H^{\prime}\right)\right|+6$. If $\left|V\left(H^{\prime}\right)\right| \leq 13$, then $\left|C_{1}\right|=1,\left|W_{1}\right|=0$, $\left|C_{2}\right|=\left|C_{3}\right|=\left|W_{2}\right|=\left|W_{3}\right|=2,\left|N_{i}\right| \leq 3$ for any $i=1,2,3$, hence $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|-3+5+4+9=$ $\left|V\left(H^{\prime}\right)\right|+15$.
- If 4.6 bolds for all of a_{1}, a_{2}, a_{3}, then $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|+9$ if $\left|V\left(H^{\prime}\right)\right|=16$, and $|V(H)| \leq$ $\left|V\left(H^{\prime}\right)\right|+15$ if $\left|V\left(H^{\prime}\right)\right| \leq 13$, as follows.
If $\left|V\left(H^{\prime}\right)\right|=16$, then 4.8 (b) or 4.8 (c) happens for $a_{1} a_{2}, a_{2} a_{3}$ and $a_{1} a_{3}$, hence $N_{1}=N_{2}=N_{3}=\emptyset$, $\left|C_{1}\right|=\left|W_{1}\right|=\left|C_{2}\right|=\left|C_{3}\right|=\left|W_{2}\right|=\left|W_{3}\right|=2$, and $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|-3+6+6+0=\left|V\left(H^{\prime}\right)\right|+9$. If $\left|V\left(H^{\prime}\right)\right| \leq 13,\left|C_{1}\right|=\left|W_{1}\right|=\left|C_{2}\right|=\left|C_{3}\right|=\left|W_{2}\right|=\left|W_{3}\right|=2$, and $\left|N_{i}\right| \leq 3$ for any i. Moreover, if 4.8 (d) holds for at most two pairs, then $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|-3+6+6+6=\left|V\left(H^{\prime}\right)\right|+15$.

Otherwise 4.8 d d holds for all three pairs. Considering $a_{1} a_{2}$, we may assume that $W_{3}=\left\{n_{1}, n_{2}, s_{3}\right\}$ and s_{3} is complete to C_{1}. Thus W_{1} is not needed since $\left\{s_{3}, n_{2}\right\}$ is enough to ensure that C_{1} is monochromatic. Similarly, considering $a_{2} a_{3}$, we may assume W_{2} is not needed. Hence $|V(H)| \leq$ $\left|V\left(H^{\prime}\right)\right|-3+6+2+9=\left|V\left(H^{\prime}\right)\right|+14$.

Thus we may assume that $\left|V\left(H^{\prime}\right) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=3$, and 4.8. alds for at least one of the pairs.

Let us call the outcomes (b), (c), (d) of 4.8 good.
Permuting the indices if necessary, there exist $b_{2}, b_{3} \in A_{1}$, and $C_{2} \subseteq A_{2}, C_{3} \subseteq C_{3}$ such that the following holds.

- $\left\{b_{2}, b_{3}\right\}$ is complete to Z_{1},
- C_{2} and C_{3} are as in 4.6.(a) or 4.6. (b),
- b_{2} has a neighbor in C_{2} and none in C_{3},
- b_{3} has a neighbor in C_{3} and none in C_{2}, and
- one of the good outcomes holds for the pair C_{2}, C_{3}.
- b_{2} and b_{3} have a common neighbor in A_{3}.

In order to prove 11, we first prove a sufficient condition for 11.
If there exist $C_{i}^{\prime} \subseteq A_{i}$ as in 4.6. (a) or 4.6. (b) such that there is an edge between C_{1}^{\prime} and C_{2}^{\prime}, and an edge between C_{2}^{\prime} and C_{3}^{\prime}, then 111) holds.

To see this, apply 4.8 to $C_{1}^{\prime}, C_{3}^{\prime}$. If one of the good outcomes holds, then a good outcome holds for all three pairs among $C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}$, and so we may assume that this is not the case. There is a symmetry between C_{1}^{\prime} and C_{3}^{\prime}, so we may assume that $\left|C_{1}^{\prime}\right|=1$ and that there is an induced path $c_{1}^{\prime}-c_{3}^{\prime \prime}-c_{1}^{\prime \prime}-c_{3}^{\prime}$ in T_{2}, where $\left\{c_{1}^{\prime}\right\}=C_{1}^{\prime}, c_{3}^{\prime} \in C_{3}^{\prime}$, and $c_{1}^{\prime \prime}$ is complete to Z_{1}. If $c_{1}^{\prime \prime}$ has a neighbor in C_{2}, or c_{1}^{\prime} has a neighbor in C_{3}, then a good outcome holds for all pairs among $\left\{c_{1}^{\prime \prime}\right\}, C_{2}^{\prime}, C_{3}^{\prime}$ or $C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}$. Hence, we may assume that this is not the case. Now (11) holds, and this proves 12 .

We may assume that outcome 4.8. (a) holds for the pair C_{2}, C_{3}. By modifying C_{2}, C_{3} we may assume that there is an edge between C_{2} and C_{3} and outcome 4.8 holds for $\left(C_{2}, C_{3}\right)$. If a good outcome holds for both C_{1}, C_{2}, and C_{1}, C_{3}, then a good outcome holds for all three pairs, so we may assume that this is not the case.

So, assume that outcome (a) holds when 4.8 is applied to C_{1}, C_{2}. If there is $c_{1} \in A_{1}$ that is complete to Z_{1} and has a neighbor in C_{2}, then (11) holds by 12 . So we may assume that there is a vertex $c_{2}^{\prime} \in A_{2}$ that is complete to Z_{2}, and an induced path $c_{1}-c_{2}^{\prime}-c_{1}^{\prime}-c_{2}$ in T_{3}, where $c_{1} \in C_{1}$ and $C_{2}=\left\{c_{2}\right\}$. If a good outcome holds for C_{1}, C_{3}, then either (11) holds, or a good out come holds for all three pairs among $C_{1},\left\{c_{2}\right\}, C_{3}$ or $C_{1},\left\{c_{2}^{\prime}\right\}, C_{3}$.

So, we may assume that 4.8 (a) holds for C_{1}, C_{3}. By the symmetry between C_{1} and C_{3}, we may assume that there is $d_{1} \in A_{1}$ and an induced path $c_{1}-c_{3}^{\prime}-d_{1}-c_{3}$ where $c_{3} \in C_{3}, C_{1}=\left\{c_{1}\right\}$, and d_{1} is complete to Z_{1}. But now there is an edge between C_{3} and $\{d 1\}$, and between C_{3} and C_{2}, and 11) follows from 12 . This proves 11 .

If 4.8 b or 4.8 (c) holds for the pair C_{2}, C_{3}, let

$$
H=G \mid\left(\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}\right) \cup\left\{b_{2}, b_{3}\right\} \cup C_{2} \cup C_{3} \cup W_{2} \cup W_{3}\right),
$$

and let

$$
H^{\prime \prime}=G \mid\left(\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}\right) \cup\left\{b_{2}, b_{3}\right\} \cup C_{2} \cup C_{3}\right) .
$$

If 4.8 d holds for the pair C_{2}, C_{3}, let

$$
H=G \mid\left(\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}\right) \cup\left\{b_{2}, b_{3}\right\} \cup C_{2} \cup C_{3} \cup\left\{n_{1}, n_{2}, s\right\}\right),
$$

and let

$$
H^{\prime \prime}=G \mid\left(\left(V\left(H^{\prime}\right) \backslash\left\{a_{1}, a_{2}, a_{3}\right\}\right) \cup\left\{b_{2}, b_{3}\right\} \cup C_{2} \cup C_{3}\right)
$$

Then $|V(H)| \leq\left|V\left(H^{\prime}\right)\right|+7$, and so we may assume that H is 3-colorable.
Let us call a 3-coloring of $H^{\prime \prime}$ promising if C_{2} is monochromatic, C_{3} is monocromatic, and no color appears in both of C_{2}, C_{3}. We observe that by 4.6 and 4.8 every 3-coloring of H gives a promising 3 -coloring of $H^{\prime \prime}$. Since H^{\prime} is not 3-colorable, in every promising coloring of $H^{\prime \prime}$ the vertices b_{2} and b_{3} recieve different colors.

