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Points on a line, shoelace and dominoes

A.Khrabrov K.Kokhas

St.-Petersburg University, Russia

Abstract

In this survey we consider numerous known and unknown combinatorial realizations of the

sequence A079487 and basic facts about it.

The following problem of N. Filonov was proposed at St. Petersburg mathematical olympiad in
2014.

40 points are marked on each of two parallel lines. They are split onto 40 pairs such that
segments that join points in a pair do not intersect. (In particular, no endpoint of a segment
lies on any other segment.) Prove that the number of these matchings is less than 339.

A sequence that describes this number of matchings has a lot of combinatorial realizations. Their
diversity is amazing. Of course, the number of its realizations is not as big (yet?) as for Catalan
numbers, but the sequence itself is a couple of hundreds years younger than Catalan sequence. Below
we give a survey of numerous known and unknown combinatorial realizations of this sequence.

Triangle ak,n. Consider the following combinatorial construction. Given two parallel lines, k points
are marked on the first line, and n points are marked on the second line. The points are split into pairs
such that segments that join points in a pair do not intersect. (In particular, no endpoint of a segment
lies on any other segment. The picture obtained by this construction we will call a configuration (of
points and segments) or a partition (of points into pairs). Denote the number of partition by ak,n. For
example a2,4 = 4, as we can see on the following picture.

Assume that ak,n = 0, if k + n is odd or at least one of numbers k, n is negative. It is convenient to
arrange the nonzero numbers ak,n in a triangle-shaped array:
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1 1 1

1 2 2 2 1

1 3 4 5 4 3 1

1 4 7 10 11 10 7 4 1

a0,0

a2,0 a1,1 a0,2

a4,0 a3,1 a2,2 a1,3 a0,4

. . .

. . .

(1)

Recurrence reltions. Let us express the number ak+1,n+1 via the numbers ai,j with a smaller sum
of indices. Denote points on the upper line by A1, A2, . . . , Ak+1 (from left to right) and on the lower
line by B1, B2, . . . , Bn+1. The number of partitions containing the edge A1B1 equals ak,n, the number
of partitions containing the edge A1A2 equals ak−1,n+1, and the number of partitions containing the
edge B1B2 equals ak+1,n−1. The sum of these three numbers is equal to ak+1,n+1 + ak−1,n−1 because
we count twice the partitions containing both segments A1A2 and B1B2 (fig. 1). Therefore we have
the following remarkable recurrence

ak+1,n+1 = ak,n + ak−1,n+1 + ak+1,n−1 − ak−1,n−1. (2)

For example the number 11 on the bottom side of the triangle (1) equals the sum 4 + 5 + 4− 2. Since
we assume the numbers to be equal 0 for negative indices, the recurrence (2) remains valid on the
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A2

B2

. . .
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ak+1,n−1

A1

B1

. . .A2

B2 . . . Bn+1

ak−1,n−1

Figure 1: Number of partitions when we remove one segment.

boundary of the triangle. It does not work in the case k = n = −1 only, i.e. for the topmost 1 of the
triangle.

Now we will prove one more recurrence relation for ak,n:

ak,n = ak−2,n + (ak−1,n−1 + ak−1,n−3 + ak−1,n−5 + . . .). (3)

The term ak−2,n is equal to the number of configurations containing the segment A1A2. All other con-
figurations contain a segment that joins A1 with some point on the bottom line; the sum in parentheses
counts these configurations. Indeed, the point A1 can be joined with points B3, B5, . . . only, because
otherwise there are odd number of points below the line A1Bk. If we join A1 and B2i+1 (i = 0, 1, 2
. . . ), then the configuration must contain also the segments B1B2, . . . , B2i−1B2i, hence the number of
configurations in this case equals ak−1,n−2i−1.

Due to the recurrence (3) and the symmetry ak,n = an,k it is not difficult to check that numbers
ak,n increase if we move along the row towards its center.

✲ ✒
❘

Motzkin peakless paths. Motzkin path is an (oriented) lattice path with steps de-
picted on the right figure. We mean that the beginning of this path is in the point
(0, 0). Peakless Motzkin path is a path that has no peaks, i.e. the fragment of the form

✒❘ . Denote by mk,n the number of peakless Motzkin paths from the point (0, 0) to the point (k, n).
It is clear that −k ≤ n ≤ k. On the next figure you can see all peakless Motzkin paths from the point
(0, 0) to the point (3, 1), so m3,1 = 4.

T h e o r em 1. mk,n = ak−n,k+n.

Proof. What is the last step of a Motzkin path that comes to the point (k, n)? It is clear that can it
start from the three points only: (k − 1, n − 1), or (k − 1, n), or (k − 1, n + 1). In the last case we
should keep in mind that since the peak in the point (k− 1, n+1) is prohibited, the previous step can
not start from the point (k − 2, n). Thus we obtain a recurrence

mk,n = mk−1,n−1 +mk−1,n +mk−1,n+1 −mk−2,n.

