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Abstract

Let ExB be a minor-closed class of graphs with a set B of minimal
excluded minors. Kurauskas and McDiarmid (2012) studied classes A
of graphs that have at most k disjoint minors in B, that is, at most
k vertex disjoint subgraphs with a minor in B. Denote by An the
class A restricted to graphs on the vertex set {1, 2, . . . , n}. In the case
when all graphs in B are 2-connected and ExB excludes some fan (a
path together with a vertex joined to each vertex on the path), they
determined the asymptotics of |An| and properties of typical graphs in
An as n→∞. In particular, they showed that all but an exponentially
small proportion of G ∈ An contain a set S of k vertices such that S
is a B-blocker, i.e., G− S ∈ ExB.

Here we consider the case when ExB contains all fans. Firstly, for
good enough B we obtain results on asymptotics of |An|. For example,
we give a sufficient condition for the sequence yn = (|An|/n!)1/n to
have a limit (a growth constant) as n → ∞. A B-blocker Q of G is
redundant if for each x ∈ Q, Q \ {x} is still a B-blocker. Let Rn be a
graph drawn uniformly at random from An. For large enough constant
k we show that the upper limit of yn is realised by the subclass of
graphs that have a redundant B-blocker Q of size 2k + 1, and there
are n′ → ∞ such that Rn′ has no B-blocker smaller than 2k with
probability 1 − e−Ω(n′). Secondly, we explore the structure of graphs
that have at most k disjoint minors K4 (i.e., B = {K4}). For k = 0
this is the class of series-parallel graphs. For k = 1, 2, . . . we show that
there are constants ck, γk, such that |An| = ckn

−5/2γnkn!(1 + o(1)).
We prove that the random graph Rn with probability 1 − e−Ω(n) has
a redundant {K4}-blocker Q of size 2k + 1 and each vertex of Q has
a linear degree. Additionally, we consider the case B = {K2,3,K4}
related to outerplanar graphs.
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1 Introduction

In this paper calligraphic letters such as A,B, . . . will denote classes of ob-
jects, mostly classes of labelled graphs or graphs where some vertices are
distinguished and/or unlabelled; these classes will always be closed under
isomorphism. We denote by An,Bn, . . . the respective classes restricted to
objects (graphs) of size n with labels [n] = {1, . . . , n}.

A class of graphs is called proper, if it is not the class of all graphs. Each
proper minor-closed class of graphs A is small, that is, the supremum as
n→∞ of the sequence (

|An|
n!

)1/n

(1)

is finite [20], see also [11]. If the above sequence converges to γ ∈ [0,∞), we
say that A has a growth constant γ = γ(A).

A minor-closed class of graphs is called addable, if each excluded minor
is 2-connected. McDiarmid, Steger and Welsh [18] showed that any proper
addable minor-closed class has a growth constant, further properties for such
classes were obtained by McDiarmid [17]. Bernardi, Noy and Welsh [3] asked
whether every proper minor-closed class A of graphs has a growth constant.

For any class of graphs A we denote the upper and lower limits of (1) by
γ(A) and γ(A) respectively. Also, let ρ(A) denote the radius of convergence
of the exponential generating function A of A. Of course, γ(A) = ρ(A)−1

(if we assume that 0−1 =∞).
Given a set of graphs B, a set Q ⊆ V (G) is called a B-blocker (or a

B-minor-blocker) for a graph G if G−Q ∈ ExB, i.e., G−Q has no minor in
the set B. We call a B-blocker Q of a graph G redundant (“0-redundant”,
in the terminology of [16]) if for each vertex v ∈ Q the set Q \ {v} is still
a B-blocker for G. We denote the class of graphs that have a redundant B-
blocker of size k by rd k B. For a graph H, we will often abbreviate Ex {H}
to ExH, rd k {H} to rd kH, etc.

Let apex kA denote the class of all graphs such that by deleting at most
k vertices we may obtain a graph in A. Also, given a positive integer s call
a graph G an s-fan if G is a union of a complete bipartite graph with parts
A and B, where |A| = s, and a path P with V (P ) = B. We call 1-fans
simply fans. Given a positive integer k and a set of graphs B we denote by
kB the class of graphs consisting of k vertex disjoint copies of graphs in B
(with repetitions allowed). Thus Ex (k + 1)B is the class of graphs that do
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not have k + 1 vertex disjoint subgraphs H1, . . . ,Hk+1, each with a minor
in B.

A classical result related to our topic is the generalisation of Erdős and
Pósa theorem by Robertson and Seymour [22]: given a planar graph H
and any positive integer k there is a number f(k), such that any graph,
that has at most k disjoint minors H has an H-blocker of size at most
f(k). Another famous result by Robertson and Seymour says that each
minor-closed class can be characterised by a finite set B of minimal excluded
minors, i.e. A = ExB (see, e.g., [8]).

The following theorem was proved in [15] (see also [14,16]).

Theorem 1.1 Let A be a proper addable minor-closed class of graphs, with
a set B of minimal excluded minors. If A does not contain all fans, then for
each positive integer k, as n→∞

|(Ex (k+1)B)n| = (1 + e−Θ(n))|(apex kA)n|. (2)

Suppose ExB is addable but contains all fans. Then the class apex k (ExB) ⊆
Ex (k+ 1)B still seems a natural candidate to be the dominating subclass of
Ex (k + 1)B. However, it was shown in [15] that for such B the above theo-
rem fails, at least for large k. Our first theorem shows that a very different
subclass determines the convergence radius of Ex (k+1)B, namely, the class
rd 2k+1 B. Clearly, rd 2k+1 B ⊆ Ex (k + 1)B: if Q is a redundant blocker for
G and |Q| = 2k+ 1 then each subgraph of G with a minor in B uses at least
two vertices of Q, so we can find no more than k disjoint such subgraphs.

Theorem 1.2 Let A be a proper addable minor-closed class of graphs, with
a set B of minimal excluded minors and growth constant γ. Suppose A
contains all fans, but not all 2-fans, nor all complete bipartite graphs K3,t.

Then there is a positive integer k0 = k0(B) such that the following holds.
Let k be a positive integer. If k ≥ k0,

ρ(Ex (k + 1)B) = ρ(rd 2k+1 B) < ρ
(

(Ex (k + 1)B) ∩ apex 2k−1A
)
.

If k < k0, the class Ex (k + 1)B has a growth constant 2kγ. Furthermore, if
ρ(rd 2k+1 B)−1 < 2kγ then (2) holds.

For t ≥ 4 we denote by Wt a wheel graph on t vertices. Some examples of
classes A for which Theorem 1.2 applies are ExK4, ExK2,t for t ≥ 3, ExW5,
and Ex {K3,t, Fs}, where t ≥ 2, s ≥ 5 and Fs is a 2-fan on s vertices. The
conditions of Theorem 1.2 are not satisfied for, say, A = ExW6. We believe
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that these conditions can be weakened. For example, it may be possible
to drop the requirement that A does not contain all graphs K3,t, to get
an assumption similar to the one of Theorem 1.1. We also believe that for
k ≥ k0 the fraction of graphs in (Ex (k + 1)B)n that are not in (rd 2k+1 B)n
is exponentially small.

Let A be an addable class of graphs. In [18], two properties are fun-
damental in the proof that A has a growth constant. First, the class A
is decomposable, meaning that G is in A if and only if each component of
G is. Second, A is bridge-addable, i.e., it is closed under adding bridges
between distinct components. Classes Ex (k + 1)B are bridge-addable, but
not decomposable. Theorem 1.2 reduces the problem of proving that a
growth constant of Ex (k + 1)B exists, to the analogous problem for the
class rd 2k+1 B. Graphs in rd 2k+1 B with a fixed redundant blocker can be
represented by a decomposable class of coloured graphs, see Section 4.

With stronger conditions on A, this allows us to prove the following.

Theorem 1.3 Let k be a positive integer and let A be a proper addable
minor-closed class of graphs with a set B of minimal excluded minors. Sup-
pose each graph in B is 3-connected, A does not contain all 2-fans, nor all
complete bipartite graphs K3,t, nor all wheels. Then Ex (k+1)B has a growth
constant.

Classes A that satisfy the condition of Theorem 1.3 are, for instance, ExK4

and ExW5, but not ExK2,3.
Recall that series-parallel graphs are exactly the class ExK4. Asymp-

totic counting formulas and other properties of series-parallel and outerpla-
nar graphs were obtained by Bodirsky, Giménez, Kang and Noy [6]; the
degree distribution was studied by Bernasconi, Panagiotou and Steger [4]
and Drmota, Noy and Giménez [9]. Our next main result concerns the num-
ber of graphs, not containing a minor isomorphic to k + 1 disjoint copies of
K4 (i.e., B = {K4}).

Theorem 1.4 Let k be a positive integer. We have

|(Ex (k + 1)K4)n| = (1 + e−Θ(n))|(rd 2k+1K4)n|.

There are constants ck > 0 and γk > 0, such that

|(rd 2k+1K4)n| = ckn
−5/2n!γnk (1 + o(1)).

Furthermore, γ1 = 23.5241...
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The proof of the above theorem yields the following facts about the structure
of typical graphs without a minor isomorphic to (k+ 1)K4. Given a class of
graphs A, we write Rn ∈u A to mean that Rn is a uniformly random graph
drawn from An.

Theorem 1.5 Let k be a positive integer and let Rn ∈u Ex (k + 1)K4.

(a) There is a constant ak > 0, such that with probability 1 − e−Θ(n),
the graph Rn has a unique redundant K4-blocker Q of size 2k + 1,
each vertex in Q has degree at least akn, and any K4-blocker Q′ with
|Q \Q′| > 1, has at least akn vertices.

(b) The probability that Rn is connected converges to pk = A(γ−1
k ) where

A is the exponential generating function of ExK4 and γk is as in
Theorem 1.4.

Let us point out that the complete asymptotic distribution of the ‘fragment’
graph of Rn (Rn minus its largest component) and the asymptotic Poisson
distribution of the number of components in Rn can be easily obtained
(in terms of A and γk) using results from [17]. Furthermore, the expected
number of vertices not in the largest component of Rn is O(1), this holds
more generally for random graphs from any bridge-addable class [17]. We
provide an approach to evaluate γk, k = 1, 2, . . . numerically to arbitrary
precision. Then pk can be numerically evaluated using results of [6].

The proof of Theorem 1.4 is much more complicated than the proof in
the case B = {K3} in [16] or the more general Theorem 1.1. When ExB does
not contain all fans, a random graph from (Ex (k+1)B)n essentially consists
of a random graph in ExB on n− k vertices and k apex vertices with their
neighbours chosen independently at random, each with probability 1/2 [15].
Meanwhile, if Q is a redundant blocker for G ∈ Ex (k + 1)K4, then the
possible neighbours of a vertex v ∈ Q depend on the series-parallel graph
G−Q. To solve this, we obtain decompositions of the dominating subclass of
rd 2k+1 B into tree-like structures and analyse the corresponding generating
functions.

In our last result we look at classes Ex (k+1){K2,3,K4}. For k = 0, this
corresponds to outerplanar graphs.

Theorem 1.6 Let B = {K2,3,K4}. The class Ex (k + 1)B has a growth
constant γ′k for each k = 1, 2, . . . . We have

γ′1 = γ(apex (ExB)) = 2γ(ExB) > γ(rd 3 B)
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and for a positive constant c

|(Ex 2B)n| = cn−3/2γ′n1 n!(1 + o(1)).

However, for any k ≥ 2

γ′k = γ(rd 2k+1 B) > γ(apex k (ExB))

and
|(Ex (k + 1)B)n| = eΩ(n1/2)γ′nk n!

The first few values are γ′1 = 14.642.., γ′2 = 34.099.., γ′3 = 130.023.., and
for k ≥ 2 γ′k admits a closed-form expression.

The last theorem shows that Theorem 1.2 does not hold in general with
k0 = 1. The unusual subexponential factor for k ≥ 2 shows up because the
underlying structure of typical graphs in rd 2k+1 {K2,3,K4} is “path-like”,
whereas it is “tree-like” for graphs in rd 2k+1K4, see Section 7.2 below.

Half of the paper consists of structural results which yield general the-
orems (i.e., Theorem 1.2 and Theorem 1.3) with rough asymptotics. The
other half is a study of the specific case Ex (k+ 1)K4, which requires knowl-
edge of the structure of the class of series-parallel graphs and analysis of
specific generating functions, but yields much sharper conclusions (Theo-
rem 1.4).

In Section 3 we prove our key structural lemmas and Theorem 1.2. Sec-
tion 4 is similar, using a superadditivity argument as in [18], we prove The-
orem 1.3 there. In Section 5, we explore the rich structure of the classes
rd 2k+1K4, which we then translate into generating functions and apply an-
alytic combinatorics to get the growth constant when k = 1. In Section 6
we count graphs obtained from unrooted Cayley trees where edges, internal
vertices and leaves may be replaced by graphs from different classes. Then,
in Section 7 we complete the proof of Theorem 1.4 and present Figure 9
illustrating the structure of typical graphs in Ex 2K4 together with a short
intuitive explanation. In Section 8 we prove Theorem 1.6. Finally, in Sec-
tion 9 we discuss open questions that arise from this work and give some
concluding remarks.
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2 Definitions

2.1 Definitions for coloured graphs

Let t ≥ 0 be a fixed integer. We will consider {0, 1}t-coloured graphs G
where each vertex v ∈ V (G) is assigned a colour

col(v) = colG(v) = (col1(v), . . . , colt(v)) ∈ {0, 1}t.

We say that v ∈ V (G) has colour i if coli(v) = 1. We denote by Col(v) =
ColG(v) = {k : ck(v) 6= 0} the set of all colours of v, similarly let Col(G) be
the union of ColG(v) for all v ∈ V (G). Also, denote by N(G) the uncoloured
graph obtained by removing all colours from G. Whenever t is clear from the
context or not important, we will call {0, 1}t-coloured graphs just coloured
graphs or simply graphs. We call a vertex v ∈ V (G) coloured if ColG(v) 6= ∅.

Let G be a {0, 1}t-coloured graph. Given a set L = {s1, . . . , st} such
that s1, . . . , st 6∈ V (G) and s1 < · · · < st, we can obtain an (uncoloured)
graph GL on vertex set V (G)∪L by connecting si to each vertex v ∈ V (G)
that has colour i. We call GL an extension of G. We denote by Ext(G) the
set of all extensions GL of G such that |L| = t, and denote by ext(G) an
arbitrary representative of Ext(G).

For a {0, 1}t-coloured graph G we define the contraction operation in the
standard way (see, e.g., [8]) with the addition that the vertex w obtained
from contracting an edge uv ∈ E(G) has colours Col(w) = Col(u) ∪ Col(v).
A {0, 1}t-coloured graph H is a subgraph of G if H is a subgraph of G, if
the colours are ignored, and for each v ∈ V (H) we have ColH(v) ⊆ ColG(v).
H is a coloured minor of G if it can be obtained by contraction and subgraph
operations from G.

When a (coloured) graph G has V (G) ⊆ [n] for some positive integer n,
we will usually assume that the new vertex w resulting from the contraction
of an edge e = xy has label min(x, y), so that V (G/e) ⊆ [n]. For a (coloured)
graph G and J ⊆ E(G) we will denote by G/J the graph resulting from the
contraction of all of the edges in J . The operation G/J corresponds to a
partition of V (G) into a set of “bags” {Bag(v) : v ∈ V (G/J)} where Bag(v)
is the set of vertices that contract to v. We call a subgraph H of G stable
with respect to contraction of J in G if no pair of vertices of H is contracted
into the same bag.

We say that two {0, 1}t-coloured graphs G′ and G′′ are isomorphic if
there is a bijection f : V (G′) → V (G′′) such that xy ∈ E(G′) if and only if
f(x)f(y) ∈ E(G′′) and ColG′(x) = ColG′′(f(x)) for each x ∈ V (G′).
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For a {0, 1}t-coloured graph G, we say that S ⊆ V (G) has colour c if
c ∈ ColG(v) for some v ∈ S. We say that G has colour c if V (G) does. For
a vertex v ∈ V (G) we let Γ(v) = ΓG(v) denote the set of neighbours of v in
G. It will be convenient to call the colours 1, 2 and 3 red, green and blue
respectively.

Let C be the set of cut points of G and let B be the set of its blocks.
Fix r ∈ V (G). Then the tree Tr with vertex set C ∪{r}∪B and edges given
by uB where u ∈ C ∪{r}, B ∈ B and u ∈ V (B) will be called a rooted block
tree of G, rooted at r. (This is a minor modification of the usual block tree,
see [8].) We call graphs that are either 2-connected or isomorphic to K2

biconnected.
For a graph G and a set S, we write G∩S = G[V (G)∩S]. For two graphs

G1 = (V1, E1) and G2 = (V2, E2) we write G1 ∪G2 = (V1 ∪ V2, E1 ∪E2) and
G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2).

2.2 Analytic combinatorics

We will apply the “symbolic method” of Flajolet and Sedgewick [12] to study
the asymptotic number of graphs from various classes.

In this paper we follow the notational conventions used in [12]. The size
of a graph G is the number of labelled vertices, while V (G) refers to the set
of all vertices of G, including the unlabelled (pointed) ones. The exponen-
tial generating function of A,B, . . . is denoted A(x), B(x), . . . respectively.

For instance, A(x) =
∑∞

n=0
|An|
n! x

n. By Z we denote the class of graphs
consisting of a single vertex with a label, such that Z(x) = x.

We use the notation A + B, A × B, A(B) to denote the class of graphs
obtained by the (disjoint) union, labelled product and composition opera-
tions respectively, see [12]. For a positive integer k, Ak denotes the class
consisting of a sequence of k disjoint members from A, and we define A0

to be the class with exponential generating function A0(x) = 1. We also
refer to [12] for the formal definition of the class SET(A) (obtained by tak-
ing arbitrary sets of elements of A and appropriately relabelling), the class
SEQ(A) (obtained by taking any ordered sequence of elements of A and ap-
propriately relabelling), and classes SET≥k(A) (sets of at least k elements)
and SEQ≥k (sequences of at least k elements). Given a positive integer k,
we will denote by k × A a combinatorial class with the counting sequence
(k|An|, n = 0, 1, . . . ).

To denote dependence of a class A (or a generating function A) on a
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parameter l we will use either superscript A<l>, Al or a subscript Al.1
If A and B have identical counting sequences |An| = |Bn| for b = 0, 1, . . .

we call A and B combinatorially isomorphic and write A = B. We note
that most of the decomposition results of Section 5 and onwards yield a
stronger kind of isomorphism than just the combinatorial one: we prove
unique decompositions of graphs from one class into unions of subgraphs
with disjoint sets of labels from other classes. This is important since many
of our proofs rely on the structure of graphs.

3 Structural results for Ex (k + 1)B

3.1 The colour reduction lemma

The following simple lemma will be very useful in our structural proofs.

Lemma 3.1 Let l be a non-negative integer. Let G be a {0, 1}2-coloured
graph. Suppose G does not have l+1 disjoint connected subgraphs containing
both colours. Then there is a set S of at most l vertices such that each
component of G− S has at most one colour.

Proof For two new vertices s, t 6∈ V (G) consider the extension G′ = G{s,t}.
G′ has l + 1 internally disjoint paths from s to t if and only if G has l + 1
disjoint connected subgraphs containing both colours. By Menger’s theorem
we may find a set S of at most l vertices in V (G) such that S separates s
from t in G′, and hence each component of G − S can have at most one
colour. 2

Given an integer s and a graph G, we define its apex width of order s,
denoted awsG as the maximum number j such that G has a minor H on
j+s vertices where H is a union of a tree T with |V (T )| = j and a complete
bipartite graph with parts V (T ) and V (H) \ V (T ). For a class of graphs A
we define aws (A) to be the supremum of aws (G) over G ∈ A. In this paper
we will only use the parameter aw2 . For example, it is easy to check that
its value for classes ExK4, ExK2,t and ExK5 is 2, t−1 and∞ respectively.
In Section 3.4 below we give a condition to check if awj (A) is finite.

Given integers s and t, 1 ≤ s ≤ t and a {0, 1}t-coloured graph G, define
its coloured apex width of order s, denoted caws (G), as the maximum num-
ber j, for which there are j pairwise disjoint connected subgraphs H1, . . . ,Hj

1When this coincides with the notation for the elements An in A with labels in [n] or
with a power of a class Ak, the meaning should be determined from the context.
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of G that have at least s common colours, i.e., |Col(H1)∩· · ·∩Col(Hj)| ≥ s.
For a class of coloured graphs A we define caws (A) as the supremum of
caws (G) over the graphs G ∈ A.

We state one of our key structural lemmas next. We assume that all
graphs here have vertices in N.

Lemma 3.2 (Colour reduction lemma) Let t ≥ 2 be an integer and let
G be a connected {0, 1}t-coloured graph. Suppose caw2 (G) ≤ j, for some
non-negative integer j.

Then there is a connected {0, 1}t-coloured graph G′ and a set J ⊆ E(G′)
of size at most (j + 1)t−1 − 1 such that a) each component of G′ − J has at
most one colour, b) G′/J = G and c) each component of G′ − J is stable
with respect to contraction of J in G′.

Proof We use induction on t. For t = 2 by Lemma 3.1 there is a set B of
at most j vertices in G such that each component of G−B has at most one
colour. Denote by Vgreen the set of vertices that belong to a component of
G−B that has the green colour.

Let G0 = N(G[B]). For each vertex v ∈ B take a new vertex v′ 6∈ V (G);
let B′ = {v′ : v ∈ B}. Now define a matching J = {vv′ : v ∈ B} on |B| ≤ j
edges. Consider the {0, 1}2-coloured graph G1 on the vertex set B∪B′, with
edges E(G[B]) ∪ J and colours

ColG1(v) = {red} ∩ ColG(v) and ColG1(v′) = {green} ∩ ColG(v).

for each v ∈ B.
Now let G′ be the union of G1, G − B and the set of edges E1 ∪ E2

defined as follows:

E1 = {v′x : v ∈ B, x ∈ Vgreen, and vx ∈ E(G)};
E2 = {vx : v ∈ B, x ∈ V (G) \ (B ∪ Vgreen), and vx ∈ E(G)}.

In words, G′ is obtained from G by splitting each vertex v ∈ B, so that one
of the new vertices inherits the green colour of v (if it had that colour) and
all neighbours of v in Vgreen while the other vertex inherits the rest of the
neighbours of v. Obviously, G′/J = G if we make sure that the newly created
vertices v′ have larger labels than those in V (G). By our construction, J
separates B and B′ in G1 and each component of G′ − J containing green
colour can have vertices only in Vgreen ∪B′, thus each component of G′ − J
has at most one colour.

Consider a component C of G′−J . Since J is a matching and each edge
of J is between different components of G′ − J , the contraction of J in G′
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may not put two vertices of C into the same bag. This completes the proof
for the case t = 2.

Suppose t > 2. Assuming that we have proved the claim for any t′ < t,
we now prove it with t′ = t. Delete the colour t from G to get a {0, 1}t−1-
coloured graph G1. By induction, there is a {0, 1}t−1-coloured graph G′1
and a set of edges J1, such that |J1| ≤ (j + 1)t−2 − 1, each component of
G′1 − J1 has at most one colour, it is stable with respect to contraction of
J1 in G′1 and G′1/J1 = G1. For a vertex v of G′1/J1, denote by Bag(v) the
set of vertices of G′1 that contract to v.

Now let us return the colour t back as follows. For each vertex v of
G that has colour t in G pick one vertex v′ ∈ Bag(v) ⊆ V (G′) and add
the colour t to ColG′(v

′): we obtain a {0, 1}t-coloured graph G2 such that
G2/J1 = G and each component of G2 − J1 can have at most two colours.

Now since each component C of G2 − J1 is stable with respect to con-
traction of J1 in G2, we have caw2 (C) ≤ caw2 (G) ≤ j. Thus, by symmetry,
we can apply the already proved case t = 2 of the lemma to each such C to
obtain a {0, 1}t-coloured graph C ′ and a set JC ⊆ E(C ′) of at most j edges,
such that Col(C) = Col(C ′), every component of C ′ − JC has at most one
colour, is stable with respect to contraction of JC in C ′ and C ′/JC = C.
We assume that the labels for the new vertices are chosen so that they are
larger than any label of G2 and V (C ′1) and V (C ′2) remain disjoint for distinct
components C1 and C2 of G2.

For any v ∈ V (C ′/JC) denote by BagC(v) the set of all vertices of C ′

that contract to v. Now for any edge e = xy ∈ J1, let Cx and Cy be the
components of G2− J1 containing x and y respectively, and define e′ = x′y′

where x′ and y′ are any vertices in BagCx(x) and BagCy(y) respectively.
Set J = {e′ : e ∈ J1} ∪

⋃
C JC where the union is over the components of

G2 − J1. Finally, let G′ be the graph obtained by adding J to the union of
the disjoint graphs C ′, for each component C of G2 − J1.

Clearly, each component of G′−J has at most one colour. Now consider
the operation G′/J in two stages: in the first stage contract all edges

⋃
C JC ,

in the second stage contract the edges in J1. Then at the first step we obtain
the graph G2, and in the second step, we obtain the graph G. Furthermore,
if C̃ is a component of G′ − J , then it is a component of C ′ − JC for some
C. C̃ is stable with respect to contraction of JC in C ′ and C is stable with
respect to contraction of J1 in G2, therefore C̃ is stable with respect to
contraction of J in G′.

Also, since G is connected G2 has at most |J |+1 components. Therefore
|J | ≤ |J1|+ (|J1|+ 1)j ≤ (j + 1)t−1 − 1. 2
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3.2 Redundant blockers

The main result of this section is the following lemma (cf. Lemma 1.6
of [15]).

Lemma 3.3 Let k be a positive integer, and let A be a proper addable
minor-closed class with a set B of minimal excluded minors. Suppose that
aw2 (A) is finite.

Then there is a constant c = c(B, k) such that any graph in Ex (k + 1)B
has a B-blocker Q of size at most c and a set S ⊆ Q of size at most 2k such
that any subgraph H of G with H 6∈ A that meets Q in at most two points,
also meets the set S.

The proof will follow from a slightly more general result, Lemma 3.4 below;
we first need a few definitions. Given a graph G, a set of graphs B and
a set Q ⊆ V (G), we say that Q is a (j,B)-blocker of G if G contains no
subgraph H, such that H 6∈ ExB and |V (H) ∩Q| ≤ j. We say that Q is a
(j, s,B)-blocker of G if (a) Q is a B-blocker for G and (b) G does not contain
s pairwise disjoint subgraphs H1, . . . ,Hs 6∈ ExB where each Hi, i = 1, . . . , s
has at most j vertices in Q.

A graph H will be called B-critical if H 6∈ ExB but H ′ ∈ ExB for any
H ′ ⊂ H. Notice that if each graph in B is 2-connected, then so is each
B-critical graph.

