# An Unusual Continued Fraction 

Dzmitry Badziahin *<br>Department of Mathematical Sciences<br>Durham University<br>Lower Mountjoy<br>Stockton Rd<br>Durham, DH1 3LE<br>United Kingdom<br>dzmitry.badziahin@durham.ac.uk

Jeffrey Shallit<br>School of Computer Science<br>University of Waterloo<br>Waterloo, ON N2L 3G1<br>Canada<br>shallit@cs.uwaterloo.ca

May 5, 2015


#### Abstract

We consider the real number $\sigma$ with continued fraction expansion $\left[a_{0}, a_{1}, a_{2}, \ldots\right]=$ $[1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16, \ldots]$, where $a_{i}$ is the largest power of 2 dividing $i+1$. We compute the irrationality measure of $\sigma^{2}$ and demonstrate that $\sigma^{2}$ (and $\sigma$ ) are both transcendental numbers. We also show that certain partial quotients of $\sigma^{2}$ grow doubly exponentially, thus confirming a conjecture of Hanna and Wilson.


## 1 Introduction

By a continued fraction we mean an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots+\frac{1}{a_{n}}}}
$$

or

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots+\frac{1}{a_{n}+\cdots}}}
$$

[^0]where $a_{1}, a_{2}, \ldots$, are positive integers and $a_{0}$ is an integer. To save space, as usual, we write $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ for the first expression and $\left[a_{0}, a_{1}, \ldots,\right]$ for the second. For properties of continued fractions, see, for example, $[13,8]$.

It has been known since Euler and Lagrange that a real number has an ultimately periodic continued fraction expansion if and only if it is a quadratic irrational. But the expansions of some other "interesting" numbers are also known explicitly. For example [24],

$$
\begin{aligned}
e & =\left[2,(1,2 n, 1)_{n=1}^{\infty}\right]=[2,1,2,1,1,4,1,1,6,1,1,8,1, \ldots] \\
e^{2} & =\left[7,(3 n-1,1,1,3 n, 12 n+6)_{n=1}^{\infty}\right]=[7,2,1,1,3,18,5,1,1,6,30, \ldots] \\
\tan 1 & =\left[(1,2 n-1)_{n=1}^{\infty}\right]=[1,1,1,3,1,5,1,7, \ldots]
\end{aligned}
$$

These three are examples of "Hurwitz continued fractions", where there is a "quasiperiod" of terms that grow linearly (see, for example, [14, 18] and [19, pp. 110-123]). By contrast, no simple pattern is known for the expansions of $e^{3}$ or $e^{4}$.

Recently there has been some interest in understanding the Diophantine properties of numbers whose continued fraction expansion is generated by a simple computational model, such as a finite automaton. One famous example is the Thue-Morse sequence on the symbols $\{a, b\}$ where $\bar{a}=b$ and $\bar{b}=a$ is given by

$$
\mathbf{t}=t_{0} t_{1} t_{2} \cdots=a b b a b a a b \cdots
$$

and is defined by

$$
t_{n}= \begin{cases}a, & \text { if } n=0 \\ t_{n / 2}, & \text { if } n \text { even } \\ \overline{t_{n-1},}, & \text { if } n \text { odd }\end{cases}
$$

Queffélec [20] proved that if $a, b$ are distinct positive integers, then the real number $[\mathbf{t}]=$ $\left[t_{0}, t_{1}, t_{2}, \ldots\right]$ is transcendental. Later, a simpler proof was found by Adamczewski and Bugeaud [3]. Queffélec [21] also proved the transcendence of a much wider class of automatic continued fractions. More recently, in a series of papers, several authors explored the transcendence properties of automatic, morphic, and Sturmian continued fractions [5, 2, $1,4,9,10]$.

All automatic sequences (and the more general class of morphic sequences) are necessarily bounded. A more general class, allowing unbounded terms, is the $k$-regular sequences of integers, for integer $k \geq 2$. These are sequences $\left(a_{n}\right)_{n \geq 0}$ where the $k$-kernel, defined by

$$
\left\{\left(a_{k^{e} n+i}\right)_{n \geq 0}: e \geq 0,0 \leq i<k^{e}\right\},
$$

is contained in a finitely generated module [6, 7]. We state the following conjecture:
Conjecture 1. Every continued fraction where the terms form a $k$-regular sequence of positive integers is transcendental or quadratic.

