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A STRATEGY OF NUMERIC SEARCH FOR

PERFECT CUBOIDS IN THE CASE OF

THE SECOND CUBOID CONJECTURE.

A.A.Masharov, R.A. Sharipov

Abstract. A perfect cuboid is a rectangular parallelepiped whose edges, whose face
diagonals, and whose space diagonal are of integer lengths. The problem of finding
such cuboids or proving their non-existence is not solved thus far. The second cuboid
conjecture specifies a subclass of perfect cuboids described by one Diophantine equa-
tion of tenth degree and claims their non-existence within this subclass. Regardless
of proving or disproving this conjecture in the present paper the Diophantine equa-
tion associated with it is studied and is used in order to build an optimized strategy
of computer-assisted search for perfect cuboids within the subclass covered by the
second cuboid conjecture.

1. Introduction.

For the history and various approaches to the problem of perfect cuboids the
reader is referred to [1–42]. In this paper we resume the research initiated in [43–47].
The papers [48–60] deal with another approach based on so-called multisymmetric
polynomials. In this paper we do not touch this approach.

Perfect cuboids are described by six Diophantine equations. These equations are
immediate from the Pythagorean theorem:

x21 + x22 + x23 − L2 = 0, x22 + x23 − d2
1 = 0,

(1.1)
x23 + x21 − d2

2 = 0, x21 + x22 − d2
3 = 0.

The variables x1, x2, x3 in (1.1) stand for three edges of a cuboid, the variables d1,
d2, d3 correspond to its face diagonals, and L represents its space diagonal.

In [43] an algebraic parametrization for the Diophantine equations (1.1) was
suggested. It uses four rational variables α, β, υ, and z:

x1
L

=
2 υ

1 + υ2
,

d1
L

=
1− υ2

1 + υ2
,

x2
L

=
2 z (1− υ2)

(1 + υ2) (1 + z2)
,

x3
L

=
(1− υ2) (1 − z2)

(1 + υ2) (1 + z2)
, (1.2)

d2
L

=
(1 + υ2) (1 + z2) + 2 z(1− υ2)

(1 + υ2) (1 + z2)
β,

d3
L

=
2 (υ2 z2 + 1)

(1 + υ2) (1 + z2)
α.
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The variables α, β, υ in (1.2) are different from the original ones which are used in
[43], here we use α and β instead of a and b, and we use υ instead of u.

Only two of the four variables α, β, υ, and z are independent. The variables α
and β are taken for independent ones. Then the variable υ is expressed through α
and β as a solution of the following algebraic equation:

υ4 α4 β4 + (6α4 υ2 β4 − 2 υ4 α4 β2 − 2 υ4 α2 β4) + (4 υ2 β4 α2+

+4α4 υ2 β2 − 12 υ4 α2 β2 + υ4 α4 + υ4 β4 + α4 β4) + (6α4 υ2 + 6 υ2 β4−
− 8α2 β2 υ2 − 2 υ4 α2 − 2 υ4 β2 − 2α4 β2 − 2 β4 α2) + (υ4 + β4+

+α4 + 4α2 υ2 + 4 β2 υ2 − 12 β2 α2) + (6 υ2 − 2α2 − 2 β2) + 1 = 0.

(1.3)

Once the variable υ is expressed as a function of α and β by solving the equation
(1.3), the variable z is given by the formula

z =
(1 + υ2) (1− β2) (1 + α2)

2 (1 + β2) (1− α2 υ2)
. (1.4)

The equation (1.3), along with the formula (1.4), produces two algebraic functions

υ = υ(α, β), z = z(α, β). (1.5)

Substituting (1.5) into (1.2), we get six algebraic functions

x1 = x1(α, β, L), d1 = d1(α, β, L),

x2 = x2(α, β, L), d2 = d2(α, β, L), (1.6)

x3 = x3(α, β, L), d3 = d3(α, β, L),

which are linear with respect to L. The functions (1.6) satisfy the cuboid equations
(1.1) identically with respect to α, β, and L. This fact is presented by the following
theorem (see Theorem 5.2 in [43]).

Theorem 1.1. A perfect cuboid does exist if and only if there are three rational

numbers α, β, and υ satisfying the equation (1.3) and obeying four inequalities

0 < α < 1, 0 < β < 1, 0 < υ < 1, and (α+ 1) (β + 1) > 2.

The rational numbers α, β, and υ cam be brought to a common denominator:

α =
a

t
, β =

b

t
, υ =

u

t
. (1.7)

Substituting (1.7) into (1.3), one easily derives the Diophantine equation

t12 + (6 u2 − 2 a2 − 2 b2) t10 + (u4 + b4 + a4 + 4 a2 u2+

+4 b2 u2 − 12 b2 a2) t8 + (6 a4 u2 + 6 u2 b4 − 8 a2 b2 u2−
− 2 u4 a2 − 2 u4 b2 − 2 a4 b2 − 2 b4 a2) t6 + (4 u2 b4 a2+

+4 a4 u2 b2 − 12 u4 a2 b2 + u4 a4 + u4 b4 + a4 b4) t4+

+(6 a4 u2 b4 − 2 u4 a4 b2 − 2 u4 a2 b4) t2 + u4 a4 b4 = 0.