As in [15], we will use normal trees for our proofs. Let G be a graph,
and let T be a rooted tree on the same vertex set V (G), with root vertex r.
The tree T induces a tree-ordering ≤T on V (G) where u ≤T v if and only
if u is on the path from r to v in T . T is a normal tree for G if u and v are
comparable for every edge uv of G (notice that we do not require that T is
a subgraph of G). For u ∈ V (T ) we will denote by Tu the induced subtree
of T on vertices {v : u ≤T v}.

We say that u is above v (and v is below u) in T if u <T v. Given a
graph G and a normal tree T for G, for each vertex v of G we define its set
AAT (v) of active ancestors by

AAT (v) = {u <T v : ∃z ≥T v with uz ∈ E(G)} .

and write aT (v) = |AAT (v)|. Kloks observed (see Theorem 3.1 of [15] for a
proof) that the treewidth tw(G) of a graph G satisfies

tw(G) = min
T∈T

max
v∈V (G)

aT (v) (3)
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where T is the set of all normal trees for G.
Finally, denote by f∗n the n-th iteration of the function f , so that

f∗0(x) = x and f∗(n+1)(x) = f(f∗n(x)) for n = 0, 1, . . . .

Lemma 3.4 Let k be a positive integer, let A be a proper addable minor-
closed class with a set B of minimal excluded minors. Suppose that aw2 (A) ≤
j.

There are positive constants c1 = c1(B) and w = w(B) such that the
following holds. Define a function f : N → R+ by f(q) = jc1q

2 + jc1wq.
Suppose Q is a non-empty (2, k + 1,B)-blocker for a graph G. Then there
are sets S,Q′ ⊆ V (G), such that S,Q ⊆ Q′, |S| ≤ 2k, |Q′ \ S| ≤ f∗k(|Q|)
and Q′ \ S is a (2,B)-blocker for G− S.

Proof of Lemma 3.3 The assumption that aw2 (A) < ∞ implies that
some planar graph, a 2-fan, is excluded from A. By the theory of graph
minors [22], see also [8] and Proposition 3.6 of [15], there is a constant
c′ = c′(B, k) such that every graph G ∈ Ex (k + 1)B has a B-blocker Q0 of
size at most c′ (we may assume Q0 is non-empty). Such a set Q0 is clearly
also a (2, k + 1,B)-blocker for G. Now Lemma 3.4 ensures that there is a
B-blocker Q of size at most c = c(B, k) = f∗k(c′) and a set S ⊆ Q of size at
most 2k as required. 2

Proof of Lemma 3.4 We use two results from the theory of graph minors
of Robertson and Seymour [22]: since A excludes a planar graph (a 2-fan on
j+2 vertices), the maximum treewidth over graphs in A, denoted w = w(B),
is finite. Furthermore, the set B is finite.

Let c1 = c1(B) be the maximum number of components that can be
created by removing three vertices from a B-critical graph. Since there is a
finite number of graphs in B, the number c1 is finite (see Lemma 5.2 in [15]).
For example, we have c1({K4}) = 4. Since A is addable, we have j ≥ 1 and
c1 ≥ 1. The case V (G) = Q is also trivial (take S = ∅ and Q′ = Q), so we
will assume Q ⊂ V (G).

We will prove the lemma by induction on k. The case k = 0 is trivial:
we may take Q′ = Q and S = ∅. Assuming the lemma holds for 0 ≤ k < k′,
where k′ is a positive integer, we prove it for k = k′.

By (3), the graph G−Q has a (rooted) normal tree T with maxv aT (v) ≤
w. Let r be the root of T . Form a set U of all such vertices v ∈ V (G) \ Q
for which there are some vertices x, y ∈ Q ∪ AAT (v) that the subgraph of
G induced on V (Tv)∪ {x, y} has a minor in B. Choose a vertex u ∈ U with
maximum distance from r in T . Let R = Q ∪AAT (u).
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Let P be a set of minimum size such that G[P ∪ V (Tu)] 6∈ ExB. Then
|P | ∈ {1, 2}. Fix a B-critical graph H, such that H ⊆ G[P ∪ V (Tu)].

Consider the graph G1 = G[Tu] − u. This graph consists of some con-
nected components. Since H∩V (G1) = H−(P ∪{u}), the graph H has ver-
tices in t ≤ c1(B) such components. Call these components Ci, i = 1, . . . , t.
Fix a pair x, y ∈ R such that {x, y} ∩P = ∅. We claim, that for i = 1, . . . , t
there is a set of at most j vertices Di(x, y), such that in Ci − Di(x, y) no
component has edges to both x and y.

Let us show why it is true. In the component Ci colour vertices adjacent
to x red, and those adjacent to y green to obtain a {0, 1}2-coloured graph
C ′i (vertices adjacent to both x and y are coloured {red, green}, and the
remaining vertices are coloured ∅). Suppose C ′i has j + 1 disjoint connected
subgraphs containing both colours. Then since aw2 (A) ≤ j we would have
that G[{x, y} ∪ V (Ci)] 6∈ A. But this contradicts to the choice of u: since
T is normal, the vertices of the component Ci must be entirely contained
in V (Tu′) for some u′ ∈ V (Tu − u), so u′ ∈ U . Thus C ′i cannot have j + 1
connected subgraphs containing both colours, so we may apply Lemma 3.1
to find a suitable set Di(x, y) of size at most j.

Now define sets S0, Q1 as follows. If |P | = 1, let S0 = P ∪{u}, otherwise,
let S0 = P . Set

Q1 = ((Q ∪AA(Tu) ∪ {u}) \ S0) ∪
⋃

i∈[t],x,y∈R\P,x6=y

Di(x, y).

Writing q = |Q| and considering the cases |P | = 1 and |P | = 2 separately
we get that

|Q1| ≤ jc1(q − 1)(q − 2 + w) + q − 1 + w ≤ f(q).

If Q1 is a (2, k,B)-blocker for G− S0, then we can use induction to find
sets S′, Q′ ⊆ V (G) \ S0 such that S′, Q1 ⊆ Q′, |S′| ≤ 2(k − 1), |Q′ \ S′| ≤
f∗(k−1)(|Q1|) ≤ f∗k(q) and Q′ \ S′ is a (2,B)-blocker for G − S0. Then the
lemma follows with S = S′ ∪ S0 and Q′.

It remains to show that Q1 is a (2, k,B)-blocker for G−S0. Assume this
is not true. Let H̃ ⊆ G be a kB-critical subgraph of G − S0 showing that
Q1 is not a (2, k,B)-blocker: that is H̃ = H ′1 ∪ · · · ∪H ′k, where H ′i 6∈ ExB,
i = 1, . . . , k are 2-connected and pairwise disjoint; and for each i ∈ [k] we
have |V (H ′i) ∩Q1| ≤ 2.

Now H̃ and H may not be disjoint: otherwise Q would not be a (2, k +
1,B) blocker for G. Let H ′ be a component of H̃ which shares at least one
vertex with H. Then V (H ′) ∩ V (H) ⊆ V (H) \ S0 ⊆ V (Tu).
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Suppose first that V (H ′) ∩ Q1 consists of a single vertex v. Note, that
we must have v ∈ Q \ S0. The graph H ′ − v cannot be entirely contained
in G[V (Tu)]. To see why, observe first that by our construction in this case
u ∈ S0. Since H ′ − v is connected it must be entirely contained in one of
the proper subtrees of Tu, but this contradicts our choice of u.

Thus H ′ − v must have a vertex a in V (Tu − u) and a vertex b in G −
(S0 ∪ Q1 ∪ V (Tu)). The set AAT (u) ⊆ Q1 \ {v} separates V (Tu − u) from
G− (S0 ∪Q1 ∪V (Tu). On the other hand, there is a path from a to b in the
connected graph H ′ − v: this is a contradiction.

Now suppose H ′ has exactly two vertices x, y in Q1.
First consider the case where x, y ∈ Q ∪ AAT (u). Let a be a vertex

in V (H) ∩ V (H ′). It cannot be a = u since in this case we have that
|V (H ′) ∩ Q1| ≥ 3. It follows that a ∈ V (C ′) where C ′ is a component of
Ci −Di(x, y) for some i ∈ {1, . . . , t}. But C ′ cannot have edges to both x
and y. This means that either x or y is a cut vertex in H ′: this contradicts
the fact that H̃ is kB-critical.

If x ∈ Q and y ∈ Di(x
′, y′) for some pair {x′, y′}, then suppose that

H ′ − x is contained in G[V (Tu)]. By the choice of the set P this means
that u ∈ S0. But since T is normal, this contradicts the definition of u.
Otherwise, suppose that H ′−x has a vertex in G− (S0∪Q1∪V (Tu)). Since
AAT (u) ⊆ Q1 \ {x, y} we have that x must be a cut point in H ′: this is a
contradiction to the kB-criticality of H̃.

Finally, consider the case x ∈ Q and y = u. Note, that the only case
when u 6∈ S0 by our construction is when there is no vertex z such that
G[V (Tu)∪{z}] has a minor in B. Thus H must contain at least one vertex in
G−(S0∪Q1∪V (Tu)), and we saw earlier that it has a vertex in (V (H)\S0) ⊆
V (Tu).

Again, each path in H ′ from V (H ′) ∩ V (Tu) to V (H ′) ∩ (V (G) \ (S0 ∪
Q1∪Tu)) must use x, since AAT (u) ⊆ Q1 \{x, y} separates Tu from the rest
of G −Q. So we obtain a contradiction to the fact that H ′ is 2-connected.
In all of the cases we obtained a contradiction, so we conclude that Q1 must
be a (2, k,B)-blocker for G− S0. 2

3.3 Blockers of size 2k

We will need another definition. We call a B-blocker Q of a graph G a
(k, j,B)-double blocker if there is a set S ⊆ Q of size at most k, which is a
redundant B-blocker for G− (Q \S), and Q \S is a (j,B)-blocker for G−S.
Such a set S is called a special set of Q.
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Lemma 3.5 Let k, l be positive integers and let B be the set of minimal
excluded minors of a proper addable minor-closed class and assume that B
contains a planar graph. Then there is a positive constant w = w(B) such
that the following holds.

Suppose G ∈ Ex (k + 1)B has a B-blocker Q of size at most q and a set
S ⊆ Q of size at most l such that Q \ S is a (2,B)-blocker for G− S. Then
G can be represented as the union of two graphs, G = G1 ∪G2 where

• the graph G1 has an (l, 2,B)-double blocker Q1 ⊇ Q of size at most
q + w + 1, such that S is the special set;

• G2 ∈ apex (Ex kB) and Q ⊆ V (G1) ∩ V (G2) ⊆ Q1.

Proof The set B contains a planar graph, so by the theory of graph minors,
see [8, 22], the treewidth of G − Q is bounded by a constant w = w(B).
Since the claim is trivial in the case Q = V (G) (take G1 = G, Q1 = Q
and G2 = K̄Q, where K̄Q is the empty graph on Q), we will assume that
Q ⊂ V (G). By the Kloks theorem (3), G − Q has a normal tree T such
that the number of active ancestors satisfies aT (v) ≤ w for each v ∈ V (T ).
Denote by r the root of T .

Let U be the set of all vertices v ∈ V (G−Q) such that G[V (Tv)∪{x}] 6∈
ExB for some x ∈ S. If U = ∅ then Q is itself an (l, 2,B)-double blocker
for G, so we may take G1 = G and G2 = K̄Q. Now assume that U is non-
empty. Let u ∈ U be a vertex with maximum distance in T from the root
r and let x0 be a vertex in S showing that u ∈ U . Write A = AAT (u), let
G1 = G[V (Tu) ∪ Q ∪ A], and let G2 = G − V (Tu). We claim that G1 and
G2 are as required.

We have V (G1) ∩ V (G2) = Q ∪ A, so G1 and G2 share |Q ∪ A| ≤ q + w
vertices.

We will show that Q1 = Q∪A∪{u} is an (l, 2,B)-double blocker for G1,
and S is its special set. Indeed, using the assumption of the lemma, the set
Q1 \S = (Q \S)∪A∪ {u} is a (2,B)-blocker for G1−S. Now suppose that
G[V (Tu − u) ∪ {z}] 6∈ ExB for some x ∈ S. Let H be a B-critical subgraph
of G[V (Tu−u)∪{x}]. Then, since T is normal, all vertices of the connected
graph H − x must be contained in V (Tv) for some v strictly below u in T .
This is a contradiction to the choice of u.

Finally observe that if G2−x0 contains a minor in kB then since V (Tu)∪
{x0} and V (G2 − x0) are disjoint, G 6∈ Ex (k + 1)B. So G2 ∈ apex (Ex kB)
is as claimed. 2

In the proof of the next lemma and in much of the remaining part of
the paper, we will find it more convenient to represent graphs with small
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blockers as coloured graphs, where a colour class corresponds to a vertex
in the blocker, and the set of colours of a vertex corresponds to the set of
its neighbours in the blocker. What follows is an attempt to capture this
formally.

Let r be a fixed integer. We call a graph G with r distinct distinguished
vertices, or roots, an r-rooted graph. The roots will be labelled and ordered.
We say that a class Π of r-rooted graphs is an r-property if Π is closed under
isomorphism and under deleting edges between the roots. We say that an
unrooted graph G has r-property Π if it is possible to root r of its vertices,
so that the resulting r-rooted graph is in Π. We associate two classes with
Π: the class AΠ of uncoloured, unrooted graphs that have r-property Π and
the class ÃΠ of {0, 1}r-coloured graphs G, such that if q1 < · · · < qr are not
elements of V (G), then G{q1,...,qr} with roots (q1, . . . , qr) belongs to Π.

The next proposition just spells out the well known fact that a class of
rooted graphs has the same radius of convergence as the class of correspond-
ing unrooted graphs.

Proposition 3.6 Let Π be an r-property for some positive integer r. Then
the sequence (1) for the class of rooted graphs Π, the class of unrooted graphs
A = AΠ and the class of {0, 1}r-coloured graphs Ã = ÃΠ has the same set
L of limit points, L ⊆ [0;∞].

Proof The claim follows, since

|Ãn| ≤ |An+r| ≤ |Πn+r| ≤ 2(r2)(n+ r)r|Ãn|,

and if (1) has a limit for a subsequence (nk, k = 1, . . . ) for any of the classes,
it has the same limit for the other two. 2

The most important r-property for us will be the property of having a
redundant blocker of size r. Formally, given a set B of graphs and a positive
integer r, Π0 is the set of all r-rooted graphs G, such that any subgraph of
G containing just one of the roots of G is in ExB.

Define Ar,B = ÃΠ0 and notice that AΠ0 = rd r B. To keep the notation
simpler, below we will omit the subscript B, since the class B will always
be fixed. Proposition 3.6 implies that the ρ(Ar) = ρ(rd r B). We will also
denote by Cr = Cr,B the class of connected graphs in Ar.

Given a set of graphs B and a coloured graph G with N(G) ∈ ExB, call
a colour c bad for G (with respect to B), if N(G) ∈ Ex (B), but adding to G
a new vertex xc connected to every vertex v ∈ V (G) which has colour c we
produce a graph with a minor in B. Otherwise, call c good for G. Notice,
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that G ∈ Ak if and only if N(G) ∈ ExB and Col(G) ⊆ [k] and every colour
is good for G.

Lemma 3.7 Let k and r be positive integers, such that k < r, and let B be a
finite set of graphs. Suppose aw2 (ExB) is finite. Let A be the class of graphs
that have a (k, 2,B)-double blocker of size r. Then ρ(A) = ρ(rd k+1 B).

Proof Let Π be the r-property for “containing a (k, 2,B)-double blocker of
size r”, i.e., Π is the set of all graphs G ∈ A with r distinct roots q1, . . . , qr
so that {q1, . . . , qr} is a (k, 2,B)-double blocker for G with a special set
{q1, . . . , qk}. Then A = AΠ and Ã = ÃΠ have the same radius of conver-
gence by Proposition 3.6.

Let C̃ be the class of connected graphs in Ã. The exponential formula,
see, i.e., [12], gives that for n = 0, 1, 2, . . .

[xn]C̃(x) ≤ [xn]Ã(x) ≤ [xn]eC̃(x)

so ρ(C̃) = ρ(Ã). Similarly ρ(Ck+1) = ρ(Ak+1). Therefore by Proposition 3.6
it suffices to prove that

ρ(C̃) = ρ(Ck). (4)

We have Ckn ⊆ C̃n, so ρ(Ck) ≥ ρ(C̃). The difficult part is the opposite
inequality. Our idea is to use the “Colour reduction lemma”, Lemma 3.2,
to represent each graph in C̃ as a transformation of a finite set of disjoint
graphs in Ck.

Write a = aw2 (ExB). Consider a {0, 1}r-coloured graph G ∈ C̃. Let
G′ be a {0, 1}r-coloured graph obtained by removing the colours {1, . . . , k}
from G. Suppose caw2 (G′) > a. Then for any set L = {l1, . . . , lr} such that
l1 < · · · < lr and L ∩ V (G) = ∅, the graph GL − {l1, . . . , lk} has a subgraph
H 6∈ ExB such that H has at most two vertices in {lk+1, . . . , lr}. But by the
definition of Ã (and C̃), {lk+1, . . . , lr} is a (2,B)-blocker for GL−{l1, . . . , lk},
a contradiction. Therefore caw2 (G′) ≤ a.

By Lemma 3.2, there is a graph G1 obtained from the union of κ ≤ N =
(a+ 1)r−k−1 disjoint graphs, each with at most one colour in {k+ 1, . . . , r},
and a set J of m ≤ N − 1 edges between these graphs, such that G1/J = G′

and each component of G1 − J is stable with respect to G1/J .
Now return the colours {1, . . . , k} back: starting with the coloured graph

G1, for each c ∈ {1, . . . , k} and each v ∈ V (G1/J), add c to the set of colours
for one of the vertices v′ ∈ Bag(v). Denote the newly obtained graph by
G′′. Then G′′/J = G. Each component C of G′′ − J can have at most one
colour c ∈ {k + 1, . . . , r}, and so at most k + 1 colours in total. Crucially,
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if C contains a colour c ∈ {k + 1, . . . , r}, we can map the colour c to k + 1,
and this yields a graph C ′ in Ck+1. Why? Since C is stable with respect
to contraction of J in G1 (and also in G′′), C is isomorphic to a (coloured)
subgraph of G. If there was a colour j ∈ col(C) which was bad for C, then
it would be bad for G. But G ∈ Ã, this gives a contradiction.

Recall that we assume that a contraction of an edge xy produces a new
vertex with label min(x, y). Thus, each graph G ∈ C̃n (as well as other
graphs) can be obtained by choosing integers κ, l,m with 0 ≤ l,m, κ− 1 ≤
N − 1, a graph G0 ∈

(
Ck+1

)κ
n+l

, for each component of G0, mapping the
colour k + 1 to an arbitrary colour in {k + 1, . . . , r}, adding a set J of m
edges to G0 and finally contracting them. Therefore we have[

xn

n!

]
C̃(x) ≤

N−1∑
l=0

N∑
κ=1

N−1∑
m=0

(n+ l)2m

[
xn+l

(n+ l)!

](
(r − k)Ck+1

)κ
,

from which it follows that ρ(C̃) ≥ ρ(Ck+1). 2

Lemma 3.8 Let B be any set of graphs. Let k and r be positive integers,
k ≥ r. Then

γ(rd k B)2 ≤ γ(rd k+r B)γ(rd k−r B).

Proof By Proposition 3.6 it suffices to show that γ(Ak)2 ≤ γ(Ak+r)γ(Ak−r)
(see above for the definition of Ak). Fix positive integers l, n. Note that
A0 = ExB. We can partition the class Al,n (of {0, 1}l-coloured graphs on
vertex set [n]) into |A0,n| disjoint subclasses according to the underlying
uncoloured graph N(G) of G ∈ Al,n.

Given an uncoloured graph G ∈ A0, let XG be the number of ways to
add colour 1 so that the resulting {0, 1}1-coloured graph is in A1. Since
the constraint for redundant blockers involves only individual vertices, we
can pick the sets of vertices coloured 1, 2, . . . , l independently, in X l

G ways.
Therefore

|Al,n| =
∑

G∈A0,n

X l
G.

We see that the equality also holds when l = 0. Choose G from A0,n

uniformly at random. Then X = XG is a random variable and |Al,n| =
|A0,n|EX l. By the Cauchy-Schwarz inequality applied with random vari-
ables X(l−r)/2 and X(l+r)/2 we have

(EX l)2 ≤ EX l+rEX l−r,
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or
|Al,n|2 ≤ |Al+r,n||Al−r,n|.

Now the claim follows by dividing each side by (n!)2, raising to 1/n and
considering the subsequence that realizes the upper limit of the left side. 2

Lemma 3.9 Let A be a proper addable minor-closed class of graphs with a
set B of minimal excluded minors. Suppose aw2 (ExB) is finite and there is
a positive integer k0 such that

r =
γ(Ex (k0 + 1)B)

γ(Ex k0B)
> 2.

Then for any k ≥ k0

γ(Ex (k + 1)B) = γ(rd 2k+1 B) ≥ rγ(Ex kB).

Proof In the proof we will need the following important consequence of the
preceding lemmas.

Let t be a positive integer. By Lemma 3.3, every graph G ∈ Ex (t+ 1)B
has a B-blocker Q, such that Q contains a set S of size at most 2t and Q \S
is a (2,B)-blocker for G − S. Furthermore, the size of Q is bounded by a
constant c = c(B, t).

For any integer j ≥ 0 write γj = γ(rd j B). Then

γ(Ex (t+ 1)B) = max(γ2t+1, γ(apex (Ex tB))). (5)

Let us prove (5). Write d = c+w where w = w(B) is as in Lemma 3.5. We
claim that for n ≥ d+ 1 we have

[xn]A(x) ≥ [xn]A1(x)A2(x), (6)

where A(x), A1(x), A2(x) are exponential generating functions of Ex (t+1)B,
the class A1 of graphs that have a (2t, 2,B)-double blocker of size d+ 1 with
d rooted vertices, and the class A2 of graphs in apex (Ex tB) which have d
pointed (i.e., unlabelled, but distinguishable) vertices respectively.

(6) can be seen as follows. Given graphs G1 ∈ A1 and G2 ∈ A2 with dis-
joint labels we can obtain a new graph by identifying the i-th distinguished
vertex of G1 with the i-th distinguished vertex of G2 for i = 1, . . . , d and
removing repetitive edges. By Lemma 3.5, the set of all resulting graphs
will contain all graphs in Ex (k + 1)B of size at least d + 1. Note that if
G ∈ Ex (k + 1)B has at least d + 1 vertices, we may assume that G1, G2
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given by Lemma 3.5 are such that G1 has exactly d+1 vertices, |Q1| = d+1
and |V (G2) ∩ V (G2)| = d; otherwise G1, G2 can be extended by including
extra isolated vertices, and Q1 can be extended by adding more vertices
from G1 −Q1.

Now rooting or pointing a fixed number of vertices does not change
the convergence radius of a class (see, i.e., Proposition 3.6), therefore A1

has the convergence radius ρ1 = γ−1
2t+1 by Lemma 3.7, A2 has convergence

radius ρ2 = γ(apex (Ex tB))−1, and by the theory of generating functions,
see i.e., [12], the convergence radius ρ of A is at least min(ρ1, ρ2). Finally,
ρ is exactly this, since both rd 2t+1 B and apex (Ex tB) are contained in
Ex (t+ 1)B.

We will also use a simple bound γ(apex (D)) ≤ 2γ(D), which is valid for
any class of graphs D, since |apex (D)n| ≤ n2n−1|Dn−1|.

Let us now prove the lemma. We use induction on k. First consider the
case k = k0. We have γ(apex (Ex k0B)) ≤ 2γ(Ex k0B) < γ(Ex (k0 + 1)B)
and so by (5), only one candidate to realize γ(Ex (k0 + 1)B) remains:

γ(Ex (k0 + 1)B) = γ2k0+1.

Now let k′ > k0 be an integer, assume we have proved the lemma with
k < k′, let us now prove the case k = k′.

We have γ(Ex kB) = γ2k−1 by induction, therefore

γ(apex (Ex kB)) ≤ 2γ2k−1.

Now Lemma 3.8 and induction yields

γ2k+1 ≥ γ2k−1

γ2k−1

γ2k−3

≥ rγ2k−1.

So finally
γ2k+1 ≥ rγ2k−1 > 2γ2k−1 ≥ γ(apex (Ex kB))

and the claim follows by (5). 2

We are now ready to prove our first main theorem.

Proof of Theorem 1.2 We use the notation from Lemma 3.9. By
Lemma 3.10 below, aw2 (A) < ∞. As has been noticed in [15], since A
contains all fans, apex 2k+1 (P) ⊆ Ex (k+ 1)B, where P is the class of paths.
So we have γ(Ex (k + 1)B) ≥ 22k+1 for k = 1, 2, . . . . Also by Theorem 1.2

of [15], γ(apex k (A)) = 2kγ.
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Let k0 be the smallest positive integer, such that

γ(Ex (k0 + 1)B) > γ(apex k0 (A)).

Then for 1 ≤ j < k0, by applying (5) j times we have

γ(Ex (j + 1)B) = 2jγ.

Since apex j (A) ⊆ Ex (j + 1)B, it follows that 2jγ is the growth constant of
Ex (j + 1)B. Thus

γ(Ex (k0 + 1)B) > 2k0γ = 2γ(Ex k0B),

therefore γ(Ex (k + 1)B) = γ(rd 2k+1 B) for all k ≥ k0 by Lemma 3.9.

Let us show that for k ≥ k0,

γ
(

(Ex (k + 1)B) ∩ apex 2k−1 (A)
)
< γ2k+1.

By Lemma 3.9 we have

γ(apex (Ex kB)) ≤ 2γ2k−1 < γ2k+1.

So, using Lemma 3.8

γ2k ≤
√
γ2k+1γ2k−1 ≤ 2−1/2γ2k+1.

Now apply Lemma 3.5 (with k,B and l = 2k − 1), Lemma 3.7 and an
inequality analogous to (5), to get

γ
(

(Ex (k + 1)B) ∩ apex 2k−1 (A)
)

= max(γ2k, γ(apex (Ex kB))) < γ2k+1.

Finally, let us show that (2) holds in the case γ2k+1 < 2kγ. Note that, in
such case 1 ≤ k < k0. It cannot be that for some j ∈ {1, . . . , k− 1} we have
γ2j+1 > 2jγ, since Lemma 3.9 would imply that γ2k+1 > 2kγ. Similarly, if

γ2j+1 = 2jγ, we would have γ2k+1 ≥ 2k−jγ2j+1 ≥ 2kγ by Lemma 3.8. Thus
γ2j+1 < 2jγ for all j = 1, . . . , k − 1.