Let c be a 3 -coloring of H. We may assume that $c\left(b_{i}\right)=i, c$ is constantly 1 or 3 on C_{2}, and c is constantly 1 or 2 on C_{3}. Then $c(z)=1$ for every $z \in Z_{1}$. If c is 1 on C_{2}, then we recolor b_{2} with color 3 , and get a coloring of H^{\prime}, a contradiction. So we may assume that c is 3 on C_{2}, and c is 2 on C_{3}. If no vertex of Z_{2} has color 1 , we recolor C_{2} with color 1 , and recolor b_{2} with color 3 . We obtain coloring of
H with b_{2}, b_{3} colored in the same color, a contradiction. So, for some $z_{2} \in Z_{2}, c\left(z_{2}\right)=1$. Similarly, for some $z_{3} \in Z_{3}, c\left(z_{3}\right)=1$.

For $i=2,3$ let Z_{i}^{\prime} be the set of all vertices $z \in Z_{i}$ with $c\left(z_{i}\right)=1$. Then $Z_{1} \cup Z_{2}^{\prime} \cup Z_{3}^{\prime}$ is a stable set. Let $c_{i} \in C_{i}$ be adjacent to b_{i}.

$$
\begin{equation*}
Z_{2}^{\prime} \text { is anticomplete to } V(G) \backslash\left(Z_{2} \cup A_{2}\right) \text {. } \tag{13}
\end{equation*}
$$

Suppose $p \in V(G) \backslash\left(Z_{2} \cup A_{2}\right)$ has a neighbor $z_{2} \in Z_{2}^{\prime}$. Then $p \notin Z_{1}$. Let $c_{2}^{\prime} \in C_{2}$ be adjacent to z_{2}. Suppose first that b_{2} is non-adjacent to c_{2}^{\prime}. Then $c_{2}^{\prime} \neq c_{2}$. Let $n_{1} \in A_{1}$ be complete to $\left\{c_{2}, c_{2}^{\prime}\right\}$, a possible choice by b Now $p-z_{2}-c_{2}^{\prime}-n_{1}-c_{2}-b_{2}$ is a P_{6}, a contradiction. So c_{2}^{\prime} is adjacent to b_{2}. Let $n_{2} \in A_{2}$ be adjacent to b_{2} and b_{3} (as in (11), with the roles of A_{2} and A_{3} exchanged). Then $p-z_{2}-c_{2}^{\prime}-b_{2}-n_{2}-b_{3}$ is a P_{6}, again a contradiction. This proves (13).

Now, by (13), we can recolor $H^{\prime \prime}$ by putting $c^{\prime}\left(C_{2}\right)=1$ and $c^{\prime}\left(Z_{2}^{\prime}\right)=3, c^{\prime}\left(b_{2}\right)=3$, which yields a 3 -coloring of \vec{H}^{\prime}, a contradiction. This completes the proof.

5 Obstructions that are 1-vertex extensions of a tripod

In this section, we prove the following statement.
5.1. Let G be a 4-critical P_{6}-free graph. Assume that there is a tripod $T=\left(A_{1}, A_{2}, A_{3}\right)$ in G and some vertex x which has a neighbor in each $A_{i}, i=1,2,3$. Then $|V(G)| \leq 18$.

To see this, let $G, T=\left(A_{1}, A_{2}, A_{3}\right)$, and x be as in 5.1. Let a_{1}, a_{2}, a_{3} be the root of T. It is clear that $V(G)=V(T) \cup\{x\}$. We call G a 1-vertex extension of a tripod.

5.1 Preparation

We may assume that the ordering $A_{1} \cup A_{2} \cup A_{3}=\left\{v_{1}, \ldots, v_{k}\right\}$ has the following property.
5.2. Let $u \in A_{\ell}$ and $v \in A_{k}$ for some $\ell, k \in\{1,2,3\}$. Moreover, let $\left\{\ell, \ell^{\prime}, \ell^{\prime \prime}\right\}=\{1,2,3\}$ and $\left\{k, k^{\prime}, k^{\prime \prime}\right\}=$ $\{1,2,3\}$. Assume that $\max \left(t\left(n_{k^{\prime}}(v)\right), t\left(n_{k^{\prime \prime}}(v)\right)\right)<\max \left(t\left(n_{\ell^{\prime}}(u)\right), t\left(n_{\ell^{\prime \prime}}(u)\right)\right)$. Then $t(v)<t(u)$.

Let b_{i} be the neighbor of x in A_{i} with $t\left(b_{i}\right)$ maximum, for all $i=1,2,3$. We may assume that $t\left(b_{1}\right)>t\left(b_{2}\right)>t\left(b_{3}\right)$.
5.3. We may assume that $N(x) \cap A_{1}=\left\{b_{1}\right\}$ and $N(x) \cap A_{i}=\left\{b_{i}\right\}$ for some $i \in\{2,3\}$.

Proof. Since $G \mid\left(V\left(T\left(t\left(b_{1}\right)\right)\right) \cup\{x\}\right)$ is 4-chromatic we know that $V(G)=V\left(T\left(t\left(b_{1}\right)\right)\right) \cup\{x\}$. In particular, $N(x) \cap A_{1}=\left\{b_{1}\right\}$.

To see the second statement, assume that $\left|N(x) \cap A_{2}\right|,\left|N(x) \cap A_{3}\right| \geq 2$. Suppose for a contradiction that $\left|N\left(b_{1}\right) \cap A_{2}\right|,\left|N\left(b_{1}\right) \cap A_{3}\right| \geq 2$, and let u be the vertex in the set $\left\{b_{2}, b_{3}, n_{2}\left(b_{1}\right), n_{3}\left(b_{1}\right)\right\}$ with $t(u)$ maximum. Then $G-u$ is still 4 -chromatic, a contradiction.

So we may assume that $\left|N\left(b_{1}\right) \cap A_{i}\right|=1$ for some $i \in\{2,3\}$. Note that $T^{\prime}=\left(A_{1} \backslash\left\{b_{1}\right\} \cup\{x\}, A_{2}, A_{3}\right)$ is a tripod. Consequently, b_{1} has neighbors in all three classes of T^{\prime}. Since $\left|N\left(b_{1}\right) \cap\left(A_{1} \cup\{x\}\right)\right|=$ $\left|N\left(b_{1}\right) \cap A_{i}\right|=1$, we are done.

5.2 The enumeration algorithm

Consider the following way of traversing the tripod T. Initially, the vertices b_{1}, b_{2}, b_{3} are labeled active, and all other vertices are unlabeled. Then, we label the vertices a_{1}, a_{2}, a_{3} as inactive. Consequently, if $b_{3}=a_{3}$, say, then b_{3} is labeled inactive.

Iteratively, pick an active vertex, say $u \in A_{i}$ with $\{i, j, k\}=\{1,2,3\}$. Make $n_{j}(u)$ and $n_{k}(u)$ active, unless they are labeled already, whether active or inactive. Then label u as inactive and re-iterate, picking another active vertex, if possible.
5.4. Regardless of which active vertex is picked in the successive steps, this procedure terminates and, moreover, every vertex of T is visited during this procedure.

Proof. Clearly this procedure terminates when there is no active vertex left. Since every vertex is labeled active at most once, this proves the first assertion.

Assume now the procedure has terminated. The latter assertion follows from the fact that, if W is the collection of inactive vertices, $G \mid W$ is already a tripod. Thus, since $b_{1}, b_{2}, b_{3} \in W, G \mid(W \cup\{x\})$ is 4-chromatic and so $G \mid(W \cup\{x\})=G$, due to the choice of G.

