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ASYMPTOTIC ESTIMATES FOR ROOTS OF THE CUBOID

CHARACTERISTIC EQUATION IN THE LINEAR REGION.

Ruslan Sharipov

Abstract. A perfect cuboid is a rectangular parallelepiped whose edges, whose face
diagonals, and whose space diagonal are of integer lengths. The second cuboid con-
jecture specifies a subclass of perfect cuboids described by one Diophantine equation
of tenth degree and claims their non-existence within this subclass. This Diophantine
equation is called the cuboid characteristic equation. It has two parameters. The
linear region is a domain on the coordinate plane of these two parameters given by
certain linear inequalities. In the present paper asymptotic expansions and estimates
for roots of the characteristic equation are obtained in the case where both parame-
ters tend to infinity staying within the linear region. Their applications to the cuboid
problem are discussed.

1. Introduction.

The cuboid characteristic equation in the case of the second cuboid conjecture
is a polynomial Diophantine equation with two parameters p and q:

Qpq(t) = 0. (1.1)

The polynomial Qpq(t) from (1.1) is given by the explicit formula

Qpq(t) = t10 + (2 q2 + p2) (3 q2 − 2 p2) t8 + (q8 + 10 p2 q6+

+4 p4 q4 − 14 p6 q2 + p8) t6 − p2 q2 (q8 − 14 p2 q6 + 4 p4 q4+

+10 p6 q2 + p8) t4 − p6 q6 (q2 + 2 p2) (3 p2 − 2 q2) t2 − q10 p10.

(1.2)

The tenth degree polynomial (1.2) is related to the perfect cuboid problem through
the following theorem (see Theorem 8.1 in [1] or in [2]).

Theorem 1.1. A triple of positive integer numbers p, q, and t satisfying the equa-

tion (1.1) and such that p 6= q are coprime produces a perfect cuboid if and only if

the following inequalities are fulfilled:

t > p2, t > p q, t > q2, (p2 + t) (p q + t) > 2 t2. (1.3)

Once a triple of numbers p, q, t obeying Theorem 1.1 is found, there is a definite
procedure for producing a perfect cuboid from them. First of all three rational
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numbers α, β, and υ are produced in one of the two ways: 1) using the formulas

α =
p2

t
, β =

p q

t
, υ =

q2

t
, (1.4)

or 2) using the other three formulas

α =
p q

t
, β =

p2

t
, υ =

q2

t
. (1.5)

Both ways (1.4) and (1.5) are acceptable.
Then the rational number z is produced using the following formula for it:

z =
(1 + υ2) (1− β2) (1 + α2)

2 (1 + β2) (1− α2 υ2)
. (1.6)

And finally, the numbers α, β, υ along with z from (1.6) are used in the formulas

x1

L
=

2 υ

1 + υ2
,

d1
L

=
1− υ2

1 + υ2
,

x2

L
=

2 z (1− υ2)

(1 + υ2) (1 + z2)
,

x3

L
=

(1− υ2) (1 − z2)

(1 + υ2) (1 + z2)
, (1.7)

d2
L

=
(1 + υ2) (1 + z2) + 2 z(1− υ2)

(1 + υ2) (1 + z2)
β,

d3
L

=
2 (υ2 z2 + 1)

(1 + υ2) (1 + z2)
α.

They produce six rational numbers in the right hand sides of the formulas (1.7).
Then L is chosen as a common denominator for all these six rational numbers. Such
a choice assures that x1, x2, x3, d1, d2, d3 are integer numbers. They are edges and
face diagonals of a perfect cuboid, while L is its space diagonal. In the other words,
the integer numbers x1, x2, x3, d1, d2, d3, and L satisfy the cuboid equations

x2

1 + x2

2 + x2

3 = L2, x2

2 + x2

3 = d2

1 ,
(1.8)

x2

3 + x2

1 = d2

2 , x2

1 + x2

2 = d2

3 .

The formulas (1.7) were derived from (1.8) in [3] for the general case where,
instead of (1.2), a twelfth degree polynomial arises. It reduces to the polynomial
(1.2) in a special case, which is called the case of the second cuboid conjecture. The
second cuboid conjecture itself is formulated as follows (see [4]).

Conjecture 1.1. For any positive coprime integers p 6= q the polynomial Qpq(t)
is irreducible over the ring of integer numbers.