Trivially, |(Ex (0 + 1)B)n| = |An| = |(apex 0 (A))n|. Using Lemma 4.11
(given in Section 4.2 below) and induction, we get that for j ∈ {1, . . . , k}

|(Ex (j + 1)B)n| = |(apex j (A))n|(1 + e−Θ(n)).

2
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3.4 When is apex width finite?

In Section 3.1 we introduced the apex width parameter, which is not stan-
dard. Here we present a characterisation of classes with bounded apex width
in terms of excluded minors.

Lemma 3.10 Let A be a minor-closed class. Then awj (A) < ∞ if and
only if some j-fan and some bipartite graph Kj+1,t does not belong to A.

For stating Theorem 1.3 in terms of minors, we will need another lemma.

Lemma 3.11 Let A be a minor-closed class such that aw2 (A) <∞. Then
the following two statements are equivalent.

(1) There is a constant c such that for each G ∈ A and each v ∈ V (G), if
G− v is 2-connected then the degree of v in G is at most c.

(2) Some wheel does not belong to A.

To prove the above lemmas, we need a few simple preliminary results.
Recall that the height of a rooted tree is the number of edges in the longest
path starting from the root. A leaf of a rooted tree is a vertex of degree 1,
which is not the root. A straightforward fact is:

Lemma 3.12 Let T be a rooted tree of size n, height h and with l leaves.
Then lh ≥ n− 1.

For positive integers j and s, denote by F js the j-fan on s vertices. Also, let
K∗j,s denote a graph obtained from the union of a Kj,s and a (j − 1)-star on
the part of size j. Note, that for j ≤ s+ 1, awj (K∗j+1,s) = s+ 1, and K∗j+1,s

is isomorphic to a minor of Kj+1,s+j .

Proof of Lemma 3.10 If A contains all j-fans then awj (A) = ∞ by
definition. If A contains all graphs Kj+1,t, then it contains all graphs K∗j+1,t,
where t is arbitrary and j is fixed, so again awj (A) =∞.

Now suppose there are t ≥ 1 and s ≥ 2 such that F jj+s+1,Kj+1,t 6∈ A. Let
T be any tree on at least st vertices, let S be a set of j vertices, disjoint from
T , and let H be the union of T and the complete bipartite graph with parts
S and V (T ). If T has a path of length at least s, then H has a subgraph
isomorphic to F jj+s+1. Otherwise we can root T at a vertex r, so that the
resulting rooted tree Tr has height at most s − 1. By Lemma 3.12, Tr has

at least
⌈
st−1
s−1

⌉
≥ t leaves. Therefore, contracting all internal vertices of Tr
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into a single vertex and using vertices in S, we obtain a minor of Kj+1,t. We
have shown that awj (A) < st. 2

It is well known that each 2-connected graph on at least 3 vertices has a
contractible edge (so that contracting this edge yields again a biconnected
graph), see, e.g., [8]. We need a simple refinement of this.

Lemma 3.13 Let G be a 2-connected graph on at least 3 vertices, and let
x ∈ V (G). There is an edge xy ∈ E(G), such that G/xy is biconnected.

Proof Assume the claim is false: then for each neighbour u of x, {u, x}must
be a cut in G. Denote by C(u) a component of G−{x, u} of minimal size, and
let u′ minimize |V (C(u))| over the neighbours u of x. Since G is 2-connected,
Both x and umust have neighbours in C(u′). Let z ∈ C(u′) be a neighbour of
x in G. Suppose {x, z} is a cut in G. The graph (G−C(u′))−x is connected
(this follows using Menger’s theorem), so G−{x, z} must have a connected
component which is strictly contained in C(u′). But this contradicts to the
definition of u′. We conclude that {x, z} is not a cut in G, so G/xz must be
2-connected. 2

The following “simple fact” about the size of largest cycle (circumfer-
ence) of a 2-connected graph is stated in [21]. For completeness, we include
a proof.

Lemma 3.14 Let k ≥ 3 be an integer. There is a positive integer N = N(k)
such that each 2-connected graph with at least N vertices contains either a
cycle of length k as a subgraph or the complete bipartite graph K2,k as a
minor.

Proof Write N = k3k2 + 1, ∆ = k3 + 1, and let G be a 2-connected graph
of size at least N .

Let P be the longest path in G, and let x, y be its endpoints. Suppose
P has length at least k2. By Menger’s theorem, G has a cycle C containing
x and y. We can assume that |V (C)| ≤ k− 1. The vertices in V (C)∩ V (P )
partition P into at most k− 1 subpaths, with internal vertices disjoint from
C (and endpoints in C). One of these subpaths must have at least k vertices.
This subpath, together with a part of the cycle C yields a cycle of length at
least k in G.

Therefore we may assume that that each path of G has length at most
k2−1. Let Tr be a rooted spanning tree of G. A rooted tree with maximum
degree at most ∆− 1 and height h can have at most

1 + (∆− 1) + · · ·+ (∆− 1)h ≤ (∆− 1)h+1
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vertices. Since |V (G)| ≥ N , T (and G) has a vertex v of degree at least ∆.
Consider the {0, 1}1-coloured connected graph G′ obtained from G−v by

setting CG′(u) = {red} for each neighbour u of v in G. Let T ′ be a minimal
(Steiner) subtree of G′ containing all the red vertices. |V (T ′)| ≥ ∆ and T ′

has diameter at most k2. By Lemma 3.12, T ′ has at least d(∆− 1)/k2e ≥ k
leaves. By the minimality of T ′, each leaf has the red colour. Contract the
internal vertices of T ′ to a single vertex; this vertex, the leaves of T ′ and the
vertex x demonstrate that G has a minor K2,k. 2

Proof of Lemma 3.11 It is trivial to see that if A has arbitrarily large
wheels, then (1) does not hold: the “hub” vertex x of a wheel Wt has
t − 1 neighbours, and Wt − {x} is 2-connected. Suppose a wheel Wr is
excluded from A and (1) does not hold: we will obtain a contradiction. Set
j = aw2 (A). Take a graph G ∈ A and a vertex x such that G − {x} is
2-connected, and x has d ≥ N(k) + 3 neighbours, where k = max(r− 1, j +
2) and N(k) is as in Lemma 3.14. Let G′ be the {0, 1}1-coloured graph
obtained from G − {x} by colouring the former neighbours of u {red}. By
Lemma 3.13, the graph G′ has an all-red 2-connected minor H of size d
(repeatedly contract a contractible edge incident to an uncoloured vertex,
until no uncoloured vertices remain). Now by Lemma 3.14, H either has a
cycle C of length k ≥ r − 1, or K2,k as a minor. Recalling that v in G is
incident to each red vertex of G′, we get that G ∈ A has a minor Wk+1 in the
first case (contradiction to the fact that Wr 6∈ A). In the second case, we see
that G has a minor K3,j+2, therefore also a minor K∗3,j , so aw2 (A) ≥ j + 1,
a contradiction. 2

4 Growth constants for Ex (k + 1)B

4.1 Proof of Theorem 1.3

In this section we prove Theorem 1.3. Similarly as McDiarmid, Steger and
Welsh [18], we will make use of a version of Fekete’s lemma.

Lemma 4.1 Suppose (f(n), n = 1, 2, . . . ) is a sequence of real numbers such
that for any positive integers n,m

f(n+m+ 1) ≥ f(n) + f(m).

Then

sup
f(n)

n+ 1
≤ lim inf

f(n)

n
; lim sup

f(n)

n
≤ sup

f(n)

n
.
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Proof The second inequality is obvious. Fix any d ∈ N. We will show that

f(d)

d+ 1
≤ lim inf

f(n)

n
.

Define f(0) := f(d+ 1)− f(d). For any n ∈ N, let k and r be such integers
that n = (d+ 1)k + r and 0 ≤ r ≤ d. Then using the assumption

f(n)

n
≥ kf(d) + f(r)

(d+ 1)k + r
→ f(d)

d+ 1
, as n→∞.

2

We will use the following lemma multiple times in the following sections
(cf. Lemma 4.4.4 of [8]).

Lemma 4.2 Let {v1, v2} be a cut in a graph G. Suppose G1 and G2 are
subgraphs of G with V (G1)∩ V (G2) = {v1, v2} and G1 ∪G2 = G. Let H ′ be
a subdivision of a 3-connected graph H, and suppose H ′ is not a subgraph
of G1 or G2. Then either G1 ∩H ′ or G2 ∩H ′ is a path from v1 to v2.

Proof For i = 1, 2 write G′i = Gi − {v1, v2}. By the assumption, H ′ must
have vertices both in G′1 and in G′2, and so {v1, v2} is a cut in H ′ (both of
these vertices must belong to H ′ since it is 2-connected).

Suppose first, that v1 and v2 are both on a path P ′ of H ′ which is a
subdivided edge of H. Let P be the path connecting v1 with v2 in P ′.
If P has no internal vertices, then because H is 3-connected, the graph
H − {v1, v2} is connected, a contradiction. So P has at least one internal
vertex, so that H − {v1, v2} has exactly two parts, one of which is the path
P − {v1, v2}. Since H ′ has vertices both in G′1 and G′2, one of these parts
is contained in a component of G′1 and another in a component of G′2. The
path P is a subgraph of P ′, so H[V (P )] = P , and in particular v1v2 6∈ E(H).
The claim follows.

Now suppose there is no path P in H ′ which is a subdivided edge of H
and contains both v1 and v2. Using the fact that H is 3-connected we see
easily that H ′ − {v1, v2} must be connected, a contradiction. 2

Let a positive integer l and a class B be fixed. As mentioned in the
introduction, the class of {0, 1}l-coloured graphs Al obtained from rd l B in
Proposition 3.6 is decomposable. Unfortunately, this class is not bridge-
addable: in the case B = {K4}, consider, for example, the coloured graph
H obtained from K3, by colouring each vertex with a distinct pair from
{1, 2, 3}, see Figure 1. Then the graph 2H ∈ A3, but no bridge can be
added between the two components.
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{red, green}

{green, blue} {red, blue}

Figure 1: This graph is not 3-rootable with respect to B = {K4}.

Let, as before, Cl be the class of connected graphs in Al. We call a graph
G ∈ Cl l-rootable at a vertex x ∈ V (G), if colouring x with [l] yields a graph
still in Cl. G is l-rootable if it is l-rootable at some vertex x ∈ V (G). For
example, in the case B = {K4}, the coloured graph H from Figure 1 is not
3-rootable. Denote by C•l the class of all rooted graphs (with at least one
vertex) that can be obtained by declaring an l-rootable vertex of a graph in
Cl the root.

We will see next, that when B consists of 3-connected graphs, it is pos-
sible to partly restore the property of bridge-addability: if we add an edge
xy connecting different components of G ∈ Al, we obtain a graph in Al,
provided that x and y are rootable in their respective components.

Lemma 4.3 Let l be a positive integer, and let B be as in Theorem 1.3.
Then the class U ′ of graphs in Cl that are not l-rootable has γ(U ′) ≤ γ(Cl−1).

Proof Call G ∈ Cl nice, if there is x ∈ V (G) such that G − x has at least
two components containing all l colours. We claim that in this case, G is
rootable at x. Suppose the contrary.

Then there is a colour i ∈ [l] such the graph G′ obtained by adding a
new vertex s to G connected to x and each vertex of G that has colour i,
contains a B-critical subgraph H.

Clearly i 6∈ ColG(x) and sx ∈ H, otherwise we would have that G 6∈ Cl.
Suppose H shares vertices with more than one component of G − x. Let
C be one such component. By Theorem 9.12 of [7] an expansion of a 3-
connected graph at a vertex of degree at least 4 is 3-connected, and so H
is a subdivision of a 3-connected graph. We may apply Lemma 4.2 with
G1 = G′[V (C) ∪ {s, x}], G2 = G′ − V (C) and the cut {s, x} to get that H
meets either G1 or G2 just by a path from s to x: since sx ∈ H this path
must be sx, a contradiction.
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Thus V (H) \ {s, x} must be completely contained in V (C) for a compo-
nent C of G− x. But this means that G 6∈ Cl: we may replace the edge sx
by a path from x to s in G′−C, since G− s has a component, disjoint from
C with the colour i. We conclude that indeed G is rootable at x.

Denote by U the class of graphs in Cl that are not nice. Then U ′ ⊆ U ,
and we need to show that γ(U) ≤ γ(Cl−1). Each graph G ∈ U contains a
block B, such that for any cut vertex y ∈ V (B), the components of G − y
disjoint from B can have at most l−1 colours. (This can be seen as follows.
Consider the rooted block tree T of G, and let r be its root. For any block
B′ let r(B′) ∈ V (G) be its parent in T , and denote by GB′ the component
of G− r(B′) containing B− r(B′). Define the set S of of all blocks B′, such
that Col(GB′) = [l]. We can assume it is non-empty, otherwise any block
containing r has the required property. Pick a block B ∈ S with maximum
distance from r in T . Then each component C of G − V (B) contains at
most l − 1 colours: otherwise, if C ⊆ GB we would have contradiction to
the choice of B, and if C ⊆ G−GB′ , then r(B) would be a vertex showing
that G is nice.)

By Lemma 3.11 for each colour i ∈ [l] there can be at most a constant
number c of vertices x ∈ V (B) such that either x has colour i or the graph
“attached” to B at x has colour i. Each graph in Cl with at most l − 1
colours can be obtained from a pair (j,G1), where j ∈ [l] and G1 ∈ Cl−1

by mapping the colour j to l in G1. Therefore, for n ≥ cl the coefficients[
xn

n!

]
U(x) are bounded from above by[

xn

n!

]
xclA(cl)(x)

(
l(C l−1(x))′

)cl
where A(x) is the generating function of A = ExB and A(cl)(x) is its cl-th
derivative. The convergence radius of U(x) is at least min(ρ(A), ρ(Cl−1)).
The class Cl−1 contains all connected graphs in A; by the exponential for-
mula we have ρ(A) ≥ ρ(Cl−1). So γ(U) ≤ γ(Cl−1). 2

We will need a simple technical lemma next.

Lemma 4.4 Suppose classes of graphs A and B both have growth constants.
Then γ(A ∪ B) exists and is equal to max(γ(A), γ(B)).

Proof We may assume that γ(A) ≥ γ(B). Clearly, γ(A ∪ B) ≥ γ(A).
Suppose there is a subsequence (nk, k = 1, 2, . . . ) such that(

|Ank
∪ Bnk

|
nk!

)1/nk

→ a > γ(A).
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If γ(A) > γ(B) then |An|/|Bn| → ∞ and there is k0 such that for k ≥ k0

we have |Ank
| ≥ |Bnk

|. If γ(A) = γ(B) then either |Ank
| ≥ |Bnk

| or |Ank
| ≤

|Bnk
| for infinitely many k. In this case, rename A and B if necessary, so that

the former holds. We get that (nk) contains a subsequence (n′l, l = 1, 2, . . . )
such that |An′l ∪ Bn′l | ≤ 2|An′l | and

(
|An′l ∪ Bn′l |

n′l!

)1/n′l

≤

(
2|An′l |
n′l!

)1/n′l

→ γ(A).

This is a contradiction. 2

Lemma 4.5 Let l be a positive integer and let B be as in Theorem 1.3.
Suppose that Cl−1 and C•l have growth constants. Then Cl has a growth
constant

γ(Cl) = max(γ(Cl−1), γ(C•l)).

Proof Denote by C′ the class of all l-rootable graphs in Cl, and denote
by C′′ the class of graphs G ∈ Cl that are either not l-rootable or have
Col(G) ⊆ [l − 1].

Then C′ has a growth constant, since C•l does, and

|C′n| ≤ |C•ln | ≤ n|C′n|.

The class C′′ also has a growth constant: γ(C′′) = γ(Cl−1). This is because
by Lemma 4.3, γ(C′′) ≤ γ(Cl−1), and Cl−1 ⊆ C′′.

Now, by Lemma 4.4, the class Cl = C′ ∪ C′′ is as claimed. 2

The next lemma shows that for good enough B, the class C•l is closed
under joining smaller rooted graphs into “strings”.

Lemma 4.6 Let l be a positive integer and let B be a set of 3-connected
graphs. Let G be a graph obtained from a non-empty set S of disjoint graphs
in C•l, and a path on the set R(S) of the roots of the graphs in S; and let G
be rooted at r ∈ R(S). Then G ∈ C•l.

Proof We first note that ExB contains all fans: indeed fans are series-
parallel graphs, and if a fan F had a minor in B, then since each 3-connected
graph has K4 as a minor (Lemma 3.2.1 of [8]), F would have K4 as a minor,
a contradiction.

Suppose the claim does not hold. Call S bad if the lemma fails for S, a
path P on R(S) and a vertex r ∈ V (P ). Let N(S) be the number of graphs
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in S that have size at least 2. Let ν be the size of the smallest bad set S,
and consider a set S ′ which minimizes N(S) over bad sets S of size ν, let
P ′ be a path on R(S ′) and let r′ ∈ V (P ′) be the root for which the lemma
fails.

Then there is a colour i ∈ [l] such that if we add a new vertex s to G,
connect s to r′ and every vertex of G that has colour i and remove all the
colours, the resulting graph G′ 6∈ ExB. Let H be a B-critical graph in G′.

Suppose all graphs in S are of size 1. Then G′ is isomorphic to a minor
of a fan, and G′ ∈ ExB, a contradiction.

Let G1 be a graph in S ′ with root r1 and size at least 2. If H has no
vertices in G1 − r1, then we could replace G1 with G1[{r1}] and obtain a
bad set S ′′ with N(S ′′) < N(S ′). Thus, we may assume G1 has at least one
vertex coloured i, other than r1. Since G1 ∈ C•l, H− s also has a vertex not
in G1. Now {r1, s} is a cut in H, so by Lemma 4.2, either H ∩ (V (G1)∪{s})
or H ∩ (V (G−G1) ∪ {s, x}) is a path P1 from r1 to s. In the first case we
may replace G1 with the graph consisting of a single vertex r1 coloured {i}
to obtain a set S ′′ with N(S ′′) < N(S ′). In the second case, we may replace
P with the edge r1s to show that G1 6∈ C•l.

In each case we obtained a contradiction, so it must be that G ∈ C•l. 2

Lemma 4.7 Let l be a positive integer and let B be as in Theorem 1.3.
Then C•l has a growth constant.

Proof Let n,m be positive integers. We claim that

|C•ln+m+1| ≥ (n+m+ 1)

(
n+m

n

)
|C•ln ||C•lm|. (7)

The above formula follows from the following construction for graphs on
n + m + 1 vertices. In the case n 6= m, pick a root vertex r, divide the
remaining n+m vertices into two parts of sizes n and m, and add a graph
G1 ∈ Cl of size n on the first part and a graph G2 ∈ Cl of size m on the
second part. Connect r to the roots r1 and r2 of G1 and G2 respectively,
and declare r the root of the formed graph G. Each construction gives a
unique graph, because given a graph G obtained in this way we may recover
G1 and G2 uniquely by deleting the root of G and declaring the vertices
adjacent to the two neighbours of G the roots of the respective components.

In the case n = m, we have to avoid obtaining each graph twice because
of symmetry. So if V (G1) is lexicographically smaller than V (G2) output
the graph G as above, otherwise output the graph G− rr1 + r1r2. To finish
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the proof of (7), note the constructions G are always in the class C•l by
Lemma 4.6.

Now let d, k be positive integers, k ≥ 2 and set n = kd. Form a graph
G by taking an arbitrary set S of k disjoint graphs in C•l of size d, adding
a path, P rooted at one of the endpoints r and with V (P ) consisting of all
roots of the graphs in S. Declare r the root of G. By Lemma 4.6, G ∈ C•l.

Note also, that we never construct a graph G twice: it is always possible
to recover the path P and the set S uniquely from G. (Start with the root r
of G. There can be only one edge rx ∈ G, such that G−rx has a component
C of size d: rx is the first edge of P . Delete rx and proceed in the same
way with the component of G− rx containing x, rooted at x.) Let P be the
set of all graphs constructed in this way. Then

|Pn| =
(dk)!

d!k
|C•ld |k

Next we observe, that since ExB contains all apex paths, the class R of
rooted uncoloured cycles is contained in C•l. This class is clearly disjoint
from P, in which every graph has a bridge.

For t = 1, 2, . . . let f(t) = ln(|C•lt |/t!). We have

f(n)

n
≥ 1

n
ln

(
|Pn|+ |Rn|

n!

)
>
f(d)

d
. (8)

From (7) it follows that

f(n+m+ 1) ≥ f(n) + f(m).

Thus by the modification of Fekete’s lemma, Lemma 4.1

sup
f(n)

n+ 1
≤ lim inf

f(n)

n
; lim sup

f(n)

n
≤ sup

f(n)

n
.

By (8), for n = kd and any integer k = 2, 3, . . .

f(n)

n+ 1
− f(d)

d+ 1
>

d

d+ 1

(
f(n)

n
− f(d)

d

)
> 0.

Therefore

sup
f(n)

n+ 1
= lim sup

f(n)

n+ 1
= lim sup

f(n)

n
,

and
f(n)

n
→ lim sup

f(n)

n
∈ [0;∞].
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Since ExB is small by [11], we conclude that C•l has a growth constant.
Also, because ExB includes all graphs without a 3-connected minor, by

Lemma 3.2.1 of [8], γ(C•l) ∈ [γ(ExK4);∞), where γ(ExK4) = 9.073.., see
Section 5. 2

Lemma 4.8 Let l be a non-negative integer and let B be as in Theorem 1.3.
Then the class Cl has a growth constant.

Proof We use induction on l. The class C0 is the class of connected graphs
in ExB, this class has a growth constant by [17,18]. Suppose now that l > 0
and assume that we have proved the claim for each class Ex (l′+ 1)B, where
l′ < l, we now prove it for l′ = l.

The class C•l has a growth constant by Lemma 4.7. The class C(l−1) has
a growth constant by induction. So Cl has a growth constant by Lemma 4.5.

2

We can now combine the lemmas of this section to finish the proof of
Theorem 1.3.

Proof of Theorem 1.3 The class C2k+1 has a growth constant γ by
Lemma 4.8. Since

[xn]C2k+1(x) ≤ [xn]A2k+1(x) ≤ [xn]eC
2k+1(x),

we get, see i.e. [12], that A2k+1 also has growth constant γ. Using Propo-
sition 3.6, we see that rd 2k+1 B has growth constant γ as well. By the
assumption of the theorem, there must be a constant c, such that B does
not contain a wheel Wc+1 as a minor (which is a planar graph). Now The-
orem 1.2 completes the proof. 2

4.2 Small blockers and small redundant blockers

In this section we collect several auxiliary lemmas. For B and k0 as in
Theorem 1.2, we can often conclude that Rn ∈ Ex (k + 1)B either has a
blocker of size k (if k < k0) with probability 1− e−Ω(n) or (if k ≥ k0) it has
a constant size (2k, 2,B)-double blocker with probability 1− e−Ω(n) . Using
results of this section, it can be shown that this happens, for example, when
γ(rd 2k+1 B) 6= 2kγ(ExB) exists for all k.

Lemma 4.9 Let k be a positive integer and let B be the set of minimal
excluded minors for a proper addable minor-closed class of graphs. Suppose
aw2 (ExB) is finite.
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If γ(Ex (k + 1)B) > 2γ(Ex kB) then there is a constant r = r(k,B)

such that all but at most e−Ω(n) fraction of graphs in (Ex (k + 1)B)n have a
(2k, 2,B)-double blocker of size r.

Proof By Lemma 3.3 and Lemma 3.5 there is a constant r = r(k,B) > 2k
such that every graph in G ∈ Ex (k+1)B is a union of two graphs G1 and G2,
where G1 has a (2k, 2,B)-double blocker Q of size at most r with a special
set S, S ⊆ V (G1)∩V (G2) ⊆ Q, G2 ∈ apex (Ex kB) and Q is a B-blocker for
G.

We may assign each G ∈ Ex (k+1)B a unique tuple t(G) = (G1, G2, Q, S)
as above. Call G complex, if G2 − (Q \ S) contains a subgraph H 6∈ ExB
which has only one vertex z ∈ S. Observe, that if G is not complex, then Q
is a (2k, 2,B)-double blocker for G, and S is its special set.

Suppose G is complex, and let H be a subgraph of G2−(Q\S) such that
V (H)∩S = {z} for z ∈ S. Then G1−z is disjoint from H, so G1−z ∈ Ex kB
and G1 ∈ apex (Ex kB). In this case, if G has at least r vertices, it can be
obtained from a graph G̃1 in apex (Ex kB) which has s = |V (G1) ∩ V (G2)|
distinguished vertices (roots) and another graph G̃2 in apex (Ex kB) which
has s pointed vertices, by identifying the i-th rooted vertex with the i-th
pointed vertex and merging edges between the distinguished vertices.

Thus the n-th coefficient, of the exponential generating function for the
complex graphs is bounded by

[xn]
r∑
s=0

xs
(
A(s)(x)

)2
,

where A is the exponential generating function of apex (Ex kB) and A(s) is
the s-th derivative of A. This shows that the inverse radius of convergence
for the class of complex graphs is at most

γ(apex (Ex kB)) ≤ 2γ(Ex kB) < γ(Ex (k + 1)B),

see Proposition 3.6 and the proof of Theorem 1.2. Hence, all but at most
e−Ω(n) fraction of graphs in |(Ex (k+ 1)B)n| are not complex, and therefore
have a (2k, 2,B)-double blocker. 2

We call a connected subgraph H of G a pendant subgraph, if there is
exactly one edge in G between V (H) and V (G) \ V (H).

Lemma 4.10 Let A be a proper addable minor-closed class of graphs. Let
H ∈ A be a connected graph and let k be a non-negative integer.
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There is a constant c > 0, such that the random graph Rn ∈u apex k (A)
with probability 1−e−Ω(n) has a set S of k vertices, such that Rn−S contains
a family H of at least cn pairwise disjoint pendant subgraphs isomorphic to
H, and each vertex of S is incident to all vertices of every graph H̃ ∈ H.

Proof This fact is proved in the proof of Theorem 1.2 of [15]. 2

Lemma 4.11 Let k be a positive integer and let B be the set of minimal
excluded minors for a proper addable minor-closed class of graphs. Suppose
ExB contains all fans, aw2 (ExB) is finite,

|(Ex kB)n| ≤ |(apex k−1 (ExB))n|
(

1 + e−Ω(n)
)

and γ2 > γ1, where γ2 = γ(apex (Ex kB)), γ1 = γ(rd 2k+1 B). Then

|(Ex (k + 1)B)n| = |(apex k (ExB))n|
(

1 + e−Θ(n)
)
.

Proof By Lemma 3.3 and Lemma 3.5 there is a constant r = r(k,B) > 2k
such that every graph in G ∈ Ex (k + 1)B with at least r vertices can be
generated as follows.

1) Pick n2 ∈ {0, . . . , n}.

2) Pick a set V2 ⊆ [n] of size n2.