This is a recurrence (2) up to a change of variables.

A sum of binomial coefficients. Let numbers k and n be of the same parity. Consider an arbitrary
configuration of k on the upper line and n points on the lower line. Then remove all the segments
whose endpoints belong to the different lines. The remaining set of horizontal segments and disjoined
points determines uniquely the initial partition of points onto pairs (see fig. 2). Indeed, the leftmost
point on the upper line must be joined with the leftmost point on the lower line, the second (from
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−→

Figure 2: Horizontlal segments determine a partition onto pairs uniquely.

the left) point must be joined with the second (from the left) point on the lower line, etc., because
otherwise the segments will intersect.

Consider an auxiliary problem. We call a (j, ℓ)-configuration on a line a set of ℓ non-intersecting
segments and j points that do not lay on these segments. We color all endpoints of segments in white
and all other alone points in black. Let us find the number of (j, ℓ)-configuration on a line. To do this
we will depict configurations on the following order. First, mark j + ℓ points on the line, choose ℓ of
the points and color them in white. Then, for every white point add a new white point in its small left
neighborhood and join these points by a segment (see fig. 3). It is clear that different choices of ℓ white
points give us different configurations. Therefore, the number of configurations equals the number of
choices, i.e.

(

j+ℓ
ℓ

)

.

−→

11 = 1 + 2 + 2 + 1 + 2 + 1 + 2
12 = 1 + (2 + 2 + 1) + (2 + 1) + (2 + 1)

= 1 + 5 + 3 + 3

Figure 3: A colouring in two colors determines uniquely horizontal segments,
partitions onto dominoes and compositions.

Let k be the total number of points in a (j, ℓ)-configuration, i.e. k = j+2ℓ. Then the last binomial

coefficient can be written in the form
((k+j)/2
(k−j)/2

)

or
((k+j)/2

j

)

. Returning to the initial problem about

points on two lines we see that the number of ways to choose several horizontal segments on the upper
line (k points and j of them are “alone”) equals

((k+j)/2
j

)

, and the similar number for the lower line

(n points, j of them are alone) equals
(

(n+j)/2
j

)

, here k and n are of the same parity due problem
conditions, and j must have the same parity, too, because the non-alone points are split onto pairs.
Thus we obtain an explicite formula for ak,n:

ak,n =
∑

0≤j≤min{k,n}
j≡k (mod 2)

C
k−j

2
k+j

2

C
n−j

2
n+j

2

=
∑

0≤j≤min{k,n}
j≡k (mod 2)

Cj
k+j

2

Cj
n+j

2

.

For k = n the formula looks simpler, because n−j
2 = k−j

2 = ℓ and n+j
2 = k+j

2 = k − ℓ in this case, and
so

an,n =

[n/2]
∑

ℓ=0

(

Cℓ
n−ℓ

)2
.

Domino tilings. Consider a domino tilings of rectangles 2 × k and 2 × n. Let dk,n be a number
of those tilings that have equal numbers of vertical domino. For example the following table contains
domino tilings of rectangles 2 × 3 and 2 × 5 with 1 and 3 vertical dominoes. From this table we see
that d3,5 = 6 + 4 = 10.

j 2× 3 2× 5 number of variants

1 , , , 2 · 3 = 6

3 , , , 1 · 4 = 4

3



Th e o r em 2. dk,n = ak,n.

Proof. Has written in the previous paragraph. We have to replace the words “(j, ℓ)-configuration” by
“domino tiling of the rectangle 2×(j+2ℓ)”; the words “horizontal segment” by words “pair of horizontal
dominoes” and the words “black point” by “vertical domino”, see fig. 3.

Fibonacci numbers. Let fm be the sum of the numbers in m-th row of our triangle (1), i.e.

fm = a2m,0 + a2m−1,1 + a2m−2,2 + . . .+ a1,2m−1 + a0,2m.

Let us sum up recurrences (2) over all numbers k and n with kn = 2m+2. In the l.h.s. we obtain a sum
of all elements of (m+ 1)-th row. In the r.h.s we obtain triple sum of all elements of m-th row (with
plus sign) and sum of all elements of (m − 1)-th row (with minus sign). Hence fm+1 = 3fm − fm−1.
But this recurrence is also valid for Fibonacci numbers F2m:

F2m+2 = F2m+1 + F2m = 2F2m + F2m−1 = 2F2m + (F2m − F2m−2) = 3F2m − F2m−2.

Since the sums of the first and the second rows of the triangle equal F2 = 1 and F4 = 3, we have
the equality fm = F2m. So the sum of elements of m-th row in the triangle equals 2m-th Fibonacci
number.

From this observation we immediately obtain the estimation ak,n ≤ Fn+k. Using Binet formula for
Fibonacci numbers we can rewrite it in a more concrete form. By Binet formula

Fm =

(

1+
√
5

2

)m
−

(

1−
√
5

2

)m

√
5

.