Conjecture 1.1 means that the equation (1.1) has no integer roots. However,
this conjecture is not yet proved nor disproved. It is just a conjecture. Therefore
in the present paper we consider the roots of the equation (1.1) and study their
dependence on p and q. This research continues the research from [3–7] and [1, 2].
As for the Diophantine equations (1.8), they are being studied for almost 300 years.
For the history and various approaches to them the reader is referred to [8–50]. The
approach of the papers [51–63] is based on so-called multisymmetric polynomials.
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It is different from the approach of the present paper. Therefore we do not consider
the papers [51–63] below.

The linear region associated with the cuboid characteristic polynomial (1.2) in
the case of the second cuboid conjecture was defined in [2]. It is a domain in the
positive quadrant of the p q - coordinate plane given by the linear inequalities

q

59
< p, p < 59 q. (1.9)

The main goal of the present paper is to obtain asymptotic expansions and esti-
mates for the roots of the characteristic equation (1.1) as p → +∞ and q → +∞
simultaneously staying within the linear region (1.9).

2. Asymptotic expansions with constant ratio.

It is easy to see that the inequalities defining the linear region (1.9) set upper
and lower bounds for the ratio of two parameters p and q. They are written as

1

59
<

p

q
< 59. (2.1)

Due to (2.1) below we consider the case where

p → +∞, q → +∞,
p

q
→ θ 6= ∞ (2.2)

and where θ is a rational number. In this case we can write

θ =
a12
a22

, (2.3)

where a11 and a12 are two positive coprime integers, i. e. the fraction (2.3) is ir-
reducible. For any two positive coprime integers a11 and a12 there are two other
coprime integers a21 and a22 such that

a11 a22 − a21 a12 = 1. (2.4)

This fact follows from the Euclidean division algorithm (see [64] or [65]).
Using the numbers a11, a12, a21, a22 from (2.3) and (2.4), we define two matrices

S =

∥

∥

∥

∥

a11 a12

a21 a22

∥

∥

∥

∥

, T =

∥

∥

∥

∥

a22 −a12

−a21 a11

∥

∥

∥

∥

. (2.5)

The equality (2.4) means that detS = 1 and detT = 1. Moreover, the matrices
(2.5) are inverse to each other. We use them as transition matrices (see [66]) and
define the following change of coordinates in the p q - coordinate plane:

∥

∥

∥

∥

p̃

q̃

∥

∥

∥

∥

=

∥

∥

∥

∥

a22 −a12

−a21 a11

∥

∥

∥

∥

·
∥

∥

∥

∥

p

q

∥

∥

∥

∥

,

∥

∥

∥

∥

p

q

∥

∥

∥

∥

=

∥

∥

∥

∥

a11 a12

a21 a22

∥

∥

∥

∥

·
∥

∥

∥

∥

p̃

q̃

∥

∥

∥

∥

. (2.6)
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The formulas (2.6) can be written in a non-matrix way:

{

p̃ = a22 p− a12 q,

q̃ = −a21 p+ a11 q,

{

p = a11 p̃+ a12 q̃,

q = a21 p̃+ a22 q̃.
(2.7)

Using (2.7), (2.2), (2.3), and (2.4), we derive

p̃

q
= a22

p

q
− a12 → a22 θ − a12 =

a22 a12 − a12 a22
a22

= 0, (2.8)

q̃

q
= −a21

p

q
+ a11 → −a21 θ + a11 =

−a21 a12 + a11 a22
a22

=
1

a22
(2.9)

as q → +∞. Relying on (2.8) and (2.9), we use the more restrictive condition

p̃ = const as q̃ → +∞ (2.10)

when passing to the new variables p̃ and q̃. It is worth to note the following lemma
describing p̃ and q̃ in (2.7).

Lemma 2.1. If p and q are coprime then the numbers p̃ and q̃ produced according

to the first couple of the formulas (2.7) are also coprime.

The proof is immediate from the second couple of the formulas (2.7). Indeed, if p̃
and q̃ have some common divisor r, then from the second couple of the formulas (2.7)
we derive that r is a common divisor p and q, which contradicts their coprimality.

Using (2.7), let’s substitute p = a11 p̃ + a12 q̃ and q = a21 p̃ + a22 q̃ into the
polynomial (1.2). As a result we get another polynomial Qp̃q̃(t). This polynomial
is given by an explicit formula. However, the formula for the polynomial Qp̃q̃(t)
is rather huge. It is placed to the ancillary file strategy formulas 03.txt in a
machine-readable form.