In this paper we study a particular example of a $k$-regular sequence:

$$
\mathbf{s}=s_{0} s_{1} s_{2} \cdots=(1,2,1,4,1,2,1,8, \ldots)
$$

where $s_{i}=2^{\nu_{2}(i+1)}$ and $\nu_{p}(x)$ is the $p$-adic valuation of $x$ (the exponent of the largest power of $p$ dividing $x$ ). To see that $\mathbf{s}$ is 2 -regular, notice that every sequence in the 2 -kernel is a linear combination of $\mathbf{s}$ itself and the constant sequence ( $1,1,1, \ldots$ ).

The corresponding real number $\sigma$ has continued fraction expansion

$$
\sigma=[\mathbf{s}]=\left[s_{0}, s_{1}, s_{2}, \ldots\right]=[1,2,1,4,1,2,1,8, \ldots]=1.35387112842988237438889 \cdots
$$

The sequence $\mathbf{s}$ is sometimes called the "ruler sequence", and is sequence A006519 in Sloane's Encyclopedia of Integer Sequences [23]. The decimal expansion of $\sigma$ is sequence A100338.

Although $\sigma$ has slowly growing partial quotients (indeed, $s_{i} \leq i+1$ for all $i$ ), empirical calculation for $\sigma^{2}=1.832967032396003054427219544210417324 \cdots$ demonstrates the appearance of some exceptionally large partial quotients. For example, here are the first few terms:

$$
\begin{aligned}
\sigma^{2}= & {[1,1,4,1,74,1,8457,1,186282390,1,1,1,2,1,430917181166219} \\
& 11,37,1,4,2,41151315877490090952542206046,11,5,3,12,2,34,2,9,8,1,1,2,7 \\
& 13991468824374967392702752173757116934238293984253807017, \ldots]
\end{aligned}
$$

The terms of this continued fraction form sequence A100864 in [23], and were apparently first noticed by Paul D. Hanna and Robert G. Wilson in November 2004. The very large terms form sequence A100865 in [23]. In this note, we explain the appearance of these extremely large partial quotients. The techniques have some similarity with those of Maillet ([17] and [8, §2.14]).

Throughout the paper we use the following conventions. Given a real irrational number $x$ with partial quotients

$$
x=\left[a_{0}, a_{1}, a_{2}, \ldots\right]
$$

we define the sequence of convergents by

$$
\begin{array}{rlll}
p_{-2}=0 & p_{-1}=1 & p_{n}=a_{n} p_{n-1}+p_{n-2} & (n \geq 0) \\
q_{-2}=1 & q_{-1}=0 & q_{n}=a_{n} q_{n-1}+q_{n-2} & (n \geq 0)
\end{array}
$$

and then

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}
$$

The basic idea of this paper is to use the following classical estimate:

$$
\begin{equation*}
\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}<\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{a_{n+1} q_{n}^{2}} . \tag{1}
\end{equation*}
$$

Therefore, in order to show that some partial quotients of $x$ are huge, it is sufficient to find convergents $p_{n} / q_{n}$ of $x$ such that $\left|x-p_{n} / q_{n}\right|$ is much smaller than $q_{n}^{-2}$. We quantify this idea in Section 3.

Furthermore, we use the Hurwitz-Kolden-Frame representation of continued fractions $[15,16,12]$ via $2 \times 2$ matrices, as follows:

$$
M\left(a_{0}, \ldots, a_{n}\right):=\left[\begin{array}{cc}
a_{0} & 1  \tag{2}\\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right] \cdots\left[\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
p_{n} & p_{n-1} \\
q_{n} & q_{n-1}
\end{array}\right]
$$