(1.8)

Theorem 1.1 then is reformulated in the following form (see Theorem 4.1 in [44]).
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Theorem 1.2. A perfect cuboid does exist if and only if for some positive coprime

integer numbers a, b, and u the Diophantine equation (1.8) has a positive solution

t obeying the inequalities t > a, t > b, t > u, and (a+ t) (b + t) > 2 t2.

In [44] the Diophantine equation was treaded as a polynomial equation for t,
while a, b, and u were considered as parameters. As a result in [44] several special
cases of the equation (1.8) were specified. They are introduced through the following
relationships for the parameters a, b, and u:

1) a = b 6= u; 3) b u = a2; 5) a = u 6= b;
(1.9)

2) a = b = u; 4) a u = b2; 6) b = u 6= a.

The cases 2, 5, and 6 are trivial. They produce no perfect cuboids (see [44]). The
case 1 corresponds to the first cuboid conjecture (see [44]). It is less trivial, but it
produces no perfect cuboids either (see [45]). The cases 2 and 4 correspond to the
second cuboid conjecture (see [44] and [46]). The case, where none of the conditions
(1.9) is fulfilled, corresponds to the third cuboid conjecture (see [44] and [47]).

In this paper we consider the cases 3 and 4 associated with the second cuboid
conjecture. In the case 3 the equality b u = a2 is resolved by substituting

a = p q, b = p2, u = q2. (1.10)

Here p 6= q are two positive coprime integers. Upon substituting (1.10) into the
equation (1.8) it reduces to the equation

(t− a) (t+ a)Qpq(t) = 0 (1.11)

(see [45]), where Qpq(t) is the following polynomial of tenth degree:

Qpq(t) = t10 + (2 q2 + p2) (3 q2 − 2 p2) t8 + (q8 + 10 p2 q6+

+4 p4 q4 − 14 p6 q2 + p8) t6 − p2 q2 (q8 − 14 p2 q6 + 4 p4 q4+

+10 p6 q2 + p8) t4 − p6 q6 (q2 + 2 p2) (3 p2 − 2 q2) t2 − q10 p10.

(1.12)

The case 4 is similar. In this case the equality a u = b2 is resolved by substituting

a = p2, b = p q, u = q2. (1.13)

Upon substituting (1.13) into the equation (1.8) it reduces to the equation

(t− b) (t+ b)Qpq(t) = 0. (1.14)

The roots t = a, t = −a, t = b, and t = −b of the equations (1.11) and (1.14) do
not produce perfect cuboids (see Theorem 1.2). Upon splitting off the linear factors
from (1.11) and (1.14) we get the equation

t10 + (2 q2 + p2) (3 q2 − 2 p2) t8 + (q8 + 10 p2 q6 + 4 p4 q4 −
− 14 p6 q2 + p8) t6 − p2 q2 (q8 − 14 p2 q6 + 4 p4 q4 + 10 p6 q2+

+p8) t4 − p6 q6 (q2 + 2 p2) (3 p2 − 2 q2) t2 − q10 p10 = 0.

(1.15)



4 A.A.MASHAROV, R.A. SHARIPOV

Conjecture 1.1. For any positive coprime integers p 6= q the polynomial Qpq(t)
in (1.12) is irreducible in the ring Z[t].

Conjecture 1.1 is known as the second cuboid conjecture. It was formulated in
[44]. In particular it claims that the equation (1.15) has no integer roots for any
positive coprime integers p 6= q. We do not try to prove or disprove Conjecture 1.1
in this paper. Instead, we study real positive roots of the equation (1.15) in the
case where q is much larger than p. Using asymptotic expansions for the roots of
the equation (1.15) as q → +∞, below we build an optimized strategy of computer-
assisted search for perfect cuboids in the realm of Conjecture 1.1.

2. Asymptotic expansions for roots of the polynomial equation.

Note that the polynomial Qpq(t) in (1.12) is even. Along with each root t it has
the opposite root −t. We use the condition

{

t > 0 if t is a real root,

Re(t) > 0 and Im(t) > 0 if t is a complex root,
(2.1)

in order to divide the roots of the equation (1.15) into two groups. We denote
through t1, t2, t3, t4, t5 the roots that obey the conditions (2.1). Then t6, t7, t8,
t9, t10 are opposite roots of the equation (1.15):

t6 = −t1, t7 = −t2, t8 = −t3, t9 = −t4, t10 = −t5. (2.2)

Typically, asymptotic expansions for roots of a polynomial equation look like
power series (see [61]). In our case we have the expansions

ti(p, q) = Ci q
αi

(

1 +

∞
∑

s=1

βis q
−s

)

as q → +∞. (2.3)

The coefficient Ci in (2.3) should be nonzero: Ci 6= 0.
Let’s substitute (2.3) into the equation (1.15). For this purpose we represent the

polynomial Qpq(t) from (1.12) formally as the sum

Qpq(t) =
10
∑

m=0

10
∑

r=0

Amr(p) q
r tm. (2.4)

Each nonzero term in (2.4), i. e. a term Amr(p) q
r tm with the nonzero coefficient

Amr(p) 6= 0,

yields the sum

Smr(p, q) = Amr(p) Ci
m qmαi+r +

∑

s<mαi+r

γirms q
s. (2.5)

Taking into account (2.5), the equation (1.15) is written as

10
∑

m=0

10
∑

r=0

Smr(p, q) = 0. (2.6)
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The equality (2.6) should be fulfilled identically with respect to the variable
q → +∞. Since Ci 6= 0, a necessary condition for that is the coincidence of
exponents of at least two summands of the form Smr(q) in the leading order with
respect to the variable q. This yields the equalities

m1 αi + r1 = m2 αi + r2 = smax. (2.7)

The maximality of the exponent in (2.7) means that all exponents are not greater
than smax, i. e. we have the following inequality:

mαi + r 6 smax for all r and m such that Amr(p) 6= 0. (2.8)

Lemma 2.1. The coincidence m1 = m2 in the formula (2.7) is impossible.

