
ar
X

iv
:1

50
5.

05
07

2v
1

 [c
s.

D
C

]
19

 M
ay

 2
01

5

Brief Announcement : Average Complexity for the LOCAL
Model

Laurent Feuilloley∗

École Normale Supérieure de Cachan,

France

ABSTRACT
A standard model in network synchronised distributed com-
puting is the LOCAL model [5]. In this model, the proces-
sors work in rounds and, in the classic setting, they know the
number of vertices of the network, n. Using n, they can com-
pute the number of rounds after which they must all stop
and output. It has been shown recently that for many prob-
lems, one can basically remove the assumption about the
knowledge of n, without increasing the asymptotic running
time [2][4]. In this case, it is assumed that different vertices
can choose their final output at different rounds, but con-
tinue to transmit messages. In both models, the measure
of the running time is the number of rounds before the last
node outputs. In this brief announcement, the vertices do
not have the knowledge of n, and we consider an alterna-
tive measure: the average, over the nodes, of the number
of rounds before they output. We prove that the complex-
ity of a problem can be exponentially smaller with the new
measure, but that Linial’s lower bound for colouring [3] still
holds.

1. INTRODUCTION
In the LOCAL model [5], the processors are located at

the nodes of the network, have distinct identifiers, and work
in rounds. At each round, each processor sends messages
to its direct neighbours, receives messages from them, and
computes its new state. In some variants of this model, e.g.,
when n is not known [2, 4], every node can choose its output
at an arbitrary round, yet it must continue to transmit the
messages it receives. The classic measure of the running time
is the number of rounds before all the nodes have output. We
consider an alternative measure which is the average, over
the nodes, of the running time before they output.

An equivalent way to describe the LOCAL model is to
consider that every node gathers all the information in a

∗
Part of this work was done while the author was visiting LIAFA

at university Paris Diderot, with additional support from ANR
project DISPLEXITY.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright c© 2015 ACM 978-1-4503-3617-8 /15/07 ...$15.00.
DOI:http://dx.doi.org/10.1145/2767386.2767446 .

ball around itself and output a function of this ball. For
example a node can increment the radius of the ball it sees,
until it has enough information to output. This second vi-
sion of the LOCAL model is more convenient for this paper.
Therefore, in the following, we mostly consider radiuses, and
not rounds. When the algorithm, the graph, and the identi-
fiers are set, the “radius of the node v” refers to the radius
at which the algorithm chooses to output, and we denote it
by r(v). From this point of view, the classic measure of the
running time is the maximum of the radiuses of these balls,
and the alternative measure is the average of these radiuses.
More precisely for a given size n, the running time is usually:

max
G:|G|=n

(

max
v∈G

r(v)

)

,

and, in this paper, we consider:

max
G:|G|=n

(

∑

v∈G

r(v)/n

)

.

In this brief announcement, the computation is always
deterministic, and the average is always over the nodes. In
particular, remark that we consider the worst case for the
distribution of the identifiers.

On one hand, we show that there is a natural problem
for which there exists an algorithm with average running
time exponentially smaller than the worst case complexity.
In this problem, called largest ID, every vertex of a cycle
must decide if it has the largest ID or not, which is a classic
way to elect a leader. On the other hand, we show that
Linial’s lower bound on colouring [3] holds for the average
node measure, i.e. the vertices need an average radius of
Ω(log∗ n) to compute a valid 3-colouring. Note that this
lower bound matches the upper bound as it is possible to
3-colour the n-node ring in O(log∗ n) rounds even without
the knowledge of n [2][4].

The goal of this work is to continue the study of locality by
proposing a new measure of the running time. This measure
is suited to algorithms in which some vertices may stop very
early. An example of application is in the context of dynamic
networks. The average time to update the labels of the
graph after a change at a random node, can be estimated
using the average measure. Also in the context of parallel
computations that simulate distributed computations, we
can take advantage of the fact that a job is finished earlier
to process an other job, and then the average running time
is the relevant measure.

http://arxiv.org/abs/1505.05072v1

2. ALGORITHM FOR THE LARGEST ID
IN A CYCLE

In this section, we show that the largest ID problem on
a cycle has a linear worst case complexity, and that there
exists an algorithm with logarithmic average radius. In this
problem, each vertex must output Yes if it has the largest
identifier in the graph, and No otherwise. The worst case
complexity of the problem is linear because, for any algo-
rithm, the vertex with the maximum ID needs to see all the
cycle. The following straightforward algorithm gives a linear
upper bound: each node increases its radius until it discov-
ers an ID that is larger than its own ID, or until it has seen
all the cycle. We show that the average running time of this
algorithm is logarithmic in n.