By taking determinants we immediately deduce the classical identity

$$
\begin{equation*}
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n+1} \tag{3}
\end{equation*}
$$

for $n \geq 0$.
Given a finite sequence $z=\left(a_{0}, \ldots, a_{n}\right)$ we let $z^{R}$ denote the reversed sequence $\left(a_{n}, \ldots, a_{0}\right)$. A sequence is a palindrome if $z=z^{R}$. By taking the transpose of Eq. (2) it easily follows that

$$
M\left(a_{n}, \ldots, a_{0}\right):=\left[\begin{array}{cc}
a_{n} & 1  \tag{4}\\
1 & 0
\end{array}\right] \cdots\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
p_{n} & q_{n} \\
p_{n-1} & q_{n-1}
\end{array}\right] .
$$

Hence if

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}
$$

then

$$
\left[a_{n}, \ldots, a_{1}, a_{0}\right]=p_{n} / p_{n-1}
$$

We now briefly mention ultimately periodic continued fractions. By an expression of the form $[x, \bar{w}]$, where $x$ and $w$ are finite strings, we mean the continued fraction $[x, w, w, w, \ldots]$, where the overbar or "vinculum" denotes the repeating portion. Thus, for example,

$$
\sqrt{7}=[2, \overline{1,1,1,4}]=[2,1,1,1,4,1,1,1,4,1,1,1,4, \ldots] .
$$

We now recall a classical result.
Lemma 2. Let $a_{0}$ be a positive integer and $w$ denote a finite palindrome of positive integers. Then there exist positive integers $p, q$ such that

$$
\left[a_{0}, \overline{w, 2 a_{0}}\right]=\sqrt{\frac{p}{q}}
$$

Proof. Define $y:=\left[a_{0}, \overline{w, 2 a_{0}}\right]$. Then $y=\left[a_{0}, w, a_{0}+y\right]$. Letting

$$
M(w)=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]
$$

the corresponding matrix representation for $y$ is

$$
\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{cc}
a_{0}+y & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
\left(a_{0} \alpha+\gamma\right)\left(a_{0}+y\right)+a_{0} \beta+\delta & a_{0} \alpha+\gamma \\
\alpha\left(a_{0}+y\right)+\beta & \alpha
\end{array}\right]
$$

Since $w$ is a palindrome, it follows from Eq. (2) and (4) that $\beta=\gamma$. Hence

$$
y=\frac{\left(a_{0} \alpha+\beta\right)\left(a_{0}+y\right)+a_{0} \beta+\delta}{\alpha\left(a_{0}+y\right)+\beta} .
$$

Solving for $y$, which is clearly positive, we have

$$
y=\sqrt{\frac{p}{q}}
$$

where $p=a_{0}^{2} \alpha+2 a_{0} \beta+\delta$ and $q=\alpha$, as desired.

## 2 Three sequences

We now define three related sequences for $n \geq 2$ :

$$
\begin{aligned}
u(n) & =\left(s_{1}, s_{2}, \ldots, s_{2^{n}-3}\right) \\
v(n) & =\left(s_{1}, s_{2}, \ldots, s_{2^{n}-2}\right)=(u(n), 1) \\
w(n) & =\left(s_{1}, s_{2}, \ldots, s_{2^{n}-3}, 2\right)=(u(n), 2) .
\end{aligned}
$$

The following table gives the first few values of these quantities:

| $n$ | $u(n)$ | $v(n)$ | $w(n)$ |
| :---: | :---: | :---: | :---: |
| 2 | 2 | 21 | 22 |
| 3 | 21412 | 214121 | 214122 |
| 4 | 2141218121412 | 21412181214121 | 21412181214122 |

The following proposition, which is easily proved by induction, gives the relationship between these sequences, for $n \geq 2$ :

## Proposition 3.

(a) $u(n+1)=\left(v(n), 2^{n}, v(n)^{R}\right) ;$
(b) $u(n)$ is a palindrome;
(c) $v(n+1)=\left(v(n), 2^{n}, 1, v(n)\right)$.

