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Abstract. We weave together a tale of two rings, SYM and QSYM, following

one gold thread spun by Richard Stanley. The lesson we learn from this tale is
that “Combinatorial objects like to be counted by quasisymmetric functions.”

1. Introduction

The twentieth century was a remarkable era for the theory of symmetric func-
tions. Schur expanded the range of applications far beyond roots of polynomials
to the representation theory of GLn and Sn and beyond. Specht, Hall and Mac-
donald unified the algebraic theory making it far more accessible. Lesieur recog-
nized the connection between Schur functions and the topology of Grassmannian
manifolds spurring interest and further developments by Borel, Bott, Bernstein–
Gelfand–Gelfand, Demazure and many others. Now, symmetric functions routinely
appear in many aspects of mathematics and theoretical physics, and have significant
importance in quantum computation.

In that era of mathematical giants, Richard Stanley’s contributions to symmet-
ric functions are shining examples of how enumerative combinatorics has inspired
and influenced some of the best work of the century. In this article, we focus on
a few of the gems that continue to grow in importance over time. Specifically, we
survey some results and applications for Stanley symmetric functions, chromatic
symmetric functions, P -partitions, generalized Robinson–Schensted–Knuth corre-
spondence, and flag symmetry of posets.

As the twentieth century was the century of symmetric functions, then perhaps
the twenty-first century will be defined by the explosion of developments in the
theory of quasisymmetric functions. The ring of quasisymmetric functions (QSYM)
contains the symmetric functions (SYM). It is defined as the subring of power series
on countably many variables with the property that their coefficients are invariant
under arbitrary shifts in the indexing of the variables. Richard Stanley first started
using quasisymmetric functions in his thesis while enumerating plane partitions.
Inspired by these results, Ira Gessel, Richard’s first Ph.D. student, recognized the
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impact of this new tool and formalized the study of QSYM using the monomial and
fundamental bases, relating them to Schur functions, the Kronecker coefficients and
internal products of skew Schur functions. Today the quasisymmetric functions
are rapidly growing in importance. They appear in enumerative combinatorics,
representation theory of Sn and 0-Hecke algebras, Macdonald polynomials and the
geometry of Hilbert schemes of points in the plane, and the Euler–Zagier sums in
number theory.

Richard Stanley’s contributions to quasisymmetric functions are far greater than
simply giving birth to the field. He has nurtured the subject and taught others
to expand their influence. He has at least 36 publications in which symmetric
or quasisymmetric functions have played a role, so we have not attempted to be
comprehensive. The main theme of this paper is to capture Richard’s secret to
success in this area. It starts with simple enumerative questions such as, “how
many colorings are there for a graph?”, “how many plane partitions are there?”,
“how many reduced words exist for a given permutation?”, or “how many chains
or multichains does a poset have?”. He relates the counting problem to a family
of generating functions which are naturally quasisymmetric. If the quasisymmetric
functions are actually symmetric or even Schur positive, then a beautiful theory
must be at play. Richard harnesses this symmetric function point of view to make
further advances.

We will assume some familiarity with symmetric and quasisymmetric functions.
In particular, we follow the notation and terminology of [Mac95, Sta99] to the
greatest extent possible. There is the problem that F has been overused for qua-
sisymmetric functions. We will use FS(X) for the fundamental quasisymmetric
function with jumps in the set S. We rename Ehrenborg’s flag generating function
for posets by EP (X), and we use Gw(X) for Stanley symmetric functions.

2. The beginnings

Richard Stanley’s work on symmetric functions begins in his Ph.D. thesis [Sta71a],
a subset [Sta72] of which is published in the Memoirs of the AMS series. Although
the discussion in [Sta72] that is directly relevant to symmetric functions is only one
page long, it sets the stage for Ira Gessel’s introduction of quasisymmetric sym-
metric functions in [Ges84]. The area of quasisymmetric functions has seen steady
growth since, with particular acceleration in the last decade. In Subsection 2.1, we
explain the content of this one page of [Sta72] to exhibit the role it played as a
catalyst for subsequent developments.

Also while a graduate student,1 Richard wrote [Sta71b], his first paper that had
a focus on symmetric functions. We will elaborate in Subsection 2.2, explaining
how this pair of papers gave an early indication of the flavor of much of Richard’s
later work on symmetric functions.

2.1. Quasisymmetric functions. Although the term “quasisymmetric” was not
defined until the eighties [Ges84], Richard in [Sta72] introduces a generating func-
tion for (P, ω)-partitions that is a quasisymmetric function. He also conjectures a
condition on (P, ω) for the generating function to be a symmetric function. Here,

1Richard recalls writing [Sta71b] as a graduate student, some time before the summer of 1970.
See [Sta14] for more details on the timing of Richard’s graduation.
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we give the minimal background to explain this generating function, and refer the
reader to Gessel’s survey in this volume [Ges15] for more details.

For a poset P with p elements, a given bijection ω : P → {1, 2, . . . , p} can be
considered a labeling of the elements of P . If x < y is a covering relation in P
and ω(x) > ω(y), then we will call the corresponding edge in the Hasse diagram
a strict edge, otherwise it is a weak edge. See Figure 2.1(b) for one example of a
labeled poset, where double edges denote strict edges. A (P, ω)-partition σ is an
order-preserving map from P to the positive integers that is strictly order-preserving
along strict edges.2 Equivalently, σ satisfies the properties:

(a) if x < y in P , then σ(x) ≤ σ(y);
(b) if x < y in P and ω(x) > ω(y), then σ(x) < σ(y).

Note that if P is a chain with all weak edges, then a (P, ω)-partition simply
corresponds to a partition of a positive integer. The case when P is a chain with
all strict edges gives rise to partitions with distinct parts. Thus (P, ω)-partitions
generalize these classical ideas, hence their name. Since ω is a bijection, we can
refer to elements of the poset in terms of their ω-labels, and it will be convenient
to do so from this point on.

On page 81 of [Sta72], Richard introduces the generating function in the infinite
set of variables X = {x1, x2, . . .} given by

(2.1) Γ(P, ω) =
∑
σ

xσ(1)xσ(2) · · ·xσ(p) ,

where the sum is over all (P, ω)-partitions σ. This definition is motivated by the fact
that skew Schur functions arise as a particular instance of Γ(P, ω), as we explain in
the following example.