Instead of traversing a given tripod, we use this method to enumerate all possible 4 -critical P_{6}-free 1 -vertex extensions of a tripod. The idea is to successively generate the possible subgraphs induced by the labeled vertices only. This is done by Algorithm 3. Starting from all relevant graphs on the vertex set $\left\{x, b_{1}, b_{2}, b_{3}, a_{1}, a_{2}, a_{3}\right\}$, we iteratively add new vertices, mimicking the iterative labeling procedure mentioned above. The following list contains all of these start graphs.
5.5. We may assume that the graph $G^{\prime}:=G \mid\left\{x, b_{1}, b_{2}, b_{3}, a_{1}, a_{2}, a_{3}\right\}$ has the following properties.
(a) If $b_{1}=a_{1}$, then $G=G^{\prime}$ is K_{4}.
(b) If $b_{1} \neq a_{1}$ and $b_{2}=a_{2}$, then $b_{3}=a_{3}$. Moreover,

$$
\begin{aligned}
& E\left(G^{\prime}\right) \supseteq\left\{x b_{1}, x a_{2}, x a_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}:=F \\
& E\left(G^{\prime}\right) \subseteq F \cup\left\{b_{1} a_{2}, b_{1} a_{3}\right\} .
\end{aligned}
$$

(c) If $b_{1} \neq a_{1}, b_{2} \neq a_{2}$ and $b_{3}=a_{3}$, then

$$
\begin{aligned}
& E\left(G^{\prime}\right) \supseteq\left\{x b_{1}, x b_{2}, x a_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}:=F \\
& E\left(G^{\prime}\right) \subseteq F \cup\left\{x a_{2}, b_{1} a_{2}, b_{1} b_{2}, b_{1} a_{3}, b_{2} a_{1}, b_{2} a_{3}\right\} .
\end{aligned}
$$

(d) If $b_{1} \neq a_{1}, b_{2} \neq a_{2}$ and $b_{3} \neq a_{3}$, then

$$
\begin{aligned}
& E\left(G^{\prime}\right) \supseteq\left\{x b_{1}, x b_{2}, x b_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}:=F \\
& E\left(G^{\prime}\right) \subseteq F \cup\left\{x a_{2}, x a_{3}, b_{1} a_{2}, b_{1} b_{2}, b_{1} a_{3}, b_{1} b_{3}, b_{2} a_{1}, b_{2} a_{3}, b_{2} b_{3}, b_{3} a_{1}, b_{3} a_{2}\right\} .
\end{aligned}
$$

Proof. This follows readily from our assumption $t\left(b_{3}\right)<t\left(b_{2}\right)<t\left(b_{1}\right)$ with 5.2 and 5.3 .
In our algorithm, we do not only consider graphs, but rather tuples containing a graph together with its list of vertex labels and a linear vertex ordering. The algorithm is split into three parts.

- Algorithm 3 initializes all relevant tuples according to 5.5
- Algorithm 4 is the main procedure, where a certain tuple is extended in all possible relevant ways. This corresponds to a labeling step in our tripod traversal algorithm.
- Algorithm 5 is a subroutine we use to prune tuples we do not need to consider. We call a tuple prunable if Algorithm 5applied to it returns the value false.
We now come to the correctness proof of these algorithms.
5.6. Assume that Algorithm 3 terminates and does never generate a tuple whose graph has $k+1$ or $k+2$ vertices, for some $k \geq 4$. Then any 4-critical P_{6}-free graph which is a 1-vertex extension of a tripod has at most k vertices.

To see this, let G be a 4 -critical P_{6}-free graph other than K_{4} that is a 1-vertex extension of a tripod, with the notation from above. We need the following claim.
5.7. There is a sequence of tuples $\Gamma^{i}=\left(G^{i}=\left(V^{i}, E^{i}\right), A_{1}^{i}, A_{2}^{i}, A_{3}^{i}, O r d^{i}, A c t^{i}\right), i=0, \ldots, r$, and a way of traversing the tripod T in r steps, in the way described above, for which the following holds, after possibly renaming vertices. Let $V(i)$ be set of all labeled vertices after the i-th iteration of the traversal, together with x, and let $\operatorname{Act}(i)$ be the set of vertices which are active after the i-th iteration of the traversal, for $i=0, \ldots, r$.
(a) At some point during the algorithm, Expand $\left(\Gamma^{0}\right)$ is called.
(b) During the procedure Expand $\left(\Gamma^{i}\right), \Gamma^{i+1}$ is generated and so Expand $\left(\Gamma^{i+1}\right)$ is called, for all $i=$ $0, \ldots, r-1$.
(c) The following holds, for all $i=0, \ldots, r$.

```
Algorithm 3 Generate 4-critical \(P_{6}\)-free 1-vertex extension of a tripod
    set \(V:=\left\{x, b_{1}, a_{1}, a_{2}, a_{3}\right\}\)
                                    \(/ /\) in this case, \(b_{2}=a_{2}\) and \(b_{3}=a_{3}\)
    set \(E^{\text {must }}:=\left\{x b_{1}, x a_{2}, x a_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}\)
    set \(E^{\text {may }}:=\left\{b_{1} a_{2}, b_{1} a_{3}\right\}\)
    set Ord \(:=\left(a_{3}, a_{2}, a_{1}, b_{1}, x\right)\) and Act \(:=\left\{b_{1}\right\}\)
    set \(A_{1}:=\left\{a_{1}, b_{1}\right\}, A_{2}:=\left\{a_{2}\right\}\), and \(A_{3}:=\left\{a_{3}\right\}\)
    for each \(E \subseteq E^{\text {must }} \cup E^{\text {may }}\) with \(E^{\text {must }} \subseteq E\) do
        \(\operatorname{Expand}\left(G=(V, E), A_{1}, A_{2}, A_{3}\right.\), Ord, Act \()\)
    end for
    set \(V:=\left\{x, b_{1}, b_{2}, a_{1}, a_{2}, a_{3}\right\} \quad / /\) in this case, \(b_{2} \neq a_{2}\) and \(b_{3}=a_{3}\)
    set \(E^{\text {must }}:=\left\{x b_{1}, x b_{2}, x a_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}\)
    set \(E^{\text {may }}:=\left\{x a_{2}, b_{1} b_{2}, b_{1} a_{2}, b_{1} a_{3}, b_{2} a_{1}, b_{2} a_{3}\right\}\)
    set Ord \(:=\left(a_{3}, a_{2}, a_{1}, b_{2}, b_{1}, x\right)\) and Act \(:=\left\{b_{1}, b_{2}\right\}\)
    set \(A_{1}:=\left\{a_{1}, b_{1}\right\}, A_{2}:=\left\{a_{2}, b_{2}\right\}\), and \(A_{3}:=\left\{a_{3}\right\}\)
    for each \(E \subseteq E^{\text {must }} \cup E^{\text {may }}\) with \(E^{\text {must }} \subseteq E\) do
        \(\operatorname{Expand}\left(G=(V, E), A_{1}, A_{2}, A_{3}\right.\), Ord, Act \()\)
    end for
    set \(V:=\left\{x, b_{1}, b_{2}, b_{3}, a_{1}, a_{2}, a_{3}\right\} \quad / /\) in this case, \(b_{2} \neq a_{2}\) and \(b_{3} \neq a_{3}\)
    set \(E^{\text {must }}:=\left\{x b_{1}, x b_{2}, x b_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}\)
    set \(E^{\text {may }}:=\left\{x a_{2}, x a_{3}, b_{1} b_{2}, b_{1} b_{3}, b_{2} b_{3}, b_{1} a_{2}, b_{1} a_{3}, b_{2} a_{1}, b_{2} a_{3}, b_{3} a_{1}, b_{3} a_{2}\right\}\)
    set Ord \(:=\left(a_{3}, a_{2}, a_{1}, b_{3}, b_{2}, b_{1}, x\right)\) and Act \(:=\left\{b_{1}, b_{2}, b_{3}\right\}\)
    set \(A_{1}:=\left\{a_{1}, b_{1}\right\}, A_{2}:=\left\{a_{2}, b_{2}\right\}\), and \(A_{3}:=\left\{a_{3}, b_{3}\right\}\)
    for each \(E \subseteq E^{\text {must }} \cup E^{\text {may }}\) with \(E^{\text {must }} \subseteq E\) do
        \(\operatorname{Expand}\left(G=(V, E), A_{1}, A_{2}, A_{3}\right.\), Ord, Act \()\)
    end for
```

(i) $G \mid V(i)=G^{i}$, and in particular $A_{j} \cap V(i)=A_{j}^{i}$, for all $j=1,2,3$,
(ii) $A c t^{i}=\operatorname{Act}(i)$, and
(iii) for any two $u, v \in V(i)$ with $t(u)<t(v), u<_{\text {Ord }}{ }^{i} v$.