Proof. Indeed, due to (2.8) the coincidence m1 = m2 would mean r1 = r2. But the
sum (2.6) has no two summands with simultaneously coinciding indices r and m.
Lemma 2.1 is proved. �

Let’s treat m and r as coordinates of a point on the coordinate plane. Since m
and r are integer, such a point belongs to the integer grid, being its node. The

numbers m1, r1 and m2, r2 from (2.7) mark two nodes of this grid. These are the
points A and B in Fig. 2.1. Due to Lemma 2.1 from the equality (2.7) we derive
the following formula for the exponent αi:

αi = − r2 − r1
m2 −m1

. (2.9)

The right hand side of the formula (2.9) up to the sign coincides with the slope of
the straight line connecting the nodes A and B in Fig. 2.1:

αi = −kAB. (2.10)
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The nodes A and B correspond to some nonzero summands in the sum (2.4)
being a formal presentation of the polynomial (1.12). They are selected by the
maximality condition for the parameter s = mαi + r. The maximum is taken over
all summands in the sum (2.4) for a fixed value of αi.

Lemma 2.2. The exponent αi in the asymptotic expansion (2.3) is determined by

the slope of a straight line connecting some two nodes of the integer grid associated

with some two nonzero terms in the polynomial (2.4).

Let C be some node of the integer grid in Fig. 2.1 associated with some nonzero
summand of the sum (2.4) and different from the nodes A and B. Its coordinates
m and r satisfy the inequality (2.8). From (2.7) and (2.8) one derives the inequality

mαi + r 6 m1 αi + r1.

Let’s write this inequality as follows:

αi (m−m1) 6 −(r − r1). (2.11)

In Fig. 3.1 three positions of the node C relative to the node A are shown. The
node C can be located to the left of the node A, to the right of the node A, or on
the same vertical line with the node A. In the first case m < m1. In the second
case m > m1. And finally, in the third case m = m1.

In the first case, i. e. if m < m1, from (2.11) we derive

αi > − r − r1
m−m1

. (2.12)

The right hand side of the inequality (2.12) up to the sign coincides with the slope
of the line AC. Applying (2.10), we get the inequality −kAB > −kAC . Inverting
signs, we write this inequality in the following form:

kAC > kAB. (2.13)

In the second case, i. e. if m > m1, from (2.11) we derive

αi 6 − r − r1
m−m1

. (2.14)

By analogy with (2.13) the inequality (2.14) is transformed to

kAC 6 kAB. (2.15)

And finally, in the third case, i. e. ifm = m1, from the inequality (2.11) we derive

0 6 −(r − r1). (2.16)

The inequality (2.16) is equivalent to the following inequality:

r 6 r1. (2.17)
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Each of the inequalities (2.13), (2.15), and (2.17) in its case means that the point
C is located not above the line AB. This fact is formulated as a lemma.

Lemma 2.3. All nodes (m, r) of the integer grid associated with nonzero sum-

mands in the polynomial (2.4) are located not above the line AB on which the nodes

implementing the maximum of the parameter s = mαi + r are located.

In order to apply Lemmas 2.1, 2.2, and 2.3 let’s mark all of the nodes associated
with the polynomial (1.12) on the coordinate plane.

Definition 2.1. For any polynomial of two variables P (t, q) the convex hull of all
integer nodes on the coordinate plane associated with monomials of this polynomial
is called the Newton polygon of P (t, q).

Remark. Note that in our case the polynomial (1.12) depend on three variables
p, q, and t. However, we treat p as a parameter and consider Qpq(t) as a polynomial
of two variables when applying Definition 2.1 to it.

The Newton polygon of the polynomial (1.12) is shown in Fig. 2.2. Its boundary
consists of two parts — the upper part and the lower part. The upper parts is
drawn in green, the lower part is drawn in red. In Fig. 2.2 the nodes on the upper
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boundary of the Newton polygon are denoted according to the formula (2.4). The
coefficients Amr(p) in (1.12) associated with these nodes are given by the formulas

A0 10 = −p10, A2 10 = 2 p6, A4 10 = −p2,
(2.18)

A6 8 = 1, A8 4 = 6, A10 0 = 1.

Theorem 2.1. The values of exponents αi in the expansion (2.3) for roots of the

equation (1.15) are determined according to the formula αi = −k, where k stands

for slopes of segments of the polygonal line being the upper boundary of the Newton

polygon in Fig. 2.2.

Theorem 2.1 is immediate from Lemmas 2.2 and 2.3. The formula αi = −k in
this theorem follows from the formula (2.10). In our particular case we have

αi = 0, αi = 1, αi = 2. (2.19)

The options (2.19) are derived from Fig. 2.2 due to the above theorem.

3. Leading terms in asymptotic expansions.

The term Ci q
αi obtained upon expanding brackets in (2.3) is called the leading

term of the asymptotic expansion (2.3). Three options for the value of αi are given
by the formula (2.19). Let’s consider each of these options separately.