Example 2.1. Given a skew diagram λ/µ in English notation with p cells, la-
bel the cells with the numbers {1, 2, . . . , p} in any way that makes the labels in-
crease up columns and from left to right along rows, as in Figure 2.1(a). Rotating
the result 135◦ is a counterclockwise direction and replacing the cells by nodes
as in Figure 2.1(b), we get a corresponding labeled poset which we denote by
(Pλ/µ, ω) and call a skew-diagram labeled poset. Under this construction, we see
that a (Pλ/µ, ω)-partition corresponds exactly to a semistandard Young tableau of
shape λ/µ. Therefore Γ(Pλ/µ, ω) is exactly the skew Schur function sλ/µ, and is
hence a symmetric function. This latter observation appears as Proposition 21.1 in
[Sta72], at which point Richard states that when µ is empty, Γ(P, ω) is known as a
Schur function.

In general, Γ(P, ω) is a quasisymmetric function, meaning that for every sequence
of positive integers a1, a2, . . . , ak, the coefficient of xa1i1 x

a2
i2
· · ·xakik equals that of

xa1j1 x
a2
j2
· · ·xakjk whenever i1 < i2 < · · · < ik and j1 < j2 < · · · < jk. Note that we

get the definition of a symmetric function if we instead allow the i’s and j’s to be
arbitrary sequences of distinct positive integers.

2Richard’s definition of (P, ω)-partitions in [Sta72] differs from the one given here in two ways.
First, Richard gives the nonnegative integers as the codomain, but the section of [Sta72] of interest
to us has the positive integers as the codomain. Secondly, his original definition has order-reversing

in place of order-preserving. We adopt the now customary definition given here since it is what
Richard uses in [Sta95] and our discussion of that paper in Section 4 is cleaner if we use the same
convention.
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Figure 2.1. The skew diagram 443/21 and a corresponding la-
beled poset. Double edges denote strict edges.

This leads to what can be called “Stanley’s P -partitions conjecture.” An iso-
morphism of labeled posets is a bijection that preserves both the order relation on
the poset elements and the set of strict edges.

Conjecture 2.2 ([Sta72]). Every finite labeled poset (P, ω) for which Γ(P, ω) is
symmetric is isomorphic to a skew-diagram labeled poset.

This conjecture remains open; for further information on its status, see [McN06]
and the references therein, particularly the Ph.D. thesis work of Malvenuto [Mal93a,
Mal93b] motivated by Richard’s conjecture.

The story resumes in [Ges84], where Gessel introduces the term “quasisymmet-
ric,” with Γ(P, ω) as his motivating example. Among other things, Gessel defines
the two classical bases for the ring of quasisymmetric functions. The first is the
most natural basis of QSYM given by the monomial quasisymmetric functions Ma

indexed by compositions a = (a1, a2, . . . , ak) where Ma is the sum over all mono-
mials of the form xa1i1 x

a2
i2
· · ·xakik with i1 < i2 < · · · < ik. The second basis has

turned out to be the more important of these bases, foreshadowed by its name.
The fundamental quasisymmetric functions of degree n, denoted FnS (X) or just FS
if n and X are understood, are defined for S ⊆ [n− 1] as follows:

(2.2) FnS (X) =
∑

1≤i1≤i2≤···≤in
ij<ij+1 if j∈S

xi1xi2 · · ·xin .

The well-known bijection from compositions of n to subsets of n− 1 confirms these
two bases are equinumerous in each degree. Comparing (2.1) and (2.2), we see the
correspondence Γ(P, ω) = FnS that occurs when P is a chain of length n − 1, with
S containing j ∈ [n− 1] if and only if the jth lowest edge of P is strict.

Gessel translates Richard’s fundamental theorem of (P, ω)-partitions to the qua-
sisymmetric setting, thus showing the beautiful and simple expression of Γ(P, ω)
for general P in terms of the descent sets of the linear extensions of (P, ω):

(2.3) Γ(P, ω) =
∑

π∈L(P,ω)

FD(π),

where the sum is over all linear extensions π of (P, ω), and D(π) denotes the descent
set of π.

For example, in the labeled poset (Pλ/µ, ω) of Figure 2.1(b), linear extensions
are in bijection with SYT of the skew shape in Figure 2.1(a): the SYT record the
order in which to take the elements of (Pλ/µ, ω). We see that we get a descent in
the linear extension any time i + 1 is in a strictly lower row than i in the SYT.
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Thus the skew Schur functions expand nicely into the fundamental basis as

sλ/µ =
∑

T∈SYT(λ/µ)

FD(T )

where the descent set of a standard Young tableau T of shape λ/µ is the set of all
values i such that i + 1 occurs in a strictly lower row than i. We will see another
application of (2.3) in Section 4.1.

Since 1984, quasisymmetric functions have been developed to such an extent that
their importance in algebraic combinatorics is comparable to that of symmetric
functions, and we will explore some highlights in the upcoming sections. For more
on advances in the area, we refer the reader to [GR15, LMvW13] and the many
references therein, and to the more informal [BBS10, Wik14].

2.2. Theory and Application of Plane Partitions. In [Sta99], Richard credits
Philip Hall [Hal59] with “the idea of unifying much of the theory of symmetric
functions using linear algebra (scalar product, dual bases, involution, etc.).” In
Part 1 of [Sta71b], Richard gives a fuller exposition of the topic of [Hal59], filling in
details and missing proofs. Richard begins his section on Schur functions by defining
them combinatorially in terms of column-strict plane partitions, which is equivalent
to the definition in terms of semistandard Young tableaux that is more customary
nowadays. A particularly important thread through the paper is a proof that this
combinatorial definition is equivalent to six other definitions of Schur functions: as
a determinant, as an orthonormal basis, and in terms of each of the m, h, e and p
bases.3

Although Part 1 of [Sta71b] gives missing proofs, it also serves as the first of
several examples of Richard’s expository writing about symmetric functions. Un-
doubtedly, Richard’s best known such work is Chapter 7 of Enumerative Combina-
torics [Sta99]. Other examples are [Sta83], which was particularly helpful prior to
the advent of Appendix 2 of [Sta99], and each of [Sta00, Sta03, Sta04] includes at
least one section about symmetric functions.