Proof. Since G is not K_{4} we may assume that $b_{1} \neq a_{1}$, by 5.5
If $b_{2}=a_{2}$, then 5.5 implies $b_{3}=a_{3}$, and Γ^{0} is generated by Algorithm 3. Here, $\Gamma^{0}=\left(G^{0}=\right.$ $\left.\left(V^{0}, E^{0}\right), A_{1}^{0}, A_{2}^{0}, A_{3}^{0}, \mathrm{Ord}^{0}, \mathrm{Act}^{0}\right)$ with

- $V^{0}=\left\{a_{1}, b_{1}, a_{2}, a_{3}, x\right\}$ and $E^{0}=E\left(G \mid V^{0}\right)$,
- $A_{1}^{0}=\left\{a_{1}, b_{1}\right\}, A_{2}^{0}=\left\{a_{2}\right\}$, and $A_{3}^{0}=\left\{a_{3}\right\}$, and
- $\operatorname{Ord}^{0}=\left(a_{3}, a_{2}, a_{1}, b_{1}, x\right)$, and $\operatorname{Act}^{0}=\left\{b_{1}\right\}$.

By 5.5 $E^{\text {must }} \subseteq E^{0} \subseteq E^{\text {must }} \cup E^{\text {may }}$. The cases when $a_{2} \neq b_{2}$ but $a_{3}=b_{3}$ resp. $a_{3} \neq b_{3}$ are dealt with similarly. This proves (C) for $i=0$.

For the inductive step assume that for some $s \in\{0, \ldots, r-1\}$ the tuple Γ^{s} has the properties mentioned in (C). We first prove that Γ^{s+1} is generated while Expand $\left(\Gamma^{s}\right)$ is processed, and that Γ^{s+1} has the properties mentioned in (c).

First we discuss why Algorithm 5 returns true on the input Γ^{s}. Clearly $G^{s}=G \mid V(s) \neq G$ is 3 colorable and P_{6}-free, and so the if-conditions in lines 4 and 1 both do not apply. Also, the if-conditions in the lines 7 and 10 does not apply to Γ^{s} due to 5.3 applied to G together with (C). (i) in the case $i=s$.

During the steps 13 23, the if-condition in line 19 never applies due to 5.2 To see this, pick two distinct vertices $u, v \in\left(V^{s} \backslash\{x\}\right)$ with $u<v$ and $u \notin$ Act s. Let $\{i, j, k\}=\{1,2,3\}$ be such that $u \in A_{i}^{s}$, let u_{j} be the $<_{\text {Ord }^{s}}{ }^{s}$ minimal neighbor of u in A_{j}^{s}, and let u_{k} be defined accordingly, let $\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}=\{1,2,3\}$ be such that $v \in A_{i^{\prime}}^{s}$, and let $v_{j^{\prime}}$ be the $<\mathrm{Ord}^{s}$-minimal neighbor of v in $A_{j^{\prime}}^{s}$, if existent, and let $v_{k^{\prime}}$ be defined accordingly.

Due to property (c).(iii), $t(u)<t(v)$. Since $u \in V^{s} \backslash \operatorname{Act}^{s}$, we know that $u \in V(s) \backslash \operatorname{Act}(s)$, by (C). (i). Thus, $n_{j}(u), n_{k}(u) \in V(s)$. Moreover, by (c).(i), $n_{j}(u)=u_{j}$ and $n_{k}(u)=u_{k}$. Now, if $v_{j^{\prime}}, v_{k^{\prime}}$ both

```
Algorithm 4 Expand \(\left(\right.\) Graph \(G=(V, E)\), Set \(A_{1}\), Set \(A_{2}\), Set \(A_{3}\), List Ord, Set Act)
    if not \(\operatorname{Feasible}\left(G, A_{1}, A_{2}, A_{3}\right.\), Ord, Act) then
        return
    end if
    pick a vertex \(u\) from the set Act and let \(\{i, j, k\}=\{1,2,3\}\) be such that \(u \in A_{i}\)
    let \(u_{j}\) be the \(<_{\text {Ord }}\)-minimal neighbor of \(u\) in \(A_{j}\), if existent, and let \(u_{k}\) be defined accordingly
        // we write \(u<_{\text {Ord }} v\) whenever \(u\) appears before \(v\) in the list Ord
    let \(v_{j}, v_{k}\) be two entirely new vertices
    for all ways of inserting \(v_{j}\) and \(v_{k}\) into the list Ord such that
    (a) \(a_{1}<_{\text {Ord }} v_{j}, v_{k}<_{\text {Ord }} u\),
    (b) \(v_{j}<_{\text {Ord }} u_{j}\), if existent, and \(v_{k}<_{\text {Ord }} u_{k}\), if existent
    do
        put
\[
\begin{aligned}
E^{*}:= & \left\{w v_{j}: w \in A_{i} \cup A_{k} \text { is active }\right\} \cup\left\{w v_{k}: w \in A_{i} \cup A_{j} \text { is active }\right\} \cup\left\{x v_{j}, x v_{k}\right\} \cup\left\{v_{j}, v_{k}\right\} \\
& \cup\left\{w v_{j}: w \in A_{i} \cup A_{k} \text { is inactive and has a neighbor } w^{\prime} \in A_{j} \text { with } w^{\prime}<_{\text {Ord }} v_{j}\right\} \\
& \cup\left\{w v_{k}: w \in A_{i} \cup A_{k} \text { is inactive and has a neighbor } w^{\prime} \in A_{k} \text { with } w^{\prime}<_{\text {Ord }} v_{k}\right\}
\end{aligned}
\]
        for all subsets \(E^{\prime}\) of \(E^{*}\) do
            put \(A_{i}^{\prime}:=A_{i}, A_{j}^{\prime}:=A_{j} \cup\left\{v_{j}\right\}, A_{k}^{\prime}:=A_{k} \cup\left\{v_{k}\right\}\), and Act \(:=(\) Act \(\backslash\{u\}) \cup\left\{v_{j}, v_{k}\right\}\)
            let Ord' be Ord where \(v_{j}\) and \(v_{k}\) are inserted in the position we currently consider
            \(\operatorname{Expand}\left(\left(V \cup\left\{v_{j}, v_{k}\right\}, E \cup E^{\prime}\right), A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, \mathrm{Ord}^{\prime}, \mathrm{Act}^{\prime}\right)\)
        end for
    end for
    for \(r=j, k\) do
        if \(u_{r}\) is existent and \(u_{r}<_{\text {Ord }} u\) then
            let \(\{r, s\}=\{j, k\}\)
            for all ways of inserting \(v_{s}\) into the list Ord such that \(a_{1}<_{\text {Ord }} v_{s}<_{\text {Ord }} u\) do
                put
                    \(E^{*}:=\left\{w v_{s}: w \in A_{i} \cup A_{r}\right.\) is active \(\} \cup\left\{x v_{s}\right\}\)
                            \(\cup\left\{w v_{s}: w \in A_{i} \cup A_{r}\right.\) is inactive and has a neighbor \(w^{\prime} \in A_{s}\) with \(w^{\prime}<\) Ord \(\left.v_{s}\right\}\)
                for all subsets \(E^{\prime}\) of \(E^{*}\) do
                    put \(A_{i}^{\prime}:=A_{i}, A_{s}^{\prime}:=A_{s} \cup\left\{v_{s}\right\}, A_{r}^{\prime}:=A_{r}\), and Act \({ }^{\prime}:=(\) Act \(\backslash\{u\}) \cup\left\{v_{s}\right\}\)
                        let Ord \({ }^{\prime}\) be Ord where \(v_{s}\) is inserted in the position we currently consider
                        Expand \(\left(\left(V \cup\left\{v_{s}\right\}, E \cup E^{\prime}\right), A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right.\), Ord \(^{\prime}\), Act \(\left.^{\prime}\right)\)
                end for
            end for
        end if
    end for
    if both \(u_{j}\) and \(u_{k}\) exist and \(u_{j}, u_{k}<_{\text {Ord }} u\) then
        \(\operatorname{Expand}\left(G, A_{1}, A_{2}, A_{3}\right.\), Ord, Act \(\left.\backslash\{u\}\right)\)
    end if
```

exist and $v_{j^{\prime}}, v_{k^{\prime}}<\operatorname{Ord}^{s} u_{r}$ for some $r \in\{j, k\}$, then in particular $t\left(n_{j^{\prime}}(v)\right), t\left(n_{k^{\prime}}(v)\right)<t\left(n_{r}(u)\right)$, in contradiction to 5.2.