The case αi = 0. This case corresponds to the horizontal segment on the upper
boundary of the Newton polygon in Fig. 2.2. This segment comprises three nodes
A4 10, A2 10, and A0 10. Therefore, substituting the expansion (2.3) with αi = 0
into the equation (1.15), we get the following equation for Ci:

A4 10 Ci
4 +A2 10 Ci

2 +A0 10 = 0. (3.1)

Taking into account (2.18), the equation (3.1) is transformed to

p2 Ci
4 − 2 p6 Ci

2 + p10 = 0. (3.2)

The equation (3.2) has two real roots

Ci = p2, Ci = −p2, (3.3)

each of which is of multiplicity 2. The condition (2.1) excludes the root Ci = −1
from (3.3). The remain is one root of multiplicity 2:

Ci = p2. (3.4)

The asymptotic expansion (2.3) corresponding to (3.4) is

ti(p, q) = p2

(

1 +

∞
∑

s=1

βis q
−s

)

. (3.5)

The case αi = 1. This case corresponds to the short slant segment in the upper
boundary of the Newton polygon in Fig. 2.2. It comprises two nodes A4 10 and
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A6 8. Therefore, substituting the expansion (2.3) with αi = 1 into the equation
(1.15), we get the following equation for Ci:

A6 8 Ci
6 +A4 10 Ci

4 = 0. (3.6)

The common divisor Ci
4 can be factored out from the equation (3.6). Since Ci 6= 0,

we can remove this common divisor. Then the equation takes the form

A6 8 Ci
2 +A4 10 = 0. (3.7)

Taking into account (2.18), the equation (3.7) is transformed to

Ci
2 − p2 = 0. (3.8)

The quadratic equation (3.8) has two simple root

Ci = p, Ci = −p, (3.9)

The condition (2.1) excludes the root Ci = −p from (3.9). Therefore as a remain
we have only one root, which is of multiplicity 1:

Ci = p. (3.10)

The asymptotic expansion (2.3) corresponding to (3.10) is

ti(p, q) = p q

(

1 +

∞
∑

s=1

βis q
−s

)

. (3.11)

The case αi = 2. This case corresponds to the long slant segment in the upper
boundary of the Newton polygon in Fig. 3.2. It comprises three nodes A6 8, A8 4,
and A10 0. Therefore, substituting the expansion (2.3) with αi = 2 into the equation
(1.15), we get the following equation for Ci:

A10 0 Ci
10 +A8 4 Ci

8 +A6 8 Ci
6 = 0. (3.12)

The common divisor Ci
6 is factored out from the equation (3.12). Since Ci 6= 0, we

can remove this common divisor. Then the equation takes the form

A10 0 Ci
4 +A8 4 Ci

2 +A6 8 = 0. (3.13)

Taking into account (2.18), the equation (3.13) is transformed to

Ci
4 + 6 Ci

2 + 1 = 0. (3.14)

The quartic equation (3.14) has four roots. All of them are complex:

Ci = (
√
2 + 1) i, Ci = (

√
2− 1) i, (3.15)

Ci = −(
√
2 + 1) i, Ci = −(

√
2− 1) i. (3.16)

Here i =
√
−1. The roots (3.16) are excluded by the condition (2.1). The remain is

two root (3.15) of multiplicity 1. They yield the following asymptotic expansions:

ti(p, q) = (
√
2 + 1) i q2

(

1 +

∞
∑

s=1

βis q
−s

)

,

ti(p, q) = (
√
2− 1) i q2

(

1 +

∞
∑

s=1

βis q
−s

)

.

(3.17)

The results (3.5), (3.11), (3.17) are summed up in the following theorem.
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Theorem 3.1. For sufficiently large positive values of the parameter q, i. e. for

q > qmin, the tenth-degree equation (1.15) has five roots of multiplicity 1 satisfying

the condition (2.1). Three of them t1, t2, and t3 are real roots. Their asymptotics

as q → +∞ are given by the formulas

t1 ∼ p2, t2 ∼ p2, t3 ∼ p q. (3.18)

The rest two roots t4 and t5 of the equation (1.15) are complex. Their asymptotics

as q → +∞ are given by the formulas

t4 ∼ (
√
2 + 1) i q2, t5 ∼ (

√
2− 1) i q2. (3.19)

The complex roots (3.19) do not provide perfect cuboids. However, below they
are important for determining the exact number of real roots.

4. Asymptotic estimates for real roots.

According to the formula (3.18) the roots t1 and t2 are not growing as q → +∞.
For this reason we do not need to calculate βis in (3.5) for them. But we need to
find estimates for remainder terms R1 and R2 in the formulas

t1 = p2 +R1(p, q), t2 = p2 +R2(p, q) (4.1)

as q → +∞. Our goal is to obtain estimates of the form

|Ri(p, q)| <
C(p)

q
, where i = 1, 2. (4.2)

In order to get such estimates we substitute

t = p2 +
c

q
(4.3)

into the equation (1.15). Then we perform another substitution into the equation
obtained as a result of substituting (4.3) into (1.15):

q =
1

z
. (4.4)

Upon two substitutions (4.3) and (4.4) and upon removing denominators the equa-
tion (1.15) is written as a polynomial equation in the new variables c and z. It is
a peculiarity of this equation that it can be written as