Part 2 of [Sta71b] exhibits another of Richard’s trademarks: using symmetric
functions as a tool to prove results that do not involve symmetric functions in
their statements. We will explore this theme further in the next section. We will
not describe the content of Part 2 of [Sta71b] here, instead referring the reader to
Krattenthaler’s survey in this volume [Kra15].

3. Stanley symmetric functions and applications

Richard found a remarkable application of quasisymmetric functions in the enu-
meration of reduced words for permutations. A reduced word for a permutation
w is a minimal length sequence of positive integers a = (a1, a2, . . . , ap) corre-
sponding to a product of simple transpositions sa1sa2 · · · sap = w expressing w
in terms of generators si = (i, i+ 1). A letter in a reduced word can repeat but not
consecutively. Therefore, reduced words have clearly defined ascent sets, denoted
A(a1, a2, . . . , ap) = {i : ai < ai+1} ⊆ [p− 1]. The Stanley symmetric function for a

3Both [Hal59] and [Sta71b] use the letters k, a, e and s for bases in place of the letters m, e,
s and p, respectively, used in [Mac95, Sta99].
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permutation w ∈ Sn is defined to be

Gw(X) =
∑

(a1,a2,...,ap)∈R(w)

FA(a1,a2,...,ap)(X)

where R(w) is the set of all reduced words for w all of which have the same length
p = inv(w). Recall that inv(w) denotes the number of inversion pairs (r, s), mean-
ing r < s and wr > ws where w = [w1, . . . , wn] ∈ Sn. While these functions
Gw(X) are clearly homogeneous of degree p and quasisymmetric, Theorem 2.1 in
[Sta84] says that Gw(X) is a symmetric function for all permutations w.4 The orig-
inal proof exhibits symmetry via an intricate bijection among the reduced words
contributing to the coefficients of xα1

1 · · ·x
αk
k and xα1

1 · · ·x
αi+1

i xαii+1 · · ·x
αk
k .

Richard identified a special family of Gw’s in Section 4 of [Sta84]. In particular,
w is 2143-avoiding (vexillary) if and only if Gw = sλ(w) where λ(w) is the partition
obtained by sorting the Lehmer code of w which is the sequence (c1, c2, . . . , cn)
with ci = |{j > i |wi > wj}|. The vexillary permutations were an early application
of pattern avoidance. Pattern avoidance has grown into an important and very
active research area. One of the main problems in that area was the Stanley–
Wilf conjecture from around 1980 which says that for any permutation w, the
number of permutations in Sn avoiding w is at most cn for some constant c. This
conjecture was proved in 2004 by Marcus and Tardos [MT04]. See Richard’s portion
of [CGH15] for more on the genesis and development of the Stanley–Wilf conjecture.

Richard’s initial interest in these functions Gw was for counting the number
of reduced expressions for any w, in particular for the longest permutation w0 =
[n, n − 1, . . . , 1] ∈ Sn. Note |R(w)| is equal to the coefficient of x1x2 · · ·xp in Gw
provided w has p inversions. Because w0 is vexillary, he was able to show that
|R(w0)| is the number of standard tableaux of staircase shape (n − 1, n − 2, ..., 1),
which is easily computed via the Frame–Robinson–Thrall hook length formula.
As a function of n, this sequence grows very fast: 1, 1, 2, 16, 768, 292864. See
[OEI15, A005118]. The other vexillary permutations v have similarly easy formulas:
|R(v)| = fλ(v) where fλ counts the number of standard Young tableaux of shape
λ. More generally, Richard conjectured that every Gw was Schur positive: Gw =∑
aλ,wsλ with aλ,w ∈ N. Thus, the expansion coefficients aλ,w could be used to

calculate |R(w)| =
∑
aλ,wf

λ.
Edelman–Greene [EG87] proved Richard’s conjecture shortly thereafter. See also

Lascoux–Schützenberger [LS81] on the plactic monoid for an alternative approach.
The Edelman–Greene correspondence is a slightly modified version of the classical
RSK algorithm for reduced words: when inserting an i into a row j already contain-
ing an i, skip row j, and enter into the next row the larger of i, i + 1 occurring in
row j. Each reduced word a bijectively gives rise to a pair of tableaux (P (a), Q(a))
known as the insertion tableau and the recording tableau respectively. Edelman–
Greene show that for each insertion tableau P that arises when doing their insertion
algorithm on all reduced words for w and every standard tableau Q of the same
shape as P , there exists a unique a ∈ R(w) with P (a) = P and Q(a) = Q. Thus,
aλ,w counts the number of distinct P tableaux of shape λ that arise from w.

4Richard actually defined Fw(X) =
∑

(a1,a2,...,ap)∈R(w) FD(a1,a2,...,ap)(X) which equals

Gw−1 in our notation. The switch from w to w−1 is related to a formula for Schubert poly-

nomials coming in Subsection 3.2.
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There is another beautiful proof that all of the Stanley symmetric functions
are symmetric and Schur positive. Little gave a bijection termed a “bumping al-
gorithm” on reduced words which preserves ascent sets thus proving an effective
recurrence

(3.1) Gw =
∑

w′∈T (w)

Gw′

terminating when w is vexillary in which case Gw = sλ(w) [Lit03]. Here T (w) :=
{w′ = vti,r | i < r, inv(w′) = inv(w)} where ta,b is the transposition interchanging
a and b, and v = wtr,s with (r, s) being the lexicographically largest inversion pair.
The recurrence in (3.1) is known as the transition equation for Stanley symmetric
functions and was originally proved by Lascoux–Schützenberger [LS85] who suggest
it can be used to compute Littlewood–Richardson coefficients effectively.

Recently, Hamaker and Young [HY14] proved a conjecture of Thomas Lam’s that
Little bumps preserve the Q tableaux. Thus, the aλ,w also count the number of
reduced words for w in the same communication class under Little bumps as a fixed
reduced word for the unique permutation up to trailing fixed points with Lehmer
code (λ1, λ2, . . . , λk, 0, 0, . . .).