The second term in the numerator has small absolute value and negative for even n. By omitting this
term we slightly increse the r.h.s. and obtain

ak,n <
1√
5

(

1 +
√
5

2

)n+k

. (4)

Fences. Consider the following bipartite oriented graph Z2n whose parts contain n vertices. We call
this graph a fence.

☛ ☛ ☛ ☛ ☛❯ ❯ ❯ ❯

The set A of vertices of this graph is called closed, if we can not leave this set moving along arrows.
In other words it satisfies the property: if x → y is an edge of the graph and x ∈ A, then y ∈ A.
Denote by z2n,k the number of k-element closed sets of vertices in the graph Z2n (0 ≤ k ≤ 2n). In
fig. 4 the vertices of closed subsets of the graph Z4 are colored in black.

☛ ☛❯

k = 0

z4,0 = 1

☛ ☛❯

k = 1

z4,1 = 2

☛ ☛❯

☛ ☛❯

k = 2

z4,2 = 2

☛ ☛❯

☛ ☛❯

k = 3

z4,3 = 2

☛ ☛❯

☛ ☛❯

k = 4

z4,4 = 1

Figure 4: Closed sets of the graph Z4.
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Th e o r em 3. z2n,k = a2n−k,k.

Proof. See fig. 5.

☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛❯ ❯ ❯ ❯ ❯ ❯ ❯

Mark the vertices that belong to a closed set with black color.

Arrange the vertices onto two parallel lines. On the upper line the leftmost (possibly empty) group of vertices
is even, all other groups are odd; on the lower line the rightmost group is even, all other groups are odd.

Join the last vertex in every odd group on lower line with the first vertex of the
next group on the upper line. All other vertices in groups split onto pairs.

Figure 5: A bijection between the closed sets in graph Z2n and par-
titions of points onto pairs.

Fibonacci numbers with odd indices. An inspective reader probably has been concerned for
some time about the issue: why the row sums of the triangle (1) are given by Fibonacci numbers with
even indices only? And where we can find in this topic Fibonacci numbers with odd indices? Here you
are. Consider an odd fence Z2n+1 containing n vertices in the upper part, and n + 1 vertices in the
lower part.

☛ ☛ ☛ ☛ ☛❯ ❯ ❯ ❯ ❯
A

B

(5)

The definition of the closed set for this fence is the same as for even fence. Denote by z2n+1,k the
number of k-element closed sets of vertices in the graph Z2n+1 (0 ≤ k ≤ 2n + 1). Remark that the
numbers z2n+1,k generally speaking are not symmetric, i.e. usually z2n+1,k 6= z2n+1,2n+1−k.

It is easy to check that the following recurrence relations hold:

z2n,k = z2n−1,k + z2n−2,k−2,

z2n+1,k = z2n,k−1 + z2n−1,k.

Let us check for example the second equality. Let A and B be the rightmost vertices of the fence
Z2n+1 as in the diagram (5). Consider an arbitrary closed set with k vertices. If A belongs to this
set, then remove it and we obtain a (k − 1)-element closed set of the fence Z2n. If A does not belong
to the closed set, then B does not belong to this set, too, and we remove both vertices and obtain
k-element set of the fence Z2n−1. It is clear that both types of operations are bijections between the
corresponding collections of the closed sets and the formula follows.

Consider the union of sequences zn,k for even and odd n. We can arrange elements of this sequence
in the triangle-shaped array similar to Pascal triangle (fig. 6). The recurrence relations written above
are illustrated by equalities 10 = 7 + 3 and 5 = 4 + 1 for the numbers in frames.

Reasoning like that of in the paragraph “Fibonacci numbers” shows that the row sums of this
triangle satisfy the recurrence (and initial conditions) for Fibonacci numbers: fm+1 = fm + fm−1.

If we would like to consider odd fences with n+ 1 vertices in the upper part and n vertices in the
lower part, we will obtain a similar recurrences and in fact the same triangle.

5



1

1 1

1 1 1

1 2 1 1

1 2 2 2 1

1 3 3 3 2 1

1 3 4 5 4 3 1

1 4 6 7 7 5 3 1

1 4 7 10 11 10 7 4 1

Figure 6: Triangle zn,k

Generation function. Consider a formal power series

F (x, y) =
∑

k,n

ak,nx
kyn.

The recurrence (2) means that the following equality for the function F (x, y) holds

(1− x2 − y2 + x2y2 − xy)F (x, y) = 1.

Hence

F (x, y) =
1

(1− x2)(1− y2)− xy
. (6)

Compositions. Fix a set S ⊂ N. A composition of a number n is a representation of the number n
as a sum in which each summand belongs to S. The representations with different order of summands
suppose to be different.