The vertex with the maximum identifier needs n/2 rounds
to discover that it has the largest ID. We can consider that
the other vertices are in a path, and that reaching an end-
point is sufficient to stop and output No. The radius needed
by these other vertices is the minimum distance to a vertex
with larger ID or an endpoint. Note that the vertex with
largest ID of the segment must reach an endpoint. We can
then subdivide the vertices of the segment into three parts:
the one with the largest ID, the ones in the segment on the
left, and the ones on the right. Let a(p) be the maximum
(over the permutations of the identifiers) sum of radiuses in
a segment with p vertices. Then the following recurrence re-
lation follows from the decomposition into three pieces, and
from the symmetry:

a(p) = max
1≤k≤⌈p/2⌉

{k + a(k − 1) + a(p− k)} .

This sequence a(n), with initial values a(0) = 0, and
a(1) = 1, is known to be in θ(n ln(n)) (see for example the
sequence A000788 of the OEIS [6]). Thereafter, the average
radius is logarithmic in n, which is exponentially smaller
than the worst case complexity.

3. LOWER BOUND FOR COLOURING
The classic algorithm for distributed 3-colouring a ring is

the Cole-Vishkin algorithm [1], that uses O(log∗ n) rounds
for every vertex. This is basically optimal for the classic
measure, as Linial proved that this task requires Ω(log∗ n)
rounds[3]. One could try to improve the average complexity,
using less rounds for some vertices. In this section, we show
that this is useless: Linial’s lower bound also holds for this
new measure.

Theorem 1. The average complexity of 3-colouring a ring

with n nodes is Ω(log∗ n).

We say that an algorithm A for 3-colouring is minimal, if
there is no other algorithm A′ that behaves strictly better.
More precisely, A is minimal if there does not exist A′ that
uses at most the same radius as A for every neighbourhood,
and a strictly smaller radius for at least one neighbourhood.
Without loss of generality we prove the theorem only for
minimal algorithms. We first prove two lemmas about the
regularity of the distribution of the radiuses. For technical
reasons, we begin with 4-colouring and then come back to
3-colouring.

Lemma 2. In a graph G with identifiers, given two arbi-

trary vertices x and y, separated by k vertices, if an algo-

rithm A is minimal for 4-colouring, then the radiuses of the

vertices between x and y are at most max{r(x), r(y)}+ k.

Proof. For the sake of contradiction, suppose that there
exists G, x, y, k and A as in the lemma, and some ver-
tices between x and y with radiuses strictly larger than the
threshold, max{r(x), r(y)}+ k. Let N be the slice of iden-
tifiers that contains x, y, the vertices between them, and
the views of x and y. We show how to transform A into a
strictly smaller algorithm A′, by decreasing the radiuses of
some vertices in the neighbourhood N . For every vertex v,
if when running A, v discovers that it is not in the neigh-
borhood N between x and y, or if it stops before reaching
the threshold, then it does the same with A′. Otherwise, v
knows that it is in this particular neighbourhood, stops at
radius max{r(x), r(y)}+ k, and outputs obeying two simple
rules that depend only on the two direct neighbours. As-
sume without loss of generality that ID(x) > ID(y), and
let d, be the distance between v and x. First, if a neighbour
has stopped strictly before the threshold, choose a different
colour. Second, if a neighbour has not stopped before the
threshold, then if d is even, v outputs a colour in {1, 2}, else
v outputs a colour in {3, 4}. One can check that this new
algorithm A′ produces a valid 4-colouring for every graph
and identifiers. Moreover for every neighbourhood the ra-
dius given by A′ is at most the one given by A, and, for at
least one neighbourhood, strictly smaller. This contradicts
the fact that A is minimal.