Stanley symmetric functions and the enumeration of reduced words are now
known to have many applications and connections to representation theory of Sn,
geometry of Schubert varieties, and stochastic processes related to sorting net-
works. For example, via the work of Kraśkiewicz [Kra95] and Reiner–Shimozono
[RS95], there is a generalization of a Specht module on the (Rothe) diagram of the
permutation of w which has Gw as its Frobenius characteristic. Also, Pawlowski
showed that the cohomology classes of Coskun’s rank varieties in the Grassmannian
manifolds are all Stanley symmetric functions [Paw14].

3.1. Random reduced words. Angel–Gorin–Holroyd–Romik–Virág [AHRV07,
AGH12] have initiated a program to study random reduced expressions for the
longest permutation and related processes. They produce a random reduced ex-
pression uniformly by using the hook walk algorithm due to Greene–Nijenhuis–Wilf
[GNW79] to produce a uniformly random staircase shape standard tableau Q, and
apply the inverse Edelman–Greene correspondence along with the unique P tableau
for this permutation. The hook walk algorithm uniformly at random chooses one
cell in the shape λ, then it “walks” to a different cell in the hook of this first cell
uniformly. From that cell, it again chooses a new cell in its hook to walk to, con-
tinuing until the walk arrives at a corner cell, placing the largest value there. Then
restricting to the still empty cells of λ, the algorithm repeats the process to place
the second largest value, etc. The following tantalizing conjecture is still open at
this time.

Conjecture 3.1. [AHRV07] Choose a uniform random reduced word (a1, . . . , ap)
for w0 ∈ Sn. The probability distribution of the 1’s in the permutation matrix for
the initial product sa1sa2 · · · sabp/2c approaches the surface measure of the sphere
projected to 2 dimensions as n gets large.

3.2. Schubert polynomials. Schubert polynomials Sw for w ∈ Sn are a gener-
alization of Schur polynomials that were invented by Lascoux and Schützenberger
in the early 1980s. Schur polynomials represent the Schubert basis for the coho-
mology ring of a Grassmannian manifold. This connection is realized by comparing
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Figure 3.1. An example of a randomly chosen permutation ma-
trix with n = 2000 demonstrating the Angel-Holroyd-Romik-Virág
Conjecture 3.1 from [AHRV07].

the Giambelli formula with the Jacobi–Trudi determinantal formula [Ful97]. Using
the Bernstein–Gelfand–Gelfand divided difference operators [BGG73], Lascoux and
Schützenberger showed that Schubert polynomials are explicit representatives of
the cohomology classes of Schubert varieties in the complete flag manifold GLn/B
where B is the set of upper triangular matrices. They form a basis for the co-
homology ring which can be identified as polynomials in n variables modulo the
ideal of symmetric polynomials with no constant term. Schubert polynomials have
two distinct advantages over other such bases. First, their structure coefficients
determine the cup product for the cohomology ring without ever having to reduce
modulo the ideal of symmetric polynomials. Second, they have a positive expansion
into monomials. Lascoux and Schützenberger pointed out that Stanley symmet-
ric functions are the limiting case of their Schubert polynomials in the sense that
Gw = limk−→∞S1k×w where 1k × w = [1, 2, . . . , k, w1 + k, . . . , wn + k].

Around 1991, Richard conjectured the following explicit formula for Schubert
polynomials, formalizing the connection to his symmetric functions and arguably
revolutionizing the field:

(3.2) Sw =
∑

a=(a1,...,ap)∈R(w)

∑
(i1,...,ip)∈C(a)

xi1xi2 · · ·xip

where C(a) are the compatible sequences of a defined very similarly to the terms
in the fundamental quasisymmetric functions. Specifically, (i1, . . . , ip) ∈ C(a) pro-
vided

(1) i1 ≤ i2 ≤ . . . ≤ ip are positive integers,
(2) if aj < aj+1 then ij < ij+1, and
(3) each ij ≤ aj for all 1 ≤ j ≤ p.

For example, w = [1, 4, 3, 2] has two reduced words (3, 2, 3) and (2, 3, 2) and they
have 5 compatible sequences: C(3, 2, 3) = {(1, 1, 2), (1, 1, 3), (1, 2, 3), (2, 2, 3)} and
C(2, 3, 2) = {(1, 2, 2)}. So

S[1,4,3,2] = x21x2 + x21x3 + x1x2x3 + x22x3 + x1x
2
2.

The Schubert polynomial conjecture was proved in two papers in quick succession
[BJS93, FS94] in 1992. The pairs of reduced words and compatible sequences were
then restated geometrically in terms of pseudo line arrangements in [FK96b] and in
terms of RC-graphs in [BB93], which are also known as reduced pipedreams because
of their visual similarity to a game with the same name made in 1989 for the
Commodore Amiga [KM05, Wik15]. See Figure 3.2.
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Figure 3.2. A pseudo line arrangement for w = [3, 1, 4, 6, 5, 2] is
shown on the left and a reduced pipedream for w is shown on the
right. Both encode the RC-pair with a = (5, 2, 1, 3, 4, 5) and i =
(1, 1, 1, 2, 3, 5).

A reduced pipedream is constructed from a reduced word a = (a1, . . . , ap) and
one of its compatible sequences i = (i1, . . . , ip) by placing a tile with a string crossing
in each entry of a matrix of the form (ij , aj − ij + 1) and a tile with two elbows
in all other positions (i, j) with i + j ≤ n. Conversely, any placement of the tiles
taking the strings labeled 1, 2, . . . , n along the top to the labeling w1, w2, . . . , wn
down the left side such that no pair of strings cross more than once gives rise to a
reduced pipedream for w. The corresponding RC-pair (a, i) can be recovered from
the row and column numbers of the crossings reading along rows right to left, from
top to bottom. Thus, the RC-pairs for w or equivalently the reduced pipedreams
RP (w) play the role of semistandard tableaux for Schur functions. The Schubert
polynomial Sw is the generating function

Sw(X) =
∑

D∈RP (w)

xD

where xD = xn1
1 xn2

2 · · · and for each i, ni is the number of crossings on row i in D.
Similarly, the double Schubert polynomial Sw(X,Y ) is the generating function

Sw(X,Y ) =
∑

D∈RP (w)

∏
(i,j)∈D

(xi − yj).

due to a theorem of Fomin–Kirillov [FK96b]. The double Schubert polynomials
can be used to represent Schubert classes in the equivariant cohomology ring of the
flag manifold [Bil99, Gra01]. Recently, this field is moving toward more exotic co-
homology theories. For example, see both [AC14, LS14] for a quantum equivariant
analog.