Using the polynomial Qp̃q̃(t), we replace the equation (1.1) by the equation

Qp̃q̃(t) = 0. (2.11)

It is a tenth degree equation with respect to the variable t. Like Qpq(t), the
polynomial Qp̃q̃(t) in (2.11) is even with respect to t. Along with each root t it has
the opposite root −t. Therefore we use the condition

{

t > 0 if t is a real root,

Im(t) > 0 if t is a complex root,
(2.12)

in order to divide the roots of the equation (2.11) into two groups. We denote
through t1, t2, t3, t4, t5 those roots that obey the conditions (2.12). Then t6, t7,
t8, t9, t10 are opposite roots of the equation (2.11):

t6 = −t1, t7 = −t2, t8 = −t3, t9 = −t4, t10 = −t5. (2.13)

Typically, asymptotic expansions for roots of a polynomial equation look like
power series (see [67]). By analogy to (2.3) in [1] and according to (2.10) we write

ti(p̃, q̃) = Ci q̃
αi

(

1 +

∞
∑

s=1

βis q̃
−s

)

as q̃ → +∞. (2.14)
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The coefficients Ci in (2.14) should be nonzero: Ci 6= 0.

The exponents αi and the coefficients Ci in (2.14) are determined using the
Newton polygon (see [1]). The Newton polygon associated with the polynomial
Qp̃q̃(t) in (2.11) is a triangle (see Fig. 2.1 below). Its boundary consists of three



6 RUSLAN SHARIPOV

parts — the upper part, the lower part, and the vertical part. The upper part is
drawn in green, the lower part is drawn in red. The upper part of the Newton
polygon in Fig. 2.1 is a segment of a straight line. It comprises six nodes associated
with the equation (2.11). Here are the coefficients of these nodes:

A10 0 = 1,

A8 4 = 6 a4
22

− 2 a4
12

− a2
12

a2
22
,

A6 8 = 10 a2
12
a6
22

+ a8
12

+ a8
22

+ 4 a4
12

a4
22

− 14 a6
12
a2
22
,

A4 12 = 14 a4
12
a8
22

− 4 a6
12

a6
22

− a2
12

a10
22

− 10 a8
12
a4
22

− a10
12

a2
22
,

A2 16 = a812 a
8

22 − 6 a1012 a
6

22 + 2 a612 a
10

22,

A0 20 = −a1012 a
10

22.

(2.15)

According to [1], the exponent αi in (2.11) is determined by the slope of the upper
boundary of the Newton triangle in Fig. 2.1 by means of the formula αi = −k. In
our case k = −2, hence for αi we derive

αi = 2. (2.16)

The exponent (2.16) is common for all roots of the equation (2.11). The coefficient
Ci in (2.14) is determined by the following equation:

A10 0 Ci
10 +A8 4 Ci

8 +A6 8 Ci
6 +

+ A4 12 Ci
4 +A2 16 Ci

2 +A0 20 = 0.
(2.17)

Substituting (2.15) into (2.17), we derive the equation

Ci
10 + (6 a422 − 2 a412 − a212 a

2

22)Ci
8 + (10 a212 a

6

22 + a812 +

+ a822 + 4 a412 a
4

22 − 14 a612 a
2

22)Ci
6 + (14 a412 a

8

22 −
− 4 a612 a

6

22 − a212 a
10

22 − 10 a812 a
4

22 − a1012 a
2

22)Ci
4 +

+ (2 a6
12

a10
22

− 6 a10
12

a6
22

+ a8
12

a8
22
)Ci

2 − a10
12

a10
22

= 0.

(2.18)

It is remarkable that the equation (2.18) can be produced from the equation (1.1)
by substituting t = Ci, p = a12 and q = a22. Therefore the only known case where
the equation (2.18) has a rational solution for Ci is the case a12 = a22. Relying on
the irreducibility of the fraction in (2.3), we set

a12 = 1, a22 = 1. (2.19)

Then, in order to satisfy the equality (2.4), we choose

a11 = 1, a21 = 0. (2.20)

The choice (2.20) is not unique. But it is the most simple.
Applying (2.19) and (2.20) to (2.7), we derive the following formulas:

p̃ = p− q, q̃ = q, p = p̃+ q̃. (2.21)
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Due to (2.10) the formulas (2.21) mean that we choose the bisectorial direction on
the p q - coordinate plane for asymptotic expansions.