3) Pick q ∈ {0, . . . , n2 ∧ r}.

4) Pick a set Q ⊆ V2 of size q.

5) Put any graph G2 ∈ A on V2. Here A = apex (Ex kB).

6) Add edges of any graph G1 ∈ D on V1 = ([n]\V2)∪Q (merge repetitive
edges, if necessary). Here D is the class of graphs with a (2k, 2,B)-
double blocker of size at most r.

Let un be the total number of constructions, i.e., the total number of
different tuples (n2, q, V2, Q,G1, G2) that can be generated by the above pro-
cedure. Denote by U be the combinatorial class with the counting sequence
(un, n = 0, 1, . . . ). Also, let Rn be the graph obtained by taking the tuple
(n2, q, V2, Q,G1, G2) uniformly at random from all un possible tuples. (In
the rest of the proof n2, q, V2, Q,G1, G2 will be random variables.)
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By Lemma 3.7, γ(D) = γ1. Similarly as in the proof of (5)

un ≤ [xn/n!]

r∑
q=0

xqA(q)(x)D(q)(x),

so, see [12], γ(U) ≤ γ2. Fix ε ∈ (0, 0.5) and δ > 0 such that

(γ1 + δ)ε(γ2 + δ)1−ε < γ2.

Let H be a graph of minimal size that can be obtained by removing one
vertex from a graph in B. Let c be a constant as in Lemma 4.10 applied
with ExB and H. We say that a set S ⊆ V2 is good if |S| = k and there is
a family HS of at least cn/4 disjoint pendant subgraphs H̃ in G2 − (S ∪Q)
such that H̃ is isomorphic to H and every vertex v ∈ S is incident to every
vertex of V (H̃).

Define the following events:

A = {G2 has at least (1− ε)n vertices};
B = {G2 ∈ apex k (ExB)};
C = {G2 has a good set S}.

We will show that

P(Ā) ≤ e−Ω(n); P(B̄) ≤ e−Ω(n); P(C̄) ≤ e−Ω(n). (9)

and
γ(U) = γ(apex k (ExB)) = γ2. (10)

For n large enough, A,B and C imply that either Rn ∈ apex k (ExB) or Rn
has k + 1 disjoint subgraphs not in ExB. Indeed, by Lemma 5.3 of [15], if
S is a good set, then for a B-critical subgraph H1 of G−S, there is at most
a constant number Nk,B of subgraphs H̃ ∈ HS , which are not disjoint from
H1. For n large enough, k < cn/4 − Nk,B, so we can construct k disjoint
subgraphs not in ExB, each containing one vertex from S, and each disjoint
from H1, producing k + 1 disjoint forbidden subgraphs in total.

Denote a′n := |apex k (ExB)n|. Assuming (9) and (10) hold, we have for
n large enough

|(Ex (k + 1)B)n \ (apex k (ExB))n| ≤ un(P(Ā) + P(B̄) + P(C̄))

= n!γ
n−Ω(n)
2 = e−Ω(n)a′n. (11)
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Let us show (9) and (10). Recall that by Theorem 1.2 of [15], γ(apex l(ExB))
= 2lγ(ExB) for any l = 0, 1, 2, . . . . By the definition of apex classes and the
assumption of the lemma

|apex (Ex kB)n \ (apex k (ExB))n|
≤ n2n−1|(Ex kB)n−1 \ (apex k−1(ExB))n−1|
≤ n2n−1e−Ω(n)|(apex k−1 (ExB))n−1|

The last line is e−Ω(n)a′n again by Theorem 1.2 of [15]. So

an := |apex (Ex kB)n| ≤ a′n(1 + e−Ω(n)) (12)

and γ2 = 2kγ(ExB) is the growth constant of apex (Ex kB). Since un ≥ a′n,
we have γ(U) ≥ γ2 and (10) follows.

Let dn = |Dn|. There is a constant C, such that for any n = 1, 2, . . .

an ≤ Cn!(γ2 + δ)n; dn ≤ Cn!(γ1 + δ)n.

Using (10), there is a constant C ′ > 0, such that the number of con-
structions with n2 < (1− ε)n is at most

b(1−ε)nc∑
n2=0

r∧n2∑
q=0

(
n

n2

)(
n2

q

)
an2dn−n2+q

≤ C ′n2q+1n! max
n2<(1−ε)n

(γ1 + δ)n−n2(γ2 + δ)n2

≤ C ′n2q+1n!
(
(γ2 + δ)1−ε(γ1 + δ)ε

)n
≤ e−Ω(n)un,

and the first bound of (9) follows.
The second bound of (9) follows by the first one and (12) since

P(B̄) ≤ P(Ā) + P(B̄|A) = e−Ω(n).

Fix an integer t, (1 − ε)n ≤ t ≤ n, and a subset V2 = Ṽ of size t. Condi-
tionally on V2 = Ṽ and the event B, the random graph G2 is a uniformly
random graph on Ṽ from apex k (ExB).

By Lemma 4.10 there is a constant c1 > 0 such that for all large enough
n, conditionally on V2 = Ṽ and B, the graph G2 with probability at least
1−e−c1(1−ε)n has a set S, where every vertex in S is incident to every vertex
of at least c(1− ε)n ≥ cn/2 disjoint pendant subgraphs of G2 isomorphic to
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H. At most q such subgraphs can have vertices in Q, so if n is large enough
then cn/2− q > cn/4 and S is good.

Now
P(C̄) ≤ P(Ā) + P(B̄) + P(C̄|A,B).

For large enough n, by the above argument and symmetry the last term on
the right side is

1

P(A,B)

∑
Ṽ⊆[n],|Ṽ |≥(1−ε)n

P(C̄|V2 = Ṽ , B)P(V2 = Ṽ , B)

≤ e−c1(1−ε)nP(A,B)

P(A,B)
= e−Ω(n),

and the last bound of (9) follows.
Finally, the fact that |(Ex (k + 1)B)n \ (apex k (ExB))n| ≥ e−Θ(n)a′n fol-

lows by Lemma 5.5 of [15]. 2

For B as in Theorem 1.3 and sufficiently large k we have, using Theo-
rem 1.2, that Rn ∈u rd 2k+1 B belongs to apex 2k−1 B ⊇ apex k B with prob-
ability e−Ω(n). The next lemma shows that the two candidates for the main
subclass of Ex (k + 1)B studied so far essentially do not overlap.

Lemma 4.12 Let A be a proper addable minor-closed class. Let B be its
set of minimal excluded minors. There is a constant c > 0 such that with
probability 1− e−Ω(n) every redundant blocker Rn ∈u apex k (ExB) is of size
at least cn.

Proof Fix a graph H ∈ B. Let H0 = H − v, where v ∈ V (H) is any vertex.
Fix ε ∈ (0, 1), and let Aε = Aε(n) be the event that the random graph Rn
has a unique blocker S of size k and the graph Rn−S has at least εn pendant
appearances H̃ of the graph H0, such that every vertex of H̃ is connected to
every vertex of S (call such pendant appearances good), and any B-blocker
not containing S has at least εn vertices. By Lemma 4.10 and Theorem 1.3
of [15] we can choose ε so, that Aε occurs with probability 1− e−Ω(n).

Let c = ε/2. Let n be sufficiently large, so that (ε− c)n > 2. Suppose Aε
occurs and Rn has a redundant blocker Q of size at most cn. Then Q must
contain S and there must be at least one good appearance H̃ disjoint from
Q. Now any vertex x ∈ S together with H̃ induces a graph containing H in
Rn − (Q \ {x}), thus Q is not a redundant blocker. So the probability that
Rn has a redundant blocker of size at most cn is at most P(Āε) = e−Ω(n). 2
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5 Analytic combinatorics for Ex 2K4

In this section we focus on the case B = {K4} and the class C3. Recall
that Al denotes the set of {0, 1}l-coloured graphs G such that if G ∈ Al,n
then {n + 1, . . . , n + l} is a redundant B-blocker for G{n+1,...,n+l} and Cl is
the class of connected graphs in Al. The main result of this section is the
following.

Lemma 5.1 Let B = {K4}. The class C3 has growth constant γ(C3) =
23.5241.. .

This shows that in Theorem 1.2 and Theorem 1.3 we have k0 = 1 for
B = {K4}:

Corollary 5.2 Let B = {K4}. For any k = 1, 2, . . .

γ(Ex (k + 1)K4) = γ(rd 2k+1K4) = γ(A2k+1).

Proof Bodirsky, Giménez, Kang and Noy [6] showed that γ(ExK4) =
9.073 . . . . By the exponential formula

[xn]C3(x) ≤ [xn]A3(x) ≤ [xn]eC
3(x),

so by Proposition 3.6 and Lemma 5.1

γ(rd 3K4) = γ(A3) = γ(C3) > 2γ(ExK4).

Now since rd 3K4 ⊆ Ex 2K4, the claim follows by Lemma 3.9 and Theo-
rem 1.3. 2

5.1 Series-parallel networks

Recall that a graph G is called series-parallel if G ∈ ExK4. A series-parallel
graph G with an ordered pair of distinguished vertices s and t is called an
SP-network if G is connected and adding an edge st to G, the resulting
multigraph is 2-connected and series-parallel (so a network isomorphic to
K2 is also an SP -network). s and t are called the poles of G; s is the source
of G and t is the sink of G. The poles have no label and do not contribute
to the size of G. A vertex v ∈ V (G) that is not a pole, is called an internal
vertex.

Denote by D the class of all SP -networks and by E2 the class of SP -
networks consisting of a single edge between the source and the sink. Also,
denote by E1 the class of degenerate networks with source and sink repre-
sented by the same vertex and zero internal vertices. The corresponding
exponential generating functions are E2(x) = E1(x) = 1.
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S P E2

Figure 2: The structure of the class D provided by Lemma 5.3.

Lemma 5.3 (Trakhtenbrot 1958, [25], see also [26]) We have

D = E2 + S + P.

Here S and P are defined by |S0| = |P0| = 0 and

S = (P + E2)× SEQ≥1(Z × (P + E2));

P = E2 × SET≥1(S) + SET≥2(S).

Furthermore, the classes S and P correspond to disjoint classes of networks
and the above relation corresponds to a unique decomposition of a graph
G ∈ S (respectively, G ∈ P) into subgraphs in P ∪ E2 (respectively, S ∪ E2)
with pairwise disjoint sets of labels.

The last statement of the lemma asserts that there is a stronger kind
of isomorphism than just combinatorial one. More precisely, the classes S,
P and E2 can (and will) be considered as classes of graphs, which naturally
partition the class of all SP -networks, see Figure 2. A network G ∈ S
is called a series SP-network. G can be decomposed uniquely into k ≥ 2
networks H1, . . . ,Hk ∈ P + E2, where the sink of Hi is the source of Hi+1

for i = 1, . . . , k− 1, the source of G is the source of H1, the sink of G is the
sink of Hk, and the sets of internal vertices are disjoint for Hi, Hj , i 6= j.
We say that G is obtained from H1, . . . ,Hk by series composition.

A network G ∈ P with source s and sink t is called a parallel SP-network.
G can be decomposed uniquely into k ≥ 2 networks S1, . . . , Sk ∈ S ∪ E2,
where at most one network is in E2. In such a decomposition, the sets of
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internal vertices of S1, . . . , Sk are pairwise disjoint, the source of S1, . . . , Sk is
s, and the sink of S1, . . . , Sk is t. We say that G is obtained from S1, . . . , Sk
by parallel composition. The above decomposition also implies that for any
internal vertex v of G ∈ P, we may represent G as a parallel composition
of a network S ∈ S (where S = Sj with v ∈ V (Sj)) and a network D ∈ D
(where D = ∪i 6=jSi).

It has been shown, see [6] and [4], that the exponential generating func-
tions of D and P satisfy

xD(x)2

1 + xD(x)
= ln

(
1 +D(x)

2

)
; (13)

P (x) + 1 =
D(x)

1 + xD(x)
. (14)

To keep formulas shorter, for exponential generating functions A(x) we will
often skip “(x)”; x ∈ C will usually be fixed, and its value should be clear
from the context. Identities where the range of x is not explicitly stated,
will hold for some δ > 0 and any x ∈ C with |x| < δ.

The following simple facts were used already in [25].

Proposition 5.4 Let G be an SP -network with poles s and t. Then for
each internal vertex v of G there is a path from s to t containing v.

Proof If G is a parallel SP -network, then since G is 2-connected, there
are internally disjoint paths, a path from v to s and a path from v to t.
Connecting them, we obtain a path from s to t.

Suppose G is a series network. Let H1, . . . ,Hk be the decomposition of
G into graphs in P+E2 as in Lemma 5.3. Then for i = 1, . . . , k, the network
Hi contains a path Pi connecting its poles, and, if v is an internal vertex of
Hi, also containing v. Connecting each of the paths Pi yields a path from s
to t that contains v. 2

Proposition 5.5 Let G be a parallel SP -network with source s and sink t.
Then for each internal vertex v of G there are two internally disjoint paths
from s to t such that one of the paths contains v.

Proof By Lemma 5.3 the graph G can be obtained by a parallel composition
of two networks S ∈ S and D ∈ D with disjoint sets of vertices where v is
an internal vertex of S. By Proposition 5.4, there is a path P from s to t
that contains v. Now D contains another path from s to t internally disjoint
from P . 2
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Proposition 5.6 Let G ∈ D. The network G′ obtained by adding a new
vertex w connected to both poles of G satisfies G′ ∈ P.

Proof This is an immediate consequence of Lemma 5.3, see the comment
after it. 2

5.2 Rooted graphs of multiple types

Let F (x) and B(x) denote the exponential generating functions of rooted
connected series-parallel graphs and biconnected series-parallel graphs re-
spectively. Then (see, e.g., [6, 13])

F (x) = xeB
′(F (x)). (15)

An analogous formula works for any addable class of graphs. However,
it fails for classes Ck: we have to consider several types of rooted graphs
instead.

Let G be a coloured graph with one pointed uncoloured vertex r, called
the root of G. Let C be the set of all colours of G. We call a colour c good
for G, if the graph obtained from G by adding a new vertex w connected to
r and each vertex of G coloured c contains no K4 as a minor. Otherwise we
call c bad for G. We call G a C-tree, if the following three conditions are
satisfied:

(a) each colour c ∈ C is good for G,

(b) G is connected and it has no cut vertex x such that G − x has a
component without colours and without r, and

(c) r is not coloured, not a cut vertex of G and not the only vertex of G.

For a positive integer k and C ⊆ [k], denote by AC the family of all C-trees,
see Figure 3. We define A∅ = ∅. If C 6= ∅, then for n = 0, 1, 2, |AC,n| is equal
to 0, 1 and 2|C| respectively. We will now study the exponential generating
functions of AC ; in the end of this section we will use the results to obtain
the growth constant of Ck.

Let G be a C-tree with root r, for some C ⊆ [k]. Then G has a unique
rooted block tree T with root r. Consider any block B of G. Denote by
r(B) the vertex of B closest to r in G. For v ∈ V (G), denote by Gv the
subgraph of G induced on v and the vertices of all blocks of G that are
ancestors of v in T (if v is not a cut vertex and v 6= r, then it has no
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Figure 3: A {red, green, blue}-tree G. The elliptic shapes represent blocks,
the white node is the root r. For each colour c the blocks on the path from
the root vertex to a vertex coloured c form a sequence of SP-networks joined
at their poles and only the “joints” of these networks can have colour c. All
such blocks for any given colour c form a {c}-tree which is a “subtree” of G,
here the subtree for c = red is highlighted.

ancestors), with the label and colour from v removed. We call the set of
colours Col(v)∪Col(Gv) the type of v in G, and denote it by typeG(v). For
any block B of G and any colour c, let Xc(B) denote the set of vertices
v ∈ V (B) such that c ∈ typeG(v).

Proposition 5.7 If G is a C-tree then for any block B of G and any c ∈ C
we have Xc(B) ≤ 1.

Proof Let GB be the subgraph of G induced on the vertices of B and the
vertices of all blocks that are ancestors of B in the rooted block tree of G.
It is easy to see that GB is a C ′-tree for some C ′ ⊆ C. Therefore it suffices
to prove the claim in the case where r(B) is the root r of G.

Suppose Xc(B) ≥ 2. Then G has a coloured minor isomorphic to a
vertex-pointed 2-connected graph H obtained from N(B) by setting Col(x)
= Col(y) = {c} for two distinct vertices x, y ∈ V (B) \ {r}. Now c is bad for
H, since adding a new vertex with at least three neighbours to a 2-connected
graph in ExK4 yields K4 as a minor. It follows that c is bad for G. 2

For k = 1, 2, . . . , denote by Bk the family of biconnected graphs in A[k],
such that each vertex has at most one colour. Again, if B ∈ Bk and c ∈ [k],
then there is exactly one vertex in B coloured c. For n = 0, 1, 2, |B1,n| is
equal to 0, 1, 2 respectively; also Bk,j = 0 if j < k.
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For a set C of positive integers, denote by ÂC the set of all vertex-pointed
graphs G, such that Col(G) = C and which further satisfy the conditions (a)
and (b) of the definition of a C-tree. It is easy to check using the definition
that |ÂC,n| is equal to 1 and 4|C| − 2|C| for n = 0 and 1 respectively. Each

non-empty graph in ÂC can be decomposed uniquely into a (coloured and
pointed) root vertex r and a set of graphs G1, . . . Gt where for i = 1, . . . , t,
the graph Gi is a Ci-tree for some Ci ⊆ C, and V (Gi) ∩ V (Gj) = {r} for
i 6= j.

Proposition 5.8 Let C1, C2 be finite non-empty sets of positive integers.
Suppose G1 ∈ ÂC1 and G2 ∈ ÂC2 have only their root vertex in common.
Then G1 ∪G2 ∈ ÂC1∪C2.

Proof It is easy to see that the condition (b) holds for G. Suppose (a) does
not hold, i.e., c ∈ C1 ∪C2 is bad for G. Consider the graph G+ obtained by
adding a new vertex w, connected to the root of G and each vertex coloured
c. For i = 1, 2 let G′i = G+[V (Gi)∪{w}]. By Lemma 4.2 for some i = 1, 2 we
have G′i+rw has a subdivision of K4, thus Gi 6∈ ÂCi . This is a contradiction.

2

Lemma 5.9 Let C be a finite non-empty set of positive integers. The ex-
ponential generating functions of ÂC and AC are related by

ÂC =
∑
S⊆C

(−1)|C|−|S|2|S| exp

∑
S′⊆S

AS′

 .

Notice, that by definition A∅(x) = 0 and Â∅(x) = 1.

Proof For any set S ⊆ C, define

ÃS = ∪T⊆SÂT ,

and note that |ÃS,0| = 2|S| . Since AS ∩AS′ = ∅ for S 6= S′, for any C ′ ⊆ C

ÃC′ = 2|C
′| exp

∑
S⊆C′

AS

 .

Fix a non-negative integer n, and for S ⊆ C let bS = bS,n be the number of
graphs G in ÃC,n, such that Col(G) ∩ S = ∅. Then the number of graphs
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in ÃC,n where some colour from C is missing, by the inclusion-exclusion
principle is ∑

S⊆C,S 6=∅

(−1)|S|−1bS .

Now bS =
∣∣∣ÃC\S,n∣∣∣, therefore, summing over all n ≥ 0

ÃC − ÂC =
∑

S⊆C,S 6=∅

(−1)|S|−1ÃC\S =
∑
S⊂C

(−1)|C|−|S|−1ÃS

and

ÂC =
∑
S⊆C

(−1)|C|−|S|ÃS =
∑
S⊆C

(−1)|C|−|S|2|S| exp

∑
S′⊆S

AS′

 .

2

Proposition 5.10 Let k be a positive integer, and let C be a set of positive
integers, |C| ≥ k. Let B ∈ Bk. For i = 1, . . . , k, denote by vi be the vertex of
B coloured {i}. Let P be a partition of C into k non-empty sets S1, . . . , Sk
(listed in the lexicographic order), and let G1, . . . , Gk be pairwise disjoint
graphs, all disjoint from B, with Gi ∈ ÂSi, i = 1, . . . , k.

Then the graph G obtained by identifying the root ri of Gi with vi and
setting ColG(vi) = ColGi(ri) for each i, is a C-tree.

Proof We have to show the conditions (a)-(c) of the definition of the C-
tree are satisfied. It is trivial to check (b) and (c), so we will check just (a).
Suppose it does not hold, i.e., c ∈ C is bad for G. Consider the graph G+

formed by adding to G a new vertex w 6∈ V (G) and connecting w to the
root r of G and each vertex coloured c. Let Si be the set containing c. Let
G′1 = G[V (Gi) ∪ w] and G′2 = G+ − (Gi − vi). We have G′1 ∪G′2 = G+ and
V (G′1) ∩ V (G′2) = {vi, w}. Let K ′ be a subdivision of K4 in G+.

By Lemma 4.2, either K ′ is contained in G′1 or G′2, or the intersection of
K ′ with G′j is a path from vi to w for some j ∈ {1, 2}. If K ′ is a subgraph
of G′1, then c is bad for G1; if K ′ is a subgraph of G′2, then c is bad for B.
If G′2 ∩K ′ is a path from w to vi, then G′1 + wvi contains a subdivision of
K4, so c is bad for Gi. If G′1 ∩ K ′ is a path from w to vi, then B + wvi
contains a subdivision of K4, and so c is bad for B. In each case we get a
contradiction. 2
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We can now use the above observations and the decomposition into
blocks, similarly as in (15) to give the exponential generating function for
AC . Given a set C ⊆ [k] for some positive integer k, let P(C) be the set of
all set partitions of C, so that |P([j])| is the j-th Bell number.

Lemma 5.11 Let k be a positive integer. For any non-empty set C ⊆ [k],
the exponential generating function of AC is

AC(x) =
∑

P∈P(C)

B|P |(x)
∏
S∈P

ÂS(x).

Proof Each C-tree G may be decomposed into the (uncoloured) block B
containing its root r, and a set of graphs Gv, such that v ∈ X = ∪c∈CXc(B).
Since the graph Ĝv obtained from Gv with vertex v coloured ColG(v) and
its label removed, is isomorphic to a coloured minor of G, we have that
Ĝv ∈ ÂC′ where C ′ = typeG(v). Let v(1), . . . , v(t) be the vertices of X
sorted according to their type in the lexicographic order, and for v ∈ X let
ind(v) be the position of v in this list. The graph B̃ obtained from B by
setting ColB̃(v) = {ind(v)} for each v ∈ X satisfies B̃ ∈ Bt. Now using
Proposition 5.10 we see that each graph in AC can be represented uniquely
by and constructed from

• a root block B ∈ Bt, for some t ∈ [|C|],

• a partition P = {S1, . . . , St} of C into non-empty sets (indexed in the
lexicographic order), and

• pairwise disjoint graphs G1, . . . , Gt, all disjoint from B, where Gi ∈
ÂSi for i = 1, . . . t

by identifying the root ri of Gi with the vertex v of B coloured {i}, and
colouring that vertex ColGi(ri). Now the exponential generating function is
obtained in a standard way, see [12]. 2

We write for shortness AR = A{1},ARG = A{1,2} and ARGB = A{1,2,3}.

Lemma 5.12 The exponential generating functions of AR,ARG and ARGB
satisfy

AR = B1ÂR;

ARG = B1ÂRG +B2Â
2
R;

ARGB = B1ÂRGB + 3B2ÂRÂRG +B3Â
3
R.
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Here

ÂR = 2eAR − 1;

ÂRG = 4eARG+2AR − 4eAR + 1;

ÂRGB = 8eARGB+3ARG+3AR − 12eARG+2AR + 6eAR − 1.

Proof Notice, that by symmetry we have AC = AC′ whenever |C ′| = |C|.
The lemma follows by Lemma 5.9 and Lemma 5.11. 2

5.3 Blocks of coloured trees (two colours)

In this section we present a decomposition for coloured graphs in the class B2.
For a network G with two poles, we denote by G+ the network obtained by
connecting the poles with an edge. We will say that a colour c is bad for a
(coloured) network G, if adding a new vertex w to G connected to the source
of G and each vertex coloured c, we obtain a graph not in ExB. Recall that
in this section B = {K4}.

Lemma 5.13 Let S1 be the class of {0, 1}1-coloured series SP -networks G
where exactly one internal vertex is coloured {red}, and the colour red is
good for G+.

Each graph in S1 admits a unique decomposition into two graphs in D
or a graph B2 and a graph in D. The exponential generating function of S1

is
S1(x) = D(x)(xD(x) +B2(x)).

We will use the following simple observation.

Lemma 5.14 Let k be a positive integer and let G be a {0, 1}k-coloured
graph with one pointed vertex r and exactly k coloured vertices, so that for
each i ∈ [k] there is a vertex vi ∈ V (G) \ {r} coloured {i}. Denote by Gc the
network with source r and sink u obtained from G by removing the colour
and the label from the vertex u coloured {c}.

G ∈ Bk if and only if for each c ∈ [k] we have N(Gc) ∈ P + E2.

Proof If either G ∈ Bk or N(Gc) ∈ P + E2, then Gc is biconnected, so
Gc 6∈ S.

(⇒) Suppose N(Gc) 6∈ P+E2 and let u be the vertex coloured {c}. Then
Gc + ru contains K4 as a minor. We may replace ru by the path rwu where
w 6∈ V (G) to see that the colour c is bad for G, a contradiction.
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(⇐) Suppose we have N(Gc) ∈ P + E2, but c is not good for G. Let u
be the vertex coloured c. The assumption implies that with a new vertex
w 6∈ V (G), the graph G′ = N(G + rwu) contains K4 as a minor. Then so
does Gc + ru and N(Gc) 6∈ D, a contradiction. 2

Proof of Lemma 5.13 Let G ∈ S1, let s and t be its source and sink
respectively, and let v be the vertex coloured red. Then by Lemma 5.3, G
may be decomposed into a sequence of (pairwise internally disjoint) networks
H1, H2, . . . ,Hk ∈ (P + e) with k ≥ 2 and vertices x1, . . . , xk−1, where xi is
both the sink of Hi and the source of Hi+1.

Suppose v is an internal vertex of some Hj , 2 ≤ j ≤ k. For j = 1, . . . , k
denote by sj and tj the source and the sink of Hj respectively (we have
s1 = s and tk = t). By Proposition 5.5, Hj contains a cycle C with vertices
v, sj and tj . By Lemma 5.3 and Proposition 5.4, there is a path P1 from s
to sj in H1 ∪ · · · ∪Hj−1, a path P2 from tj to t in Hj+1, . . . ,Hk (which is
trivial if j = k). Now the graph obtained from the union of C,P1, P2 and rt
demonstrates that the colour red is bad for G+. Therefore v cannot be an
internal vertex of Hj , j ≥ 2.

So v can have one of the following positions (and the cases are non-
overlapping):

(a) v = xj for some j ∈ [k − 1];

(b) v is an internal vertex of H1.