Finally, Γ^{s} is not pruned in the lines $24 \| 3$ since $G-u$ is 3 -colorable for every $u \in V$.
Now we argue why Γ^{s+1} is constructed and carries the desired properties. If $s=0$, the case is clear,

```
Algorithm 5 Feasible(Graph \(G=(V, E)\), Set \(A_{1}\), Set \(A_{2}\), Set \(A_{3}\), List Ord, Set Act)
    if \(G\) contains a \(P_{6}\) then
        return false
    end if
    if \(G\) is not 3 -colourable then
        return false
    end if
    if \(x\) has at least two neighbors in \(A_{1}\) then
        return false
    end if
    if \(x\) has at least two neighbors in \(A_{2}\) and at least two neighbors in \(A_{3}\) then
        return false
    end if
    for any two distinct vertices \(u, v \in(V \backslash\{x\})\) with \(u<_{\text {Ord }} v\) do
        if \(u \notin\) Act then
            let \(\{i, j, k\}=\{1,2,3\}\) be such that \(u \in A_{i}\)
            let \(u_{j}\) be the \(<_{\text {Ord }}\)-minimal neighbor of \(u\) in \(A_{j}\), and let \(u_{k}\) be defined accordingly
            let \(\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}=\{1,2,3\}\) be such that \(v \in A_{i^{\prime}}\)
            let \(v_{j^{\prime}}\) be the \(<_{\text {Ord }}\)-minimal neighbor of \(v\) in \(A_{j^{\prime}}\), if existent, and let \(v_{k^{\prime}}\) be defined accordingly
            if the following hold:
    (a) \(\left\{u_{j}, u_{k}\right\} \nsubseteq\left\{a_{1}, a_{2}, a_{3}\right\}\),
    (b) \(\quad v_{j^{\prime}}\) and \(v_{k^{\prime}}\) both exist, and
    (c) \(\quad v_{j^{\prime}}, v_{k^{\prime}}<\) Ord \(u_{r}\) for some \(r \in\{j, k\}\)
        then
            return false
            end if
        end if
    end for
    for each \(u \in(V \backslash\{x\})\) do
        put \(W:=\left\{v \in V: v<_{\text {Ord }} u\right\}\)
        put \(B_{i}:=A_{i} \cap W\) for each \(i=1,2,3\)
        while there is a vertex \(v \in V \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup\{u\}\right)\) with neighbors in at least two of \(B_{1}, B_{2}, B_{3}\) do
            if \(v\) has neighbors in all three of \(B_{1}, B_{2}, B_{3}\) then
                return false
            else
                put \(B_{i}:=B_{i} \cup\{v\}\), where \(B_{i}\) is the set that \(v\) does not have neighbors in
            end if
        end while
    end for
    return true
```

so we may assume that $s>0$. Say that, in the procedure $\operatorname{Expand}\left(\Gamma^{s}\right)$, vertex u is picked in line 4 of Algorithm 4 Let us say that $u \in A_{i}^{s}$, where $\{i, j, k\}=\{1,2,3\}$. In the traversal procedure, $n_{j}(u)$ and $n_{k}(u)$ are now visited and made active, in case they are not in $V(s)$ already.

Let us first assume that $n_{j}(u), n_{k}(u) \notin V(s)$, and let v_{j}, v_{k} be the two entirely new vertices picked in line 6 Due to the definition of tripods, $t\left(a_{1}\right)<t\left(n_{j}(u)\right), t\left(n_{k}(u)\right)<t(u)$, and

$$
t\left(n_{\ell}(u)\right)<\min \left(\left\{t(w): w \in N_{G}(u) \cap A_{\ell}\right\} \cup\{\infty\}\right) \text { for } \ell=j, k
$$

Consequently, the algorithm considers in line 7 inserting the two new vertices v_{j} and v_{k} into Ord^{s} such that (C).(iii) holds, where we identify v_{j} with $n_{j}(u)$ and v_{k} with $n_{k}(u)$. Moreover, E^{*} in line 8 contains
all edges incident to $n_{j}(u)$ and $n_{k}(u)$ in $G \mid V(s)$, due to the definition of $n_{j}(u)$ and $n_{k}(u)$. Due to steps 10 and 11 the tuple Γ^{s+1} is indeed generated, and $\operatorname{Expand}\left(\Gamma^{s+1}\right)$ is called, where

- $G^{s+1}=G\left|\left(V(s) \cup\left\{n_{j}(u), n_{k}(u)\right\}\right)=G\right| V(s+1)$, and in particular $A_{i}^{s+1}=A_{i}^{s}=V(s) \cap A_{i}=$ $V(s+1) \cap A_{i}$, and $A_{\ell}^{s+1}=A_{\ell}^{s} \cup\left\{v_{\ell}=n_{\ell}(u)\right\}=V(s+1) \cap A_{\ell}$ for $\ell=j, k$,
- $\operatorname{Act}^{s+1}=\left(\operatorname{Act}^{s+1} \backslash\{u\}\right) \cup\left\{v_{j}, v_{k}\right\}=(\operatorname{Act}(s) \backslash\{u\}) \cup\left\{n_{j}(u), n_{k}(u)\right\}=\operatorname{Act}(s+1)$, and
- for any two vertices $u, v \in V(s+1)$ with $t(u)<t(v), u<_{\operatorname{Ord}^{s+1}} v$.

The cases when $n_{j}(u)$ and/or $n_{k}(u)$ have been active before are handled analogously. This completes the proof of 5.7

Next we derive 5.6
Proof of 5.6. Like above, Γ^{r} is not pruned in step 1 during the procedure of $\operatorname{Expand}\left(\Gamma^{r}\right)$. Since $G^{r}=$ $G \mid V(r)=G, G$ is indeed generated by the algorithm. As $\left|V\left(G^{s}\right)\right|+2 \geq\left|V\left(G^{s+1}\right)\right|$ for all $s=0, \ldots, r-1$, G has at most k vertices.

We implemented this set of algorithms in C with some further optimizations. A crucial detail is how the active vertex is picked in line 4 of Algorithm 4 The following choice seemed to terminate most quickly.

- If the graph which is currently expanded has at most 12 vertices, we pick the Ord-maximal active vertex in line 4
- If the graph has more than 12 vertices, we pick the active vertex for which the number of nonprunable tuples generated from it is minimum. This is done by trying to extend every active vertex once without iterating any further and counting the number of non-prunable tuples generated.
With this choice, our program does indeed terminate (in about 60 hours) and the largest non-prunable generated graph has 18 vertices. Together with 5.6. we arrive at 5.1. Table 3 shows the number of non-prunable tuples generated by the program.

$\|V(G)\|$	5	6	7	8	9
$\#$ non-prunable tuples	3	67	2,010	11,726	81,523
$\|V(G)\|$	10	11	12	13	14
$\#$ non-prunable tuples	388,190	$1,234,842$	$3,380,785$	$10,669,960$	$16,322,798$
$\|V(G)\|$	15	16	17	18	19,20
$\#$ non-prunable tuples	137,031	49,506	2,865	330	0

Table 3: Counts of the number of non-prunable tuples generated by our implementation of Algorithm 3 .
In order to be sure the algorithm is implemented correctly, we also modified the program so it collects all 4-critical graphs found along the way, similar to line 3 of Algorithm 2 As expected, all 4 -critical P_{6}-free 1-vertex extensions of a tripod from our list were found. In the Appendix we describe into more detail how we tested the correctness of our implementation and the source code of the program can be downloaded from (7).

6 Obstructions up to 28 vertices

In this section we prove the following result.
6.1. Let G be a 4-critical P_{6}-free graph. If $|V(G)| \leq 28$, then G is contained in our list.

For the proof of this result, we run the enumeration algorithm of Section 1 , with the following modifications. In line 1 of Algorithm 2, we do not discard a graph if it contains a diamond, only when it is not P_{6}-free. Moreover, we discard a graph if it contains more than 28 vertices. This procedure terminates exactly with our list (note that the largest graph in our list has 16 vertices). Table 4 shows the number of graphs generated by the algorithm on each relevant number of vertices. This computation took approximately 9 CPU years on a cluster.