The individual RC-pairs are also related to the geometry of Schubert varieties.
In his 2000 Ph.D. thesis [Kog00], Kogan gave a degeneration of a Schubert variety
to a toric variety by interpreting each of the RC-pairs as inequalities on faces in a
polytope.

In 2005, Knutson and Miller gave a second geometric interpretation to the re-
duced pipedreams (or equivalently RC-pairs) using matrix Schubert varieties Xw

in their paper on “Gröbner geometry of Schubert polynomials” [KM05, Thm. B],
thereby establishing the pipedreams as the most natural presentation of the RC-
pairs. Let Iw be the determinantal ideal defining Xw by rank conditions. The
initial ideal Jw = in(Iw) under an “antidiagonal term order” such as z1,1 > z2,1 >
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· · · > zn,1 > · · · > zn,n has square-free generators so it corresponds with a Stanley–
Reisner simplicial complex Lw. They show that the Schubert class [Xw] is equal to
the class [Lw]. The class [Lw] is particularly easy to compute because it is just a
union of coordinate subspaces of Mn which are in bijection with reduced pipedreams
and the explicit equations are determined by the crossings in the pipedreams. Fur-
thermore, the prime decomposition of Jw is given by intersecting the prime ideals
〈zij | (i, j) ∈ D〉 for all D ∈ RP (w). This interpretation covers both the connec-
tions to cohomology and K-theory for single and double Schubert polynomials and
Grothendieck polynomials.

The study of reduced words and Schubert varieties naturally extends to other Lie
types. For the other classical groups of types B, C, and D, the Stanley symmetric
functions have been generalized and used to give analogs of Schubert polynomials
[BH95, FK96a, Lam95]. Kraśkiewicz found the analog of the Edelman–Greene
correspondence for type B [Kra95], and Richard’s student Tao-Kai Lam did the
same for type D [Lam95]. One of the biggest breakthroughs in Schubert theory
of this century is due to Thomas Lam’s definition of the affine Stanley symmetric
functions and his theorem [Lam06] that these are one form of the k-Schur functions
defined by Lascoux–Lapointe–Morse [LLM03].

The study of Stanley symmetric functions is a perfect example of how Richard
influences the field. He started by asking “how many reduced words are there for a
permutation?” and he ended up inspiring so much more. His 1984 paper has been
cited now over 70 times according to MathSciNet. It certainly counts as a gem.

4. Chromatic symmetric functions and quasisymmetric functions

What is a good example of a symmetric function that arises naturally other
than the usual bases for the ring of symmetric functions? Take a simple graph
G = (V,E) with n vertices labeled V = {1, 2, . . . , n} and consider all of its proper
colorings c : V −→ P, meaning that no two adjacent vertices get assigned to the
same value in P. Given any proper coloring of G, if we permute the “colors” in P
we get another proper coloring. The symmetry inherent in graph coloring can be
formalized by the chromatic symmetric function for G defined by

(4.1) XG(x1, x2, . . .) =
∑

c:V−→P
xc(1)xc(2) · · ·xc(n).

This colorful family of symmetric functions and some of its generalizations were
invented and first studied by Richard in the 1990s in two papers [Sta95, Sta98].
Much of this work was inspired by properties of the famous chromatic polynomials
χG(m) invented by George David Birkhoff and extended by Hassler Whitney in the
early 1900s. In fact, chromatic polynomials have been inspiring Richard throughout
his career [Sta70, Sta73, CS12]. We will review some of these connections between
χG and XG. A refinement of Richard’s chromatic symmetric function is a central
topic of the paper of Shareshian and Wachs in this volume [SW15].

Recall that the chromatic polynomial χG(m) counts the number of proper col-
orings of G using m colors. The proof that this function is a polynomial in m
proceeds simply by considering a recurrence using the deletion and contraction of

any one edge, or by realizing that χG(m) =
∑|V (G)|
i=0

(
m
i

)
CG(i), where CG(i) is the

number of ways to properly color G using exactly i colors. We get a third proof of
this polynomiality property by evaluating the chromatic symmetric function at 1m,
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which means we set x1 = x2 = · · · = xm = 1 and xi = 0 for all i > m. Observe that
XG(1m) = χG(m), and every symmetric function evaluated at 1m is a polynomial
function of m, as Chow points out in [Cho99], which is easily verified on generators
such as pi(1

m) = m.
Alternating sums for chromatic polynomials and chromatic symmetric functions

are a good example of the interplay between the two subjects. Whitney’s expansion
of the chromatic polynomial is the alternating sum

(4.2) χG(m) =
∑

S⊆E(G)

(−1)|S| mc(S)

over all spanning subgraphs of G with edge sets S where c(S) counts the number
of connected components of the subgraph [Whi32]. Richard proved the analogous
statement for the chromatic symmetric functions giving their expansion into power
sum symmetric functions:

(4.3) XG =
∑

S⊆E(G)

(−1)|S| pλ(S)

where the sum is again over all spanning subgraphs of G and λ(S) is the partition
of n = |V (G)| determined by the sizes of the connected components of the spanning
subgraph with edge set S [Sta95, Thm 2.5].

4.1. Acyclic orientations. Acyclic orientations are another good example of how
one can extend results for χG to the XG setting. Interestingly, Richard’s proofs
use the (P, ω)-partition ideas of Subsection 2.1. Given a simple graph G, choose
a direction for each edge. If there is no directed cycle in the chosen orientation
on the edges, we say the orientation is acyclic. Let aG be the number of acyclic
orientations of G. Richard had shown in previous work [Sta73] that

(4.4) aG = (−1)nχG(−1).