Suppose first that (a) holds. Denote by D1 the SP -network with source
s and sink v obtained from the union (series composition) of H1, . . . ,Hj

and x1, . . . , xj−1. Denote by D2 the network with source v and sink t ob-
tained from the union (series composition) of Hj+1, . . . ,Hk and the vertices
xj+1, . . . , xk−1. By Lemma 5.3 and the comment thereafter, D1, D2 ∈ D.

Now let D′1, D
′
2 ∈ D be arbitrary, and let G′ be a network obtained by

series composition of D′1 and D′2 by colouring the common pole {red} and
giving it an arbitrary label. Let s be the source of D′1 and G′, and let t be
the sink of D′2 and G′.

Lemma 5.3 and a comment after it, the decomposition of a graph S to
a graph in (P + E2) and a sequence of graphs in Z × (P + e) is unique.
Therefore, if G′ ∈ S1 applying the decomposition of G = G′ into graphs
H1, . . . ,Hk as above, we recover D1 = D′1 and D2 = D′2.

Let us check that G′ ∈ S1. Consider the network G̃ obtained from G′+

by making v a sink and t an internal vertex. N(G̃) is a parallel SP -network,
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since it is obtained by a series composition of the network st and the SP-

network
←−
D ′2 and a parallel composition of the resulting network with the

SP -network D′1 (here
←−
D ′2 denotes D′2 with its source and sink swapped.

This change of orientation does not change the type of the network). By
Proposition 5.6, the red colour is good for G̃, and so it is good for G′+, and
G′ ∈ S1.

Now consider the case (b). Let H̃1 be a {0, 1}2-coloured graph obtained
from H1 by colouring its sink green and assigning the label x1. Since H̃1

is a subgraph of G+, if the red colour is bad for H̃1, then it is also bad
for G. If the green colour is bad for H̃1, then the path P from s to x1

in G+, where P consists of the edge st and a path from t to x1 in D =
H2 ∪ {x2} ∪ · · · ∪ {xk−1} ∪Hk ∈ D shows that G+ contains K4 as a minor,
which is a contradiction. It follows that H̃1 ∈ B2 and D ∈ D.

Now take an arbitrary graph H ′ ∈ B2 with root r, an arbitrary network
D′ ∈ D with source s′ and sink t′, and identify the green vertex of H ′ with
the source of D′ (call this vertex x) to obtain a network G′ with source r
and sink t′. Denote the vertex of G′ coloured {red} by v.

It is easy to see using the decomposition given by Lemma 5.3 that if
G′ ∈ S1, then the procedure described above applied with G = G′ recovers
H ′ and D′ of G′ as H̃1 and D respectively. It remains to show that G′ ∈ S1.

Consider the graph G′′ = G′+(w) obtained by adding a new vertex w to
G′+, such that Γ(w) = {r, v}. Assume that red is bad for G′. Then G′′

contains a subdivision K ′ of K4. Since K ′ is 2-connected, it must contain
both vertices v and r. Clearly, {r, x} is a cut in G. Apply Lemma 4.2 to
G′′, and its subgraphs H̃ ′ = G′′[V (H ′) ∪ {w}] and R = G′′ − (H̃ ′ − {r, x}).
We consider three possible cases.

Case 1. K ′ is entirely contained in H̃ ′. Then H ′ 6∈ B2, which is a
contradiction.

Case 2. K ′∩ H̃ ′ is a path from r to x. Let G1 be the network with poles

r and x obtained by a series composition of rt′ and
←−
D′. Then the network

G1 + rx ∈ P contains K4 as a minor, this is a contradiction to Lemma 5.3.
Case 3. K ′ ∩R is a path P from r to x. Consider K ′1 = K ′ ∩ H̃ ′. Then

K ′1 is a subdivision of K4 with a part of subdivided edge (i.e., the internal
vertices of P ) removed.

It must be that w ∈ V (K ′1), otherwise N(G+) 6∈ D, again contradicting
Lemma 5.3. Since K ′ is 2-connected, w must have degree 2 in K ′1. We have
that K ′1 is a subdivision of one of the graphs shown in Figure 4, with the
restriction that rw cannot be subdivided. Importantly, in all cases, the graph
K ′′ = K ′1−{w, r, x} is connected. The SP-network H ′ is parallel (it contains
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Figure 4: The part K ′1 of the subdivision of K4 contained in H̃1 is a subdi-
vision of one of these four types of graphs. Here the unlabelled vertices can
be any vertices of H̃1.

an internal vertex v), so by Lemma 5.3 it can be obtained in a unique way
by parallel composition of some l ≥ 2 networks S1, . . . , Sl ∈ S ∪ e. The
connected graph H ′′ belongs to exactly one of these networks; change the
indices if necessary, so that this network is S1. Now, since V (K ′)∩V (S2) ⊆
{r, x} we may use a path in S2 from r to x to replace the path P and show
that H̃ ′ also contains a subdivision of K4. This demonstrates that H ′ 6∈ B2,
which is a contradiction.

Combining the decompositions in each of the cases (a) and (b) yields the
bijection

S1 = Z ×D2 +D × B2,

which translates into the generating function, see [12], as claimed. 2

Lemma 5.15 Each graph in B2 admits a unique decomposition into a net-
work in D and a network in S1. The exponential generating function of B2

satisfies
B2(x) = xD(x)S1(x)

Proof Let G ∈ B2, let r be the root of G and let u and v be the vertices
coloured {green} and {red} respectively. Consider the {0, 1}1-coloured net-
work G̃ with poles r and u obtained with c = green as in Proposition 5.14.
N(G̃) ∈ P (it has an internal vertex v), so it can be decomposed uniquely
using Lemma 5.3 into a network D ∈ D and a series graph S that contains
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Figure 5: Graphs in the class B2 can be decomposed into one of the following
constructions. Here the white shapes represent networks in D, the grey
shape represents a graph in B2 where the green vertex is converted into the
sink. r and g mark vertices coloured red and green respectively.

v, both with poles s and u. Since the graph S+ is isomorphic to a minor of
G̃, if red is bad for S+, then it is bad for G̃. Thus S ∈ S1.

Now take arbitrary networks D′ ∈ D and S′ ∈ S1 with disjoint sets
of internal vertices and join them in parallel. Label the sink vertex u and
colour it green. We claim that the resulting graph G′ ∈ B2. Suppose, not.
The colour green cannot be bad for G′ by Proposition 5.6. Suppose red is
bad for G′. The root r of G′ is its unique pointed vertex (the common sink
of D′ and S′). Using Lemma 4.2, since D′ ∈ D, we get that red is bad for
S′ + ru, which contradicts to the definition of S1. So we have

B2 = Z ×D × S2,

and applying the standard conversion to generating functions [12] completes
the proof. 2

We may combine the results of this section to obtain the full picture of
graphs in the class B2, see Figure 5.

Corollary 5.16 Each graph in B2 admits a unique decomposition into three
graphs in D or two graphs in D and a graph in B2:

B2 = Z2 ×D3 + Z ×D2 × B2.

Proof Combine Lemma 5.13 and Lemma 5.15. 2

5.4 Blocks of coloured trees (general case)

In this section we give a nice characterisation of the class of coloured blocks
Bk for arbitrary k. It turns out that each graph in Bk can be formed by
substituting an SP-network for each edge of an “apex tree”.
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Let k be a positive integer. Let T ′k be the class of {0, 1}k-coloured Cayley
trees T containing exactly k coloured vertices v1, . . . , vk, where vertex vi has
colour {i} for each i = 1, . . . , k with the following restriction: if a vertex
u ∈ V (T ) has no colour, then it must have degree at least 3. Since every
leaf is coloured by a unique colour, each T ∈ T ′k has only one automorphism.
Therefore, we have |T ′k,n| = n!|(UT ′k)n|, where UT ′k is the class of unlabelled

{0, 1}k-coloured trees that can be obtained from the trees in T ′k .
For k = 1, 2, . . . the number of elements in UT ′k is

1, 1, 4, 31, 367, . . .

For example, all trees in the class UT ′3 are shown in Figure 6. It is inter-
esting to note, that the above sequence does not yet appear in the Sloane’s
Encyclopedia of Integer Sequences [24].

Now let F ′k be the class of all vertex-pointed graphs that can be obtained
by taking a coloured tree T ∈ T ′k , subdividing its edges arbitrarily (by in-
serting new uncoloured labelled vertices) to get a tree T ′, and finally adding
a pointed root vertex r connected to each leaf of T ′ and each uncoloured
vertex of degree 2 (edges rv where v is coloured or has at least 3 neighbours
may be included or not included).

Let F ′k(·,D) denote the class of graphs that can be obtained from graphs
in F ′k by replacing their edges by arbitrary networks in D. Since each net-
work has an orientation (it starts with its source and ends with its sink),
in order for such replacement to be well defined for a given G ∈ F ′k and
{De ∈ D : e ∈ E(H)}, the edges of G have to be oriented. We can assume
that each edge in the tree G − r points towards the red vertex, and each
edge of G adjacent to r points away from r.

Theorem 5.17 Let k be a positive integer. Each graph in Bk can be ob-
tained in a unique way by substituting an SP-network for each edge of a
graph in F ′k:

Bk =

{
F ′1(·,P + E2) = Z × (P + E2) for k = 1
F ′k(·,D) otherwise.

We will prove Theorem 5.17 using the next two lemmas.

Lemma 5.18 Let k ≥ 2 be an integer. Each pair (H,DH), where H ∈ F ′k
and DH = {De ∈ D : e ∈ E(H)} yields a unique graph G = G(H,DH) ∈ Bk,
where G is obtained from H by replacing e with De for each edge e ∈ E(H).
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Figure 6: The isomorphism groups for the class of coloured trees T ′3 .

Proof Fix a pair (H,DH) and let r be the root of G = G(H,DH). Let us
first prove that G ∈ Bk. To this aim, by Lemma 5.14 it suffices to show that
for each colour c ∈ [k], if vc is the vertex coloured {c}, then the network
Gc with source r and sink vc obtained from G as in Lemma 5.14 satisfies
N(Gc) ∈ P.

The graph Gc is 2-connected, so N(Gc) 6∈ S ∪ E2. Suppose Gc + rvc
contains a subdivision K ′ of K4. Let B be the block of Gc − r containing
the 2-core of K ′ − r (the 2-core of a graph is the unique graph obtained
by repeatedly deleting vertices of degree at most 1, until no such vertices
remain). Since each vertex v ∈ V (H) \ {r} is a cut point of Gc − r, we
have that B is isomorphic to a subgraph of De for some e = xy ∈ H.
Furthermore, Gc contains a path from the source to the sink of De which
does not use any internal vertex of De. It follows by Lemma 4.2 that De is
not an SP -network, a contradiction.

Let us now prove that given G = G(H,DH) where H ∈ F ′k for any k ≥ 2
we can always recover H and DH . We prove this claim by induction on
|V (H)|.

Suppose |V (H)| = 3. Then the unique decomposition is provided by
Corollary 5.16, and the corresponding tree in F ′k is the unique tree with
two nodes u and v, which are the vertices of G coloured {green} and {red}
respectively.

Now let h ≥ 4 be an integer. Suppose that for any H̃ ∈ F ′k on at
most h− 1 vertices, we can always recover H̃ and DH̃ given just the graph

G = G(H̃,DH̃). Let H ∈ F ′k be a graph on h vertices with root r and let
DH = {De ∈ D : e ∈ E(H)} be arbitrary. Denote the tree H−r by T (it is a
subdivision of a graph in T ′k). Let u be a coloured vertex in G− r, such that
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there are no two coloured components in G−{r, u}. If there is more than one
candidate for u, let u be such that Col(u) = {j} has the largest j. At least
one such vertex exists since for any leaf x of the tree T , all coloured vertices
of T − u (and also in G − {r, u}) are in a single component. Furthermore,
for any vertex u′ of T that is an internal vertex of T , there are at least 2
coloured components in T − u′ (and also in G − {r, u′}). So u is the leaf
vertex of T with the largest colour index.

Let C be the component of G − {r, u} containing all coloured vertices.
Then the network D′ru with poles r and u obtained from G − C is the
network Dru.

Now consider the graph G̃ = G− (V (D′ru) \ {r, u}). For each cut vertex
v′ of G̃, let C(v′, u) denote the component of G̃− v′ containing u. Let S be
the set of cut vertices v′ such that either v′ is coloured or G − C(v′, u) is
2-connected. Finally, call a vertex v′ ∈ S a candidate if G − C(v′, u) does
not contain any vertex from S. It is not difficult to see that there is exactly
one candidate: the neighbour v of u in T .

Let D′uv be the network obtained from G̃[V (C(v, u))∪{v}] by making u
the source and v the sink. We can see that D′uv = Duv (the orientation is
correct, since by definition j > 1).

Now consider the graph G̃− V (D′uv − v). If v is not coloured, colour it
{j}, and add a dummy path vwr, where w is a vertex not in G̃. Denote
the resulting graph by G̃2. At the same time consider the graph obtained
from H − u by adding an edge rv, if it is not already there, and colouring v
with {j}, if it is not coloured. Let Prwv be the network with poles r and v
obtained from the path rwv. If rv 6∈ E(H), let D̃rv = Prwv otherwise define
D̃rv = Drv ∪ P̃ . The graph G̃2 can be obtained from H ′ by replacing each
edge by a network D′e, where D′e = De, if e ∈ E(H ′) \ {rv} and D′rv = D̃rv.

By induction (rename colours, if necessary) we may recover H ′ and D′
uniquely. Now we see, that connecting u to v and r in H ′, returning the
original colour to v, and removing rv if D′rv = Prwv, recovers the graph H.
For e ∈ E(H)\{ru, rv, uv}, the network De is the network D′e by induction,
for e ∈ {rv, uv}, we have shown above that De = D′e. Finally, if rv ∈ H ′,
we obtain Drv as D′rv − w. 2

Lemma 5.19 For any integer k ≥ 2 we have Bk ⊆ F ′k(·,D).

Proof We use induction on k. For k = 2, fix G ∈ B2. By Corollary 5.16,
G admits either a representation by three SP-networks (we say that G is of
the first type) or by two SP-networks and a (smaller) network G′ ∈ B2 (we
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say that G is of the second type), see Figure 5. Let G0 = G. For i = 0, . . . ,
if the graph Gi is of the second type, define Gi+1 = G′i. Let j be the index
of the last Gi that has been defined.

To prove the lemma for the case k = 2 we apply induction on j. When
j = 0, we have that G is of the first type, so by Corollary 5.16, it is a triangle
H ∈ F ′2,2 with each edge replaced by a network in D. Now let j′ ≥ 1, assume
that the claim holds for k = 2 and all j ∈ {0, . . . , j′−1}, and suppose j = j′.
Then by Corollary 5.16, the graph G = G0 is obtained from G1 by taking
a series composition D of two graphs D1, D2 ∈ D with the common pole
coloured {green}, identifying the sink of D with the green vertex u of G1

and removing the colour from u. By induction, G1 can be obtained from a
graph H ′ ∈ F ′2 by replacing each edge e ∈ E(H ′) with a network D′e ∈ D.

Let H be a graph obtained from H ′ by inserting the vertex u 6∈ V (H ′),
so that u is connected to the green vertex u′ of H ′ and the root, colouring
u {green} and removing the colour from u′. Clearly, H ∈ F ′2. Also, for
e ∈ E(H ′) define De = D′e, and let Dru = D1 and Duu′ = D2. Thus G0 can
be obtained from the graph H ∈ F ′2, by replacing each edge e ∈ E(H) with
De. This completes the proof for the case k = 2.

Assume now that we have proved the lemma for Bl with l ∈ {2, . . . , k−1},
and suppose G ∈ Bk, where k ≥ 3. Let u be the vertex of G coloured {k}.
Remove the colour from u to obtain a graph G′ ∈ Bk−1. Use induction to
find a graph H ′ ∈ F ′k−1 and a set of networks DH′ = {D′e : e ∈ E(H ′)} such
that G′ is the graph obtained by replacing each edge e of H ′ by D′e. Let r be
the root vertex of H ′, write T ′ = H ′ − r, and recall that T ′ is a subdivision
of a tree in T ′k−1.

The vertex u may have one of the following positions:

(a) u ∈ V (T ′).

(b) u is an internal vertex of D′e for some e = xy ∈ E(T ′).

(c) u is an internal vertex of D′rv for some v ∈ V (T ′).

The case (a) is easy: we letH be the graph obtained fromH ′ by colouring
u with {k}, and let DH = DH′ .

Consider the case (b). Suppose, u is not a cut vertex of D′e. By
Lemma 5.3 and Proposition 5.5, De contains a minor M isomorphic to the
triangle K3, such that x, y and u all belong to different bags. Now, since
each component of T ′−xy contains at least one leaf of T ′, there are paths P1

and P2 in G′− (D′e−{x, y}) from r to x and y respectively. Now M , P1 and
P2 demonstrate that the colour k is bad for G. Thus, u must be a cut vertex
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of D′e. Let H be the graph obtained from H ′ by subdividing the edge xy
with the vertex u. Let Dux and Dyu be the networks with the common pole
u (the orientation may be reversed, if necessary), such that D′e results from
the series composition of Dux and Dyu. For e ∈ E(H ′) \ {e}, let De = D′e,
and define DH = {De : e ∈ E(H)}. Then we have G = G(H,DH).

Now consider the case (c). LetG1 be the graph obtained fromG[V (D′rv)],
by colouring the vertex u {green} and the vertex v {red} and adding the
edge rv, if rv 6∈ E(G). For a {0, 1}k-coloured graph H and c ∈ [k], let
(H)c = Hc be as in Lemma 5.14. By Lemma 5.3, G1 is 2-connected and
(G1)red ∈ P. By Lemma 5.14, (G)k ∈ P, and since G contains a path from
r to v internally disjoint from D′rv which can be contracted to an edge rv,
we get that (G1)green ∈ P. Therefore, applying Lemma 5.14 second time,
we see that G1 ∈ B2.

We have N(G1) ∈ P and G1 ∈ B2 by Lemma 5.14.
Using the already proved case k = 2, G1 can be obtained from a graph

H1 ∈ F ′2 by replacing each edge e ∈ E(H1) with an SP -network D′′e . Let H̃1

be obtained from H1 by setting ColH̃1
(u) = {k} and ColH̃1

(v) = ColG(v).

Now, if D′′rv ∈ E2 and rv 6∈ E(G), let H = H ′ ∪ (H̃1 − rv), otherwise, let
H = H ′ ∪ H̃1. We can see that the tree T = H − r is obtained from T ′ by
attaching at the vertex v the graph P = H̃1−r (which is a path from v to u).
The vertex u is coloured {k} in P and for each vertex x ∈ V (P ) \ {v} there
is an edge rx ∈ E(H) as required by the definition of F ′k. Since v ∈ V (T ′)
and T ′ ∈ F ′k−1, if v is not coloured it has degree at least 2 in T ′, and degree
at least 3 in T . Hence H ∈ F ′k. For e ∈ E(H ′) \ {rv}, define De = D′e; for
e ∈ E(H1) \ {rv}, let De = D′′e . Finally, if rv ∈ E(G), set Drv = D′′rv − rv.
Let DH = {De : e ∈ E(H)}: we have proved that G = G(H,DH), as
required. 2

Proof of Theorem 5.17 The case k = 1 follows by Lemma 5.14. For
k ≥ 2, we combine Lemma 5.18 and Lemma 5.19. 2

Given a class A of graphs and a parameter X : A → Z≥0, let An,k = AXn,k
denote the family of graphs G ∈ An with X(G) = k. We call

A(x, y) =
∑

n≥0,k≥0

|An,k|
n!

xnyk

the bivariate generating function of A (where y “counts” X). Below, wher-
ever X is not specified, y counts the number of edges, i.e. X(G) = |E(G)|.

It is not difficult to get the bivariate generating function F ′k for F ′k, when
k is small.
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Lemma 5.20 The bivariate generating functions of F ′2 and F ′3 are

F2(x, y) =
x2y3

1− xy2
; F3(x, y) =

x3y4(3− 2xy2)(1 + y)

(1− xy2)3
.

Proof Denote by T̃ ′k the class of trees obtained by subdividing edges of
trees in T ′k arbitrarily. The graphs in T̃ ′2 are paths with coloured endpoints
(the colours provide a unique orientation) and the univariate exponential
generating function

T̃ ′2(x) =
∞∑
n=2

n!

n!
xn =

x2

1− x
.

Each T ∈ T̃ ′2 on n vertices yields a unique fan F ∈ F ′2 with 2n− 1 edges, so

F ′2(x, y) =
T̃ ′2(xy2)

y
=

x2y3

1− xy2
.

Now consider k = 3. There are 3n!(n − 2) trees T ∈ T̃ ′3,n such that N(T )

is isomorphic to a path, and n!
(
n−2

2

)
trees T ∈ T̃ ′3,n which are subdivided

3-stars, see Figure 6. Therefore the exponential generating function of T̃ ′3 is

T̃ ′3(x) =

∞∑
n=3

3(n− 2)xn +

∞∑
n=4

(
n− 2

2

)
xn =

3x3

(1− x)2
+

x4

(1− x)3
.

From each tree in T̃ ′3 on n vertices we can obtain two fans F1, F2 ∈ F ′3,n with
2n − 1 and 2n − 2 edges respectively (this is because the middle coloured
vertex in the “path” case, and the centre of the star, in the “star” case may
or may not be connected to the root). This yields the exponential generating
function

F ′3(x) = T̃ ′3(xy2)(y−1 + y−2) =
x3y4(3− 2xy2)(1 + y)

(1− xy2)3
,

as claimed. 2

5.5 Growth of the class AR
We will use below the following fact about the class of SP-networks D.
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Lemma 5.21 (Lemma 2.3 of [6]) Let B be the class of biconnected series-
parallel graphs. Then

ρ(B) = ρ(D) = ρ(P) =
(1 + t0)(t0 − 1)2

t30
= 0.1280.., and

D(ρ(D)) =
t20

1− t20
= 1.8678..,

where t0 = 0.8070.. is the unique positive solution of

(1− t2)−1 exp(−t2/(1 + t)) = 2.

By Lemma 5.12 and Theorem 5.17

AR = B1(2eAR − 1) = x(P + 1)(2eAR − 1). (16)

Notice, that if we add a new vertex w to any {red}-tree G, and connect it
to the root and every vertex coloured red, we obtain a 2-connected series-
parallel graph G′. This follows directly from the definition of a C-tree: if
we delete any vertex x ∈ V (G′) \ {w}, w has a neighbour in each of the
components of V (G) − {x,w}, so G′ − x is connected. If we delete w we
obtain the connected graph G. Thus each {red}-tree of size n gives a unique
2-connected series-parallel graph of size n+2 (we may label the root and the
new vertex n+1 and n+2 respectively). Thus, if B is the class of biconnected
series-parallel graphs, we have ρ(B) = ρ(D) ≤ ρ(AR). On the other hand,
either looking at (16) or recalling that each SP -network yields a unique
{red}-tree, we see that ρ(AR) ≤ ρ(D). We conclude that ρ(AR) = ρ(D).

Proposition 5.22 For any positive integer k, we have ρ(Bk) = ρ(D).

Proof By Lemma 5.14

|Bk,n| ≤ nk|(P + E2)n−1|,

so ρ(Bk) ≥ ρ(P). By Theorem 5.17, each graph, obtained from a non-series
SP-network G and a coloured path P ∈ T̃ ′k , by identifying the first endpoint
of P with the sink of G and adding an edge between the source of G and
second endpoint of P (if it is not already there), is in Bk. So

|Bk,n| ≥ (n)k|(P + E2)n−k|,

and ρ(Bk) ≤ ρ(P). So ρ(Bk) = ρ(P) = ρ(D) by Lemma 5.21. 2
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We remind a definition from [12]. Given two numbers φ,R with R > 1
and 0 < φ < π/2, define

∆(φ,R) = {z ∈ C : |z| < R, z 6= 1, |arg(z − 1)| > φ} .

A domain is a ∆-domain at 1 if it is ∆(φ,R) for some R and φ. For a
complex number ζ 6= 0, a ∆-domain at ζ is the image by the mapping
z → ζz of a ∆-domain at 1.

For complex functions f, g we write f(z) = O(g(z)) as z → z0 if there
are constants C, ε > 0 such that |f(z)| ≤ C|g(z)| for all z with |z − z0| < ε.

The following fact is well known.

Lemma 5.23 The exponential generating function R(x) =
∑

n≥1
nn−1xn

n! of

rooted Cayley trees has a unique dominant singularity e−1. R(x) can be
extended analytically to a ∆-domain ∆ at e−1, such that for all x ∈ ∆ we
have R(x) = xeR(x) and for x→ e−1, x ∈ ∆ we have

R(x) = 1−
√

2(1− ex)1/2 +O(1− ex). (17)

Furthermore, R(x) is the unique solution y(x) of y = xey, which is analytic
at 0 and satisfies R(0) = 0.

Proof See, e.g., Theorem VII.3 of [12] or Theorem 2.19 of [10]. For exten-
sion to a ∆-domain see, e.g., proof of Theorem 2.19 of [10]. The identity
R(x) = xeR(x) for |x| < e−1 is shown, i.e., in [12]. The identity then extends
to the whole ∆ domain by the Identity principle (see, e.g., Theorem 8.12
of [1]). 2

Recall that when we omit “(x)” in identities involving exponential gen-
erating functions and do not mention otherwise, we mean that they hold
for some δ > 0 and any x ∈ C with |x| < δ. (If each side is an exponential
generating function of a combinatorial class, this means that the counting
sequences of both classes are identical.)

Lemma 5.24 We have

AR = R(2B1e
−B1)−B1.

Proof We may rewrite (16) as

ÃR = EeÃR

where ÃR = AR + B1 and E = 2B1e
−B1 . By Proposition 5.22, ρ(B1) =

ρ(D) > 0, so E is analytic at zero. Since E′(0) = 2|B1,1| = 2 > 0, E has an
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analytic inverse ψE at zero. Thus there is δ > 0 such that for all u ∈ C with
|u| < δ we have

f(u) = uef(u),

where f(u) = ÃR(ψE(u)). Since f(0) = E(0) = ψE(0) = 0, we conclude
(using Lemma 5.23) that f(u) = R(u) for all u with |u| < δ. This implies
that there is ε > 0, such that for all x ∈ C with |x| < ε we have ÃR(x) =
f(E(x)) = R(E(x)), or

AR(x) = R(E(x))−B1(x).

Since the two analytic functions are identical on an open disc, they are
identical for all x with |x| < ρ(D). 2

5.6 Growth of the class ARG
In contrast to AR, the exponential generating function of ARG has a domi-
nant singularity smaller than ρ(D).

Lemma 5.25 For |x| < ρ(D) define a function E = E(x) by

E = 4B1 exp
(
2AR − (4eAR − 1)B1 + (2eAR − 1)2B2

)
.