For example a (j, ℓ)-configuration or a domino tiling of the rectangle 2 × n can be interpreted as
compositions of n with S = {1, 2} or as compositions of n + 1 with odd summands (see fig. 3). This
allows us to reformulate theorem 2 and construct two more combinatorial realizations of the sequence
an,k in terms of compositions. Let S1 = {1, 2}, S2 = {1, 3, 5, 7, . . .} — odd numbers, S3 = N \ {1} =
{2, 3, 4, . . .}.

T h e o r em 2′. The number ak,n equals the number of pairs of S1-compositions of numbers k and
n with equal number of unities.

T h e o r em 2′′. The number ak,n equals the number of pairs of S2-compositions of numbers k + 1
and n+ 1 that have equal number of summands.

Now consider a similar construction, though its relationship to dominoes and configurations is not
quite clear.

Ob s e r v a t i o n. The number of S1-compositions of n that contain ℓ 2’s (ℓ = 0, 1, . . . ) is equal to
the number of S3-compositions of n+2 with ℓ+1 summands. For example there exist 4 S1-compositions
of the number 5 that contain one 2 and in the same time there exist 4 S3-compositions of the number
7 that contain two summands:

5 = 1 + 1 + 1 + 2 = 1 + 1 + 2 + 1 = 1 + 2 + 1 + 1 = 2 + 1 + 1 + 1,

7 = 2 + 5 = 5 + 2 = 3 + 4 = 4 + 3.

This observation follows from the fact that the number of both compositions equals
(n−ℓ

ℓ

)

. Prove!
Due to this observation we can change the type of compositions in theorem 2′.

T h e o r em 2′′′. Let numbers n and k be of the same parity, n ≥ k, s = 1
2 (n−k). The number ak,n

equals the number of pairs of S3-compositions of numbers k+2 and n+2 in which the composition of
n+ 2 contains s more summands than the composition of k + 2.

6



Generation function for compositions Fix a set S ⊂ N. Let tn be a number of S-compositions
of n, and T (x) be a generation function of the sequence tn. A very simple formula turns out to hold
for this generation function:

T (x) =

+∞
∑

n=0

tnx
n =

1

1− ∑

m∈S
xm

. (7)

Indeed, taking q =
∑

m∈S
xm and using the formula for geometric series 1

1−q = 1 + q + q2 + q3 + . . ., we
obtain

1

1− ∑

m∈S
xm

= 1 +
(

∑

m∈S
xm

)

+
(

∑

m∈S
xm

)2
+

(

∑

m∈S
xm

)3
+ . . .

Now the reader can expand parentheses and discover a bijection between a set of S-compositions of n
and different occurrences of xn in this sum, that proves the formula (7).

E x amp l e 1. Consider a function f(x, y) = 1
1−x−y and expand it like in the previous reasoning:

1

1− x− y
= 1 + (x+ y) + (x+ y)2 + (x+ y)3 + . . .

Let us expand parentheses directly without any simplifications, changing the order of summands,
binomial formulae, etc. Then we obtain terms of the form xkym, and each of them is written as a
word with letters x and y. For example x3y2 can be obtained as products xxxyy, xyyxx, etc. We
can interpret such words as “vector compositions”. To do this, consider a path on the squared grid
which contains a segment ✲ for each letter x, and a segment ✻ for each letter y. Then the term xkym

corresponds to a grid path from the point (0, 0) to the point (k,m). In other words, we represent vector
(k,m) as a sums where each summand is a vector (1, 0) or (0, 1). These sums are vector compositions.
It is clear that the number of these compositions equals

(k+m
k

)

. Therefore f(x, y) is a generation
function for binomial coefficients:

f(x, y) =
1

1− x− y
=

+∞
∑

k,m=0

Ck
m+kx

kym.

Ex amp l e 2. Consider a generation function (6):

F (x, y) =
1

1− (x2 + y2 + xy − x2y2)
=

∑

k

(x2 + y2 + xy − x2y2)k.

Let us ignore for a short time the minus sign before x2y2. Then we can expand parentheses and
interpret this action as a constructing of vector composition. Consider an arbitrary monomial xkym

in the r.h.s. It is equal to the product of multipliers of the form x2, y2, xy or x2y2. We put into
correspondence to each of these multipliers a directed segment as shown in the picture. Then the
whole monomial is depicted as path from the point (0, 0) to (k,m).

✲

x2

✻

y2
✒
xy

✒

x2y2

Thus ak,n equals to the “number” of paths from the point (0, 0) to (k,m) with specified steps. We
use the word “number” in quotes since due to the minus sign we have not pay attention yet the paths
containing m steps of the form x2y2 should be equipped with the sign (−1)m.

In order to cancel these minuses, let us group some paths into pairs. Consider all the paths that
contain a step x2y2 or two consecutive steps x2, y2 (in this order). If the path does not contain a pair
of consecutive steps x2, y2 before the first occurrence of the step x2y2 we say that it is of type A,
otherwise it is of type B. If we replace in an arbitrary path of type A the first occurrence of the step
x2y2 by the two steps x2, y2, we obtain a path of type B. It is clear that different paths of type A give

7



us different paths af type B and each path of type B can be obtained by this operation. The signs of
the corresponding monomials for this pair of paths are opposite, so each pair contributes zero to the
whole “number” of paths.