This result is often called “a classic” which has many consequences itself. For
example, Hanlon [Han08] gave a topological explanation for this result using the
Hodge decomposition of the coloring complex due to Steingŕımsson [Ste01]. See
Propp’s paper in this volume [Pro15] for further discussion of the enumerative
consequences. Observe that every proper coloring gives rise to a specific acyclic
orientation o of the edges of G by orienting from the larger colored vertex to the
smaller. Each such acyclic orientation gives rise to a poset Po on the vertices of G
by taking the transitive closure of this directed acyclic graph, where orientations
point downwards in the Hasse diagram. Endow Po with a labeling ωo that makes all
edges strict, as we defined in Subsection 2.1. Relating the definitions (2.1) and (4.1)
and applying (2.3), Richard [Sta95, p. 176] deduced the following expansion of the
chromatic symmetric function in terms of fundamental quasisymmetric functions:

(4.5) XG =
∑
o

Γ(Po, ωo) =
∑
o

∑
π∈L(Po,ωo)

FD(π)

where the first sum is over all acyclic orientations and the second sum is over all
linear extensions of the corresponding labeled posets.

Chow [Cho99] shows how (4.5) implies the following result of Chung and Graham
[CG95, Thm. 2]. If a chromatic polynomial χG(x) is expanded in the basis of
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binomial coefficients (
x+ k

n

)
for k = 0, 1, . . .

then the coefficients are nonnegative and count the number of bijective labelings π
of the vertices of G with exactly k of what they call G-descents.

Richard uses (4.5) to give what he calls the “main result on acyclic orientations”
connecting the expansion of XG in the elementary symmetric function basis with
acyclic orientations. Say

(4.6) XG =
∑
λ`n

cλeλ,

and let sink(G, j) be the number of acyclic orientations of G with exactly j sinks.
Then [Sta95, Thm. 3.3] tells us

(4.7) sink(G, j) =
∑
λ`n
l(λ)=j

cλ,

where l(λ) denotes the number of parts of λ. The proof is via a linear transformation
defined on fundamental quasisymmetric functions by mapping FS to t(t − 1)i if
S = {i + 1, i + 2, . . . , n − 1} and 0 otherwise. Richard uses (4.5) to show that
the transformation applied to the left-hand side of (4.6) yields

∑
j sink(G, j)tj . He

again uses the idea of (P, ω)-partitions to show that the transformation applied to
the right-hand side of (4.6) yields

∑
λ cλt

l(λ) where the sum is over the desired λ.

4.2. Combinatorial Hopf algebras. Among the most important theorems in
quasisymmetric function theory is that the ring of quasisymmetric functions is the
terminal object in the category of combinatorial Hopf algebras. This foundational
result is due to Aguiar–Bergeron–Sottile [ABS06]. They claim it explains the ubiq-
uity of quasisymmetric functions in mathematics.

A combinatorial Hopf algebra is a graded connected Hopf algebra H over a field F
along with a choice of character ζ : H −→ F. The ring of quasisymmetric functions
is a combinatorial Hopf algebra with the canonical character ζQ defined on the
monomial basis by saying ζQ(Mα) is 1 or 0 depending on whether or not α is a
composition with at most 1 part.

A classic example is Schmitt’s Hopf algebra on finite graphs [Sch94]. Let HG
be the F-vector space with basis given by the isomorphism classes of finite simple
graphs. Given a graph G and a subset of the vertices S ⊆ V (G), let G|S be the
induced subgraph on the vertices in S. Multiplication of graphs in HG is given by
disjoint union and comultiplication is given by

∆(G) =
∑

S⊆V (G)

G|S ⊗G|V (G)\S .

A character on HG can be defined by ζ(G) = 1 if E(G) = ∅ and 0 otherwise. Note
that a graph with no edges can have its vertices all colored the same in a proper
coloring. The Aguiar–Bergeron–Sottile theorem specifies the explicit morphism
of combinatorial Hopf algebras from (HG , ζ) to (QSYM, ζQ). It maps any basis
element G ∈ HG to

∑
ζa(G)Ma where the sum is over all compositions a of n =

|V (G)| and Ma is the monomial quasisymmetric function. Since ζa(G) counts
the number of ways to partition G into edgeless spanning subgraphs of sizes a =
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(a1, a2, . . . , ak), we see that G in Schmitt’s Hopf algebra maps to the chromatic
symmetric function XG.

4.3. Open problems. In typical Stanley style, we close this section with some of
the many interesting open problems related to colorings of graphs.

(1) Which polynomials with integer coefficients are chromatic polynomials
[Rea68]?

(2) When do two graphs have the same chromatic polynomial?
(3) When do two graphs have the same chromatic symmetric function?
(4) If two trees have the same chromatic symmetric function, are they nec-

essarily isomorphic [Sta95]? Perhaps so. At least it holds for trees with
up to 23 vertices as checked by Li-Yang Tan. See also Martin–Morin–
Wagner [MMW08] and the references therein for further partial results,
and [APZ14, OS14, SST15] for more recent progress.

(5) Are the chromatic symmetric functions of incomparability graphs of (3+1)-
free posets e-positive? Richard and John Stembridge conjecture yes [SS93,
Conj. 5.5][Sta95, Conj. 5.1] and give supporting evidence. Gasharov proved
that in this case, XG is Schur positive [Gas96]. Recently, there has been
some exciting progress on this conjecture due to Mathieu Guay-Paquet.
He has reduced the problem to the subclass of (3 + 1)-and-(2 + 2)-free
posets, which are called “semiorders” or “unit interval orders” in the lit-
erature and are enumerated by Catalan numbers [Gua13]. See also the
alternative approach and further conjectures by Shareshain and Wachs us-
ing representation theory on the cohomology groups of Hessenberg varieties
[SW14, SW15].