The equation E(x) = e−1 has only one solution x0 = 0.086468.. in the
interval (0, ρ(D)) and ρ(ARG) = x0.

Proof Combining Lemma 5.12, Lemma 5.20 and Theorem 5.17 we get

ARG = B1

(
4eARG+2AR − 4eAR + 1

)
+B2(2eAR − 1)2; (18)

B1 = x(P + 1); B2 =
x2D3

1− xD2
.

Denote
B = (4eAR − 1)B1 − (2eAR − 1)2B2.

and
ÃRG = ARG +B.

We may rewrite (18) as

ÃRG = EeÃRG .

Since all of the functions P,AR, D,B1, B2 have convergence radius ρ(D), the
function E(x) is analytic in the open disc |x| < ρ(D). Furthermore, E(x) is
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increasing for x ∈ (0, ρ(D)). To see this, notice that the Taylor coefficients
of E1 = E1(x) given by

E1 = 4 exp
(
(2eAR − 1)2B2

)
are non-negative, so E1(x) is continuously increasing for x ∈ (0, ρ(D)). Also,
by (16) we have

2AR − (4eAR − 1)B1 = −B1.

So
E2 = B1 exp

(
2AR − (4eAR − 1)B1

)
= B1e

−B1 .

The function B1(x) continuously increases as x ∈ (0, ρ(D)), since B1 has
non-negative Taylor coefficients, not all zero. Also, we have B1(0) = 0. By
Lemma 5.21, (14) and numeric evaluation we get B1(ρ(D)) = 0.1929.. <
1. Since the function y(t) = te−t continuously increases for t ∈ (0, 1) we
conclude that both y(B1(x)) and E(x) = E1(x)E2(x) continuously increase
for x ∈ (0, ρ(D)).

We now claim that
ÃRG(x) = R(E(x)), (19)

where R is the exponential generating function for rooted Cayley trees. To
see why, first note that

E′(0) = 4(P (0) + 1)e0 = 4

and so, since E is analytic at 0 and E(0) = 0, E(x) has an analytic inverse
ψE(u) for |u| < δ, with some positive δ, such that ψE(u) = 0. For such u
we have

f(u) = uef(u) (20)

and we conclude as in the proof of Lemma 5.24 that for all x ∈ C, |x| < ρ
where ρ is the radius of convergence of R(E(x))

ÃRG(x) = f(E(x)) = R(E(x)).

Returning to ARG we have

ARG(x) = R(E(x))−B(x). (21)

Since ARG has non-negative Taylor coefficients, by Pringsheim’s theorem
(see, e.g., [12]), it has a dominant singularity in [0;∞]. The function E
is continuously increasing for x ∈ (0, 0.12] ⊂ (0, ρ(AR)) and E(0.12) =
0.6436.. > e−1, therefore there is exactly one solution of E(x) = 1/e in
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(0, ρ(D)); we call this solution x0. Here we used (13), Lemma 5.24, (21)
in Maple, to get the numeric evaluation of E(0.12) and solve E(x) = 1/e.
(Let us note here that D and R have explicit functional inverses, see [6,12],
therefore D,R,AR, ARG can be evaluated numerically at any point inside
their disc of convergence).

The function ARG is analytic for all x < x0, and there is ε > 0 such that
B and E are analytic for all x with |x| < x0 + ε. Using the fact that E has
an analytic inverse at x0 (since E′(x0) > 0) we conclude that x0 must be a
singularity of ARG. 2

5.7 Growth of the class ARGB.

For ARGB we will apply a very similar analysis as in the previous section,
we only have to work with slightly longer formulas.

Lemma 5.26 For |x| < ρ(ARG) define E(x) = E1(x)E2(x) where

E1 = 4 exp{3B2(2eAR − 1)2(4eARG+2AR − 4eAR + 1) +B3(2eAR − 1)3};
E2 = 2B1 exp{3ARG + 3AR +B1(6eAR − 12eARG+2AR − 1)}.

The equation E(x) = e−1 has only one solution x1 = 0.044495.. in the
interval (0, ρ(ARG)) and ρ(ARGB) = x1.

Proof By Lemma 5.12 we have

ARGB = 8B1e
ARGB+3ARG+3AR −B,

where

B = B1(12eARG+2AR − 6eAR + 1)

− 3B2(2eAR − 1)2(4eARG+2AR − 4eAR + 1)−B3(2eAR − 1)3.

Setting ÃRGB = ARGB +B, we may rewrite this as

ÃRGB = EeÃRGB .

Notice, that by Lemma 5.25, and Section 5.5, Bk (for k ≥ 1), AR and
ARG all convergence radius at least ρ(ARG). Therefore E is analytic (and
continuous) at any point x ∈ (0, ρ(ARG)), We claim that E(x) is increasing
for x ∈ (0, ρ(ARG)). To see why, recall the notation of Lemma 5.12, and
note that

E1 = 4e3B2Â2
RÂRG+B3Â3

R
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is an exponential generating function for a class of combinatorial objects, so
its coefficients are non-negative, not all zero. Hence E1(x) is increasing for
x ∈ (0, ρ(ARG)). Now, by (16) and (18), the exponent in E2 is

3ARG + 3AR +B1

(
6eAR − 12eARG+2AR − 1

)
= 3B1

(
4eARG+2AR − 4eAR + 1

)
+ 3B2

(
2eAR − 1

)2
+ 3B1

(
2eAR − 1

)
+B1

(
6eAR − 12eARG+2AR − 1

)
= −B1 + 3B2Â

2
R.

Thus
E2 = 2B1e

−B1e3B2Â2
R

is increasing for x ∈ (0, ρ(ARG)) using a similar argument as in the proof of
Lemma 5.25. Since E = E1E2, E has the same property. Now since E(0) =
0, E′(0) = 8|B1,1| = 8, we have similarly as in the proof of Lemma 5.24

ÃRGB(x) = R(E(x))

for all x in the disc of convergence of ÃRGB, or, equivalently

ARGB(x) = R(E(x))−B(x).

Now using a numeric evaluation with 0.08 < ρ(ARG) yields E(0.08) =
0.855.. > 1/e, and B(x) is analytic for x < ρ(ARG). It follows similarly as in
Lemma 5.25 that the smallest positive number x1 such that E(x1) = 1/e is
a dominant singularity of R(E(x)). Numerically solving with Maple yields
x1 = 0.044495... (Here the numeric evaluation of E(x) for x ∈ (0,ARG) can
be easily carried out using the inverse functions of R and D, Lemma 5.24
and (21).) Since the convergence radius of B(x) is at least ρ(ARG), it follows
that x1 is the convergence radius of ARGB. 2

5.8 Completing the proofs

Proof of Lemma 5.1 Let F be the class of rooted series-parallel graphs.
Bodirsky, Giménez, Kang and Noy [6] showed that the functional inverse
ψF of F satisfies

ψF (u) = ue−B
′(u)

where

B(x) =
1

2
ln(1 + xD(x))− xD(x)(x2D(x)2 + xD(x) + 2− 2x)

4(1 + xD(x))
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is the exponential generating function of biconnected series-parallel graphs.
Using Theorem 3.4 of [6], ψF (u) is continuously increasing for u ∈ [0, u0),
where u0 = F (ρ(F)) = 0.127969.. (denoted τ(1) in [6]) and ψF (u0) =
ρ(F) = 0.11021...

Recall that A = C•3 is the class of all 3-rootable graphs rooted at a
3-rootable vertex. Then (cf. (15) and the proof of Lemma 5.9)

A = 23 ×F ×
∏
S⊆[3]

SET(AS(F)).

Therefore
A(x) = 8eARGB(F (x))F (x)e

∑
S⊂[3] AS(F (x)). (22)

By Lemma 5.26 ρ(ARGB) = 0.044.. < F (ρ(F)) = u0 = 0.1279... Let ρ be
the unique solution in (0, u0) of

F (u) = ρ(ARGB),

so that ρ = ψF (ρ(ARGB)) = 0.042509..
Since F and ARGB have non-negative coefficients and F ′(ρ) 6= 0, ρ is

a singularity of eARGB(F (x)). Moreover, since ρ(AS) > ρ(ARGB) for any
S ⊂ [3] by Lemma 5.25 and Lemma 5.26, we have that

g(x) = F (x)e
∑

S⊂[3] AS(F (x))

is analytic at ρ and g(ρ) 6= 0. It follows, see [12], that the radius of conver-
gence of A(x) is ρ, and so γ(A) = ρ−1 = 23.524122... By Lemma 4.7, ρ−1 is
the growth constant of A = C•3.

Now
γ(C2) ≤ γ(apex (ExK4)) ≤ 2γ(ExK4) < ρ−1,

since γ(ExK4) = 9.07.. by [6]. Also γ(C2) exists and is equal to γ(C2) by
Lemma 4.8. Applying Lemma 4.5 completes the proof. 2

6 Counting tree-like graphs

6.1 Substituting edges, internal vertices and leaves of Cayley
trees

Let T ′ be a class of trees. Let D, I,L be arbitrary non-empty classes of
labelled objects. As before, we assume that all classes are closed under
isomorphism of the labels. Although we use the same symbol to denote the
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class of series-parallel networks, in this section D will be an arbitrary class.
We will consider the class T ′(D, I,L) obtained from trees in T ′ by attaching
to leaves, internal vertices and edges objects from L, I, D respectively.
More precisely, denote by L(T ) and I(T ) the sets of all labelled leaves and
labelled internal nodes of a tree T respectively (in this section, a node of T
is called a leaf, if its degree is at most one; otherwise it is called an internal
node). Then T ′(D, I,L) is the class of all tuples (T,D′, I ′,L′) where T ∈ T ′,
D′ = {De : e ∈ E(T )}, I ′ = {Iv : v ∈ I(T )} and L′ = {Lv : v ∈ L(T )}
are families of objects from D, I and L respectively, and the sets of labels
of each object in {T} ∪ LT ∪ IT ∪ DT are pairwise disjoint.

Suppose I,L are classes of vertex-pointed graphs, D is a class of net-
works, and graphs in T ′ have at most one pointed (unlabelled) vertex. Then
each object α = (T,DT , IT ,LT ) ∈ T ′(D, I,L) corresponds naturally to a
graph G(α) defined as follows, see Figure 7. Starting with T , identify the
pointed vertex of Lv with the node v of T for each v ∈ L(T ), identify the
pointed vertex of Iu with the node u of T for each u ∈ I(T ) and replace each
edge uv ∈ E(T ) by the network Duv. To carry out the last substitution, fix
a rule for orientation of edges of T . For instance, identify the source and the
sink of Duv with the smaller and the larger of {u, v} respectively; a pointed
vertex can be assumed to be smaller than any labelled vertex.

Let T be the class of (unrooted) Cayley trees. For example, if ZC is the
class of graphs consisting of a single pointed vertex coloured C and E2 is
the class of trivial networks of size 0 containing a single edge, then the class
T (E2,Z∅,Z{red}∪Z{green}) is isomorphic to the class of all unrooted Cayley
trees where the leaves are coloured either red or green.

For α ∈ T ′(D, I,L), let T (α) denote the underlying tree T . Our aim in
this section is to enumerate general “supercritical” classes T (D, I,L) and
obtain results on the underlying tree size: an application of this will be one
of the key elements in the proof of Theorem 1.4.

Theorem 6.1 Let D, I,L be non-empty classes of labelled objects. Let A =
T (D, I,L) and A′ = R(D, I,L). Suppose ρ = ρ(A) < min(ρ(D), ρ(I), ρ(L))
and assume there are positive integers i, j, k with gcd(k − i, j − i) = 1 such
that A contains an object of each of the sizes i, j and k.

There are constants a > 0 and c > 0 such that the following holds. Let
Rn ∈u A′ or Rn ∈u A and let Yn = |V (T (Rn))|.

1) For any ε > 0, P
(∣∣Yn

n − a
∣∣ > ε

)
= e−Ω(n);

2) |An| = (1 + o(1))(an)−1|A′n| = ca−1n−5/2n!ρ−n(1 + o(1));
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Figure 7: Theorem 6.1 characterises the growth of general “supercritical”
class of graphs T (D, I,L) obtained by replacing edges, internal nodes and
leaves of Cayley trees by objects from classes D, I and L respectively.

3) A and A′ converge at ρ.

To prove the theorem, we will need some preliminary results and a technical
lemma. Let D, I,L be as in Theorem 6.1. Let T1 be the class of Cayley
trees pointed at a leaf and containing at least two vertices. Consider the
class A1 = T1(D, I,L) with the bivariate generating function A1(x, s) where
the second variable s counts the size of the underlying tree (which is the
number of its nodes minus one). Then, writing D = D(x), I = I(x) and
L = L(x),

A1(x, s) = sxDL+ sxDI
(
eA1(x,s) − 1

)
.

Consider additionally the class A2 with specification

A2 = A1 −Z ×D × L+ Z ×D × I,

Alternatively, A2 is the class T ′1 (D, I,L), where T ′1 is the same as T1, except
that when we have a tree of size one (i.e., isomorphic toK2), then its (unique)
labelled vertex u is treated as an internal vertex and an object from I, rather
than from L is attached to it.

The bivariate generating function A2(x, s) of A2 satisfies

A2(x, s) = sxDIesxD(L−I)eA2(x,s). (23)

Call a class A aperiodic, if there are positive integers i, j, k such that
i < j < k, |Ai|, |Aj |, |Ak| > 0 and gcd(k − i, j − i) = 1.
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Figure 8: Top left: the object α, bottom left: the object αl in the case
|T (αl)| = 2, right: the object in A1 of size |α|+ |αl| obtained by merging αl
and α.

Lemma 6.2 Let D, I,L be non-empty classes of labelled objects. If any of
the classes A = T (D, I,L),A1,A2 is aperiodic, then all of them are.

Proof Given α ∈ T ′(D, I,L), and x ∈ V ∗(T (α)) ∪ E(T (α)) we denote by
Objx(α) the object in D ∪ I ∪ D associated with x. Here V ∗(T ) ⊆ V (T )
denotes the set of labelled vertices of T .

1) Proof of A aperiodic =⇒ A2 aperiodic. Consider an object α ob-
tained from the path P2 = uvw where u and v are poles, with associated
objects Duv, Dvw ∈ D, Iv ∈ I such that the label sets of Duv, Dvw, Iv are
pairwise disjoint, and disjoint from u. Let α1, α2, α3 ∈ A be objects of sizes
i1, i2, i3 respectively, such that gcd(i3 − i1, i2 − i1) = 1. Let l ∈ {1, 2, 3};
we can assume that the label set of αl is disjoint from the label set of α.
Construct a new object α′l from αl and α as follows. If |V (T (αl))| 6= 2,
then let x be a vertex of T with dT (v) 6= 1. Merge α and αl by identify-
ing the vertex u of T (α) with x. If V (T (αl)) has two vertices, say a and
b, then let α′l be an object with underlying tree on edges {wv, va, vb} by
identifying u and a, so that Objvb(α

′
l) = Objab(α) and other associations

are inherited from α and αl, see Figure 8. We have |α′l| = |αl| + |α|, and
αl ∈ A2. Thus A2 contains objects of sizes i′l = il + |α| for l = 1, 2, 3 and
gcd(i′3 − i′1, i′2 − i′1) = gcd(i3 − i2, i2 − i1) = 1.

2) Proof of A2 aperiodic =⇒ A1 aperiodic. By definition, the only
objects in the symmetric difference of A1 and A2 are those, where the un-
derlying tree has only one edge.
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Let α ∈ A1 be such that |V (T (α))| = 2. T (α) contains one labelled
and one pointed vertex. Let α1, α2, α3 ∈ A2 be objects of sizes i1, i2, i3
respectively, such that gcd(i3− i1, i2− i1) = 1. We may assume that the set
of labels of α is disjoint from the set of labels of αl for l = 1, 2, 3. From αl
we may obtain a new object as follows. Let u be an internal vertex of T (αl),
if |V (T (αl))| ≥ 3, otherwise, let u be the unique labelled vertex of T (αl).
Merge the objects α and αl by identifying the pointed vertex of T (α) with
u, so that all the associated objects are inherited from the relevant tree.
In particular, associate with u the object Obju(αl) ∈ I. Call the resulting
structure α′l, and note that |α′l| = |αl|+|α| and α′l ∈ A1 since u is an internal
vertex of T (α′l). Similarly as above, it follows that A1 is aperiodic.

3) Proof of A1 aperiodic =⇒ A aperiodic. From any object α ∈ A1

we may obtain an object in A by labelling the pointed vertex u of α and
associating with u an object in L of some fixed size. Now the claim follows
similarly as in the previous cases. 2

Lemma 6.3 Let D, I,L be non-empty classes of labelled objects. For A =
T (D, I,L), ρ(A) = ρ(A1) = ρ(A2).

Proof Constructions as in Lemma 6.2 show that for

(C′, C′′) ∈ {(A,A2), (A2,A1), (A1,A)},

there is a positive integer s, such that from any object in C′n we can construct
a unique object in C′′n+s. So |C′′n+s| ≥ |C′n|, ρ(C′) ≤ ρ(C′′) and the claim
follows. 2

For the function f = f(x, s) below we denote by fx and fs its partial
derivatives with respect to x and s.

Lemma 6.4 Let D, I,L be non-empty classes of labelled objects. Let A2

be the class with the bivariate generating function A2(x, s) given in (23).
Suppose that ρ(A2) < m = min(ρ(D), ρ(I), ρ(L)) and A2 is aperiodic.

There is δ > 0 such that the following holds. For any fixed s ∈ [1−δ; 1+δ]
we have

A2(x, s) = R(f(x, s)), (24)

where f(x, s) = sxD(x)I(x)esxD(x)(L(x)−I(x)) and R is the Cayley tree func-
tion. The function A2(x, s) has a dominant singularity at ρ(s), which is the
smallest number in (0,m) such that

f(ρ(s), s) = e−1.
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Let ρ = ρ(1). We have fs(ρ, 1) > 0, fx(ρ, 1) > 0 and 0 < ρD(ρ)I(ρ) <
1, ρ(t) is continuously differentiable for t ∈ [1 − δ, 1 + δ] and ρ′(1) =
−fs(ρ, 1)/fx(ρ, 1). Furthermore A2(x, s) is analytic in a ∆-domain ∆′ at
ρ(s) and for x→ ρ, x ∈ ∆′ we have

A2(x, s) = 1− c(s)(1− x/ρ(s))1/2 +O((1− x/ρ(s))) (25)

where c(s) = (2eρ(s)fx(ρ(s), s))1/2 is positive.

It is not difficult to modify the proof and show that O() holds uniformly
for some δ > 0 and s ∈ [1− δ, 1 + δ].

Proof We will write, for shortness, D = D(x), I = I(x) and L = L(x).
Fix s > 0. We have f(0, s) = 0 and since m > 0, f(x, s) is analytic at

0. Define F [s](z, w) = f(z, s)ew−w. Then, see (23), the points (x,A2(x, s))
are solutions of F [s](x, y) = 0. We have R(f(0, s)) = 0 and for x in a
neighbourhood of 0, see Section 5.5,

R(f(x, s)) = f(x, s)eR(f(x,s)),

so (x,R(f(x, s))) are also solutions of F [s](x, y) = 0. Since the derivative

of F [s] with respect to w satisfies F
[s]
w (0, 0) = −1 6= 0 and F [s](0, 0) = 0,

(24) and the fact that ρ(A2) > 0 follow by the Analytic Implicit Function
Theorem (Theorem B.4 of [12]) and the Identity principle.

To prove the rest of the lemma we will apply the “smooth implicit func-
tion schema” and a theorem of Meir and Moon [12,19]. The function f(x, s)
(and F [s]) can have negative coefficients, therefore we will work with the
function A1(x, s), which satisfies

A1(x, s) = G[s](x,A1(x, s)) where G[s](x,w) = sxDL+ sxDI(ew − 1).

(Alternatively, one could apply Theorem 2 of [19] directly to F [s].)
Suppose f(x, 1) < e−1 for all x ∈ (0,m). Then for any x ∈ (0,m), A2 is

analytic at x. Since by the Pringsheim’s theorem (see [12]), A2(x, 1) has a
dominant singularity in (0,∞), we conclude that ρ(A2) ≥ m, a contradic-
tion. By continuity of f(x, 1), there exists a smallest positive ρ ∈ (0,m),
such that f(ρ, 1) = e−1.

An important observation is that ρD(ρ)I(ρ) < 1. Suppose, this is false.
xD(x)I(x) continuously increases for x ∈ (0,m) (it counts a non-empty
combinatorial class), so there is a unique positive x0 ∈ (0, ρ] such that
x0D(x0)I(x0) = 1. Since the function h(z) = ze−z is increasing for z ∈
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[0, 1) and exL(x)I(x) is increasing for x ∈ (0,m), we have that f(x, 1) =
h(xD(x)I(x))exL(x)I(x) is increasing for x ∈ (0, x0). But

f(x0, 1) = e−1ex0D(x0)L(x0) = e−1eL(x0)/I(x0) > e−1,

so ρ < x0, a contradiction. So ρD(ρ)I(ρ) < 1, ρ < m, and we can further
conclude that f(x, 1) is continuously increasing for x ∈ (0; ρ + ε1) for some
ε1 > 0. This implies that fx(ρ, 1) > 0. Furthermore, for |x| < m

fs(x, s) = xDIesxD(L−I)(sxDL+ 1− sxDI),

and so fs(ρ, 1) > 0.
Now consider a function F̃ (x, s) = f(x, s) − e−1, as a real function.

Since F̃ (ρ, 1) = 0, F̃x(ρ, 1) = fx(ρ, 1) > 0 and F̃s(ρ, 1) = fs(ρ, 1) > 0, by the
Implicit Function Theorem (see, e.g., [23], Theorem 9.28), there is δ1 > 0
and a function ρ(t) : R→ R, such that for t ∈ [1− δ1, 1 + δ1], ρ(1) = ρ, ρ(t)

is continuously differentiable, F̃ (ρ(t), t) = 0, ρ′(1) = − F̃s(ρ,1)

F̃x(ρ,1)
= − fs(ρ,1)

fx(ρ,1) ,

and {(t, ρ(t)) : t ∈ (1 − δ1, 1 + δ1)} contains all the solutions of F̃ (x, t) = 0
in the region [ρ− δ1, ρ+ δ1]× [1− δ1, 1 + δ1].

Since ρ < m, ρI(ρ)D(ρ) < 1, ρ(t) is continuous at t = 1 and xI(x)D(x)
is analytic at x = ρ, we see that there is δ ∈ (0, δ1), such that for t ∈
[1−δ, 1+δ], sρ(t)I(ρ(t))D(ρ(t)) < 1 and ρ(t) < m. Now, since it is a product
of two continuously increasing functions, f(x, t) = h(txD(x)I(x))etxD(x)L(x)

increases for x ∈ (0, ρ(t)), so ρ(t) is the smallest positive solution of f(x, t) =
e−1.

Assume s ∈ [1−δ, 1+δ]. Define τ(s) = 1+sρ(s)D(ρ(s)) (L(ρ(s))− I(ρ(s))).
We claim that the function G[s] satisfies the “smooth implicit function
schema” (Definition VII.4 of [12]). Indeed, ρ(s) < m, τ(s) <∞, the condi-
tion (I1) is satisfied, since G is (bivariate) analytic for |x| < m and |w| <∞.

The condition (I2) follows since G[s](0, 0) = G
[s]
w (0, 0) = 0, and for any

positive integer m, [wm]G[s](x,w) = (m!)−1sxD(x)I(x) has non-negative
coefficients, not all zero, since D, I are non-empty. It remains to check the
condition (I3).

G[s](ρ(s), τ(s)) = τ(s) and G[s]
w (ρ(s), τ(s)) = 1.

Both identities follow after a simple calculation using the definition of τ(s)
and the fact that f(ρ(s), s) = e−1.

Furthermore, by Lemma 6.2, there are positive integers i1, i2, i3, such
that |A1,il | > 0, gcd(i3 − i1, i2 − i1) = 1 and, denoting A1,n,m the set of
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objects α ∈ A1 with |α| = n and |V (α)| = m,

[xil ]A1(x, s) = [xil ](n!)−1
∑
m≥1

|A1,il,m|s
m > 0

for l = 1, 2, 3. Hence we can apply Theorem VII.3 of [12], which yields that
ρ(s) is the unique dominant singularity of A1(x, s) and there is a ∆-domain
∆ at ρ(s), such that for x→ ρs, x ∈ ∆

A1(x, s) = τ(s)− c(s)(1− z/ρ(s))1/2 +O((1− x/ρ(s)))

where

c(s) =

(
2ρ(s)G

[s]
x (ρ(s), τ(s))

G
[s]
ww(ρ(s), τ(s))

)1/2

= (2eρ(s)fx(ρ(s), s))1/2.

The last equality follows using f(ρ(s), s) = e−1, G
[s]
ww(ρ(s), τ(s)) = 1 and

comparing G
[s]
x (ρ(s), τ(s)) and fx(ρ(s), s) term by term.

Finally, let us show that there is a ∆-domain at ρ(s), such that y(x) =
A1(x, s) is analytic at each x ∈ ∆′ . By Lemma VII.3 of [12], y is analytic
in a region D0 = {z ∈ C : |z − ρ(s)| < r, | arg(z)− ρ(s)| > θ} for some r > 0
and 0 < θ < π

2 . By Note VII.17 of [12] y is analytic at any ξ with |ξ| = ρ(s)
and ξ 6= ρ(s), i.e., there exists an open ball Bξ centered at ξ and an analytic
continuation of y in Bξ. By compactness (see, e.g., proof of Theorem 2.19
of [10]), we may pick a finite number of points ξ, such that the respective
balls cover all points x ∈ D0 with |x| = ρ(s), and the union of these finite
balls together with {z : |z| < ρ(s)} contains some ∆-domain ∆′.

2

Proof of Theorem 6.1 In Example IX.25 of [12], Flajolet and Sedgewick
give a bivariate generating function R̃(x, z) for rooted Cayley trees where
the variable z counts leaves (the root is counted as a leaf only in the case
n = 1)

R̃(x, z) = xz + x
(
eR̃(x,z) − 1

)
(26)

which they show how to express using the usual (univariate) Cayley tree
function

R̃(x, z) = x(z − 1) +R(xex(z−1)).

Let R(x, z) be the bivariate generating function for rooted Cayley trees,
where z counts leaves, and the root is also counted as a leaf whenever its
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degree is at most one. Then, considering the cases when the root has 0, 1
or 2 children separately and using xeR(x) = R(x) we get

R(x, z) = zx+ zxR̃(x, z) + x(eR̃(x,z) − R̃(x, z)− 1)

= R
(
xex(z−1)

)
(x(z − 1) + 1) + x2(z − 1)2 + x(z − 1). (27)

Let us add a variable w that counts internal nodes:

R(x,w, z) = R(xw, z/w).