Thus ak,n equals to the number of unpaired paths paths from the point (0, 0) to (k,m) with specified
steps. It is clear that the unpaired paths are exactly the paths that do not contain neither single steps
of the form x2y2 nor double steps x2, y2. These paths are in an evident one to one correspondence
with peakless Motzkin paths.

0-1-2 sums. Consider a sum in which the order of summands is fixed, each summand is 0, 1 or 2
and for every summand 2 in this sum the next summand is not 0. We call these sums 0-1-2 sums.

Denote by sn,k the number of 0-1-2 sums that are equal to k and consist of n summands (0 ≤ k ≤
2n). For example s3,3 = 5, because the only possible decompositions are the following

3 = 1 + 1 + 1 = 0 + 1 + 2 = 0 + 2 + 1 = 1 + 0 + 2 = 2 + 1 + 0.

Th e o r em 4. sn,k = zn,k.

Proof. See fig. 7.

☛ ☛ ☛ ☛ ☛ ☛ ☛❯ ❯ ❯ ❯ ❯ ❯

Mark vertices of a closed set with black color

☛ ☛ ☛ ☛ ☛ ☛ ☛

0 0 2 1 2 1 0

Draw edges parallel to the first edge only, write below every
edge the number of its black vertices

Figure 7: A bijection between closed sets of the graph Z2n and 0-1-2 sums.

We present one more bijection for 0-1-2 sums.

Th e o r em 5. mn,k−n = sn,k.

Proof. Observe that the translation along the vector ✒ changes the sum of coordinates by 2, the
translation along the vector ✲ changes the sum of coordinates by 1 and the translation along ❘ does
not change the sum of coordinates. Consider a peakless Motzkin path from (0, 0) to (n, k − n). It
consists of n steps and translation along this path change the sum of coordinates by k. Let us construct
a sum: in this path replace each segment ✒ by 2, each segment ✲ by 1, and each segment ❘ by 0.

After that put plus signs between the numbers. Since the path does not contain peaks ✒❘ , no 0
follows 2. Therefore we obtain a 0-1-2 sum that is equal to k and consists of n summands. The inverse
map is evident so this is a bijection. Thus mn,k−n = sn,k.

Weighted paths. Let us depict Motzkin paths and claim a payment for drawing of each segment.
A sloped rising and falling segments cost $ 1.5, and we suggest two kind of horizontal segments: “cheap”
for $ 1 and “luxury” for $ 2.

$ 1 $ 2 $ 1,5 $ 1,5

Denote by rk the number of paths that cost $ k and such that their first and last points belong to the
same horizontal. For example r3 = 5 as we can see in the following picture.

8



Th e o r em 6. rk = ak,k.

Proof. In each partition of points into pairs remove segments that connect points from different lines.
We obtain a configuration of points and horizontal segments on two lines. Every “free” point color
in black, every horizontal segment replace by one white point and place all these points on the lines
uniformly. Then put into correspondence to each vertical pair of points a segment of a path (see fig. 8):
let a pair correspond to cheap horizontal segment, a pair correspond to luxury horizontal segment,
a pair correspond to segment ✒ , and a pair correspond to segment ❘ .

Replace horizontal segments with white points

Put into correspondence to each vertical pair of points a segment

Figure 8: A bijection between partitions of point into pairs and weighted paths

Symmetric configurations of chords. Fix an arbitrary integers ℓ > 2 and n.
Consider an inscribed ℓn-gon. Split its circle onto ℓ equal arcs whose endpoints do not coincide

with vertices of the polygon. Join some vertices by chords. We are interested in configurations of
chords that satisfy the following properties:

1) a configuration has symmetry of ℓ-th order, i.e. it is invariant under rotations by angle 2π/ℓ;
2) chords do not intersect (and have no common endpoints);
3) endpoints of any chord can not be neighboring points on the same arc.
It follows that if endpoints of a chord are on different arcs then these arcs are neighboring. So the

configuration is determined by a picture that we see in any of ℓ sectors, and the number of configurations
does not depend on ℓ. An example of a configuration for n = 10, ℓ = 3 is shown in fig. 9.

1 2 3 4 5
6

7
8

9

10

1

2

9
10

1 2 3 4
5 6 7

8 9 10

Figure 9: A configuration with symmetry of 3rd order, its arc diagram and peakless Motzkin path.

Th e o r em 7. The number of symmetric chord configurations equals an,n.

Proof. Choose one of the ℓ arcs and “straighten” it. We obtain a segment with n marked points. Depict
a chord that joins two points in the initial sector as an arc above the segment. Depict a chord that join
a point from the initial sector, say the point number p, and a point from the neighboring sector, say the
point number q in that sector, as an arc below the segment (see fig. 9). Now we can easily transform
this arc diagram into peakless Motzkin path of length n. To do this we inspect all the marked points

9



from left to right. If we see an arc that rises from the point or we see an an arc goes to the point from
below we depict a rising segment of path; isolated points we depict a horizontal edges, and if an arc
goes to the point from above or starts from the point and goes below the segment we depict a falling
segment of Motzkin path.