Furthermore, we can define the sequence of associated matrices with $u(n)$ and $v(n)$ :

$$
\begin{aligned}
M(u(n)) & :=\left[\begin{array}{ll}
c_{n} & e_{n} \\
d_{n} & f_{n}
\end{array}\right] \\
M(v(n)) & :=\left[\begin{array}{ll}
w_{n} & y_{n} \\
x_{n} & z_{n}
\end{array}\right] .
\end{aligned}
$$

The first few values of these arrays are given in the following table. As $d_{n}=e_{n}=z_{n}$ and $c_{n}=y_{n}$ for $n \geq 2$, we omit the duplicate values.

| $n$ | $c_{n}$ | $d_{n}$ | $f_{n}$ | $w_{n}$ | $x_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 1 | 0 | 3 | 1 |
| 3 | 48 | 17 | 6 | 65 | 23 |
| 4 | 40040 | 14169 | 5014 | 54209 | 19183 |
| 5 | 51358907616 | 18174434593 | 6431407678 | 69533342209 | 24605842271 |

If we now define

$$
\sigma_{n}=[1, \overline{w(n)}]
$$

then Lemma 2 with $a_{0}=1$ and $w=u(n)$ gives

$$
\sigma_{n}=\sqrt{\frac{c_{n}+2 e_{n}+f_{n}}{c_{n}}}
$$

Write $\sigma=\left[s_{0}, s_{1}, \ldots\right]$ and $\left[s_{0}, s_{1}, \ldots, s_{n}\right]=\frac{p_{n}}{q_{n}}$. Furthermore define $\hat{\sigma}_{n}=[1, u(n)]$. Notice that $\sigma, \sigma_{n}$, and $\hat{\sigma}_{n}$ all agree on the first $2^{n}-2$ partial quotients. We have

$$
\left|\sigma-\hat{\sigma}_{n}\right|<\frac{1}{q_{2^{n}-3} q_{2^{n}-2}}
$$

by a classical theorem on continued fractions (e.g., [13, Theorem 171]), and furthermore, since $s_{2^{n}-3}=2, s_{2^{n}-2}=1$, we have, for $n \geq 3$, that

$$
\sigma<\sigma_{n}<\hat{\sigma}_{n}
$$

Hence

$$
\left|\sigma-\sigma_{n}\right|<\frac{1}{q_{2^{n}-3} q_{2^{n}-2}} .
$$

Now by considering

$$
M(1) M(u(n)) M(1)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
c_{n} & e_{n} \\
d_{n} & f_{n}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 c_{n}+d_{n} & e_{n}+f_{n} \\
c_{n}+d_{n} & c_{n}
\end{array}\right],
$$

we see that $q_{2^{n}-3}=c_{n}$ and $q_{2^{n}-2}=c_{n}+d_{n}$. For simplicity write $g_{n}=c_{n}+2 e_{n}+f_{n}$. Then

$$
\left|\sigma-\sigma_{n}\right|=\left|\sigma-\sqrt{\frac{g_{n}}{c_{n}}}\right|<\frac{1}{c_{n}^{2}}
$$

and so

$$
\left|\sigma^{2}-\frac{g_{n}}{c_{n}}\right|=\left|\sigma-\sqrt{\frac{g_{n}}{c_{n}}}\right| \cdot\left|\sigma+\sqrt{\frac{g_{n}}{c_{n}}}\right|<\frac{3}{c_{n}^{2}} .
$$

So we have already found good approximations of $\sigma^{2}$ by rational numbers. In the next section we will show that $g_{n}$ and $c_{n}$ have a large common factor, which will improve the quality of the approximation.

## 3 Irrationality measure of $\sigma^{2}$

From Proposition 3 (a), we get that the matrix

$$
\left[\begin{array}{ll}
c_{n+1} & e_{n+1} \\
d_{n+1} & f_{n+1}
\end{array}\right]
$$

associated with $u(n+1)$ is equal to the matrix associated with $\left(v(n), 2^{n}, v(n)^{R}\right)$, which is

$$
\left[\begin{array}{ll}
w_{n} & y_{n} \\
x_{n} & z_{n}
\end{array}\right]\left[\begin{array}{cc}
2^{n} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
w_{n} & x_{n} \\
y_{n} & z_{n}
\end{array}\right]=\left[\begin{array}{cc}
2^{n} w_{n}^{2}+2 w_{n} y_{n} & 2^{n} w_{n} x_{n}+x_{n} y_{n}+w_{n} z_{n} \\
2^{n} w_{n} x_{n}+x_{n} y_{n}+w_{n} z_{n} & 2^{n} x_{n}^{2}+2 x_{n} z_{n}
\end{array}\right]
$$