And another variable y, that counts edges:

R(x, y, w, z) = R(xyw, z/w)/y.

We get using (27)

R(x, y, w, z) = (xy(z−w)+1)R
(
xywexy(z−w)

)
y−1+y(x(z−w))2+x(z−w).

Then the bivariate generating function A′, where for α ∈ A′, the variable
s counts the size of the underlying tree T (α) is

A′(x, s) = R(sx,D, I, L)

= (sxD(L− I) + 1)
R(f(x, s))

D
+ (sx(L− I))2D + sx(L− I).

HereD = D(x), I = I(x), L = L(x) are the exponential generating functions
of D, I and L respectively, and f(x, s) = sxDIesxD(L−I) as before.

By Lemma 6.2, A2 is aperiodic. Denote m = min(ρ(D), ρ(I), ρ(L)). By
Lemma 6.3, ρ(A2) = ρ(A) < m. Therefore we can apply Lemma 6.4 to the
class A2 and its bivariate generating function A2(x, s) = R(f(x, s)).

Let ρ = ρ(1) > 0 be as in Lemma 6.4. Our constant a will be

a = −ρ
′(1)

ρ
=

fs(ρ, 1)

ρfx(ρ, 1)
.

By Lemma 6.4, a is positive.
Fix a small ε ∈ (0,min(0.5, 0.5a)). Let R′n ∈u A′ be a uniformly random

construction of size n and let X ′n = |V (T (R′n))|. The key part of the proof
will be to show that

P(|X ′n − an| > εn) = e−Ω(n). (28)
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Let δ be given by Lemma 6.4 applied with D, I,L. We can assume that
δ < min

(
1
2 ,

ε
16a ,

ε
16a2

)
. Fix s ∈ {1− δ, 1, 1 + δ}. By Lemma 6.4, we may also

assume that δ is small enough that

|ρ(s)− ρ− ρ′(1)| < ερδ

2
and 0 < ρ(s) < m. (29)

We can write A′(x, s) = E1D
−1A2(x, s) + E2 where

E1 = E1(x, s) = sxD(L− I) + 1;

E2 = E2(x, s) = (sx(L− I))2D + sx(L− I).

Using (29) D(ρ(s)) > 0, so E1D
−1 and E2 are analytic at x = ρ(s). So we

have as x→ ρ(s)

E1D
−1 = E1(ρ(s))D(ρ(s))−1 +O(x− ρ(s)), E2 = E2(ρ(s)) +O(x− ρ(s)).

Using Lemma 6.4, R(x) = xeR(x), the fact that m < ρ(s) and writing

A2(x, s) = E1D
−1R(f(x, s)) + E2 = E1sxIe

sxD(L−I)+R(f(x,s)) + E2

we get (see [12]) that ρ(s) is the unique dominant singularity of A′(x, s) and
there is a ∆-domain ∆′ at ρ(s), such that for x→ ρ(s), x ∈ ∆′

A′(x, s) = c0(s)− c1(s)

(
1− x

ρ(s)

)1/2

+O

(
1− x

ρ(s)

)
,

with c1(s) = E1(ρ(s), s)c(s)D(ρ(s))−1, c0(s) = c1(s) + E2(ρ(s), s).
Now by the “Transfer method” of Flajolet and Odlyzko (Theorem VI.1

and Theorem VI.3 of [12])

[xn/n!]A′(x, s) =
c1(s)

2
√
π
n−3/2ρ(s)−n

(
1 +O(n−1/2)

)
,

the probability generating function of X ′n at s satisfies

E sX
′
n =

[xn]A′(x, s)

[xn]A′(x, 1)
=

(
ρ

ρ(s)

)n
(1 +O(n−1/2)),

By Markov’s inequality, for s = 1− δ

P(X ′n ≤ (a− ε)n) = P(sX
′
n ≥ s(a−ε)n) ≤ E sX′n

s(a−ε)n

= exp ((p1 − (a− ε))n ln s+ o(1)) = e−Ω(n).
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since by (29) and our choice of ε, δ

p1 =
ln ρ− ln ρ(1− δ)

ln(1− δ)
≥ ln(1 + aδ − δε/2)

− ln(1− δ)
≥ ln(1 + aδ − δε/2)

δ + δ2

≥ aδ − δε/2− (aδ)2

δ + δ2
≥
(
a− ε/2− δa2

)
(1− δ)

≥ a− ε/2− δa2 − δa > a− ε.

Here we used simple inequalities b− b2 ≤ ln(1 + b) ≤ b and 1/(1 + b) ≥ 1− b,
which are valid for any b ∈ (−0.5, 0.5).

Now taking s = 1 + δ, we get by Markov’s inequality

P(X ′n ≥ (a+ ε)n) ≤ E sX′n
s(a+ε)n

=

(
ρ

ρ(s)sa+ε

)n
(1 + o(1))

= exp ((p2 − (a+ ε))n ln s+ o(1)) = e−Ω(n)

since similarly as above

p2 =
ln ρ− ln ρ(s)

ln(1 + δ)
≤ − ln(1− aδ − εδ/2)

ln(1 + δ)
≤ aδ + δε/2 + (aδ + δε)2

δ − δ2

≤ (a+ ε/2 + 4a2δ)(1 + 2δ) ≤ a+ ε/2 + 4a2δ + 4aδ < a+ ε.

This completes the proof of (28) and yields 1) with Yn = X ′n.
Let us finish the proof of the theorem. Let an(k, l) (respectively, a′n(k, l))

be the number of objects α in T (D, I,L)n (respectively, R(D, I,L)n) such
that |V (T (α))| ∈ [k, l]. Also let An = an(1, n) and A′n = a′n(1, n). Since
each unrooted tree T corresponds to exactly |V (T )| rooted trees

An ≤ A′n ≤ nAn and kan(k, l) ≤ a′n(k, l) ≤ lan(k, l). (30)

By (28) we have

dn = A′nP(|X ′n − an| > εn) = A′ne
−Ω(n).

For Rn ∈u A, let Xn = X(Rn). The fact that 1) holds for Yn = Xn follows
since

P (|Xn − an| > εn) ≤ ndn
A′n

= e−Ω(n).

Let us now show 2). Observe that since X ′n ≤ n, by 28 it must be a ∈ (0, 1].
Let ε′ = min(ε, 1− a). By (30)

a′n ((a− ε)n, (a+ ε′)n)

(a+ ε′)n
≤ an

(
(a− ε)n, (a+ ε′)n

)
≤ a′n ((a− ε)n, (a+ ε′)n)

(a− ε)n
.
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So

an
(
(a− ε)n, (a+ ε′)n

)
∈
(

(A′n − dn)(1− 2ε/a)

an
,
A′n(1 + 2ε/a)

an

)
and also

An − an
(
(a− ε)n, (a+ ε′)n

)
≤ dn = e−Ω(n)A′n.

So ∣∣∣∣An − A′n
an

∣∣∣∣ ≤ A′n
an

(
2ε

a
+ e−Ω(n)

)
.

Letting ε go to zero shows that An ∼ A′n
an . Thus 2) follows with

c =
c1(1)

2
√
π

=
ρD(ρ)(L(ρ)− I(ρ)) + 1

D(ρ)

(
eρfx(ρ, 1)

π

)1/2

.

Finally, since R(e−1) = 1, we have that

A′(ρ) = A′(ρ, 1) = c0(ρ) + c1(ρ)

is finite. Using Lemma 6.3 we have ρ(A) = ρ. By (30), the coefficients
of A(x) are dominated by the coefficients of A′(x) and so A(ρ) ≤ A′(ρ) =
c0(ρ) + c1(ρ). 2

6.2 The case B = {K4}

In this section we will have B = {K4} fixed and l a positive integer. Recall
from the proof of Lemma 4.3, that G ∈ Cl is called nice if there is a vertex
x ∈ V (G) such that G−x has at least two components containing all colours
[l]. In this case, we call the vertex x nice in G. For G ∈ Al we say that
a vertex x is nice if it is nice in its connected component. Also recall that
by U = U<l> we denote the class of graphs in Cl that are not nice. By
Lemma 4.3, Lemma 4.7 and Lemma 4.5, we know that γ(Cl) exists and
γ(U) < γ(Cl). Consider a graph G ∈ Cl. Repeatedly “trim off” “pendant
uncoloured subgraphs” from G (i.e. for x ∈ V (G) such that G − x has an
uncoloured component H, delete V (H) from G) until no such subgraphs
remain. We call the remaining graph G′ the coloured core of G.

Suppose G has a nice vertex r. Then since all coloured vertices remain
in G′, G′ is also nice. Consider the rooted block tree Tr of G′. Recall that
the nodes of Tr are {r} ∪X ∪H, where X is the set of cut points of G′ and
H is the set of blocks of G′.
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We call a block B of G′ simple if there are at most two coloured com-
ponents in G′ − E(B). If there are more than two coloured components in
G′ −E(B), we call B complex. Suppose y is a nice vertex and y 6= r. Then,
using Proposition 5.5 we see that every block node on the path Pyr from
y to r in Tr must correspond to a simple block B. By Theorem 5.17, the
edges of B form either a single edge or a parallel SP -network, where only
the poles can be coloured. Furthermore, the poles s and t of B must be nice.

All paths {Pyr : y is nice} form an (unrooted) subtree T ′ of Tr, and the
blocks corresponding to them form a connected subgraph ofG′. Since a block
node B of T ′ corresponds to a simple block, it has only two neighbours in T ′.
Therefore we may consider an unrooted tree T with V (T ) = {y ∈ V (G′) :
y is nice} and E(T ) = {xy : T ′ contains a path xBy for some B ∈ H}. The
trees T ′ and T do not depend on which nice vertex G is initially rooted at.
We call T the nice core tree of G.

Fix v ∈ V (T ). Consider, the graph G′v induced on v and the vertices of
those components of G′−v that do not contain any nice vertex, and pointed
at the vertex v (by retaining the colour of v).

First suppose that v is a leaf node of T . By Proposition 5.8, G′v admits
a unique decomposition to a {0, 1}l-coloured vertex (i.e. the root) and some
graphs H1, . . . ,Ht, where Hi is a Ci-tree with root v, such that Ci ⊆ [l],
Ci 6= ∅. The requirement that v is nice implies that at least one graph Hi

must be an [l]-tree with the restriction that Hi does not have a subgraph
H ′ rooted at a cut vertex v′ 6= v, such that H ′ is an [l]-tree (otherwise
v′ would also be nice and v would not be a leaf vertex). The generating
function counting the class Ā of such graphs Hi is the same as the one given
in Lemma 5.11, with the only difference that we do not allow an [l]-tree to
be attached to the root block, so using Lemma 5.9 and Lemma 5.11

Ā = A[l] − 2lB1(eA[l] − 1) exp

∑
S⊂[l]

AS


= B1

2l exp

∑
S⊂[l]

AS

+
∑
S⊂[l]

2|S|(−1)l−|S| exp

∑
S′⊆S

AS′


+

∑
P∈P([l]),|P |≥2

B|P |
∏
S∈P

ÂS .

If T has at least two vertices, then G′ − G′v is non-empty and has a
component that contains all colours [l]. Then the exponential generating
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function for the class L2 of all possible graphs G′v is

L2 = 2l(eĀ − 1) exp

∑
C⊂[l]

AC

 .

If T has only one vertex, then there must be at least two graphs Hi, Hj ∈ Ā,
so the exponential generating function for the class L1 of all possible graphs
G′v is

L1 = 2l(eĀ − Ā− 1) exp

∑
C⊂[l]

AC

 .

Now suppose v is an internal node of T . Then G′−G′v has at least two com-
ponents containing other nice vertices, and each such component contains
all colours [l]. Therefore G′v is in the class I with the exponential generating
function

I = 2l exp

Ā+
∑
C⊂[l]

AC

 .

Observe that our expressions for Ā, L1, L2, I all are given in terms of analytic
functions of AC , C ⊂ [l] and Bi, i ≤ l. Thus, by Lemma 5.1, Lemma 5.21
and Proposition 5.22 the convergence radii of each of these functions are at
least ρ(Al−1) > ρ(Al).

IfG is a graph, v is a vertex ofG andA is a class of vertex-pointed graphs,
G′ is obtained from G by attaching a graph H ∈ A at v if G′ = G ∪ H,
V (G′) ∩ V (H) = {v} and we assume that v inherits the label of G.

Recall that F denotes the class of all rooted series-parallel graphs. Let F◦
denote the class of all vertex-pointed series-parallel graphs, so that F◦(x) =
F (x)/x. For two pointed graphs G1 and G2 with disjoint sets of labels,
let G1 × G2 be the pointed graph obtained by identifying their roots. Call
classes D1,D2 of pointed graphs uniquely mergeable, if G1 ×G2 6= G′1 ×G′2
for all G1, G

′
1 ∈ D1, G2, G

′
2 ∈ D2, where G1×G2 and G′1×G′2 are defined. If

D1 and D2 are uniquely mergeable, we will identify with the combinatorial
class D1 × D2, the class of all graphs G1 × G2, where G1 ∈ D1, G2 ∈ D2,
and G1 ×G2 is defined.

Obviously, the classes F◦ and A are uniquely mergeable, when A is L1,
L2 or I: the vertices of G ∈ F◦ × A that belong to the graph G1 ∈ F◦
are exactly the root r of G and those vertices that are in the uncoloured
components of G− r.
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Given a class of graphs A and a class of rooted graphs C, we denote
by A(C) the class obtained from graphs in A by replacing each vertex by
a graph in B. Let P+ = P ∪ E2, be the class of non-series SP -networks.
The above observations imply that each graph G ∈ U can be constructed as
follows.

• Take a tree T of size at least one from the set of all unrooted trees T
(i.e. a nice core).

• Replace each edge e of T by a network De ∈ P+(F) (to fix the ori-
entation, we may assume that edges of T are oriented away from the
node with the smallest label in T ).

• Attach at each leaf node of T a graph in F◦ × L1(F) (respectively in
F◦ × L2(F)) if T has one node (respectively, at least two nodes).

• Attach at each internal node of T a graph in F◦ × I(F).

It is easy to see (for example, by fixing a root and comparing this construc-
tion with the construction of an [l]-tree) that the above decomposition is
unique and the construction always yields a graph in Cl \ U .

Lemma 6.5 Consider B = {K4}. Let l ≥ 2 an integer, let Rn ∈u Cl. Let
Yn denote the number of nice vertices in Rn. There is a positive constant
al, such that

P(|Yn − aln| > εn) = e−Ω(n).

Proof Combining Corollary 5.2 with Lemma 3.9 we get that ρ(Cl) < ρ(Cl−1).
Write

T̃ = T (P+(F),F◦ × I(F),F◦ × L2(F)),

and notice that T̃ is aperiodic, since it contains, for example, all Cayley
trees, where each node has colour [l]. The construction given in this section
above yields the following identity

Cl + Z × (F◦ × L2(F)) = T̃ + Z × (F◦ × L1(F)) + U . (31)

We will prove that the convergence radii of the exponential generating func-
tions of U , P+(F), F◦ × I(F), F◦ × L1(F) and F◦ × L2(F) are all at least
ρ(Cl−1). This implies that |Cln| = |T̃n|(1 + e−Ω(n)) and the claim follows by
Theorem 6.1.

Consider the class C̄ of rooted graphs obtained from graphs in A[l−1]

by replacing each labelled vertex by a graph in F and labelling the root.
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Then C̄(x) = xA[l−1](F (x)) and C̄ ⊆ C•(l−1) (defined in Section 4.1). Using

Lemma 4.5, ρ̄ := ρ(C̄) ≥ ρ(C•(l−1)) = ρ(Cl−1). By [6] the functional inverse
ψF (x) of F is increasing for x ∈ (0, x0) and F (x0) > ρ(D), where x0 =
F (ρ(F)) = 0.1279.. (denoted τ(1) in [6]). By Proposition 5.22 ρ(D) =
ρ(Bl−1) ≥ ρ(A[l−1]), so x0 ≥ ρ(A[l−1]). We see (using e.g., Section VI.9
of [12]) that ρ̄ = ψF (ρ(Al−1)).

By our construction above, for i ∈ {1, 2}, ρ(Li) ≥ ρ(A[l−1]), therefore

ρ(Z × (F0 × Li(F))) ≥ ψF (ρ(A[l−1])) = ρ̄ ≥ ρ(Cl−1). Since each graph in

P+,n yields a unique graph in Fn+2, ρ(P+(F)) ≥ ρ(F) ≥ ρ(Cl−1). Finally,
ρ(U) ≥ ρ(U ′) ≥ ρ(Cl−1) by Lemma 4.3. 2

7 Structure of random graphs in Ex (k + 1)K4

7.1 Proof of Theorem 1.4 and Theorem 1.5

Let H be a fixed connected coloured graph on vertices {1, . . . , h}. Following
[18], we say that H appears in G at W ⊆ V (G) if (a) the increasing bijection
from {1, . . . , h} to W gives an isomorphism between H and G[W ] and (b)
there is exactly one edge in G between W and the rest of G, and it is incident
with the smallest element of W . We let fH(G) denote the number of sets
W such that H appears at W in G.

Let A be a class of (coloured) graphs and let H be a connected graph,
rooted at r ∈ V (H). Let G ∈ A, and let S ⊆ V (G). Suppose G and S have
the following property: if we take any number of pairwise disjoint copies of
H, all disjoint from G, and add an edge between the root of each copy and
a vertex in S then the resulting graph is still in A. The set S is called an
H-attachable subset of G (with respect to A).

The next lemma and its proof is just an adaptation of Theorem 4.1 of [18]
for graphs where not necessarily all of the vertices form an H-attachable set.

Lemma 7.1 Let C be a non-empty class of (coloured) graphs, and suppose
γ(C) = c ∈ [e−1;∞). Let H be a connected (coloured) graph on the vertex
set {1, . . . , h} rooted at 1. Suppose there are constants a ∈ (0, 1), N0 > 0
and d > 0 such that the probability that Rn ∈u C has an H-attachable subset
(with respect to C) of size at least an is at least 1− e−dn all n ≥ N0. Fix α,
such that α < d and α ≤ a/(9e2ch(h+ 2)h!). Then there exists n0 such that

P(fH(Rn) ≤ αn) ≤ e−αn for all n ≥ n0.
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Proof The proof is a simple modification of the proof of Theorem 4.1 of [18].
We skip some of the details and refer the reader for them to [18]. Write
β = a−1e2ch(h + 2)h! and let ε ∈ (0, 1/3) be such that (αβ)α = 1 − 3ε.
Let f(n) denote the number of graphs in Cn. Then since γ(C) = c there is
n1 ≥ N0 such that for each n ≥ n1 we have e−αn ≥ 2e−dn and

2(1− ε)nn!cn ≤ f(n) ≤ (1 + ε)nn!cn. (32)

Assume that for infinitely many n ≥ n1 the claim of the lemma does not
hold: that is, at least e−αn fraction of graphs in G ∈ Cn “have few pendant
appearances”, i.e., fH(G) ≤ αn. Let C̃n ⊆ Cn consist of those graphs in
Cn that have few pendant appearances and an H-attachable subset with at
least an vertices. Then

|C̃n| ≥ f(n)(e−αn − e−dn) ≥ e−αn(1− ε)nn!cn.

Let δ ∈ (0, 1) be given by δ = αh. We can construct a graph G on dn(1+δ)e
vertices by putting a graph G0 isomorphic to a graph in C̃n on some n of
these vertices, and adding bαnc disjoint copies of H on the remaining dδne
vertices, so that for each added copy H ′ of H there is an edge between the
least vertex of H ′ and some y ∈ S0, where S0 is the largest H-attachable
subset of G0. The number of such constructions bd(1+δ)ne satisfies

bd(1+δ)ne ≥
(
d(1 + δ)ne

n

)
|C̃n|

(
dδne

h, . . . , h

)
(an)bαnc

bαnc!

≥ d(1 + δ)ne!e−αn(1− ε)ncn abαnc

h!(h!α)bαnc
.

Now [18] show that each graph in this way is constructed at most
(b(h+2)αnc
bαnc

)
≤

e((h+ 2)e)bαnc times. This, after a similar calculation as in [18] yields that

f(d(1 + δ)ne) ≥
bd(1+δ)ne

e((h+ 2)e)bαnc
≥ c′f(d(1 + δ)ne)

(
1− ε

(1− 3ε)(1 + ε)2

)n
,

for some constant c′ > 0 which does not depend on n. Since 1−ε
(1−3ε)(1+ε)2

> 1,

our assumption cannot hold for infinitely many n, a contradiction. 2

Corollary 7.2 Let B = {K4}, let h ≥ 1 and l ≥ 2 be integers and suppose
H ∈ Clh is rootable at 1. There is a constant a = a(l, h) > 0 such that the
random graph Rn ∈u Al satisfies

P(fH(Rn) ≥ an) ≥ 1− e−Ω(n).
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Proof By Proposition 5.8 and the decomposition of Section 6.2 the set
of nice vertices of a graph G ∈ Al is H-attachable. The claim follows by
Lemma 6.5 and Lemma 7.1. 2

Fix positive integers r and l, r > l. Recall the class Ã = Ã<B,l,r>
defined in the proof of Lemma 3.7: Ã is the class of {0, 1}r-coloured graphs
corresponding to the class of graphs that have an (l, 2,B)-double blocker of
size r, and C̃ is the class of connected such graphs. (In this section B = {K4}
is fixed.)

Suppose H is an induced subgraph of a coloured graph G. Similarly as
in [15,16], we will call H a spike of G if all of the following hold:

• H is a path v1 . . . vl+1;

• there is only one edge between V (H) and V (G−H), and this edge is
uv1 where u ∈ V (G−H);

• ColH(v1) = · · · = ColH(vl+1) = {1, . . . , l, x} where x ∈ {l + 1, . . . , r};

• u < v for each v ∈ V (H).

It is easy to see that two different spikes must be pairwise disjoint.

Lemma 7.3 Let B = {K4}, let r and l be positive integers, r > l and
consider the random graph Rn ∈u C̃. There is a constant a′ = a′(r, l) such
that

P(Rn has less than a′n spikes) ≤ e−Ω(n).

Proof Let H be a {0, 1}l+1-coloured path on the vertex set [l+2] such that
one of its endpoints is 1 and for v ∈ {2, . . . , l+2}, we have ColH(v) = [l+1].
By Corollary 7.2, there are positive constants a, c and C, such that the
number of graphs in Cl+1

n with at most an pendant appearances H is at
most Ce−cn|Cl+1

n | for every n.
Let N = (1 + aw2 (ExK4))l−1 = 3l−1. In the proof of Lemma 3.7 we

have shown that each graph in C̃n, as well as some other graphs, can be
obtained as follows.

• Pick κ ∈ [N ] and j,m ∈ {0, . . . , N − 1};

• choose a partition S of [n+ j] into κ sets V1, . . . , Vκ;

• for each i = 1, . . . , κ put an arbitrary graph Hi ∈ Cl+1 on Vi;

• for each i = 1, . . . , κ choose qi ∈ {l + 1, . . . , r}κ and map the colour
l + 1 in Hi to qi;
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• choose a set J of m edges between the components H1, . . . ,Hκ and
add them to the resulting graph;

• finally, contract all edges J , so that the vertex resulting from a con-
traction of an edge e = xy receives max(x, y) as a label.

Consider the set M(n) of all possible constructions that yield a graph on
the vertex set [n] (the (multi-)set of the resulting graphs contains C̃n).

By Lemma 4.8 the class Cl+1 has a growth constant γ. By Lemma 5.1
and the proof of Lemma 3.7

|M(n)| = n!γn(1+o(1)) and |C̃n| = n!γn(1+o(1)).

Fix κ = κ0, m = m0 j = j0, S = S0, q = q0 and J = J0 such that there
is at least one construction in M(n) with these parameters. Then every
choice of the graphs in {Hi} yields a construction in M(n). In particular,
writing ni = |Vi|, there are in total t0 =

∏κ0
i=1 |Cl+1

ni
| constructions in M(n)

with these parameters.
Note that the largest set Vj in S0 always contains n′ ≥ n/κ0 ≥ n/N

elements. It is easy to see that each pendant appearance of H in Hj yields a
spike in Hj . There are at most Ce−cn

′ |Cl+1
ni
| ways to choose the graph Hj so,

that Hj has less than an′ spikes. If Hj has more than an′ spikes, then the
graph G resulting from the construction has at least an′− 2|J0| ≥ an′− 2N
spikes, since the spikes are disjoint and each edge in J can touch at most
two spikes.

Therefore there are at most

Ce−cn
′
t0 ≤ Ce−(c/N)nt0

ways to finish the construction by choosing H1, . . . ,Hκ0 , so that the resulting
graph G has less than (a/N)n− 2N spikes.

Since this bound holds for every κ0,m0, j0,S0, q0 and J0, we get by the
law of total probability that the number of constructions inM(n) that yield
a graph with at most (a/N)n−N spikes is at most

Ce−(c/N)n|M(n)| ≤ n!e−(c/N)nγn+o(n).

So for any a′ < a/N and n large enough

P(Rn has less than a′n spikes) ≤ Ce−(c/N)n+o(n) = e−Ω(n).

2
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Lemma 7.4 Let B = {K4}, let l, r and K be positive integers, r > l. Then
for Rn ∈u Ã we have

P(Rn has at most K spikes) ≤ e−Ω(n).

Proof Let Ã1 be the class of graphs in A that have at most K spikes,
and let C̃1 be the class of graphs in C̃ that have at most K spikes. Then
Ã1 ⊆ SET(C̃1) and

Ã1(x) ≤ eC̃1(x).

Using Lemma 7.3,

γ(Ã1) ≤ γ(C̃1) < γ(C̃) = γ(Ã).

The lemma follows by (1). 2

For an r-coloured graph G, S1, S2 ⊆ [r], and sets Q1, Q2 disjoint from
V (H), such that |Si| = |Qi| for i = 1, 2, we denote by GS1→Q1,S2→Q2 the
graph obtained by adding to G new vertices Q1∪Q2, and for i = 1, 2 adding

an edge between q
(j)
i and each vertex coloured s

(j)
i . Here q

(j)
i and s

(j)
i is the

j-th smallest element in Si and Qi respectively.

Lemma 7.5 Let k be a positive integer. Then

|(Ex (k + 1)K4)n| = (1 + e−Ω(n))|(rd 2k+1K4)n|. (33)

Proof By Lemma 3.9, Lemma 5.1, Lemma 4.9 and Theorem 1.3, there is a
constant r = r(k) > 2k such that all but an exponentially small fraction of
graphs from Ex (k + 1)K4, have a (2k, 2,K4)-double blocker of size r. Here
we will show that all but an exponentially small fraction of graphs in the
latter class have a redundant blocker of size 2k + 1. Since each graph in
rd 2k+1K4 is in the class Ex (k+1)K4, the claim will follow. We will use the
idea of the proof of the main result of [15].