$\|V(G)\|$	5	6	7	8	9	10
$\#$ graphs generated	1	7	45	253	1,385	5,402
$\|V(G)\|$	11	12	13	14	15	16
$\#$ graphs generated	12,829	24,802	36,435	41,422	42,769	46,176
$\|V(G)\|$	17	18	19	20	21	22
$\#$ graphs generated	54,001	70,205	99,680	145,968	233,687	382,762
$\|V(G)\|$	23	24	25	26	27	28
$\#$ graphs generated	696,462	$1,430,280$	$3,002,407$	$6,410,184$	$13,703,206$	$30,764,536$

Table 4: Counts of the number of P_{6}-free graphs generated by our implementation of Algorithm 1 without testing for induced diamonds.

7 Proof of 1.1

Let G be a 4 -critical P_{6}-free graph. If G is diamond-free, we are done by 3.1 We may thus assume that there is a maximal tripod $T=\left(A_{1}, A_{2}, A_{3}\right)$ in G which is not just a triangle.

Suppose that there is some vertex $x \in V(G) \backslash V(T)$ with a neighbor in each $A_{i}, i=1,2,3$. Then $V(G)=V(T) \cup\{x\}$, and so $|V(G)| \leq 18$ by 5.1. By 6.1. G is one of $F_{1}-F_{24}$.

So, we may assume that no vertex has a neighbor in all three classes of T. Let G^{\prime} be the graph obtained by contracting T in G. By 2.1, we know that G^{\prime} is P_{6}-free and not 3 -colorable. We may thus pick a 4-critical P_{6}-free subgraph H of G^{\prime}. Inductively, H is one of $F_{1}-F_{24}$. Thus, using 4.10 we see that $|V(G)| \leq 28$. By 6.1, G is one of $F_{1}-F_{24}$.

$8 \quad P_{7}$-free obstructions

This section is devoted to the following unpublished observation by Pokrovskiy [15].

8.1. There are infinitely many 4-critical P_{7}-free graphs.

In the proof we construct an infinite family of 4 -vertex-critical P_{7}-free graphs, i.e., P_{7}-free graphs which are 4 -chromatic but every proper induced subgraph is 3 -colorable. This means that there is also an infinite number of 4 -critical P_{7}-free graphs. Note that, indeed, not all members of our family are 4-critical P_{7}-free.

Proof of 8.1. Consider the following construction. For each $r \geq 1, G_{r}$ is a graph defined on the vertex set $v_{0}, \ldots, v_{3 r}$. The graph G_{16} is shown in Fig. 3 A vertex v_{i}, where $i \in\{0,1, \ldots, 3 r\}$, is adjacent to v_{i-1}, v_{i+1}, and $v_{i+3 j+2}$, for all $j \in 0,1, \ldots, r-1$. Here and throughout the proof, we consider the indices to be taken modulo $3 r+1$.

First we observe that, up to permuting the colors, there is exacly one 3 -coloring of $G_{r}-v_{0}$. Indeed, we may w.l.o.g. assume that v_{i} recieves color i, for $i=1,2,3$, since $\left\{v_{1}, v_{2}, v_{3}\right\}$ forms a triangle in G_{r}. Similarly, v_{4} recieves color $1, v_{5}$ recieves color 2 and so on. Finally, $v_{3 r}$ recieves color 3. Since the coloring was forced, our claim is proven.

In particular, G_{r} is not 3 -colorable, since v_{0} is adjacent to all of $v_{1}, v_{2}, v_{3 r}$. As the choice of v_{0} was arbitrary, we know that G_{r} is 4 -vertex-critical.

It remains to prove that G_{r} is P_{7}-free. Suppose that $P=x_{1}-x_{2}-\ldots-x_{7}$ is an induced P_{7} in G_{r}. To simplify the argumentation, we assume G_{r} to be equipped with the proper coloring described above. That is, v_{0} is has color 4 , and, for all $i=0, \ldots, r-1$ and $j=1,2,3$, the vertex $v_{3 i+j}$ is colored with color j. Let X_{i} denote the set of vertices of color i, for $i=1,2,3,4$.

If $r \leq 2,\left|V\left(G_{r}\right)\right| \leq 7$, and so we are done since obviously G_{2} is not isomorphic to P_{7}. Therefore, we may assume $r \geq 3$ and, since G_{r} is vertex-transitive, w.l.o.g. $v_{0} \notin V(P)$. Hence, P is an induced P_{7} in the graph $H:=G_{r}-v_{0}$, which we consider from now on.

First we suppose that some vertices of P appear consecutively in the ordering $v_{1}, \ldots, v_{3 r}$. That is, w.l.o.g. $x_{i}=v_{j}$ and $x_{i+1}=v_{j+1}$ for some $i \in\{1, \ldots, 6\}$ and $j \in\{1, \ldots, 3 r-1\}$. Since P is an induced path, we know that neither of v_{j-1} and v_{j+2}, if existent, are contained in P. Thus, we may assume that $j=1$, and so $v_{3} \notin V(P)$. Recall that $N_{H}\left(v_{1}\right) \backslash\left\{v_{2}\right\}=X_{3}$ and $N_{H}\left(v_{2}\right) \backslash\left\{v_{3}\right\}=X_{1}$. Thus, $\left|N_{H}\left(x_{i}\right) \cap V(P)\right| \leq 2$ implies $\left|X_{3} \cap V(P)\right| \leq 1$, and similarly $\left|N_{H}\left(x_{i+1}\right) \cap V(P)\right| \leq 2$ implies
$\left|X_{1} \cap V(P)\right| \leq 2$. Therefore, $\left|X_{2} \cap V(P)\right|=4$, which means that $x_{1}, x_{3}, x_{5}, x_{7} \in X_{2}$. But this is a contradiction to the fact that $N_{H}\left(v_{1}\right) \backslash\left\{v_{2}\right\}=X_{3}$.

Hence, no two vertices of P appear consecutively in the ordering $v_{1}, \ldots, v_{3 r}$. For simplicity, let us say that a vertex v_{i} is left of (right of) a vertex v_{j} if $i<j$ (if $i>j$). We now know the following. Let $x \in V(P)$ be left of $y \in V(P)$. Then $x y \in E$ if and only if $x \in X_{1}$ and $y \in X_{3}, x \in X_{2}$ and $y \in X_{1}$, or $x \in X_{3}$ and $y \in X_{2}$. Below we make frequent use of this fact without further reference.
W.l.o.g. $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$. In particular, x_{2} is left of x_{1}. We now distinguish the possible colorings of the remaining vertices of P, obtaining a contradiction in each case.

Case 1. $x_{3} \in X_{1}$.
In this case, x_{3} must be right of x_{2}.
Case 1.1. $x_{4} \in X_{2}$.
In this case, x_{4} is right of x_{1}, and in turn x_{3} is right of x_{4}. Hence, x_{5} cannot be in X_{1}, since then it must be right of x_{4} but left of x_{2}. So, $x_{5} \in X_{3}$, and thus x_{5} is between x_{2} and x_{1}.

Case 1.1.1. $x_{6} \in X_{1}$.
Then x_{6} must be left of x_{2}. If $x_{7} \in X_{2}$, it must be left of x_{6} but right of x_{3}, a contradiction. Otherwise if $x_{7} \in X_{3}$, it must be left of x_{1} but right of x_{4}, another contradiction.

Case 1.1.2. $x_{6} \in X_{2}$.
In this case x_{6} must be right of x_{3}. If $x_{7} \in X_{1}$, it must be left of x_{4} but right of x_{6}, a contradiction. Otherwise if $x_{7} \in X_{3}$, it must be left of x_{1} but right of x_{4}, again a contradiction.

Case 1.2. $x_{4} \in X_{3}$.
In this case, x_{4} is right of x_{3}, and in turn x_{1} is right of x_{4}.
Case 1.2.1. $x_{5} \in X_{1}$.
So, x_{5} must be left of x_{2}. Hence, x_{6} cannot be in X_{2}, since then x_{6} must be left of x_{5} and right of x_{1}. Thus, $x_{6} \in X_{3}$, which means that x_{6} is between x_{2} and x_{3}.

If $x_{7} \in X_{1}$, it must be left of x_{6} but right of x_{1}, a contradiction. Otherwise if $x_{7} \in X_{2}$, it must be left of x_{4} but right of x_{1}, another contradiction.