Notice that

$$
\begin{equation*}
c_{n+1}=\left(2^{n} w_{n}+2 y_{n}\right) w_{n} \tag{5}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
g_{n+1} & =c_{n+1}+2 d_{n+1}+f_{n+1} \\
& =c_{n+1}+2\left(2^{n} w_{n} x_{n}+x_{n} y_{n}+w_{n} z_{n}\right)+2^{n} x_{n}^{2}+2 x_{n} z_{n} \\
& =c_{n+1}+2\left(2^{n} w_{n} x_{n}+x_{n} y_{n}+w_{n} z_{n}\right)+2^{n} x_{n}^{2}+2 x_{n} z_{n}+2\left(x_{n} y_{n}-w_{n} z_{n}+1\right) \\
& =c_{n+1}+\left(2^{n} w_{n}+2 y_{n}\right) 2 x_{n}+2^{n} x_{n}^{2}+2 x_{n} z_{n}+2 \\
& =\left(2^{n} w_{n}+2 y_{n}\right)\left(2 x_{n}+w_{n}\right)+2^{n} x_{n}^{2}+2 x_{n} z_{n}+2,
\end{aligned}
$$

where we have used Eq. (3). By Euclidean division, we get

$$
\operatorname{gcd}\left(g_{n+1}, 2^{n} w_{n}+2 y_{n}\right)=\operatorname{gcd}\left(2^{n} w_{n}+2 y_{n}, 2^{n} x_{n}^{2}+2 x_{n} z_{n}+2\right)
$$

Next, we interpret Proposition 3 (c) in terms of matrices. We get that the matrix

$$
\left[\begin{array}{ll}
w_{n+1} & y_{n+1} \\
x_{n+1} & z_{n+1}
\end{array}\right]
$$

associated with $v(n+1)$ is equal to the matrix associated with $\left(v(n), 2^{n}, 1, v(n)\right)$, which is

$$
\begin{align*}
& {\left[\begin{array}{ll}
w_{n} & y_{n} \\
x_{n} & z_{n}
\end{array}\right]\left[\begin{array}{cc}
2^{n} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
w_{n} & y_{n} \\
x_{n} & z_{n}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
\left(2^{n}+1\right) w_{n}^{2}+2^{n} w_{n} x_{n}+y_{n}\left(w_{n}+x_{n}\right) & \left(2^{n}+1\right) w_{n} y_{n}+2^{n} w_{n} z_{n}+y_{n}\left(y_{n}+z_{n}\right) \\
\left(2^{n}+1\right) x_{n} w_{n}+2^{n} x_{n}^{2}+z_{n}\left(w_{n}+x_{n}\right) & \left(2^{n}+1\right) x_{n} y_{n}+2^{n} x_{n} z_{n}+z_{n}\left(y_{n}+z_{n}\right)
\end{array}\right] . } \tag{6}
\end{align*}
$$

Letting $r_{n}:=2^{n}\left(w_{n}+x_{n}\right)+w_{n}+y_{n}+z_{n}$, we see that

$$
\begin{align*}
2^{n+1} w_{n+1}+2 y_{n+1} & =2^{n+1}\left(\left(2^{n}+1\right) w_{n}^{2}+2^{n} w_{n} x_{n}+y_{n}\left(w_{n}+x_{n}\right)\right)+ \\
& 2\left(\left(2^{n}+1\right) w_{n} y_{n}+2^{n} w_{n} z_{n}+y_{n}\left(y_{n}+z_{n}\right)\right) \\
& =2\left(2^{n} w_{n}+y_{n}\right)\left(2^{n}\left(w_{n}+x_{n}\right)+w_{n}+y_{n}+z_{n}\right) \\
& =2\left(2^{n} w_{n}+y_{n}\right) r_{n} \tag{7}
\end{align*}
$$