3. Bisectorial expansions.

Let’s substitute (2.19) and (2.20) into the equation (2.11). As a result we can
write the polynomial Qp̃q̃(t) from (2.11) in an explicit form:

Qp̃q̃(t) = t10 + (3 q̃ 4 − 10 q̃ 3 p̃− 13 q̃ 2 p̃2 − 8 p̃3 q̃ − 2 p̃4) t8 + (p̃8 −
− 40 q̃ 7 p̃− 136 q̃ 4 p̃4 + 2 q̃ 8 + 14 p̃6 q̃ 2 − 148 q̃ 6 p̃2 − 208 q̃ 5 p̃3 +

+8 p̃7 q̃ − 28 p̃5 q̃ 3) t6 − (10 p̃9 q̃ 3 + 302 q̃ 10 p̃2 + 836 q̃ 7 p̃5 +

+60 q̃ 11 p̃+ 200 p̃7 q̃ 5 + 704 q̃ 9 p̃3 + p̃10 q̃ 2 + 494 q̃ 6 p̃6 + 2 q̃ 12 +

+956 q̃ 8 p̃4 + 55 p̃8 q̃ 4) t4 − (6 p̃10 q̃ 6 + 1444 q̃ 11 p̃5 + 1230 q̃ 10 p̃6 +

+712 q̃ 9 p̃7 + 40 q̃ 15 p̃+ 1160 q̃ 12 p̃4 + 624 q̃ 13 p̃3 + 269 q̃ 8 p̃8 +

+3 q̃ 16 + 60 p̃9 q̃ 7 + 212 q̃ 14 p̃2) t2 − 210 q̃ 16 p̃4 − q̃ 10 p̃10 − q̃ 20 −
− 210 q̃ 14 p̃6 − 120 q̃ 13 p̃7 − 45 q̃ 12 p̃8 − 10 q̃ 11 p̃9 − 10 q̃ 19 p̃ −

− 120 q̃ 17 p̃3 − 252 q̃ 15 p̃5 − 45 q̃ 18 p̃2.

(3.1)

Now let’s substitute (2.19) into the equation (2.18). As a result we can factor it:

(Ci − 1) (Ci + 1) (Ci
2 + 1)4 = 0. (3.2)

The equation (3.2) has two simple real roots

Ci = 1, Ci = −1

and two purely imaginary roots

Ci = i, Ci = −i

of multiplicity four. Here i =
√
−1. The condition (2.12) excludes two roots

Ci = −1 and Ci = −i. Therefore from (2.14) we derive the expansion

ti(p̃, q̃) = q̃ 2

(

1 +

∞
∑

s=1

βis q̃
−s

)

as q̃ → +∞ (3.3)

for real roots of the polynomial (3.1) and the expansion

ti(p̃, q̃) = i q̃ 2

(

1 +

∞
∑

s=1

βis q̃
−s

)

as q̃ → +∞ (3.4)

for complex roots of the polynomial (3.1) in the equation (2.11).

4. Asymptotic estimates for real roots.

According to the formulas (3.3) and (3.4), both real and complex roots of the
polynomial (3.1) are growing as q̃ → +∞. Therefore we need to specify the expan-
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sions (3.3) and (3.4) up to non-growing terms. For a real root we have

t1(p̃, q̃) = q̃ 2 + 5 p̃ q̃ + 10 p̃2 +R1(p̃, q̃) as q̃ → +∞. (4.1)

The formula (4.1) is in agreement with the formula (3.3). It means that β11 = 5 p̃
and β12 = 10 p̃2. Like in [1] and [2], we have to obtain an estimate of the form

|R1(p̃, q̃)| <
C(p̃)

q̃
(4.2)

for the remainder term R1(p̃, q̃) in (4.1). For this purpose we substitute

t = q̃ 2 + 5 p̃ q̃ + 10 p̃2 +
c

q̃
(4.3)

into the polynomial (3.1). Then we replace q̃ with the new variable z:

z =
1

q̃
. (4.4)

As a result of two substitutions (4.3) and (4.4) and upon removing denominators
the equation (2.11) with the polynomial (3.1) turns to a polynomial equation in
the new variables c and z. This equation can be written as

1216 p̃3 + f(p̃, c, z) = −32 c. (4.5)

Here f(p̃, c, z) is a polynomial of three variables given by an explicit formula. The
formula for f(p̃, c, z) is rather huge. Therefore it is placed to the ancillary file
strategy formulas 03.txt in a machine-readable form.