Case 1.2.2. $x_{5} \in X_{2}$.
So, x_{5} must be right of x_{1}. Clearly $x_{6} \notin X_{1}$, for then it must be left of x_{2} but right of x_{5}. So, $x_{6} \in X_{3}$, and thus x_{6} is between x_{2} and x_{3}.

If $x_{7} \in X_{1}$, it must be left of x_{6} but right of x_{4}, a contradiction. Otherwise if $x_{7} \in X_{2}$, it must be left of x_{4} but right of x_{1}, another contradiction.

Case 2. $x_{3} \in X_{3}$.
In this case, x_{3} must be left of x_{2}.
Case 2.1. $x_{4} \in X_{1}$.
Then x_{4} is left of x_{3}, and thus also x_{1} and x_{2}.
If $x_{5} \in X_{2}, x_{5}$ must be left of x_{4} but right of x_{1}, a contradiction. So, $x_{5} \in X_{3}$. Then x_{2} must be between x_{2} and x_{1}. If $x_{6} \in X_{2}$, it must be right of x_{5} but left of x_{3}, a contradiction. So, $x_{6} \in X_{1}$, and thus x_{6} must be between x_{3} and x_{2}.

If $x_{7} \in X_{2}$, it must be left of x_{6} but right of x_{1}, a contradiction. Hence, $x_{7} \in X_{3}$. But now x_{7} must be right of x_{6} and left of x_{4}, another contradiction.

Case 2.2. $x_{4} \in X_{2}$.

Then x_{4} must be right of x_{1}.
If $x_{5} \in X_{1}$, it must be right of x_{4} but left of x_{2}, a contradiction. So, $x_{5} \in X_{3}$, and thus x_{5} is between x_{2} and x_{1}.

If $x_{6} \in X_{1}$, it must be between x_{3} and x_{2}. If, moreover, $x_{7} \in X_{2}, x_{7}$ is left of x_{6} but right of x_{1}, a contradiction. Similarly, if $x_{7} \in X_{3}, x_{7}$ is left of x_{1} but right of x_{4}, another contradiction.

We thus know $x_{6} \in X_{2}$. But then x_{6} must be left of x_{3} and right of x_{5}, a contradiction.
Summing up, G_{r} is P_{7}-free, and this completes the proof.
We also modified Algorithm 2 to generate 4 -critical P_{7}-free graphs. As one would expect, the number of obstructions is much larger than in the P_{6}-free case. Table 5 contains the counts of all 4 -critical and 4 -vertex-critical P_{7}-free graphs up to 15 vertices.

Figure 3: A circular drawing of G_{16}

Vertices	Critical graphs	Vertex-critical graphs
4	1	1
6	1	1
7	2	7
8	5	8
9	21	124
10	99	2,263
11	212	1,771
12	522	6,293
13	679	15,064
14	368	4,521
15	304	2,914
≤ 15	2,214	32,967

Table 5: Counts of all 4-critical and 4-vertex-critical P_{7}-free graphs up to 15 vertices.

Acknowledgements

We thank Alexey Pokrovskiy for pointing us to the existence of an infinite family of P_{7}-free obstructions.
Several of the computations for this work were carried out using the Stevin Supercomputer Infrastructure at Ghent University.

References

[1] G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. Mélot, House of Graphs: a database of interesting graphs, Discrete Applied Mathematics 161 (2013), no. 1-2, 311-314, Available at http://hog. grinvin.org/.
[2] D. Bruce, C.T. Hoàng, and J. Sawada, A certifying algorithm for 3-colorability of P_{5}-free graphs, Proceedings of the 20th International Symposium on Algorithms and Computation, Springer-Verlag, 2009, pp. 594-604.
[3] M. Chudnovsky, P. Maceli, and M. Zhong, Three-coloring graphs with no induced path on seven vertices II: using a triangle, Submitted.
[4] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The Strong Perfect Graph Theorem, Annals of Mathematics 164 (2006), no. 1, 51-229.
[5] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959), 34-38.
[6] J. Goedgebeur, Homepage of generator for 4-critical P_{t}-free graphs: http://caagt.ugent.be/ criticalpfree/
[7] , Homepage of generator for 4-critical P_{t}-free 1-vertex extensions of tripods: http://caagt. ugent.be/tripods/
[8] J. Goedgebeur and O. Schaudt, Exhaustive generation of k-critical \mathcal{H}-free graphs, in preparation.
[9] P.A. Golovach, M. Johnson, D. Paulusma, and J. Song, A survey on the computational complexity of colouring graphs with forbidden subgraphs, arXiv:1407.1482v4 [cs.CC].
[10] P. Hell and S. Huang, Complexity of coloring graphs without paths and cycles, LATIN 2014: Theoretical Informatics, Springer, 2014, pp. 538-549.
[11] C.T. Hoàng, B. Moore, D. Recoskie, J. Sawada, and M. Vatshelle, Constructions of k-critical P_{5}-free graphs, Disc. App. Math. 182 (2015), 91-98.
[12] F. Lazebnik and V.A. Ustimenkob, Explicit construction of graphs with an arbitrary large girth and of large size, Disc. App. Math. 60 (1995), 275-284.
[13] B.D. McKay, nauty User's Guide (Version 2.5), Technical Report TR-CS-90-02, Department of Computer Science, Australian National University. The latest version of the software is available at http://cs.anu.edu.au/~bdm/nauty.
[14] B.D. McKay and A. Piperno, Practical graph isomorphism, II, Journal of Symbolic Computation 60 (2014), 94-112.
[15] A. Pokrovskiy, private communication.
[16] B. Randerath, I. Schiermeyer, and M. Tewes, Three-colorability and forbidden subgraphs. II: polynomial algorithms, Discrete Mathematics 251 (2002), 137-153.
[17] P. Seymour, private communication.
[18] N. Sloane, The on-line encyclopedia of integer sequences: http://oeis.org/.

Appendix 1: Correctness testing

Since several results obtained in this paper rely on computations, it is very important that the correctness of our programs has been thoroughly verified to minimize the chance of programming errors. In the following subsections we explain how we tested the correctness of our implementations.

Since all of our consistency tests passed, we believe that this is strong evidence for the correctness of our implementations.

Appendix 1.1: Correctness testing of critical P_{t}-free graph generator

We performed the following consistency tests to verify the correctness of our generator for k-critical P_{t}-free graphs (i.e. Algorithm 1]. The source code of this program can be downloaded from [6].

- We applied the program to generate critical graphs for cases which were already settled before in the literature and verified that our program indeed obtained the same results. More specifically we verified that our program yielded exactly the same results in the following cases:
- There are six 4-critical P_{5}-free graphs 2].
- There are eight 5 -critical $\left(P_{5}, C_{5}\right)$-free graphs 11.
- The Grötzsch graph is the only 4 -critical $\left(P_{6}, C_{3}\right)$-free graph 16 .
- There are four 4 -critical $\left(P_{6}, C_{4}\right)$-free graphs 10 .
- We developed an independent generator for k-critical P_{t}-free graphs by starting from the program geng [13, 14] (which is a generator for all graphs) and adding pruning routines to it for colorability and P_{t}-freeness. This generator cannot terminate, but we were able to independently verify the following results with it:
- We executed this program to generate all 4-critical (P_{6}, diamond)-free graphs up to 16 vertices and it indeed yielded the same 6 critical graphs from 3.1
- We executed this program to generate all 4 -critical and 4 -vertex-critical P_{6}-free graphs up to 16 vertices and it indeed yielded the same graphs from 1.1 and Table 1
- We executed this program to generate all 4-critical and 4-vertex-critical P_{7}-free graphs up to 13 vertices and it indeed yielded the same graphs from Table 5
- We modified our program to generate all P_{t}-free graphs and compared it with the known counts of P_{t}-free graphs for $t=4,5$ on the On-Line Encyclopedia of Integer Sequences [18] (i.e. sequences A000669 and A078564).
- We modified our program to generate all k-colourable graphs and compared it with the known counts of k-colourable graphs for $k=3,4$ on the On-Line Encyclopedia of Integer Sequences [18] (i.e. sequences A076322 and A076323).
- We determined all k-vertex-critical graphs in two independent ways and both methods yielded exactly the same results:

1. By modifying line 3 of Algorithm 2 so it tests for k-vertex-criticality instead of k-criticality.
2. By recursively adding edges in all possible ways to the set of critical graphs (as long as the graphs remain k-vertex-critical) and testing if the resulting graphs are P_{t}-free.