Fix n ≥ r. All graphs in (Ex (k + 1)K4)n that have a (2k, 2,K4)-double
blocker (and some other graphs) can be constructed as follows.

• Choose Q ⊆ [n] of size r and S ⊂ Q of size 2k.

• Put an arbitrary graph in G̃ ∈ Ã = Ã<{K4},2k,r> on [n] \Q.

• Put an arbitrary graph H on Q.

• Let G = G̃{1,...,2k}→S,{2k+1,...,r}→Q\S . This finishes the construction of
a graph G.
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Suppose G̃ has more than K = r(k + 2r + 12) spikes. Then there is a
(smallest) colour q ∈ {2k+ 1, . . . , r} such that there are at least k+ 2r+ 12
spikes coloured {1, . . . , 2k, q}. Let x be the vertex in Q\S whose neighbours
in G are the vertices coloured q in G̃. Denote S′ = S ∪ {x}.

Suppose G contains a B-critical subgraph H ′ (that is, a subdivision of
K4) which has at most one vertex in S′. By Lemma 5.3 of [15], H ′ can
touch at most 2(r+ |E(K4)|) = 2r+ 12 spikes in G̃. Thus there are at least
k spikes that are disjoint from H. Form an arbitrary maximal matching in
the set S′ \ V (H): the matching has exactly k pairs. For y, z ∈ S′ and a
spike P in G̃, we have that G[V (P )∪{y, z}] 6∈ ExK4. Thus, we can produce
k disjoint minors in B for each pair in the matching. The graph H yields
(k + 1)-st disjoint minor in B.

Thus, whenever G̃ has at least K spikes and G ∈ Ex (k + 1)B, we have
that S′ is a redundant blocker for G. So each construction G such that
G ∈ Ex (k + 1)K4 \ rd 2k+1K4 is formed by taking a graph G̃ with at most
K spikes in the second step.

By Lemma 7.4, the number of choices for G̃, such that G̃ has less than
K spikes is at most

e−Ω(n)|An−r|.

Therefore if D = Ex (k + 1)K4 \ rd 2k+1K4, we have for n ≥ r, n→∞

|Dn| ≤
(
n

r

)(
r

2k

)
2(2k2 )e−Ω(n)|Ãn−r|

and γ(D) < γ(Ã) = γ(Ex (k + 1)K4). 2

Lemma 7.6 Let B = {K4}, and let l ≥ 2 be an integer. We have

|(rd l B)n+l| = an(1− e−Ω(n)) where an = 2(l
2)
(
n+ l

l

)
|Al,n|.

Proof Consider the following constructions of graphs on [n+ l]: first pick a
set Q ⊆ [n+ l] of size l, next take a graph G0 ∈ Al with V (G0) = [n+ l] \Q
and an arbitrary graph H with V (H) = Q. Let G = GQ0 ∪H. Each graph
in (rd l B)n+l can be obtained in this way, so |(rd l B)n+l| ≤ an. We aim to
bound the number of constructions that can be obtained twice, i.e., the ones
which have two or more different redundant K4-blockers of size l.

If G0 has at least l + 1 spikes then Q is a unique redundant blocker of
size l. Indeed, if Q′ is another such blocker, Q′ 6= Q, then take a vertex
z ∈ Q \Q′ and any x ∈ Q \ {z}.
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Now x, z and the vertices of any spike S induce a minor of K4. Therefore,
since Q′ \{x} must still be a B-blocker for G, Q′ must contain a vertex from
each of the l + 1 spikes, and so |Q′| > l, a contradiction.

Thus every construction where Q is not the unique redundant blocker is
obtained when G0 has at most l spikes. By Corollary 7.2, there are at most

2(l
2)
(
n+ l

l

)
e−Ω(n)|Al,n| = ane

−Ω(n)

such constructions, so the number of graphs in (rd l B)n that have a unique
redundant blocker is at least an(1− e−Ω(n)). 2

Lemma 7.7 Let l ≥ 2 be an integer and let Al be the class of coloured graphs
defined for B = {K4} in Section 3.3. Let ρl = ρ(Al). Then Al(ρl) <∞ and
there is a constant al > 0 such that

|Al,n| = aln
−5/2n!ρ−nl (1 + o(1)) .

Proof By the exponential formula we have ρ(Cl) = ρl. We will show that

(*) C l converges to some positive constant at ρl.

(**) |Cln| > 0 for all n ≥ 1.

(***) Cl is smooth, i.e. |Cln+1|/n|Cln| → ρ−1
l .

(****) For any w = w(n)→∞ we have

S(n,w) =

n−w∑
k=w

(
n

k

)
|Clk||Cln−k| = o(|Cln|).

Then Al(ρl) ≤ eC
l(ρl) < ∞ and Theorem 2 of Bell, Bender, Cameron and

Richmond [2] yields

|Al,n| =
1

Al(ρl)
|Cln| (1 + o(1)) .

We will use the identity (31) and the notation from the proof of Lemma 6.5.
There we have shown that the class T̃ has ρ(T̃ ) = ρl and by Lemma 6.1
T̃ (ρl) <∞. Since ρ(F◦), ρ(L1(F)), ρ(L2(F)), and ρ(U) are all strictly larger
than ρl, we have by (31) that C l(ρl) < ∞. Since the coefficients of C l are
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non-negative, (*) follows. The condition (**) is obvious (Cl includes, i.e.,
every uncoloured path on n vertices). Furthermore, by (31) and Theorem 6.1

|Cln| = cn−5/2n!ρ−nl (1 + o(1)) (34)

for some constant c > 0, so (***) follows.
Finally, let us prove (****). Let w = w(n) → ∞. We may assume

2 ≤ w(n) ≤ n/2 for all n. By (34) for any ε > 0, for all sufficiently large j
we have |Clj | ≤ (c+ ε)j−5/2j!ρ−jl . So for n sufficiently large

S(n) =

n−w∑
k=w

(
n

k

)
|Clk||Cln−k| ≤ (c+ ε)2ρ−nl n!

n−w∑
k=w

k−5/2(n− k)−5/2.

Now symmetry and a standard approximation of a sum by an integral gives
for w′ = w − 1

f(n) =

n−w∑
k=w

k−5/2(n− k)−5/2 ≤ 2n−4

∫ 1−w′
n

x= 1
2

x−5/2(1− x)−5/2dx.

Since for t ∈ (1/2, 1)∫ t

1/2
x−5/2(1− x)−5/2dx = −2(1 + 6t− 24t2 + 16t3)

3t3/2(1− t)3/2

we have

f(n) ≤ 4(n3 + 6w′n2 − 24w′2n+ 16w′3)

3n4(n− w′)3/2w′3/2
= O

(
n−5/2w−3/2

)
.

Thus S(n) = O(|Cln|w−3/2) = o(|Cln|). This completes the proof. 2

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4 To replace Ω by Θ in the result of Lemma 7.5, note
that by Lemma 4.12 and Theorem 1.2 of [15], (Ex (k + 1)K4)n contains at
least

|(apex kK4)n \ (rd 2k+1K4)n| = n!(2kγ(ExK4))n+o(n)

graphs that do not have a redundant K4-blocker of size 2k + 1.
The theorem follows by Lemma 5.1, Lemma 7.5, Lemma 7.6 and Lemma 7.7.

2
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Proof of Theorem 1.5 Let R′n be a random construction as in the proof
of Lemma 7.6, where we pick the set Q of size 2k + 1, the graph G0 ∈ Al,n
and the graph H on Q uniformly at random. Then Theorem 1.4 and the
proof of Lemma 7.6 imply that the total variation distance between Rn and
R′n satisfies

dTV (Rn, R
′
n) = e−Θ(n).

Therefore it is enough to prove the theorem for the random graph R′n. By
Corollary 7.2, there is a constant ak > 0, such that the graph G0 has at
least akn spikes (and so, each vertex in Q has degree at least akn) with
probability 1− e−Ω(n).

Suppose there is a blocker Q′ of R′n and at least two distinct vertices
x, y ∈ Q′\Q. Then any spike and {x, y} induces a minor K4, thus every such
blocker must have at least akn vertices with probability at least 1− e−Ω(n).
Similarly Q is with probability 1 − e−Ω(n) a unique redundant K4-blocker
for Rn of size 2k + 1. This finishes the proof of (a).

Finally, (b) follows by a result of [17] (restated in a slightly more con-
venient form in [15]). More precisely, by Lemma 6.2 of [15], the graph
Frag(Rn) obtained from Rn by removing its (lexicographically) largest com-
ponent is in the class ExK4 with probability 1− e−Ω(n). The class Ex (k +
1)K4 is bridge-addable and by Theorem 1.4 it is smooth and ρ = γ(Ex (k+
1)K4)−1 > 0. Therefore by [17], see Lemma 6.3 of [15], Frag(Rn) con-
verges in total variation to the “Boltzmann-Poisson” random graph with
parameters B and ρ, in particular P(|V (Frag(Rn))| = 0) → pk = A(ρ)−1.

2

7.2 An illustration

We present Figure 9 illustrating some properties of typical graphs in Ex 2K4.
The picture shows just the coloured core of a graph in Ex 2K4 (it is

typically of linear size). The leaf-like shapes are arbitrary series-parallel
networks, most of them small. Attach arbitrary rooted series-parallel graphs
at arbitrary vertices of this; add a redundant blocker - {x, y, z} - and connect
x to each red point, y to each green point and z to each blue point (there
can also be arbitrary edges on {x, y, z}). Unlike in planar graphs, there are
vertices of different types: colours can occur only at the “joints”; only the
joints of the grey blocks can have arbitrary colour. For example, the top-
right vertex cannot have colour blue, otherwise z alone would form a minor
K4, and {x, y, z} would not be a redundant K4-blocker.
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Figure 9: Structure of (coloured cores of) graphs in Ex 2K4.

8 The class Ex (k + 1){K2,3, K4}
The class Ex (k + 1){K2,3,K4} is a subclass of Ex (k + 1)K4. Even though
it does not satisfy the condition of Theorem 1.3, we can still adapt most of
the techniques from the preceding sections (the proofs are simpler for this
case).

8.1 Coloured cores and paths

In this section we fix B = {K2,3,K4}. To avoid an additional index, we
will accordingly write Cl = Cl,B, Al = Al,B, and assume that the definitions
such as “good colour”, “nice vertex” and “nice graph” are with respect to
B = {K2,3,K4}.

Lemma 8.1 Let B = {K2,3,K4}, let l be a positive integer and let G ∈ Cl
be nice. The nice core tree of G is a path.

Proof In Section 6.2 we showed that the nice core tree T of G ∈ Cl,B ⊂
Cl,{K4} is a tree. If T has at least three leaves, we can produce a minor K2,3

by adding a new vertex connected to each of these leaves, thus every colour
is bad for G. 2
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Let D̃ be the class of all biconnected outerplanar networks G such that
adding a new vertex connected to each pole of G gives an outerplanar graph.
Let G ∈ D̃ be 2-connected. Then G has a unique Hamilton cycle H (see,
e.g., [4]). The poles s and t of G must be neighbours in H, otherwise adding a
new vertex connected to each pole yields a minor K2,3. Conversely, if we take
an arbitrary 2-connected outerplanar graph G and pick an oriented edge st
from its Hamilton cycle H, the graph with source s and sink t obtained from
G is from the class D̃: this follows by the relation of 2-connected outerplanar
graphs and polygon dissections [4]. Therefore from each 2-connected rooted
outerplanar graph we can obtain two networks in D̃ (the root becomes the
source and either the left or the right neighbour of the root on the Hamilton
cycle becomes the sink) with n− 2 vertices. It follows that

D̃(x) =
2B(x)

x2
− 1,

where B(x) is the exponential generating function of rooted biconnected
outerplanar graphs (which contains K2). Bernasconi, Panagiotou and Steger
[4] show that

B(x) =
1

2
(D(x) + x2)

where D(x) is the exponential generating function for polygon dissections.
Thus D̃(x) = D(x)/x2 and we get by (4.1) of [4]

D̃(x) =
1

4x

(
1 + x−

√
x2 − 6x+ 1

)
. (35)

Solving quadratic equations and using the “first principle” from [12] we get
that

ρ(D̃) = 3− 2
√

2 and ρ(D̃)D̃(ρ(D̃)) = 1−
√

2

2
= 0.292 . . . (36)

Lemma 8.2 Let B = {K2,3,K4}, let l ≥ 2 be an integer, and let C̃l be the
class of coloured cores of nice graphs in Cl. Then the class C̃l has exponential
generating function

C̃ l(x) =
2l−1xL(x)2

1− 2lxD̃(x)
, (37)

where L is the exponential generating function of a class L = L<l> with
ρ(L) ≥ ρ(C̃l−1).
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Figure 10: Coloured core of a graph in C3 in the case B = {K2,3,K4}.
Replacing the three grey networks (which belong to the class D̃) with edges
we obtain its nice core tree (a path of length three). The graphs attached
to the endpoints of this path belong to the class L.

Proof Let L = L<l> be the class of all pointed {0, 1}l-coloured connected
graphs G satisfying the following conditions: a) each colour is good for G;
b) G − r is connected, Col(G − r) = [l] and Col(r) = ∅, where r = r(G) is
the root of G; c) for any x ∈ V (G), each component of G − x contains at
least one colour or r, and at most one component contains all colours [l] or
r. The class L corresponds to the class L2 from Section 6.2.

We will now prove that ρ(L) ≥ ρ(C̃l−1). We first claim that for each
positive integer i and each n = 0, 1, . . . ,

|C̃in| ≥ |C̃i−1
n |. (38)

Indeed, for any graph in G ∈ C̃in we can assign a graph G′ ∈ C̃i+1
n by picking

the lexicographically minimal pair of vertices coloured red and adding colour
i+ 1 to their colour sets. Such a pair always exists since G is nice, and since
the colour red is good for G, the colour i+ 1 must be good for G′.

Let C be the class of all pointed graphs H, such that

1. Col(H) ⊂ [l];

2. if we add to H a new vertex w coloured Col(H) and connected to the
root of H and label the root of H arbitrarily, we obtain a graph in C̃l.

The coefficients of C(x) are dominated by those of
∑

j∈[l−1]

(
l
j

)
x2C̃j(x)′,

therefore ρ(C) ≥ minj∈[l−1] ρ(C̃j) ≥ ρ(C̃l−1). The last inequality follows
using (38). Recall also that we denote by Z∅ the class of graphs consisting
of a single pointed uncoloured vertex only.

Now let G ∈ L. G can be constructed as follows: take a pointed bi-
connected outerplanar graph B (B is the block of G containing the root
with its colours removed), colour t ≤ 2l of its (non-root) vertices v1, . . . , vt
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with some subsets of [l] and identify vi with the root of a pointed graph
Gi ∈ C ∪Z∅ (so that labels of G, G1, . . . , Gt are disjoint). To verify the last
statement, note first that the number of cut vertices and coloured vertices
in B is bounded by 2l, since each component of G − E(B) can contain at
most two components containing colour c for each c ∈ [l] (see Section 5.2).
Secondly, suppose u is a cut vertex of G, and let Gu the graph obtained
from the component of G − E(B) containing u by pointing the vertex u.
The graph H obtained from G by contracting all vertices in G−Gu into a
single vertex w, setting ColH(w) = ColG(Gu − u) ⊂ [l] and ColH(u) = ∅ is
a coloured minor of G: this shows that indeed Gu ∈ C.

Let B◦ denote the class of pointed biconnected outerplanar graphs. By
the properties of biconnected outerplanar graphs discussed above in this
section we see that ρ(B◦) = ρ(D̃) ≥ ρ(C̃1). (The last inequality follows since
from each graph in D̃ we may obtain a graph in C̃1 by labelling its poles and
colouring them {red}.)

The above observations imply that the coefficients of L(x) are bounded
by the coefficients of

2l∑
t=0

xtB◦(x)(t+1)(2l(1 + C(x)))t.

Therefore ρ(L) ≥ min(ρ(C), ρ(B◦)) ≥ ρ(C̃l−1).
Now let C̃l,1 denote the subclass of graphs in C̃l with the nice tree of size

1, and let C̃l,2 = C̃l \ C̃l,1. Using Lemma 8.1 and Section 6.2, each graph in
C̃l,2 can be obtained as a series composition of r ≥ 1 outerplanar networks
D1, . . . , Dr, where only the poles of these networks can be coloured (with
arbitrary colours in 2[l]), by attaching two rooted graphs L′, L′′ at the source
of D1 and the sink of Dr respectively (attaching pendant coloured graphs to
vertices corresponding to internal vertices of the nice core path is forbidden,
otherwise some colour would be bad for the resulting graph), see Figure 10.
Let c ∈ [l]. Since each pole of a network Di is nice, there are two disjoint
paths from each of the poles ending with a vertex coloured c. This shows
that Di ∈ D̃.

It is easy to see that L′, L′′ must always be from the class L. On the
other hand, every such construction gives a valid graph in C̃l,2, and every
graph in C̃l,2 is obtained exactly twice (reversing each network and their
order in the sequence and swapping L′ with L′′ gives the same graph).

Therefore

2× C̃l,2 = (2l ×Z × L)2 × D̃ × SEQ((2l ×Z)× D̃).
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Similarly
C̃l,1 = 2l ×Z × SET2(L).

Finally, the identity C̃l = C̃l,1 +C̃l,2 and a standard conversion to exponential
generating functions [12] yields (37). 2

Lemma 8.3 Let l ≥ 2 be an integer and let L<L>, C̃l be as in Lemma 8.2.
We have ρ(L<l>) > ρ(C̃l) = rl, where

rl =
1

2l

(
1− 1

2l − 1

)
.

There are constants R1 = R1(l) > rl and c′l > 0 and a function g1(x) =
g1,l(x) analytic for x ∈ C with |x| < R1 such that

C̃ l(x) =
c′l

1− x/rl
+ g1(x). (39)

Proof A simple calculation shows that the unique solution of 2lxD̃(x) = 1
is rl. Notice also that since D̃ contains a network isomorphic to K2 and
a network isomorphic to an arbitrary cycle, we have [xn]2lxD̃(x) > 0 for
n = 1, 2, . . . (that is, 2lxD̃(x) is strongly aperiodic, see [12]).

We will also use that r2 = 1
6 and rj+1 < rj for any integer j = 2, 3, . . . .

Define

c′l =
rlL(rl)

2

2(D̃(rl) + rlD̃′(rl))
.

We prove the claim by induction on l. First consider the case l = 2. By
Lemma 8.2 ρ(L<2>) ≥ ρ(C̃1) = ρ(D̃) = 3− 2

√
2 > 1

6 . We can write C̃2(x) =

h(x)f(x) where f(x) = (1− 22xD̃(x))−1 and h(x) = 22xL<l>(x)2. By (36),
f(x) corresponds to a supercritical sequence schema and h(x) is analytic in
∆ = {x ∈ C : |x| < R1} for some R1 > r2, h(r2) > 0.

We get using Theorem V.1 of [12], its proof and properties of meromor-
phic functions that C̃2 is meromorphic and has only one pole r2 (which is
simple) in ∆, where it satisfies (39).

The proof of the general case l ≥ 3 follows similarly, since using Lemma 8.2
and induction we have ρ(L<l>) ≥ ρ(C̃l−1) = rl−1 > rl, 2lρ(D̃)D̃(ρ(D̃)) > 1
and the convergence radius of 2lxD̃(x) is ρ(D̃) > r2 > rl. 2
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8.2 Proof of Theorem 1.6

It remains to collect and combine the analytic results for classes related with
ExB. Denote by F the class of connected rooted outerplanar networks (we
reuse the symbol from the previous section). [6] show that the functional
inverse of its exponential generating function F is

ψF (u) = ue
1
8(
√

1−6u+u2−5u−1). (40)

Lemma 8.4 Let l ≥ 2 and let B = {K2,3,K4}. Define σl = ψF (rl), where
rl is as in Lemma 8.3. There are constants cl > 0, R > σl and a function
g(x) analytic in {z ∈ C : |x| < R} such that

C l(x) =
cl

1− x/σl
+ g(x).

Proof The class C̄ = C̄<l> of nice graphs in Cl has exponential generating
function

C̄(x) = C̃(F (x)).

By [6], τ = F (ρ(F)) is the smallest positive solution of 3u4− 28u3 + 70u2−
58u+ 8 = 0, and a numeric evaluation yields that τ = 0.170 · · · > 1/6 ≥ rl.
Furthermore, clearly |Fn| > 0 for n = 1, 2, . . . . Thus by 40 σl = ψF (rl) is the
smallest positive solution of F (x) = rl and the unique dominant singularity
of C̄(x).

Using Lemma 8.3 we get

C̄(x) =
c′l

1− F (x)/rl
+ g1(F (x))

and g1(x) is analytic for |x| < R1 where R1 > rl. Since F has convergence
radius larger than σl, there is ε > 0, such that F (x) < R1 for x ∈ (0, σl + ε).
By the triangle inequality, for any t ∈ C, |t| < σ1 + ε we have |F (t)| ≤
F (|t|) < R1 so g1(F (x)) is analytic at x = t.

Now applying the supercritical composition schema (Theorem V.1 of
[12]) to the function c′l(1−F (x)/rl)

−1, we see that there is R2 ∈ (σl, σl + ε)
such that C̄(x) satisfies for x ∈ ∆ := {z ∈ C, |z| < R2}

C̄(x) =
cl

1− x/σl
+ g2(x), cl =

rlc
′
l

σlF ′(σl)

for some function g2(x) which is analytic in ∆.
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Finally, to obtain C l(x) we have to add to C̄(x) the exponential gener-
ating function U<l>(x) of graphs in Cl that are not nice. An argument
analogous to the one presented in the proof of Lemma 4.3 shows that
ρ(U<l>) ≥ ρ(Cl−1). Furthermore, [6] showed that the convergence radius
of the class of outerplanar graphs ρ(ExB) = 0.1365... Now in the case
l = 2 the lemma follows, since ρ(U2) ≥ ρ(C1) ≥ ρ(ExB) > σ2 = 0.1353..,
so U<2>(x) is analytic at any t with |t| < R := min(ρ(ExB), R2). Since
(rl, l = 1, 2, . . . ) is strictly decreasing and ψF is increasing for x ∈ (0, ρ(F)),
we have that (σl, l = 1, 2, . . . ) is strictly decreasing. Therefore have that
ρ(U<l>) ≥ ρ(Cl−1) = σl−1 > σl by induction, and the lemma follows simi-
larly as in the case l = 2. 2

Lemma 8.5 Let l ≥ 2 be an integer and let B = {K2,3,K4}. Let cl, σl and
g be as in Lemma 8.4. Then

|Cln| = cln!σ−nl (1 + o(1))

and
|Al,n| = bln

−3/4e2(cln)1/2n!σ−nl (1 + o(1))

where

bl =
c

1/4
l ecl/2+g(σl)

2π1/2
.

Proof The lemma follows by Lemma 8.4 and Proposition 23 of [5]. 2

Proof of Theorem 1.6 By [6], there are computable constants h and γ,
with γ−1 = 0.1365.. such that the number of outerplanar graphs on vertex
set [n] is

hn−3/2γnn!(1 + o(1)).

Using Lemma 8.4 and Theorem 1.2 of [15]

γ(rd 3 B) = σ−1
3 = 10.482.. < γ(apex (ExB)) = 2γ = 14.642..

Therefore by Theorem 1.2 we have

|(Ex 2B)n| = |(apex (ExB))n|(1 + e−Θ(n)),

and using Theorem 1.2 of [15]

|(Ex 2B)n| =
h

2γ
n−3/2n!(2γ)n(1 + o(1)).
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Now
γ(rd 5 B) = σ−1

5 = 34.099..

and γ(apex (Ex 2B)) ≤ 4γ = 29.2.. < γ(rd 5 B). By Lemma 3.9 and Lemma 8.5

γ′k = γ(Ex (k + 1)B) = γ(rd 2k+1 B) < γ(apex k (ExB))

for each k = 2, 3, . . . .
Furthermore, using Lemma 8.5 there are constants b2k+1, c2k+1 > 0 such

that

|(Ex (k + 1)B)n+2k+1| ≥ 2(2k+1
2 )|A2k+1,n|

= 2(2k+1
2 )b2k+1n

−3/4 exp
(

2(c2k+1n)1/2
)
n!(γ′k)

n(1 + o(1))

= eΩ(
√
n+2k+1)(n+ 2k + 1)!(γ′k)

n+2k+1.

Finally, the values of γ′k = σ−1
2k+1 for k = 2, 3, . . . can be obtained using the

closed-form expression σl = ψF (rl). 2

9 Concluding remarks

As the length of this paper indicates, analysis of classes without k + 1 dis-
joint minors in B becomes more involved as the excluded minors get more
complicated. In this work we concentrated on families of sets B, not covered
by the results of [15]: we found that indeed the highest-level structure of
typical graphs in such cases may obey a different pattern.

There are a few possible directions of further research. One can con-
jecture that for B as in Theorem 1.2, and perhaps for more general B, all
but an exponentially small proportion of graphs in (Ex (k+ 1)B)n belong to
one of the classes rd 2k+1 B or apex k (ExB). For certain B our results imply
part of this conjecture, and we gave specific examples where this conjecture
holds. To advance it further, one would need to develop a general way of
comparing growth constants for two or more candidate subclasses. It is not
clear whether this can be done without knowing the specific structure and
generating functions for rd 2k+1 B.

It seems plausible, that for classes A with aw2 (A) ≤ j an analogue of
Theorem 1.2 is true with a more general kind of redundant blockers. One can
go even further and formulate conjectures as in [15] about classes Ex (k+1)B
in the case when ExB contains all j-fans, j ≥ 2, but not all (j + 1)-fans.
Yet another level of complexity would be to obtain any results in the case
when B does not contain a planar graph.
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In Section 5 we proved decompositions for the class rd lK4 for general
l = 1, 2, . . . . In the following table we present growth constants for l up
to 5 obtained automatically with the help of Maple (and a simple program
to enumerate graphs in T ′l ). We explicitly proved validity of the numerical
estimates up to l = 3 in this paper.

l γ(rd lK4) Comment γ(rd lK4)/(2le)

1 9.073311.. = γ(ExK4), [6] 1.67..
2 12.677273.. 1.17..
3 23.524122.. = γ(Ex 2K4) 1.08..
4 45.5488.. 1.05..
5 89.5511.. = γ(Ex 3K4) 1.03..

The last column shows the ratio of the growth constant of rd lK4 and the
growth constant of the class apex l (ExK3) (see [15]), where ExK3 is the
class of forests of labelled trees. Not surprisingly, the numerical estimates
indicate that this ratio approaches 1 as l increases. A similar situation can
be observed with the ratio γ(rd l {K2,3,K4})/2l. This prompts the following
questions: is it possible that for some k = k(n)→∞, a typical graph from
(Ex (k+1)K4)n consists of a forest and 2k+1 apex vertices with probability
1− o(1)? Can this be generalised?
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