Let q̃ > 97 |p̃| and let c belong to one of the following two intervals:

−74 |p̃|3 < c < 0 if p̃ > 0,

0 < c < 74 |p̃|3 if p̃ < 0.
(4.6)

From q̃ > 97 |p̃| and from (4.4) we derive the estimate |z| 6 1/97 |p̃|−1. Using this
estimate and using the inequalities (4.6), by means of direct calculations one can
derive the following estimate for the modulus of the function f(p̃, c, z):

|f(p̃, c, z)| < 1142 |p̃|3. (4.7)

For fixed p̃ and z the estimate (4.7) means that the left hand side of the equation
(4.5) is a continuous function of c whose values obey the inequalities

74 |p̃|3 6 1216 p̃3 + f(p̃, c, z) 6 2358 |p̃|3 if p̃ > 0,

−2358 |p̃|3 6 1216 p̃3 + f(p̃, c, z) 6 −74 |p̃|3 if p̃ < 0
(4.8)

while c runs over the corresponding interval (4.6). The right hand side of the equa-
tion (4.5) is also a continuous function of the variable c. Moreover, it is monotonic.



ASYMPTOTIC ESTIMATES FOR ROOTS . . . 9

Multiplying the inequalities (4.6) by −32, we find that the values of the right hand
side of the equation (4.5) fill one of the two intervals

0 < − 32 c < 2368 |p̃|3 if p̃ > 0,

−2368 |p̃|3 < − 32 c < 0 if p̃ < 0
(4.9)

while c runs over the corresponding interval (4.6). Comparing (4.8) with (4.9), we
see that there is at least one root of the polynomial equation (4.5) somewhere in
one of the two intervals (4.6).

The case p̃ = 0 is exceptional. In this case f(p̃, c, z) = 0. Hence c = 0 is a root
of the equation (4.5) for this case.

The variable c is related to the variable t by means of the formula (4.4). Therefore
the inequalities (4.6) for c imply the following inequalities for t:

q̃ 2 + 5 p̃ q̃ + 10 p̃2 − 74 |p̃|3
q̃

< t < q̃ 2 + 5 p̃ q̃ + 10 p̃2 if p̃ > 0,

q̃ 2 + 5 p̃ q̃ + 10 p̃2 < t < q̃ 2 + 5 p̃ q̃ + 10 p̃2 +
74 |p̃|3

q̃
if p̃ < 0.

(4.10)

The case p̃ = 0 is exceptional. In this case we get

t = q̃ 2 if p̃ = 0. (4.11)

The result obtained is formulated as a theorem.

Theorem 4.1. For each q̃ > 97 |p̃| there is at least one real root of the polynomial

(3.1) satisfying one of the conditions in (4.10) and (4.11).

Theorem 4.1 proves the asymptotic expansion (4.1) and provides the estimate of
the form (4.2) for the remainder term in it.

5. Asymptotics for complex roots.

For complex roots of the polynomial (3.1) we have the formula specifying (3.4):

ti(p̃, q̃) = i q̃ 2 + ui p̃ q̃ −
ui + iu2

i

2
p̃2 +Ri(p̃, q̃) as q̃ → +∞ (5.1)

and i = 2, . . . , 5. Here i =
√
−1 and ui are roots of the following quartic equation:

u4 + 8 u2 − 12 iu− 4 = 0. (5.2)

The equation (5.2) is irreducible. All of its roots are irrational. Two of them are
purely imaginary. Here are approximate values for these two roots:

u2 ≈ 0.4863801704 i, u3 ≈ −3.439109107 i. (5.3)

The other two roots are complex. Their approximate values are

u4 ≈ 0.4600767354+ 1.476364468 i,

u5 ≈ −0.4600767354+ 1.476364468 i.
(5.4)



10 RUSLAN SHARIPOV

Like in the previous section, below we derive an estimate of the form

|Ri(p̃, q̃)| <
Ci(p̃)

q̃
(5.5)

for the remainder term in the formula (5.1). For this purpose we substitute

t = i q̃ 2 + u p̃ q̃ − u+ iu2

2
p̃2 +

c

q̃
. (5.6)

into the polynomial (3.1). Then we replace q̃ with the new variable z using (4.4).
As a result of two substitutions (5.6) and (4.4) and upon removing denominators
the equation (2.11) with the polynomial (3.1) turns to a polynomial equation in
the new variables c and z. This equation can be written as

212992 i p̃6 − 598016 p̃6 u− 446464 i p̃6 u2 +

+ 110592 p̃6 u3 + ϕ(u, p̃, c, z) = 352256 p̃3 c.
(5.7)

Here ϕ(u, p̃, c, z) is a polynomial of four variables given by an explicit formula. The
formula for ϕ(u, p̃, c, z) is rather huge. Therefore it is placed to the ancillary file
strategy formulas 03.txt in a machine-readable form.