Appendix 1.2: Correctness testing of tripod generator

We performed the following consistency tests to verify the correctness of our generator for 4-critical $P_{6}{ }^{-}$ free 1-vertex extensions of tripods (i.e. Algorithm 3). The source code of this program can be downloaded from 7.

- We wrote a program to test if a graph is a 1-vertex extension of a tripod and applied it to the 24 4 -critical P_{6}-free graphs from Theorem 1.1. 11 of those graphs are 1-vertex extensions of a tripod (i.e. $F_{1}, F_{2}, F_{4}, F_{6}, F_{7}, F_{9}, F_{10}, F_{17}, F_{21}, F_{22}$ and F_{23}). We verified that our implementation of Algorithm 3 indeed yielded exactly those 11 graphs which are a 1-vertex extension of a tripod (except K_{4}).
- We used Algorithm 1 to generate all 4-critical P_{7}-free graphs up to 14 vertices. There are 1910 such graphs and 595 of them are 1-vertex extensions of a tripod (see Table 6 for details). We modified our implementation of Algorithm 3 to generate 4 -critical P_{7}-free 1-vertex extensions of tripods and executed it up to 14 vertices. We verified that this indeed yields exactly those 595 graphs which are a 1 -vertex extension of a tripod (except K_{4}).

Vertices	Critical graphs	1-vertex extensions
4	1	1
6	1	1
7	2	1
8	5	4
9	21	14
10	99	56
11	212	87
12	522	141
13	679	196
14	368	94
≤ 14	1,910	595

Table 6: Counts of 4-critical P_{7}-free graphs up to 14 vertices and the number of those graphs which are 1-vertex extensions of a tripod.

Appendix 2: Adjacency lists

This section contains the adjacency lists of the 244 -critical P_{6}-free graphs from Theorem 1.1 The graphs are listed in the same order as in Fig. 1 and 2

- Graph $F_{1}:\{0: 123 ; 1: 023 ; 2: 013 ; 2: 013\}$
- Graph $F_{2}:\{0: 235 ; 1: 345 ; 2: 045 ; 3: 015 ; 4: 125 ; 5: 01234\}$
- Graph $F_{3}:\{0: 245 ; 1: 356 ; 2: 046 ; 3: 156 ; 4: 026 ; 5: 013 ; 6: 1234\}$
- Graph $F_{4}:\{0: 345 ; 1: 356 ; 2: 456 ; 3: 0146 ; 4: 0236 ; 5: 012 ; 6: 1234\}$
- Graph $F_{5}:\{0: 345 ; 1: 467 ; 2: 567 ; 3: 067 ; 4: 015 ; 5: 024 ; 6: 1237 ; 7: 1236\}$
- Graph $F_{6}:\{0: 356 ; 1: 457 ; 2: 567 ; 3: 067 ; 4: 167 ; 5: 012 ; 6: 02347 ; 7: 12346\}$
- Graph $F_{7}:\{0: 3457 ; 1: 456 ; 2: 567 ; 3: 067 ; 4: 017 ; 5: 012 ; 6: 1237 ; 7: 02346\}$
- Graph $F_{8}:\{0: 357 ; 1: 478 ; 2: 567 ; 3: 068 ; 4: 178 ; 5: 028 ; 6: 238 ; 7: 0124 ; 8: 1$ $3456\}$
- Graph $F_{9}:\{0: 458 ; 1: 478 ; 2: 568 ; 3: 678 ; 4: 0168 ; 5: 027 ; 6: 2348 ; 7: 135 ; 8$: $012346\}$
- Graph $F_{10}:\{0: 457 ; 1: 478 ; 2: 567 ; 3: 678 ; 4: 0168 ; 5: 028 ; 6: 2348 ; 7: 0123 ; 8$: 13456$\}$
- Graph $F_{11}:\{0: 3458 ; 1: 456 ; 2: 5678 ; 3: 067 ; 4: 0178 ; 5: 012 ; 6: 1238 ; 7: 234$; 8:0246\}
- Graph $F_{12}:\{0: 369 ; 1: 467 ; 2: 578 ; 3: 069 ; 4: 189 ; 5: 278 ; 6: 0138 ; 7: 1259 ; 8$: $2456 ; 9: 0347\}$
- Graph $F_{13}:\{0: 469 ; 1: 568 ; 2: 689 ; 3: 789 ; 4: 078 ; 5: 179 ; 6: 0127 ; 7: 3456 ; 8$: $12349 ; 9: 02358\}$
- Graph $F_{14}:\{0: 4579 ; 1: 567 ; 2: 678 ; 3: 789 ; 4: 068 ; 5: 0189 ; 6: 1249 ; 7: 0123$; 8: $2345 ; 9$: 0356$\}$
- Graph $F_{15}:\{0: 4589 ; 1: 4789 ; 2: 568 ; 3: 678 ; 4: 0169 ; 5: 027 ; 6: 2349 ; 7: 135$; 8: 012 3; $9: 0146\}$
- Graph $F_{16}:\{0: 567 ; 1: 569 ; 2: 589 ; 3: 678 ; 4: 789 ; 5: 01278 ; 6: 01389 ; 7: 034$ 59; 8: $23456 ; 9: 12467\}$
- Graph $F_{17}:\{0: 3569 ; 1: 468 ; 2: 56789 ; 3: 0789 ; 4: 179 ; 5: 0278 ; 6: 012 ; 7: 23$ $45 ; 8: 12359 ; 9: 02348\}$
- Graph $F_{18}:\{0: 5610 ; 1: 5910 ; 2: 6710 ; 3: 7810 ; 4: 8910 ; 5: 0178 ; 6: 0289 ; 7: 23$ 59; $8: 3456 ; 9: 1467 ; 10: 01234\}$
- Graph $F_{19}:\{0: 46710 ; 1: 5910 ; 2: 68910 ; 3: 78910 ; 4: 089 ; 5: 1910 ; 6: 027 ; 7: 0$ $36 ; 8: 23410 ; 9: 12345 ; 10: 012358\}$
- Graph $F_{20}:\{0: 51011 ; 1: 671011 ; 2: 691011 ; 3: 781011 ; 4: 891011 ; 5: 01011 ; 6: 1$ 28 10; 7 : 13 9; $8: 346$ 11; $9: 247$; $10: 0123456 ; 11: 0123458\}$
- Graph $F_{21}:\{0: 4671011 ; 1: 567811 ; 2: 68101112 ; 3: 789101112 ; 4: 08912 ; 5: 1$ $9101112 ; 6: 01291012 ; 7: 01312 ; 8: 1234 ; 9: 345611 ; 10: 02356 ; 11: 01235$ 9; 12: 234567$\}$
- Graph $F_{22}:\{0: 46891112 ; 1: 567101112 ; 2: 67891112 ; 3: 9101112 ; 4: 071011$ 12; 5 : 189 12; $6: 012$ 10; 7 : 1249 ; $8: 02510$ 11; $9: 0235710 ; 10: 134689$; 11: 01 2348 ; 12: 012345$\}$
- Graph $F_{23}:\{0: 467910 ; 1: 5789 ; 2: 6791011 ; 3: 789101112 ; 4: 0891011$ 12; 5: 1 1011 12; $6: 02811$ 12; $7: 012311$ 12; $8: 1346 ; 9$: $0123412 ; 10: 02345$; 11: 2345 $67 ; 12: 345679\}$
- Graph $F_{24}:\{0: 48131415 ; 1: 58101415 ; 2: 6891015 ; 3: 7891011 ; 4: 09101112 ; 5$: $19111213 ; 6$: $211121314 ; 7: 312131415 ; 8: 0123111213 ; 9: 2345131415 ; 10: 12$ $34121314 ; 11: 345681415 ; 12: 456781015 ; 13: 05678910 ; 14: 016791011 ; 15$: $012791112\}$

[^0]: *Partially supported by NSF grant DMS-1265803.
 ${ }^{\dagger}$ Supported by a Postdoctoral Fellowship of the Research Foundation Flanders (FWO).