Now

$$
\begin{aligned}
x_{n+1} & =\left(2^{n}+1\right) x_{n} w_{n}+2^{n} x_{n}^{2}+z_{n}\left(w_{n}+x_{n}\right) \\
& =x_{n}\left(2^{n}\left(w_{n}+x_{n}\right)+w_{n}+y_{n}+z_{n}\right)+w_{n} z_{n}-x_{n} y_{n} \\
& =x_{n} r_{n}+1
\end{aligned}
$$

and

$$
\begin{aligned}
z_{n+1} & =\left(2^{n}+1\right) x_{n} y_{n}+2^{n} x_{n} z_{n}+z_{n}\left(y_{n}+z_{n}\right) \\
& =z_{n}\left(2^{n}\left(w_{n}+x_{n}\right)+w_{n}+y_{n}+z_{n}\right)+\left(2^{n}+1\right)\left(x_{n} y_{n}-w_{n} z_{n}\right) \\
& =z_{n} r_{n}-2^{n}-1
\end{aligned}
$$

It now follows, from some tedious algebra, that

$$
\begin{align*}
& \frac{2^{n} x_{n+1}^{2}+x_{n+1} z_{n+1}+1}{r_{n}}=\left(2^{n}+1\right) w_{n} x_{n} z_{n}+2^{n}\left(2^{n}+1\right) w_{n} x_{n}^{2}+z_{n}+\left(2^{n}-1\right) x_{n} \\
&+2^{n} x_{n}^{2} y_{n}+2^{n+1} x_{n}^{2} z_{n}+x_{n} y_{n} z_{n}+2^{2 n} x_{n}^{3}+x_{n} z_{n}^{2} \tag{8}
\end{align*}
$$

From Eq. (5) and reindexing, we get

$$
\begin{aligned}
c_{n+2} & =w_{n+1}\left(2^{n+1} w_{n+1}+2 y_{n+1}\right) \\
& =2 w_{n+1}\left(2^{n} w_{n}+y_{n}\right) r_{n},
\end{aligned}
$$

where we used Eq. (7). Also, from the argument above about gcd's and Eq. (8), we see that $2 r_{n} \mid g_{n+2}$. Hence for $n \geq 2$ we have

$$
\frac{g_{n+2}}{c_{n+2}}=\frac{P_{n+2}}{Q_{n+2}}
$$

for integers $P_{n+2}:=\frac{g_{n+2}}{2 r_{n}}$ and $Q_{n+2}:=w_{n+1}\left(2^{n} w_{n}+y_{n}\right)$. It remains to see that $P_{n+2} / Q_{n+2}$ are particularly good rational approximations to $\sigma^{2}$.

Since $w_{n} / x_{n}$ and $y_{n} / z_{n}$ denote successive convergents to a continued fraction, we clearly have $w_{n} \geq x_{n}, w_{n} \geq y_{n}$, and $w_{n} \geq z_{n}$. It follows that

$$
\begin{aligned}
Q_{n+2} & =w_{n+1}\left(2^{n} w_{n}+y_{n}\right) \\
& =\left(\left(2^{n}+1\right) w_{n}^{2}+2^{n} w_{n} x_{n}+y_{n}\left(w_{n}+x_{n}\right)\right)\left(2^{n} w_{n}+y_{n}\right) \\
& \leq\left(2^{n+1}+3\right) w_{n}^{2} \cdot\left(2^{n}+1\right) w_{n} \\
& =\left(2^{n+1}+3\right)\left(2^{n}+1\right) w_{n}^{3} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
c_{n+2} & =2 Q_{n+2} r_{n} \\
& >2\left(2^{n}+1\right) w_{n}^{2} \cdot 2^{n} w_{n} \cdot\left(2^{n}+1\right) w_{n}=2^{n+1}\left(2^{n}+1\right)^{2} w_{n}^{4} \\
& \geq Q_{n+2}^{4 / 3} \frac{2^{n+1}\left(2^{n}+1\right)^{2}}{\left(\left(2^{n+1}+3\right)\left(2^{n}+1\right)\right)^{4 / 3}} \\
& >Q_{n+2}^{4 / 3} .
\end{aligned}
$$

This gives

$$
\left|\sigma^{2}-\frac{P_{n+2}}{Q_{n+2}}\right|<Q_{n+2}^{-8 / 3}
$$

for all integers $n \geq 2$.
The result we have just shown can be nicely formulated in terms of the irrationality measure. Recall that the irrationality measure of a real number $x$ is defined to be the infimum, over all real $\mu$, for which the inequality

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q^{\mu}}
$$

is satisfied by at most finitely many integer pairs $(p, q)$.
Theorem 4. The irrationality measure of $\sigma^{2}$ is at least $8 / 3$.
Note that the classical Khintchine theorem (e.g., [11, Chapter VII, Theorem I]) states that for almost all real numbers (in terms of Lebesgue measure), the irrationality exponent equals two. Hence Theorem 4 says that the number $\sigma^{2}$ belongs to a very tiny set of zero Lebesgue measure.