Let q̃ > 97 |p̃|. Now c is a complex variable. Assume that it runs over the open
disk on the complex plane given the by inequality

|c| < 51 |p̃|3. (5.8)

From q̃ > 97 |p̃| and from (4.4) we derive the estimate |z| 6 1/97 |p̃|−1. Using this
estimate and using (5.8), upon substituting the value u = u2 from (5.3) one can
derive the following estimate for the modulus of the function ϕ(u, p̃, c, z):

|ϕ(u2, p̃, c, z)| 6 1174818 |p̃|6. (5.9)

For fixed p̃ and z the estimate (5.9) means that the left hand side of the equation
(5.7) is a function of c whose values within the disc (5.8) obey the estimate

|212992 i p̃6 − 598016 p̃6 u2 − 446464 i p̃6 u2

2 +

+ 110592 p̃6 u3

2 + ϕ(u2, p̃, c, z)| 6 1189840 |p̃|6.
(5.10)

Note that it is a holomorphic function which is continuous up to the boundary of
the disc (5.8). Therefore the estimate (5.10) holds on the boundary of the disc.

The right hand side of the equation (5.7) is also a holomorphic function of c. It
has exactly one zero at the origin within the disc (5.8) and its modulus is constant
on the boundary of this disc. Indeed, we have

|352256 p̃3 c| = 17965056 |p̃|6 if |c| = 74 |p̃|3. (5.11)

Comparing the numbers 1189839 < 17965056 from (5.10) and (5.11) and applying
the Rouché theorem (see [68] or [69]), we conclude that the equation (5.7) with
u = u2 has exactly one solution within the disc (5.8).
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The same conclusion is valid for the other three roots u = u3, u = u4, and u = u5

of the equation (5.2) from (5.3) and (5.4). However, the estimate (5.10) for them
is replaced by the following three estimates:

|212992 i p̃6 − 598016 p̃6 u3 − 446464 i p̃6 u2

3
+

+ 110592 p̃6 u3

3
+ ϕ(u3, p̃, c, z)| 6 16504669 |p̃|6,

(5.12)

|212992 i p̃6 − 598016 p̃6 u4 − 446464 i p̃6 u2

4
+

+ 110592 p̃6 u3

4 + ϕ(u4, p̃, c, z)| 6 2513770 |p̃|6,
(5.13)

|212992 i p̃6 − 598016 p̃6 u5 − 446464 i p̃6 u2

5
+

+ 110592 p̃6 u3

5 + ϕ(u5, p̃, c, z)| 6 2513770 |p̃|6.
(5.14)

The numbers 16504669 and 2513770 in the right hand sides of (5.12), (5.13), and
(5.14) are smaller than the number 17965056 in (5.11), which is the reason for
applying the Rouché theorem.

The variable c is related to the variable t by means of the formula (5.6). Therefore
the inequality (5.8) for c implies the following inequalities for t:

∣

∣

∣
t− i q̃ 2 − u2 p̃ q̃ +

u2 + iu2

2

2
p̃2

∣

∣

∣
<

51 |p̃|3
q̃

if p̃ 6= 0, (5.15)

∣

∣

∣
t− i q̃ 2 − u3 p̃ q̃ +

u3 + iu2

3

2
p̃2

∣

∣

∣
<

51 |p̃|3
q̃

if p̃ 6= 0, (5.16)

∣

∣

∣
t− i q̃ 2 − u4 p̃ q̃ +

u4 + iu2

4

2
p̃2

∣

∣

∣
<

51 |p̃|3
q̃

if p̃ 6= 0, (5.17)

∣

∣

∣
t− i q̃ 2 − u5 p̃ q̃ +

u5 + iu2

5

2
p̃2

∣

∣

∣
<

51 |p̃|3
q̃

if p̃ 6= 0. (5.18)

The inequalities (5.15), (5.16), (5.17), and (5.18) define four disks which play the
same role as the intervals (4.10) in the previous section.

The case p̃ = 0 is exceptional. In this case the disks (5.15), (5.16), (5.17), and
(5.18) collapse to the point t = i q̃ 2 thus producing a multiple root:

t = i q̃ 2. (5.19)

Now we can formulate the result of this section as a theorem.