5. A skew generalization of the RSK algorithm

A fundamental result in the theory of symmetric functions is the Robinson–
Schensted–Knuth (RSK) algorithm [Rob38, Sch61, Knu70], which gives a bijection
between matrices A over N with a finite number of non-zero entries, and pairs
(P,Q) of semistandard Young tableaux (SSYT) of the same shape. Among the
consequences of the RSK algorithm (see [Sta99, §7.12] for more) is the Cauchy
identity for Schur functions, from which the orthonormality of the basis of Schur
functions follows. Restricting A to the case of n × n permutation matrices, the
bijectivity of the RSK algorithm implies the beautiful identity

(5.1)
∑
λ`n

(fλ)2 = n! ,

where fλ denotes the number of standard Young tableaux (SYT) of shape λ.
As one would expect, there has been much work done in developing analogues

and generalizations of the RSK algorithm; a brief overview of such work can be
found in the introduction to [SS90]. Our goal for this section is to highlight the
generalization of the RSK algorithm to skew shapes due to Bruce Sagan and Richard
[SS90], and point out some more recent applications of their generalization. An-
other perspective on [SS90] and its connection to representation theory appears in
Lenart’s paper in this volume [Len15].
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5.1. The skew version of the RSK algorithm. The classical RSK algorithm
works by first converting the matrix A = (aij) to a word that consists of aij copies
of the biletter (i, j). One then builds P and Q recursively by adding each such i
to P in a particular way such that the result is always an SSYT, with the entries
j of the biletters becoming the entries of Q. The procedure for adding each i to P
is known as RSK insertion.

To generalize RSK insertion to skew shapes, two insertion procedures are defined
in [SS90]. Starting with an SSYT T of shape λ/µ, the first type of insertion, external
insertion, works just like RSK insertion. To describe internal insertion, we first say
that a cell (a, b) of λ/µ is an inner corner if (a, b − 1), (a − 1, b) 6∈ λ/µ. Internal
insertion works by removing the entry in such a cell (a, b) and inserting it into row
a+ 1 using the usual RSK insertion procedure. Note that internal insertion, unlike
external insertion, does not increase the number of entries of T .

These insertions are used to prove a number of bijections, including a bijection
from tuples (A, T, U) to (P,Q), where A = (aij) is a matrix over N and T,U, P,Q
are SSYT of shape α/µ, β/µ, λ/β and λ/α respectively. Here, α and β are fixed
partitions, while λ depends on the choice of (A, T, U).

Just like the Cauchy identity follows from the classical RSK algorithm, the fol-
lowing generalization follows from the bijection just described. For fixed partitions
α and β,

(5.2)
∑
λ

sλ/β(X)sλ/α(Y ) =
∑
µ

sα/µ(X)sβ/µ(Y )
∏
i,j

(1− xiyj)−1.

Independent proofs of this identity using symmetric function techniques have been
given by Lascoux, Macdonald, Towber, and Zelevinsky [Mak85], [Mac95, Exam-
ple I.5.26]. The resulting analogue of (5.1) is as follows, where n and m are fixed
integers and α and β are again fixed partitions:∑

λ/β`n
λ/α`m

fλ/βfλ/α =
∑
k≥0

(
n

k

)(
m

k

)
k!

∑
α/µ`n−k
β/µ`m−k

fα/µfβ/µ.

Notice that letting n = m and α and β be empty yields (5.1). Equation (5.2) is one
of eight identities which make up [Sta99, Exer. 7.27], all of which appear in [SS90]
as consequences of their various bijections.

5.2. Recent applications. Our presentation of some applications of the insertion
procedures of [SS90] begins with a conjecture of Richard from [Sta05]. Let the sign
of an SYT (in English notation) be the sign of the permutation obtained by reading
the rows from left to right, starting with the top row. The sign imbalance Iλ of a
partition λ is the sum of the signs of all SYT of shape λ, and significant attention has
been given to the question of determining the sign imbalance of partition shapes and
characterizing those with Iλ = 0. Richard conjectured [Sta05, Conjecture 3.3(a)]
that the sum of Iλ over all shapes λ with n cells is 2bn/2c. This conjecture was
subsequently proved independently by Lam, Reifegerste and Sjöstrand [Lam04,
Rei04, Sjö05]. The technique used by Reifegerste and Sjöstrand is to establish the
relationship between the sign of a permutation π and the sign of the image (P,Q)
of the permutation matrix for π under the classical RSK algorithm.

In [Sjö07], Sjöstrand asks about the sign imbalance of skew shapes λ/µ. Let A
denote the permutation matrix of a permutation π, and suppose (A, T, U) is mapped
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to (P,Q) under the bijection of [SS90].5 Sjöstrand’s main theorem establishes a
remarkably simple relationship between the signs of π, T and U and those of P and
Q. This relationship is then used to establish skew analogues of identities from the
partition case. It will come as no surprise to the reader that the key relationship is
established using the external and internal insertions of [SS90].

In [AM11], Assaf and the second author generalize the Pieri rule to skew shapes
by giving an expansion of sλ/µs(n) as a signed sum of skew Schur functions. The
proof is combinatorial, and the insertion procedures of [SS90] are exactly what is
needed to establish the crucial sign-reversing involution. The same applies to the
proofs in [Kon12], where Konvalinka presents a simpler involution that proves a
dual version of the skew Pieri rule. In addition, he combines his involution with
the one in [AM11] to prove a “skew quantum Murnaghan–Nakayama rule,” which
simultaneously generalizes the classical Murnaghan–Nakayama rule, the skew Pieri
rule and its dual, and other related results.

Three other recent articles follow this same thread. Assaf and the second author
include a conjecture of a “skew Littlewood–Richardson rule,” i.e., an expansion
of sλ/µsσ/τ as a signed sum of skew Schur functions. This conjecture was proved
by Lam, Lauve and Sottile [LLS11], along with several other results of a similar
flavor. Konvalinka and Lauve [KL13] provide skew Pieri rules for Hall–Littlewood
functions, thereby introducing a parameter t into the story. Specifically, they give
an expression for the product of the skew Hall–Littlewood polynomial Pλ/µ times
hr as a signed sum of skew Hall–Littlewood polynomials, and do the same with er or
qr := (1− t)Pr in place of hr. Finally, in [War13], Warnaar shows that q-analogues
of these three results from [KL13] can be derived from a q-binomial theorem for
Macdonald polynomials of Lascoux and himself [LW11].