Lacing. Let us count the number of ways to lace a shoe that has two lines with n holes
in each for lacing. We assume that the following restrictions hold:

1) the lacing starts and finishes at the topmost pair of holes;
2) the shoelace passes through each hole exactly one time;
3) for every hole at least one of its neighboring holes along the shoelace is at the opposite line of

holes (the first and the last hole will satisfy this property after a knot has been tied);
4) we do not take into account topological details like knotting of shoelace, is a shoelace passes a

hole upwards or top-down, etc.
We call a lacing that satisfies these restrictions right (see fig. 10). We call a lacing non self-crossing

if it starts at the upper left hole and finishes at the lower right hole, has no self-crossings and satisfies
properties 2)–4).

Figure 10: Two right (on the left) and two “wrong” (on the right) lacings.

Th e o r em 8. The number of non self-crossing lacings equals an,n. The number of right lacings

equals ((n− 1)!)2an,n.

Proof. First observe that a non self-crossing lacing is uniquely determined by the set of its vertical
segments connecting neighboring vertical holes (on the same side of the shoe). Indeed, if a set of
vertical segments then the topmost “free” holes on the opposite sides of the shoe should be neighboring
in our lacing, (see fig. 11, left), after that the next two “free” holes on the opposite sides should be
neighboring too, etc. Therefore the number of non self-crossing lacings equals the number of ways to
choose a set vertical segments, i.e. an,n.

Given a non self-crossing lacing we can construct (n!)2 new lacings by permuting holes in each side.
The lacings obtained in this way can start and finish in arbitrary holes on the opposite sides of the
shoe. Conversely, an arbitrary lacing up to a permutation of holes in each side determines uniquely a
non self-crossing lacing: it is a lacing obtained by the permutation for which the movement along the
lace always deliver us to the topmost free holes (on the corresponding side of the shoe).

Thus the number of lacings without restriction given by the property 1) equals (n!)2an,n. Right
lacings necessarily start and finish at the two topmost holes, therefore the number of right lacings
equals ((n− 1)!)2an,n.

Defective shoe. We call a shoe defective if it has different number of holes on its sides: k holes on
the left side and n holes on the right side. Consider lacings of defective shoe. As in previous paragraph

Figure 11: A configuration of points and segments determines uniquely a
non self-crossing lacing, even on a defective shoe.
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we call a lacing right if it satisfies properties 1)–4). The definition of non self-crossing lacing is word
by word the same as in the previous paragraph, too.

Again, each non self-crossing lacing determines a configuration of points and segments on the sides
of the shoe (see fig. 11, right). Each element of the configuration — a point or a segment — we will call
an object. Each object has two neighboring objects (along the lace), both of them are on the opposite
side of the shoe. Therefore each configuration that is obtained from some lacing has equal number
of objects on both sides. Conversely, each configuration with equal number of objects on both sides
determines uniquely some non self-crossing lacing.

In this connection consider one more combinatorial sequence. Let two parallel lines are given, k
points are marked on the first line, n points are marked on the second line and some pairs of neighboring
points on the lines are joined by segments, the segments do not intersect. Denote by bk,n the number
of these configurations which have equal number of objects on the lines. Define also a “degenerate”
values of bk,n: let b0,0 = 1 and bk,n = 0, if (k, n) 6= (0, 0), but at least one of the numbers k, n in non
positive. Values of the sequence bk,n for small k and n are shown in fig. 12. The topmost 1 is b0,0, the
numbering of elements in the last row is shown for convenience.

Analogously to ak,n, if we remove the leftmost objects in each side of a configuration, we obtain a
recurrence

bk,n = bk−1,n−1 + bk−1,n−2 + bk−2,n−1 + bk−2,n−2.

This recurrence holds for all n and k, except (k, n) = (0, 0). Due to this recurrence we immediately
obtain a formula for the generation function:

B(x, y) =
∑

k,n

bk,nx
kyn =

1

1− (xy + x2y + xy2 + x2y2)
− 1. (8)

1

0 0

0 1 0

0 1 1 0

0 0 2 0 0

0 0 2 2 0 0

0 0 1 5 1 0 0

0 0 0 5 5 0 0 0

0 0 0 3 11 3 0 0 0

b0,8 b1,7 b2,6 b3,5 b4,4 b5,3 b6,2 b7,1 b8,0

Figure 12: A triangle bk,n and example of its recurrence relation.

Th e o r em 9. an,n = bn,n.

Proof. It follows from the definition of bk,n.