Theorem 5.1. For each q̃ > 97 |p̃| there is exactly one root of the polynomial (3.1)
in each of the four disks (5.15), (5.16), (5.17), and (5.18) or there is one multiple

root given by the formula (5.19).

Theorem 5.1 proves the asymptotic expansion (5.1) and provides the estimate of
the form (5.5) for the remainder terms in it.

6. Non-intersection of asymptotic sites.

In the previous two sections we have found five sites where roots of the polynomial
(3.1) are located. They are the intervals (4.10) and the disks (5.15), (5.16), (5.17),
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(5.18) in the non-degenerate case p̃ 6= 0 and the points (4.10) and (5.19) in the
degenerate case p̃ = 0. The points (4.10) and (5.19) do not coincide since q̃ = q > 0
(see (2.21) and Theorem 1.1). In the case p̃ 6= 0 we have the following lemma.

Lemma 6.1. For q̃ > 97 |p̃| 6= 0 the asymptotic sites (4.10), (5.15), (5.16), (5.17),
and (5.18) do not intersect with each other.

Proof. In order to prove Lemma 6.1 for discs it is sufficient to calculate the distances
between their centers ans compare them with the double of their radius, which
is the same for all of them. The intervals (4.10) are centered about the point
t = q̃ 2 + 5 p̃ q̃ + 10 p̃2. They can be enclosed in one disc with the radius 74 |p̃|3/q̃
for rough estimates. By means of direct calculations one can derive a lower bound
for the distances from the center of this disc to the centers of the other four discs:

d1i > 1.4 (q̃ − 2.5 |p̃|)2 − 21.75 |p̃|2, i = 2, . . . , 5. (6.1)

Applying q̃ > 97 |p̃| to (6.1), we obtain the inequality

d1i > 12480 |p̃|2. (6.2)

For the sum of the radii of two discs from q̃ > 97 |p̃| we derive

r1 + ri =
74 |p̃|3

q̃
+

51 |p̃|3
q̃

6
125

97
|p̃|2 < 2 |p̃|2. (6.3)

Comparing (6.2) and (6.3), we see that d1i > r1 + ri, i. e. the intervals (4.10) do
not intersect with the discs (5.15), (5.16), (5.17), and (5.18).

Similarly, for the the mutual distances between centers of the discs (5.15), (5.16),
(5.17), and (5.18) one can obtain the following lower bound:

dij > 0.98 |p̃| q̃ − 8 |p̃|2, i = 2, . . . , 5 and i 6= j. (6.4)

Applying q̃ > 97 |p̃| to (6.4), we obtain the inequality

d1i > 87 |p̃|2. (6.5)

For the double radius of the discs (5.15), (5.16), (5.17), and (5.18) from the in-
equality q̃ > 97 |p̃| we derive the following upper bound:

ri + rj = 2 ri =
102 |p̃|3

q̃
6

102

97
|p̃|2 < 2 |p̃|2. (6.6)

Comparing (6.5) and (6.6), we see that dij > ri + rj , i. e. the discs (5.15), (5.16),
(5.17), and (5.18) do not intersect with each other. Lemma 6.1 is proved. �

Lemma 6.2. For q̃ > 97 |p̃| 6= 0 the asymptotic discs (5.15), (5.16), (5.17), and
(5.18) are enclosed in upper half-plane of the complex plane and do not intersect

with the real axis.

Proof. The proof is based on the following lower bound for the distances from the
centers of the discs (5.15), (5.16), (5.17), (5.18) to the real axis:

di > (q̃ − 2 |p̃|)2 − 12 |p̃|2, i = 2, . . . , 5. (6.7)
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Applying q̃ > 97 |p̃| to (6.7), we obtain the inequality

di > 9013 |p̃|2. (6.8)

On the other hand, for the radius of the discs (5.15), (5.16), (5.17), and (5.18) from
the inequality q̃ > 97 |p̃| we derive the following upper bound:

ri =
51 |p̃|3

q̃
6

51

97
|p̃|2 < |p̃|2. (6.9)

Comparing (6.8) and (6.9), we see that Lemma 6.2 is proved. �

Lemmas 6.1 and 6.2 are summed up in the following theorem.

Theorem 6.1. For q̃ > 97 |p̃| 6= 0 five roots t1, t2, t3, t4, t5 of the polynomial (3.1)
obeying the condition (2.12) are simple. They are located within five disjoint sites

(4.10), (5.15), (5.16), (5.17), and (5.18), one per each site.