16 p12 + f(c, p, z) = 4 p6 c2. (4.5)

Here f(c, p, z) is a polynomial given by an explicit formula. The formula for f(c, p, z)
is rather huge. Therefore it is placed to the ancillary file strategy formulas.txt

in a machine-readable form.
Let q > 59 p and let the parameter c run over the interval from −5 p3 to 0:

−5 p3 < c < 0. (4.6)
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From q > 59 p and from (4.4) we derive the estimate |z| 6 1/59 p−1. Using this
estimate and using the inequalities (4.6), by means of direct calculations one can
derive the following estimate for the modulus of the function f(c, p, z):

|f(c, p, z)| < 15 p12. (4.7)

For fixed p and z the estimate (4.7) means that the left hand side of the equation
(4.5) is a continuous function of c taking the values within the range from p12

to 31 p12 while c is in the interval (4.6). The right hand side of (4.5) is also
a continuous function of c. It decreases from 100 p12 to 0 in the interval (4.6).
Therefore somewhere in the interval (4.6) there is at least one root of the equation
(4.5).

The parameter c is related to the initial variable t by means of the formula (4.3).
The inequalities (4.5) for c imply the following inequalities for t:

p2 − 5 p3

q
< t < p2. (4.8)

The inequalities (4.8) and the above considerations prove the following theorem.

Theorem 4.1. For each q > 59 p there is at least one real root of the equation

(1.15) satisfying the inequalities (4.8).

The above considerations can be repeated for the case where the parameter c
runs over the interval from 0 to 5 p3. In this case due to (4.3) from

0 < c < 5 p3

we derive the inequalities

p2 < t < p2 +
5 p3

q
(4.9)

for the variable t and hence we obtain the following theorem.

Theorem 4.2. For each q > 59 p there is at least one real root of the equation

(1.15) satisfying the inequalities (4.9).

Now let’s proceed to the growing root t3 of the equation (1.15) (see Theorem 3.1).
Upon refining the asymptotic formula (3.18) for t3 looks like

t3 = p q − 16 p3

q
+R3(p, q). (4.10)

The formula (4.10) is in agreement with the expansion (3.11). It means that

β31 = 0, β32 = −16 p2.

Like in (4.2), our goal here is to obtain estimates of the form

|R3(q)| <
C(p)

q2
. (4.11)
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In order to get such estimates we substitute

t = p q − 16 p3

q
+

c

q2
(4.12)

into the equation (1.15). Immediately after that we perform the substitution (4.4)
into the equation obtained by substituting (4.12) into (1.15). As a result of two
substitutions (4.12) and (4.4) upon eliminating denominators the equation (1.15)
is written as a polynomial equation in the new variables c and z. It looks like

ϕ(c, p, z) = −2 p5 c. (4.13)

Here ϕ(c, p, z) is a polynomial of three variables. The explicit formula for ϕ(c, p, z)
is rather huge. Therefore it is placed to the ancillary file strategy formulas.txt

in a machine-readable form.
Let q > 59 p and let the parameter c run over the interval from −5 p4 to 5 p4:

−5 p4 < c < 5 p4. (4.14)

From q > 59 p and from (4.4) we derive the estimate |z| 6 1/59 p−1. Using this
estimate and using the inequalities (4.14), by means of direct calculations one can
derive the following estimate for the modulus of the function ϕ(c, p, z):

|ϕ(c, z)| < 7 p9. (4.15)

For fixed p and z the estimate (4.15) means that the left hand side of the equation
(4.13) is a continuous function of c taking the values within the range from −7 p9

to 7 p9 while c is in the interval (4.14). The right hand side of the equation (4.13)
is also a continuous function of c. It decreases from 10 p9 to −10 p9 in the interval
(4.14). Therefore somewhere in the interval (4.14) there is at least one root of the
polynomial equation (4.13).

The parameter c is related to the initial variable t by means of the formula (4.12).
The inequalities (4.14) for c imply the following inequalities for t:

p q − 16 p3

q
− 5 p4

q2
< t < p q − 16 p3

q
+

5 p4

q2
. (4.16)

The inequalities (4.16) and the above considerations prove the following theorem.

Theorem 4.3. For each q > 59 p there is at least one real root of the equation

(1.15) satisfying the inequalities (4.16).

Theorems 4.1, 4.2, and 4.3 solve the problem of obtaining estimates of the form
(4.2) and (4.11) for the remainder terms in the refined asymptotic expansions (4.1)
and (4.10) for q > 59 p.

5. Asymptotic estimates for complex roots.

Let’s proceed to complex roots of the equation (1.15). Upon refining the asymp-
totic formula (3.19) for the complex root t4 is written as

t4 = (
√
2 + 1) i q2 + (

√
2− 2) i p2 +R4(p, q), where i =

√
−1. (5.1)

The formula (5.1) is in agreement with the first expansion (3.17). It means that

β41 = 0 and β42 = (4 − 3
√
2) p2. Like in the formula (4.2) and in the formula
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(4.11), our goal here is to obtain estimates of the form

|R4(p, q)| <
C(p)

q
. (5.2)

In order to get such estimates we substitute

t = (
√
2 + 1) i q2 + (

√
2− 2) i p2 +

c i

q
(5.3)

into the equation (1.15). Immediately after that we perform the substitution (4.4)
into the equation obtained by substituting (5.3) into (1.15). As a result of two
substitutions (5.3) and (4.4) upon eliminating denominators the equation (1.15) is
written as a polynomial equation in the new variables c and z. It looks like

ψ(z, p, c) = 16 c. (5.4)

Here ψ(c, p, z) is a polynomial of three variables with purely real coefficients. The
explicit formula for ψ(c, p, z) is rather huge. Therefore it is placed to the ancillary
file strategy formulas.txt in a machine-readable form.