Furthermore, the famous Roth theorem [22] states that the irrationality exponent of every irrational algebraic number is two. Therefore we conclude that $\sigma^{2}$ (and hence $\sigma$ ) are transcendental numbers.

We now provide a lower bound for some very large partial quotients of $\sigma^{2}$. For each $n \geq 2$ we certainly have

$$
\left|\sigma-\frac{P_{n+2}}{Q_{n+2}}\right|<Q_{n+2}^{-8 / 3}<\frac{1}{2 Q_{n+2}^{2}} .
$$

In particular this implies that the rational number $P_{n+2} / Q_{n+2}$ is a convergent of $\sigma^{2}$.
Notice that $P_{n+2}$ and $Q_{n+2}$ are not necessarily relatively prime. Let $\tilde{P}_{n+2} / \tilde{Q}_{n+2}$ denote the reduced fraction of $P_{n+2} / Q_{n+2}$. If $\tilde{P}_{n+2} / \tilde{Q}_{n+2}$ is the $m^{\prime}$ th convergent of $\sigma^{2}$, then define $A_{n+2}$ to be the $(m+1)$ 'th partial quotient of $\sigma^{2}$. Then the estimate (1) implies

$$
\frac{1}{\left(A_{n+2}+2\right) \tilde{Q}_{n+2}^{2}}<\left|\sigma^{2}-\frac{\tilde{P}_{n+2}}{\tilde{Q}_{n+2}}\right|<\frac{3}{c_{n+2}^{2}} \leq \frac{3}{4 r_{n}^{2} \tilde{Q}_{n+2}^{2}}
$$

Hence $A_{n+2} \geq 4 r_{n}^{2}-2$.
From the formula for $r_{n}$ and the inequalities $w_{n} \geq x_{n}, w_{n} \geq y_{n}, w_{n} \geq z_{n}$ one can easily derive

$$
\left(2^{n}+1\right) w_{n} \leq r_{n} \leq\left(2^{n+1}+3\right) w_{n}
$$

This, together with the formula (6) for $w_{n+1}$, gives the estimate

$$
r_{n+1} \geq\left(2^{n+1}+1\right) w_{n+1} \geq\left(2^{n+1}+1\right)\left(2^{n}+1\right) w_{n}^{2}>r_{n}^{2}+1
$$

Therefore the sequence $4 r_{n}^{2}-2$, and in turn $A_{n+2}$, grow doubly exponentially. This phenomenon explains the observation of Hanna and Wilson for the sequence A100864 in [23].

The first few values of the sequences we have been discussing are given below:

| $n$ | $\sigma_{n}^{2}$ | $\hat{\sigma}_{n}$ | $g_{n}$ | $r_{n}$ | $P_{n}$ | $Q_{n}$ | $A_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $\frac{11}{6}$ | $\frac{65}{48}$ | 88 | 834 | 11 | 6 | 74 |
| 4 | $\frac{834}{455}$ | $\frac{54209}{40040}$ | 73392 | 1282690 | 1668 | 910 | 8457 |
| 5 | $\frac{7054795}{3848839}$ | $\frac{6953334209}{5135807616}$ | 94139184480 | 3151520587778 | 56438360 | 30790712 | 186282390 |