Beyond [SS90], Richard played an additional role in initiating the results of the
previous two paragraphs. Assaf and the second author were both at MIT in the
spring of 2009 when they stumbled upon the possibility of a simple expansion for
sλ/µs(1). The obvious thing to do in such a situation is to ask Richard if it is already
known. Richard was surprised by the expansion but that same day provided an
algebraic proof of this n = 1 case. He provided encouragement as the conjecture
for sλ/µs(n) in the general n case was formulated and then given a combinatorial
proof.

6. Flag symmetry of posets

In Section 4, we asked for naturally-arising symmetric functions and looked at a
topic that lies at the intersection of graph theory and symmetric function theory.
This section has a similar flavor, but now the symmetric function of interest is
defined in terms of chains in posets. Specifically, we begin with the following
quasisymmetric function introduced by Richard Ehrenborg in [Ehr96]. For a finite

ranked poset P with 0̂ and 1̂ and rank function ρ , define a formal power series in
the variables X = (x1, x2, . . .) by

EP (X) =
∑

0̂=t0≤t1≤···≤tk−1<tk=1̂

x
ρ(t0,t1)
1 x

ρ(t1,t2)
2 · · ·xρ(tk−1,tk)

k ,

5Sjöstrand worked with the more general notion of a partial permutation π, but, for simplicity,
we restrict our attention to the case when π is a permutation.
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where ρ(ti−1, ti) denotes ρ(ti)− ρ(ti−1), and where the sum is over all multichains

from 0̂ to 1̂ such that 1̂ occurs exactly once. (This last requirement ensures that
the coefficients of EP (X) are finite.)

6.1. Flag symmetry. Ehrenborg asked for which posets P is EP (X) symmetric,
and Richard (Stanley!) has three papers [Sta96, Sta97b, SS99] that address this
question, the third of which is joint work with Rodica Simion. In [Sta96], Richard
terms P “flag symmetric” if EP (X) is symmetric; the reason for the terminology
is that EP (X) encodes the same information as the flag f -vector and flag h-vector
of P . Indeed, if P has rank n, let S = {m1, . . . ,mj}< denote a subset of [n − 1]
satisfying m1 < · · · < mj . Then the flag f -vector αP (S) is defined as the number

of chains 0̂ < t1 < · · · < tj = 1̂ such that ρ(ti) = mi for all i. The flag h-vector
βP (S) is defined by αP (S) =

∑
T⊆S βP (T ). Richard gives the following alternative

expressions for EP (X):

EP (X) =
∑

S={m1,...,mj}<
S⊆[n−1]

∑
1≤i1<···<ij+1

αP (S)xm1
i1
xm2−m1
i2

· · ·xn−mjij+1

=
∑

S⊆[n−1]

βP (S)FS(X).

Richard’s main tool for showing rank symmetry is the notion of local rank sym-
metry, which Richard proves is sufficient for flag symmetry. A poset is said to
be locally rank symmetric if all of its intervals are rank symmetric, meaning that
the cardinalities of the rank levels read from bottom to top form a palindromic
sequence. Besides a lot of other results, Richard gives the following examples of
flag symmetric posets:

◦ a finite distributive lattice is flag symmetric if and only if it is a product
of chains, in which case EP = hν , the complete homogeneous symmetric
function indexed by the chain lengths [Sta96];
◦ binomial posets, observed to be flag symmetric in [Ehr96];
◦ face lattices of simplices, polygons, or of three-dimensional polytopes with

equal numbers of vertices as facets, as well as the product of any of these
types of face lattices [Sta96];
◦ the lattice of non-crossing partitions [Sta97b];
◦ the poset of shuffles as introduced by Curtis Greene [Gre88], shown to be

locally rank symmetric in [SS99].

6.2. Representation theory of the symmetric group. A second thread of
results that we choose to highlight among all those in [Sta96, Sta97b, SS99] is the
elegant ways in which EP (X) relates to the representation theory of the symmetric
group. Although the requirements for these relationships to hold are very special,
Richard’s work gives a number of instances where everything works out beautifully.
When EP (X) is symmetric, it can be expanded in terms of the basis of Schur
functions:

EP (X) =
∑
λ

aλsλ(X).

Recall that if all the aλ are nonnegative, then EP (X) is said to be Schur positive.
As a result, EP (X) must equal the Frobenius characteristic ch(ψ) of some character
ψ of the symmetric group (see [Sta99, §7.18]). Richard then seeks a natural action
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of Sn on the maximal chains of P that would give rise to ψ. Such an action should
be local, meaning that when the transposition (i, i+ 1) acts on a maximal chain m,
the result should be a linear combination of maximal chains that differ from m only
at rank i. Putting these ideas together gives the definition of what Richard calls a
“good” action: a local action on the maximal chains of P with the property that
EP (X) = ch(ψ) or potentially ω(EP (X)) = ch(ψ), where ω is the usual involution
on symmetric functions.

The three papers we have been discussing exhibit good Sn actions in the following
cases.

◦ A product of chains [Sta96]. In this case, the adjacent transposition (i, i+1)
of Sn sends a maximal chain m to the unique chain m′ that differs from
m only at rank i, while m remains fixed if no such m′ exists. Conversely,
it follows from a result of Grabiner [Gra99] that if P has a good action of
this form and additionally is a Cohen–Macaulay poset (defined in [BGS82]
or in §3.8 of [Sta97a, Sta12]), then P is a product of chains.
◦ The lattice of non-crossing partitions [Sta97b]. In this case, ω(EP (X))

equals Haiman’s parking function symmetric function, defined as the Frobe-
nius characteristic arising from the Sn action on parking functions that
permutes coordinates [Hai94]. Richard thus establishes a remarkable con-
nection between non-crossing partitions and parking functions. This con-
nection has a number of nice consequences, e.g., the lattice of non-crossing
partitions of {1, . . . , n+ 1} can be given an edge-labeling so that the maxi-
mal chains are labeled by the parking functions of length n, each occurring
exactly once.
◦ The poset of shuffles [SS99]. In fact, [SS99] shows the more general result

that a good action results anytime a poset has a chain labeling with certain
properties.

7. Conclusion

Hopefully, this paper inspires further interest in symmetric and quasisymmet-
ric functions by highlighting some the common threads and interactions among
the results. We have just scratched the surface of all the amazing mathemati-
cal contributions, which will be recognized for generations to come, by YLNTAES
RCHRADI.
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