Let q > 59 p and let the parameter c run over the interval from −5 p3 to 5 p3:

−5 p3 < c < 5 p3. (5.5)

From q > 59 p and from (4.4) we derive the estimate |z| 6 1/59 p−1. Using this
estimate and using the inequalities (5.5), by means of direct calculations one can
derive the following estimate for the modulus of the function ψ(c, p, z):

|ψ(c, p, z)| < 15 p3. (5.6)

For fixed p and z the estimate (5.6) means that the left hand side of the equation
(5.4) is a continuous function of c taking its values within the range from −15 p3

to 15 p3 while c runs over the interval (5.5). The right hand side of the equation
(5.4) is also a continuous function of c. It increases from −80 p3 to 80 p3 in the
interval (5.5). Therefore somewhere in the interval (5.5) there is at least one root
of the polynomial equation (5.4).

The parameter c is related to the initial variable t by means of the formula (5.3).
Therefore the inequalities (5.5) for c imply the following inequalities for t:

(
√
2+1) q2+(

√
2−2) p2− 5 p3

q
< Im t < (

√
2+1) q2+(

√
2−2) p2+

5 p3

q
. (5.7)

The inequalities (5.7) and the above considerations prove the following theorem.

Theorem 5.1. For each q > 59 p there is at least one purely imaginary root of the

equation (1.15) satisfying the inequalities (5.7).

The complex root t5 is similar to the root t4. Upon refining the asymptotic
formula (3.19) for the complex root t5 is written as

t4 = (
√
2− 1) i q2 + (

√
2 + 2) i p2 +R5(p, q), where i =

√
−1. (5.8)
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The formula (5.8) is in agreement with the second expansion (3.17). It means that

β51 = 0 and β52 = (4 + 3
√
2) p2. Like in the formulas (4.2), (4.11), and (4.2), our

goal here is to obtain estimates of the form

|R5(p, q)| <
C(p)

q
. (5.9)

In order to get such estimates we substitute

t = (
√
2− 1) i q2 + (

√
2 + 2) i p2 +

c i

q
(5.10)

into the equation (1.15). Immediately after that we perform the substitution (4.4)
into the equation obtained by substituting (5.10) into (1.15). As a result of two
substitutions (5.10) and (4.4) upon eliminating denominators the equation (1.15)
is written as a polynomial equation in the new variables c and z. It looks like

η(z, c) = 16 c. (5.11)

Here η(c, p, z) is a polynomial of three variables. The explicit formula for η(c, p, z)
is rather huge. Therefore it is placed to the ancillary file strategy formulas.txt

in a machine-readable form.
Let q > 59 p and let the parameter c run over the interval from −5 p3 to 5 p3

(see (5.5)). From q > 59 p and from (4.4) we derive the estimate |z| 6 1/59 p−1.
Using this estimate and using the inequalities (5.5), by means of direct calculations
one can derive the following estimate for the modulus of the function η(c, p, z):

|η(c, p, z)| < 15 p3. (5.12)

For fixed p and z the estimate (5.12) means that the left hand side of the equation
(5.11) is a continuous function of c taking its values within the range from −15 p3

to 15 p3 while c runs over the interval (5.5). The right hand side of the equation
(5.12) is also a continuous function of c. It increases from −80 p3 to 80 p3 in the
interval (5.5). Therefore somewhere in the interval (5.5) there is at least one root
of the polynomial equation (5.12).

The parameter c is related to the initial variable t by means of the formula (5.10).
Therefore the inequalities (5.5) for c imply the following inequalities for t:

(
√
2−1) q2+(

√
2+2) p2− 5 p3

q
< Im t < (

√
2−1) q2+(

√
2+2) p2+

5 p3

q
. (5.13)

The inequalities (5.13) and the above considerations prove the following theorem.

Theorem 5.2. For each q > 59 p there is at least one purely imaginary root of the

equation (1.15) satisfying the inequalities (5.13).

Theorems 5.1 and 5.2 solve the problem of obtaining estimates of the form (5.2)
and (5.9) for the remainder terms in the refined asymptotic expansions (5.1) and
(5.8) for q > 59 p. Along with Theorems 4.1, 4.2, and 4.3, they separate the roots
t1, t2, t3, t4, t5 of the equation (1.15) from each other for sufficiently large q and
provide rather precise intervals for their location.
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6. Non-intersection of asymptotic intervals.

Theorems 4.1, 4.2, 4.3, 5.1, 5.2 define five asymptotic intervals (4.8), (4.9), (4.16),
(5.7), and (5.13) for q > 59 p. It is easy to see that the intervals (4.8) and (4.9)
do not intersect. For the other pairs of intervals among (4.8), (4.9), (4.16), (5.7),
(5.13) this is not so obvious. Therefore we need some elementary lemmas.

Lemma 6.1. For q > 59 p the asymptotic intervals (4.8), (4.9), (4.16), (5.7), and
(5.13) do not comprise the origin.