By reasoning like in the previous paragraph we conclude that the sequence bk,n allows us to count
lacings: the number of non-crossing lacings is bk,n, the number of arbitrary lacings is (k−1)!(n−1)!bk,n,
and the number of right lasings is k!n! bk,n. As a corollary we obtain that the function (8) is an
exponential generation function of the numbers of arbitrary lacings.

Let us describe several more combinatorial realizations of the sequence bk,n.
Since the generating function (8) of the sequence bk,n is similar to the generation function of the

sequence ak,n, we can apply reasoning of the example 2 and obtain that bk,n is a number of paths on
the plane from the origin to the point (k, n) with segments of four types depicted below.

✒
xy

✒

x2y2
✯

x2y

✕

xy2
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Now, rotating a picture by 45◦ (and taking a diagonal of a square as unity) we see that bk,n equals
the number of weighted Motzkin paths from the origin to the point (k+n

2 , k−n
2 ). The prices are exactly

the lengths of projections onto the line y = x. Thus we have check once again that bk,k = rk.

$ 1 $ 2 $ 1,5 $ 1,5

Finally, observe that by definition bk,n is equal to the number of pairs “S1-composition of k and
S1-composition of n” with equal numbers of summands. We can depict these pairs of compositions
as “staircases” from (0,0) to (k, n). A staircase is a path in which vertical and horizontal segments
alternate, the first segment is horizontal, the last segment is vertical, and the lengths of all segments
are 1 or 2. For example a pair of compositions 8 = 2 + 2 + 1 + 1+ 2 = 2 + 1+ 2 + 1 + 2 that we have
seen in fig. 5, determines the following staircase.

(0,0)

(8,8)

2 2 1 1 2

2

1

2

1

2

Diagonal. In this paragraph we use theory of functions of a complex variable. The reader, who has
not studied this course yet, can see details in [1].

We call a sequence an,n a diagonal sequence. We start form the formula for the generation function
of the sequence an,k:

F (x, y) =
∑

k,n

ak,nx
kyn =

1

1− (x2 + y2 + xy − x2y2)
.

Due to the estimation (4), this series converges for |x| < ϕ−1, |y| < ϕ−1, where ϕ = 1+
√
5

2 is a golden
ratio.

Now find the generating function of diagonal sequence: g(x) =
+∞
∑

k=0

ak,kx
k. We apply the following

standard trick. Fix a sufficiently small x (we may consider x as a real variable) and consider a function

H(s) = F
(√

s,
x√
s

)

=
−s

s2 − s(x2 − x+ 1) + x2
.

It can be decomposed in a Laurent series
∑

k,n

ak,n(
√
s)k

(

x√
s

)n
over powers of s (and non negative powers

of x). This series obviously converges on the annulus |x|2ϕ2 < |s| < ϕ−2, and the function H(s) is
rational and defined at the whole complex plane. It is easy to see that g(x) is a constant term in this
series. We can find it by the residue theorem:

g(x) =
1

2πi

∫

|s|=ρ

H(s) ds

s
=

∑

Res
H(s)

s
,

where the integration is over an arbitrary circle inside the annulus and the the sum runs over the
singularities inside the circle.

The discriminant of the denominator of H(s) equals

(x2 − x+ 1)2 − 4x2 = 1− 2x− x2 − 2x3 + x4.

This expression is approximately equal to 1 for small x, therefore one of the singularities of H(s) is
not far from 1 (outside the integration contour), an the second singularity

s0 =
1− x+ x2 −

√
1− 2x− x2 − 2x3 + x4

2
.
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is near 0 inside the contour. The residue in this point equals (standard exercise)

g(x) =
1√

1− 2x− x2 − 2x3 + x4
.

Recurrence for the diagonal sequence rn = an,n. For generating function g(x) we have

g′(x) =
1 + x+ 3x2 − 2x3

(1− 2x− x2 − 2x3 + x4)3/2
= g(x) · 1 + x+ 3x2 − 2x3

1− 2x− x2 − 2x3 + x4
.

Hence
(1− 2x− x2 − 2x3 + x4)g′(x) = (1 + x+ 3x2 − 2x3)g(x).

Since g′(x) =
+∞
∑

k=0

krkx
k−1, equating coefficients of xn−1 we obtain

nrn − 2(n − 1)rn−1 − (n− 2)rn−2 − 2(n − 3)rn−3 + (n− 4)rn−4 = rn−1 + rn−2 + 3rn−3 − 2rn−4.

Thus,
nrn − (2n − 1)rn−1 − (n− 1)rn−2 − (2n− 3)rn−3 + (n− 2)rn−4 = 0.

Asymptotics of the diagonals sequence. Applying Darboux method (see [6, §4.3]) we fill find an
asymptotic formula for rn.