We use lemma 2 to prove the following more practical
result.

Lemma 3. If a vertex v uses radius r, in a minimal algo-

rithm A for 3-colouring, then the average of the radiuses of

the vertices at distance at most r/2 from v, is Ω(r).

Proof. First note that it is sufficient to prove the result
for 4-colouring, as it implies the result for 3-colouring. Let
d in {1, 2, ..., ⌊r/2⌋}, and let ud and wd be the two vertices
at distance d from v on the cycle. Lemma 2 implies

r ≤ max{r(ud), r(wd)}+ 2d− 1,

then

r − 2d + 1 ≤ r(ud) + r(wd).

Then by summing over d:

⌊r/2⌋
∑

d=1

(r − 2d+ 1) ≤

⌊r/2⌋
∑

d=1

r(ud) + r(wd).

If we add r on both side of the equation, the right-hand term
is the sum of the radiuses of the vertices at distance at most
r/2 from v, and the left-hand term is quadratic in r. The
lemma follows.

The end of the proof of theorem 1 uses the following corol-
lary of Linial’s lower bound as a black box. For every algo-
rithm that 3-colours a cycle of length larger than n/2, there
exists a permutation of the node identifiers such that at least
one vertex needs a radius of 1

2
. log∗(n/2). Given a minimal

algorithm A, we show that we can build a permutation π
of the identifiers that leads to an average running time in
Ω(log∗ n).

First, consider an n-cycle and a permutation of the iden-
tifiers, such that one vertex has radius at least 1

2
. log∗(n/2).

We take the slice of identifiers that are in the ball of radius
1

2
. log∗(n/2) around this vertex, and put it at the beginning

of π. Then, consider the rest of the identifiers, and repeat
the operation: remove from the original set of identifier a
1

2
. log∗(n/2)-ball around a vertex with large radius, and con-

catenate it to π. We do it until there are less than n/2
vertices remaining in the original set. Finally, we put the
rest of the identifiers at the end of π in an arbitrary order.

The vertex at the centre of each slice has exactly the same
1

2
log∗(n/2)-neighbourhood as when it was removed from the

original set of identifiers, hence its radius in π, with the
same algorithm A, is at least 1

2
log∗(n/2). Thanks to lemma

3, the average radius in each slice is Ω(log∗(n/2)), that is
Ω(log∗(n)). Then the average radius in π is Ω(log∗(n)). This
concludes the proof of the theorem.

4. CONCLUSION AND FURTHER WORK
This paper presents a new measure of the locality. It is

close to the classic measure for some problems, and very
different for others. It would be interesting to characterise
the problems of the first and second types. Also, we only
consider the cycle topology, and results for more general
graphs are missing. Last, as the average we consider is over
the nodes, but it would also be interesting to begin to study
the expectancy of the running time on graphs where the
permutation of the identifiers is taken uniformly at random,
for both the classic and the new measure.

Acknowledgements
I would like to thank Pierre Fraigniaud, Juho Hirvonen,
Tuomo Lempiäinen and Jukka Suomela for helpful discus-
sions.

5. REFERENCES
[1] Richard Cole, and Uzi Vishkin. Deterministic Coin

Tossing with Applications to Optimal Parallel List
Ranking. Information and Control, 70(1):32–53,1986.

[2] Amos Korman, Jean-Sébastien Sereni, and Laurent
Viennot. Toward more localized local algorithms:
removing assumptions concerning global knowledge.
Distributed Computing, 26(5-6):289–308, 2013.

[3] Nathan Linial. Locality in distributed graph algorithms.
SIAM J. Comput., 21(1):193–201, 1992.

[4] Topi Musto. Knowledge of degree bounds in local
algorithms. Master’s thesis, University of Helsinki,
2011.

[5] David Peleg. Distributed Computing: A Locality-
Sensitive Approach. SIAM, Philadelphia, PA, 2000.

[6] N. J. A. Sloane. The On-Line Encyclopedia of Integer
Sequences. A000788.

http://oeis.org/A000788

	1 Introduction
	2 Algorithm for the largest ID in a cycle
	3 Lower bound for colouring
	4 Conclusion and further work
	5 References