Proof. Indeed, from q > 59 p for the left endpoint of the interval (4.8) we derive

p2 − 5 p3

q
> p2 − 5 p2

59
=

54 p2

59
> 0. (6.1)

The left endpoint of the interval (4.9) is obviously positive: p2 > 0. In the case of
the interval (4.16) from q > 59 p we derive

p q − 16 p3

q
− 5 p4

q2
>

204430 p2

3481
> 58 p2 > 0. (6.2)

In the case of the imaginary intervals (5.7) and (5.13) from q > 59 p we derive

(
√
2 + 1) q2 + (

√
2− 2) p2 − 5 p3

q
> 8403 p2 > 0,

(
√
2− 1) q2 + (

√
2 + 2) p2 − 5 p3

q
> 1445 p2 > 0.

(6.3)

The above inequalities (6.1), (6.2), and (6.3) prove Lemma 6.1. �

Lemma 6.1 means that for q > 59 p the real intervals (4.8), (4.9), and (4.16)
do not intersect with the purely imaginary intervals (5.7) and (5.13). Moreover,
the inequalities (6.1), (6.2), and (6.3) show that all of these intervals are located
within positive half-lines of the real and imaginary axes. Therefore any roots of the
equation (1.15) enclosed within these intervals satisfy the condition (2.1).

Lemma 6.2. For q > 59 p the real asymptotic intervals (4.8), (4.9), and (4.16) do
not intersect with each other.

Proof. The open intervals (4.8) and (4.9) are adjacent. They have one common
endpoint t = p2, but this endpoint does not belong to them. Therefore the intervals
(4.8) and (4.9) do not intersect with each other.

In order to prove Lemma 6.2 it is sufficient to compare the right endpoint of the
interval (4.9) with the left endpoint of the interval (4.16). From q > 59 p we derive

p2 +
5 p3

q
6

64 p2

59
< 2 p2. (6.4)

Comparing (6.4) with (6.2), we conclude that

p2 +
5 p3

q
< p q − 16 p3

q
− 5 p4

q2
(6.5)
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for q > 59 p. The inequality (6.5) completes the proof of Lemma 6.2. �

Lemma 6.3. For q > 59 p the imaginary asymptotic intervals (5.7) and (5.13) do
not intersect with each other.

Proof. In order to prove Lemma 6.3 it is sufficient to compare the bottom endpoint
of the interval (5.7) with the top endpoint of the interval (5.13):

Im
(

t(5.7)
bottom

− t(5.13)
top

)

= 2 q2 − 4 p2 − 10 p3

q
. (6.6)

From q > 59 p and from (6.6) we derive the inequalities

Im
(

t(5.7)bottom − t(5.13)top

)

>
410512 p2

59
> 6957 p2 > 0. (6.7)

The inequalities (6.7) complete the proof of Lemma 6.3. �

Lemmas 6.1, 6.2, and 6.3 are summed up in the following theorem.

Theorem 6.1. For q > 59 p five roots t1, t2, t3, t4, t5 of the equation (1.15) obeying
the condition (2.1) are simple. They are located within five disjoint intervals (4.8),
(4.9), (4.16), (5.7), (5.13), one per each interval.

Due to (2.2) Theorem 6.1 locates all of the ten roots of the equation (1.15).

7. Integer points of asymptotic intervals.

It is easy to see that the asymptotic intervals (4.8), (4.9), (4.16) become more
and more narrow if p is fixed and q → +∞. Using this observation, one can easily
prove the following two theorems.

Theorem 7.1. If q > 59 p and q > 5 p3, then the asymptotic intervals (4.8) and

(4.9) have no integer points.

Theorem 7.2. If q > 59 p and q2 > 10 p4, then the asymptotic interval (4.16) has
at most one integer point.

The next theorem is more complicated.

Theorem 7.3. If q > 59 p and q > 16 p3 + 5 p/16, then the asymptotic interval

(4.16) has no integer points.

Proof. Note that (1 + x)2 > 1 + 2 x for any positive x. This inequality yields

1 + x >
√
1 + 2 x for any x > 0. (7.1)

Let’s write the inequality q > 16 p3 + 5 p/16 in the following way:

q − 8 p3 > 8 p3 +
5 p

16
= 8 p3

(

1 +
5

128 p2

)

. (7.2)

Setting x = 5/(128 p2) in (7.1) and applying it to (7.2), we get

q − 8 p3 > 8 p3

√

1 +
5

64 p2
. (7.3)
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Both sides of the inequality (7.3) are positive. Squaring them, we obtain

(q − 8 p3)2 > 64 p6

(

1 +
5

64 p2

)

. (7.4)

Expanding both sides of the inequality (7.4), we bring it to

q2 − 16 p3 q > 5 p4. (7.5)

And finally, dividing both sides of the inequality (7.5) by q2, we write it as

16 p3

q
+

5 p4

q2
< 1. (7.6)

Apart from q > 16 p3 + 5 p/16, we have the inequality q > 59 p that yields

0 <
5 p4

q2
6

5 p4

59 p q
=

5 p3

59 q
<

16 p3

q
. (7.7)

Applying (7.6) and (7.7) to (4.16), we derive the following inequalities:

p q − 1 < t < p q. (7.8)

Since p q is integer, the inequalities (7.8) have no integer solutions for t. This means
that the interval (4.16) has no integer points. Theorem 7.3 is proved. �

8. A strategy for numeric search.

The numeric search for perfect cuboids in the case of the second cuboid conjecture
(see Conjecture 1.1) is based on the equation (1.15). The equation (1.15) is related
to the equation (1.8) through the substitutions (1.10) and (1.13). Substituting
either (1.10) or (1.13) into the inequalities t > a, t > b, and t > u from Theorem 1.2,
we get the same result expressed by the inequalities

t > p2, t > p q, t > q2. (8.1)

Similarly, substituting either (1.10) or (1.13) into the inequality (a+t) (b+t) > 2 t2,
we get the same result expressed by the inequality

(p2 + t) (p q + t) > 2 t2. (8.2)

Theorem 1.2 specified for the case of second cuboid conjecture (see Conjecture 1.1)
is formulated in the following way.