Due to (2.13) Theorem 6.1 locates all of the ten roots of the polynomial (3.1).
Theorem 6.1 does not cover the degenerate case p̃ = 0. However, due to (2.21) the
equality p̃ = 0 implies p = q. Therefore the degenerate case p̃ = 0 does not produce
perfect cuboids (see Theorem 1.1).

7. Integer points of asymptotic sites.

According to Theorem 6.1, for q̃ > 97 |p̃| 6= 0 the equation (2.11) with the
polynomial (3.1) has exactly one real positive root t1 belonging to one of the two
asymptotic intervals (4.10). The following theorem is immediate from (4.10).

Theorem 7.1. If q̃ > 97 |p̃| 6= 0 and if q̃ > 74 |p̃|3, then the asymptotic intervals

(4.10) have no integer points.

8. Application to the cuboid problem.

The equation (1.1) is related to the perfect cuboid problem through Theorem 1.1.
The equation (2.11) differs from the equation (1.1) by the change of variables (2.21).
Let’s consider the case p̃ < 0 in (4.10). In this case from (4.10) we take

t < q̃ 2 + 5 p̃ q̃ + 10 p̃2 +
74 |p̃|3

q̃
. (8.1)

Theorem 1.1 provides four additional inequalities (1.3). Since q = q̃ in (2.21), the
third of them is written as t > q̃ 2. Combining it with (8.1), we get

q̃ 2 + 5 p̃ q̃ + 10 p̃2 +
74 |p̃|3

q̃
> q̃ 2. (8.2)

Since p̃ < 0, the inequality (8.2) turns to the following one:

−5 |p̃| q̃ + 10 |p̃|2 + 74 |p̃|3
q̃

> 0. (8.3)
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Let’s apply the inequality q̃ > 97 |p̃| from Theorem 7.1. Since q̃ = q > 0, it yields

− 5 |p̃| q̃ 6 −5 · 97 |p̃|2, 74 |p̃|3
q̃

6
74 |p̃|2
97

. (8.4)

From (8.4) one can easily derive the following inequality:

−5 |p̃| q̃ + 10 |p̃|2 + 74 |p̃|3
q̃

6

(

−5 · 97 + 10 +
74

97

)

|p̃|2 = −46001

97
|p̃|2 < 0. (8.5)

The inequalities (8.3) and (8.5) contradict each other. The contradiction obtained
means that Theorem 7.1 can be modified in the following way.

Theorem 8.1. If q̃ > 97 |p̃| and p̃ < 0, then the corresponding asymptotic interval

in (4.10) has no integer points producing perfect cuboids.

Unfortunately Theorem 8.1 cannot be extended to the case p̃ > 0. In this case
the inequality q̃ > 97 |p̃| does not contradict the cuboid inequalities (1.3). However,
Theorem 7.1 is still valid in the case p̃ > 0.

Theorem 7.1 provides two inequalities q̃ > 97 |p̃| 6= 0 and q̃ > 74 |p̃|3. In the case
p̃ > 0, passing to the original variables p and q by means of the formulas (2.21),
these two inequalities are written in the following way:

p 6
98

97
q = q +

q

97
, p < q + 3

√

q

74
, (8.6)

Due to (2.21) the inequality p̃ > 0 itself means p > q.
Similarly, Theorem 8.1 provides the inequality q̃ > 97 |p̃| in the case p̃ < 0, i. e.

when p < q. Passing to the original variables p and q by means of (2.21), we can
write this inequality in the following way:

p >
96

97
q = q − q

97
, (8.7)

Since the bisector line p = q does not produce perfect cuboids, the inequalities (8.6)
and (8.7) can be united and then written as follows:

q − q

97
6 p, p 6 q +min

( q

97
, 3

√

q

74

)

. (8.8)

In this form the above inequalities (8.8) are similar to the linear inequalities (1.9)
defining the linear region.

9. Conclusions.

Theorems 7.1 and 8.1 along with the inequalities (8.8) constitute the main result
of this paper. The inequalities (8.8) define a subregion within the linear region (1.9).
Theorems 7.1 and 8.1 prove that no cuboids are available within this subregion.

The subregion defined by the inequalities (8.8) is rather small. It looks like a
narrow spiky strip surrounding the bisector line p = q within the positive quad-
rant of the p q - coordinate plane. A substantial part of the linear region (1.9) still
remains for numeric search of perfect cuboids.
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