## 4 Additional remarks

The same idea can be used to bound the irrationality exponent of an infinite collection of numbers $\sigma=\left[s_{0}, s_{1}, s_{2}, \ldots,\right]$. Indeed, there is nothing particularly special about the terms $2^{n}$ appearing in Proposition 3. One can check that the same result holds if the strings $u(n)$ and $v(n)$ satisfy the following modified properties from Proposition 3 for infinitely many numbers $n \geq 2$ :
(a') $u(n+1)=\left(v(n), k_{n}, v(n)^{R}\right)$;
(b') $u(n+2)$ is a palindrome;
(c') $v(n+2)=\left(v(n+1), 2 k_{n}, 1, v(n+1)\right)$.
In particular one can easily check these properties for a string $\mathbf{s}=s_{0} s_{1} s_{2} \cdots$ such that $s_{i}=f\left(\nu_{2}(i+1)\right)$ where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function satisfying the following conditions:

1. $f(0)=1$;
2. $f(n+1)=2 f(n)$ for infinitely many positive integers $n$.

## References

[1] B. Adamczewski and J.-P. Allouche. Reversals and palindromes in continued fractions. Theoret. Comput. Sci. 380 (2007), 220-237.
[2] B. Adamczewski and Y. Bugeaud. On the complexity of algebraic numbers, II. Continued fractions. Acta Math. 195 (2005), 1-20.
[3] B. Adamczewski and Y. Bugeaud. A short proof of the transcendence of Thue-Morse continued fractions. Amer. Math. Monthly 114 (2007), 536-540.
[4] B. Adamczewski and Y. Bugeaud. Transcendence measures for continued fractions involving repetitive or symmetric patterns. J. Eur. Math. Soc. 12 (2010), 883-914.
[5] J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni. Transcendence of Sturmian or morphic continued fractions. J. Number Theory 91 (2001), 39-66.
[6] J.-P. Allouche and J. O. Shallit. The ring of $k$-regular sequences. Theoret. Comput. Sci. 98 (1992), 163-187.
[7] J.-P. Allouche and J. O. Shallit. The ring of $k$-regular sequences. II. Theoret. Comput. Sci. 307 (2003), 3-29.
[8] J. Borwein, A. van der Poorten, J. Shallit, and W. Zudilin. Neverending Fractions: An Introduction to Continued Fractions. Cambridge University Press, 2014.
[9] Y. Bugeaud. Continued fractions with low complexity: transcendence measures and quadratic approximation. Compos. Math. 148 (2012), 718-750.
[10] Y. Bugeaud. Automatic continued fractions are transcendental or quadratic. Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), 1005-1022.
[11] J. W. S. Cassels. An Introduction to Diophantine Approximation. Cambridge University Press, 1957.
[12] J. S. Frame. Continued fractions and matrices. Amer. Math. Monthly 56 (1949), 98-103.
[13] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 5th edition, 1985.
[14] A. Hurwitz. Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden. Vierteljahrsschrift d. Naturforsch Gesellschaft in Zürich, Jahrg. 41 (1896). In Mathematische Werke, Band II, Birkhäuser, Basel, 1963, pp. 276-302.
[15] A. Hurwitz and N. Kritikos. Lectures on Number Theory. Springer-Verlag, 1986.
[16] K. Kolden. Continued fractions and linear substitutions. Archiv for Mathematik og Naturvidenskab 50 (1949), 141-196.
[17] E. Maillet. Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions. Gauthier-Villars, 1906.
[18] K. R. Matthews and R. F. C. Walters. Some properties of the continued fraction expansion of $(m / n) e^{1 / q}$. Proc. Cambridge Philos. Soc. 67 1970, 67-74.
[19] O. Perron. Die Lehre von den Kettenbrüchen, Band 1. Teubner, 1954.
[20] M. Queffélec. Transcendance des fractions continues de Thue-Morse. J. Number Theory 73 (1998) 201-211.
[21] M. Queffélec. Irrational numbers with automaton-generated continued fraction expansion. In J.-M. Gambaudo, P. Hubert, P. Tisseur and S. Vaienti, eds., Dynamical Systems: From Crystal to Chaos, World Scientific, 2000, pp. 190-198.
[22] K. F. Roth. Rational approximations to algebraic numbers. Mathematika 2 (1955), 1-20, 168.
[23] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org.
[24] R. F. C. Walters. Alternative derivation of some regular continued fractions. J. Austral. Math. Soc. 8 (1968), 205-212.


[^0]:    *Research supported by EPSRC Grant EP/L005204/1