The idea of Darboux method is the following. If a function is defined as a sum of a power series
g(z) =

∑

rnz
n, then this series is automatically its Taylor expansion at the point z = 0. Its radius

of convergence is equal to the distance from 0 to the nearest singularity point z1 of the function g(z).
If we choose a “simple” function h(z) =

∑

hnz
n, that has “the same” singularity in the point z1, then

it is possible that the difference g(z) − h(z) =
∑

(rn − hn)z
n is regular in the point z1. In this case

the radius of convergence of g(z) − h(z) =
∑

(rn − hn)z
n is greater then the radius of g(z), that

means that the coefficients of the second series is much smaller than the coefficients of the first one,
i.e. rn − hn = o(rn) for n → +∞. Thus rn ∼ hn.

For the function g(z) the nearest to 0 singular point is a branch point, it can not be canceled just
by a subtraction of some function. So we need a bit more accurate reasoning.

Factor the expression under the square root in the formula for g(z):

1− 2z − z2 − 2z3 + z4 = (1− ϕ2z)(1 − ϕ−2z)(1 + z + z2),

where ϕ = 1+
√
5

2 is a golden ratio. Let f(z) = 1√
1−ϕ−2z

√
1+z+z2

. Then g(z) is equivalent f(ϕ−2)√
1−ϕ2z

for

z → ϕ−2 and the difference of these functions is bounded on the neighborhood of the point z = ϕ−2:

g(z) − f(ϕ−2)
√

1− ϕ2z
=

f(z)− f(ϕ−2)
√

1− ϕ2z
=

√

1− ϕ2zh(z), (9)

where the function h(z) has singular points ϕ2 and e±2πi/3.

L emma. Let (1 − t)p =
∞
∑

n=0

λp,nt
n be a Taylor series of the function (1 − t)p at the point t = 0.

Then

λ−1/2,n =
1√
πn

+O
( 1

n3/2

)

and λ1/2,n = O
( 1

n3/2

)

.

For the proof use Newton’s generalized binomial theorem and Stirling’s formula.

Th e o r em 10. rn =
ϕ2n+2

2 4
√
5
√
πn

+O
( ϕ2n

n3/2

)

, where ϕ = 1+
√
5

2 .

Proof. By (9) the number rn equals the sum of coefficients of zn in the expansions of functions f(ϕ−2)√
1−ϕ2z

and
√

1− ϕ2zh(z).
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Consider the coefficient of zn in the expansion of
√

1− ϕ2zh(z). Since the singular points of h(z)
are ϕ2 and e±2πi/3 its Taylor series h(z) =

∑

αnz
n at the point z = 0 converges in any circle of raduis

ρ < 1 with the center in the point z = 0. It follows that |αn| < c/ρn (otherwise for z = ρ+1
2 terms

of the series tends to infinity and the series diverges). So the the coefficient of zn in the expansion of
√

1− ϕ2zh(z) equals

n
∑

k=0

ϕ2kλ1/2,kαn−k = αn +

[n/2]
∑

k=1

. . . +

n
∑

k=[n/2]+1

. . . =

= O
( 1

ρn

)

+O
( 1

ρn/2

)

[n/2]
∑

k=1

ϕ2kλ1/2,k +O
( ϕ2n

n3/2

)

n
∑

k=[n/2]+1

αn−k =

= O
( 1

ρn

)

+O
( ϕn

ρn/2

)

O
( 1√

n

)

+O
( ϕ2n

n3/2

)

O
( 1

1− ρ

)

= O
( ϕ2n

n3/2

)

.

Here the signs “O” with semi-integer powers are obtained by applying the lemma, and in the last
equality we estimate from above the sum of αn−k by geometric series.

To finish the proof it remains to observe that the coefficient of zn in the expansion of f(ϕ−2)√
1−ϕ2z

is
much greater, it equals

f(ϕ−2)ϕ2nλ−1/2,n =
f(ϕ−2)ϕ2n

√
πn

+O
( ϕ2n

n3/2

)

=
f(ϕ−2)ϕ2n

√
πn

+O
( ϕ2n

n3/2

)

=
ϕ2n+2

2 4
√
5
√
πn

+O
( ϕ2n

n3/2

)

.

For any integer n one can obtain in this way an asymptotic expansion of rn with accuracy

O
( ϕ2n

nm+1/2

)

by exploring more terms in expansion of g(z) and applying the formula (2.2) [5] in-

stead of our lemma. The second term of the asymptotic expansion is also found in [7, equation (24)]
with different approach.

Sources. All the sequences under discussion can be found in the On-Line Encyclopedia of Integer
Sequences [10]: a “triangular” sequence ak,n (or speaking more accurately zn,k) is the sequence A079487,
sequence bk,n is A125250, the diagonal sequence an,n is A051286 and lacing sequence is A078698. The
main combinatorial realization of the sequences are also given. Detailed study of the sequence ak,n
on the language of order ideals of posets is in [8], we call this realizations “fences”, the term “Whitney
numbers of the second type” is also used. Symmetric configurations of chords are described in [7].
Weighted paths and compositions can be found in [3], domino and compositions are in [2], lacings are
in [4]. Simplified version of this article is published in [9].
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