Theorem 8.1. A triple of integer numbers p, q, and t satisfying the equation

(1.15) and such that p 6= q are coprime provides a perfect cuboid of and only if the

inequalities (8.1) and (8.2) are fulfilled.

Generally speaking, the numeric search based on Theorem 8.1 is a three-para-
metric search. The inequalities (8.1) set lower bounds for t, but they do not restrict
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t to a finite set of values. The inequality (8.2) is different. Since p and q are positive,
the inequality (8.2) can be written as follows:

t <
p2 + p q

2
+
p
√

p2 + 6 p q + q2

2
. (8.3)

Due to (8.1) and (8.3) for each fixed p and fixed q one should iterate only over a
finite set of integer values of t, i. e. the search is two-parametric in effect.

Theorems 7.1 and 7.3 strengthen the restrictions. They say that for each fixed
p one should iterate over a finite set of values of q and t, i. e. the search for perfect
cuboids becomes effectively one-parametric.

Theorems 7.1 and 7.3 can be further strengthened with the use of the inequalities
(8.1). Assume that the condition q > 59 p is fulfilled and assume that t belongs
to the first asymptotic interval (4.8) (see Theorem 6.1). Then from (8.1) and (4.8)
we derive two contradictory inequalities t > p2 and t < p2. Hence we have the
following theorem.

Theorem 8.2. If q > 59 p, then the asymptotic interval (4.8) has no points satis-

fying the inequalities (8.1).

Similarly, if q > 59 p and if t belongs to the second asymptotic interval (4.9),
then from the inequalities (4.9) and (8.1) we derive

t > q2 > (59 p)2 = 3481 p2,

t < p2 +
5 p3

q
.

(8.4)

The inequalities (8.4) mean that

3481 p2 < p2 +
5 p3

q
. (8.5)

From (8.5) one easily derives the inequality q < 5 p/3480 = p/696 that contradicts
q > 59 p. Hence we have the following theorem.

Theorem 8.3. If q > 59 p, then the asymptotic interval (4.9) has no points satis-

fying the inequalities (8.1).

Finally, assume that q > 59 p and let t belong to the third asymptotic interval
(4.16). We know that q > 59 p implies (7.7). From (7.7) and (4.16) we derive

t < p q − 16 p3

q
+

5 p4

q2
< p q. (8.6)

The inequalities (8.6) contradict the inequality t > p q from (8.1). This contradic-
tion proves the following theorem.

Theorem 8.4. If q > 59 p, then the asymptotic interval (4.16) has no points sat-

isfying the inequalities (8.1).

The fourth and fifth asymptotic intervals (5.7) and (5.13) are purely imaginary.
They do not provide perfect cuboids. Therefore Theorems 8.1, 8.2, 8.3, and 8.4 are
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summarized in the following theorem.

Theorem 8.5. If q > 59 p, then the Diophantine equation (1.15) has no solutions

providing perfect cuboids.

Theorem 8.5 is a background for an optimized strategy of numeric search for
perfect cuboids. It says that only for q < 59 p perfect cuboids are expected.

Applying the inequality q < 59 p to the formula (8.3) we can simplify it as

t < 61 p2. (8.7)

The upper bound (8.7) is more simple than (8.3), though it can be computationally
less time-efficient for large values of p. Along with (8.1) and the inequality

q < 59 p, (8.8)

it provides the following very simple computer code for our optimized strategy:

for p from 1 by 1 to +∞ do

for q from 1 by 1 to 59*p-1 do

if p<>q and gcd(p,q)=1

then

for t from max(p^2,p*q,q^2)+1 by 1 to 61*p^2-1 do

if Q_pqt=0 and (p^2+t)*(p*q+t)>2*t^2

then

Str:=sprintf("Cuboid is found: p=%a, q=%a, t=%a.",p,q,t):

writeline(default,Str):

end if:

end do:

end if:

end do:

end do:

Here gcd(p,q) stands for the greatest common divisor of p and q, while Q_pqt is a
computer version of the formula (1.12). In practice the infinity sign +∞ should be
replaced by some particular positive integer.

9. Concluding remarks and acknowledgments.

Though they look very simple, Theorem 8.5 and the inequality (8.8) constitute
the main result of the present work. As for the above code, it should be further
optimized e. g. by some tricky algorithms for fast computing the values of Q_pqt.
One of such further optimized versions of this code has been run on a desktop PC
for p from 1 to 100. It took about 7 hours for that. No perfect cuboids were found.

The authors are grateful to Mr. Seth Kitchen from Missouri University of Science
and Technology whose e-mail letter asking about a cuboid coding idea became an
impetus for this work.
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