
ar
X

iv
:1

50
5.

07
22

9v
4 

 [m
at

h.
A

G
]  

28
 O

ct
 2

01
6

COUNTING THE IDEALS OF GIVEN CODIMENSION OF
THE ALGEBRA OF LAURENT POLYNOMIALS IN TWO VARIABLES

CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Abstract. We establish an explicit formula for the numberCnpqq of ideals of
codimensionn of the algebraFqrx, y, x´1, y´1s of Laurent polynomials in two
variables over a finite fieldFq of cardinalityq. This number is a palindromic
polynomial of degree 2n in q. Moreover,Cnpqq “ pq´ 1q2Pnpqq, wherePnpqq is
another palindromic polynomial; the latter is aq-analogue of the sum of divisors
of n, which happens to be the number of subgroups ofZ2 of indexn.

1. Introduction

Let Fq be a finite field of cardinalityq andFqrx, y, x´1, y´1s be the algebra of
Laurent polynomials in two variables with coefficients inFq.

Our main aim is to give a formula for the numberCnpqq of ideals of codimen-
sionn of Fqrx, y, x´1, y´1s. Our main result is the following.

Theorem 1.1. For each integer ně 1 we have

Cnpqq “
ÿ

λ$n

pq ´ 1q2vpλq qn´ℓpλq
ź

i“1,...,t
di ě1

q2di ´ 1
q2 ´ 1

,

where the sum runs over all partitionsλ of n. The expression Cnpqq is a monic
polynomial of degree2n in the variable q with integer coefficients. Moreover, the
polynomial Cnpqq is divisible bypq ´ 1q2.

The notationℓpλq, νpλq, di appearing in the formula will be explained in Sec-
tion 3.1. The proof of the theorem will be given in Section 5.3; it relies on a
parametrization by Conca and Valla [6] of the affine cells in the Ellingsrud–Strømme
decomposition of the Hilbert scheme ofn points on the affine plane.

Note that sinceCnpqq is divisible bypq ´ 1q2, we may define for eachn ě 1 a
unique polynomialPnpqq by

(1.1) Cnpqq “ pq ´ 1q2Pnpqq,

which clearly impliesCnp1q “ 0 for all n ě 1. Table 1 (resp. Table 2) at the end of
the paper displays the polynomialsCnpqq (resp. the polynomialsPnpqq) for n ď 12.

Theorem 1.1 has two interesting consequences. The first one concerns the poly-
nomialsPnpqq. Let us state it.
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2 CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Corollary 1.2. For each ně 1 the polynomial Pnpqq is a monic polynomial of
degree2n ´ 2 with integer coefficients and we have

Pnp1q “ σpnq “
ÿ

d|n ; dě1

d.

As is well known, the sumσpnq of positive divisors ofn is equal to the number
of subgroups of indexn of the free abelian groupZ2 of rank two. Thus Theorem 1.1
and Corollary 1.2 imply that the number of ideals of codimension n of the Laurent
polynomial algebraFqrx, y, x´1, y´1s, i.e. of the algebra of the groupZ2, is, up to
the factorpq ´ 1q2, aq-analogue1 of the number of subgroups of indexn of Z2.

A similar phenomenon had been observed by Bacher and the second-named
author in [3]: up to a power ofq ´ 1, the number of right ideals of codimensionn
of the algebraFqrF2s of the rank two free groupF2 is aq-analogue of the number
of subgroups of indexn of F2. Actually it was this observation that prompted us to
compute the number of ideals of codimensionn of the algebraFqrZ2s of the free
abelian groupZ2, i.e. ofFqrx, y, x´1, y´1s.

In a similar context, the following holds.
(a) By [8] (see also Section 3.1 below) the number of ideals ofcodimensionn of

the polynomial algebraFqrx, ys, which is the algebra of the free abelian monoidN2,
is aq-analogue of the numberppnq of partitions ofn; as is well known, the latter is
equal to the number of ideals of the monoidN2 whose complement is of cardinal-
ity n.

(b) In a non-commutative setting, by [20, 2], the number of right ideals of codi-
mensionn of the free algebraFqxx, yy is aq-analogue of the number of right ideals
of the free monoidxx, yy˚ whose complement is of cardinalityn.

(c) It may be shown that the number of right ideals of codimension 2 of the
algebraFqrF3s of the rank three free groupF3 is equal to

q2pq ´ 1q5
`
pq ` 1q3 ´ 1

˘
.

The last factor is obviously aq-analogue of 23 ´ 1 “ 7, which is the number of
subgroups of index 2 ofF3.

We conjecture the number of right ideals of codimension 2 of the algebraFqrFr s
of the free groupFr with r generators to be of the formqipq´1q j ppq ` 1qr ´ 1q for
some non-negative integersi, j; the last factor is then aq-analogue of the number
2r ´ 1 of subgroups of index 2 ofFr . More generally, we expect the number of
right ideals of codimensionn of FqrFr s, up to a power ofq ´ 1, to be aq-analogue
of the number of subgroups of indexn of Fr (see also the conclusion of [3]).

Remark 1.3. The commutative algebraLr “ Fqrx1, x
´1
1 , . . . , xr , x

´1
r s of Laurent

polynomials inr variables (r ě 3) provides a distinct contrast with the cases dis-
cussed above. We can show that the number of right ideals of codimension 2 ofLr ,
which is the algebra of the free abelian groupZr , is equal topq ´ 1qrRrpqq, where

Rrpqq “ 1
2

ppq ` 1qr ` pq ´ 1qr q ` qr ´ 1
q ´ 1

´ 1.

The latter is aq-analogue ofRrp1q “ 2r´1 ` r ´ 1. Now the number of subgroups
of index 2 ofZr is equal to 2r ´ 1, which is different fromRrp1q whenr ě 3.

1By aq-analogue of an integerr we mean a polynomialPpqq in the variableq such thatPp1q “ r.
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The second consequence of Theorem 1.1 expresses the generating function of
the polynomialsCnpqq as a nice infinite product.

Corollary 1.4. (a) We have

1 `
ÿ

ně1

Cnpqq
qn tn “

ź

iě1

p1 ´ tiq2

1 ´ pq ` q´1qti ` t2i
.

(b) The polynomials Cnpqq and Pnpqq are palindromic.

The previous infinite product shows up in [9, p. 10] (see for instance Equa-
tions (9.2) and (10.1)) and probably in other papers on basichypergeometric series;
in an algebraic geometry context it appears in [16, Th. 4.1.3], where it is equal to
the generating function of theE-polynomials of the punctual Hilbert schemes of
the complex two-dimensional torus (see details in Section 6.3 below).

Using Corollary 1.4, we gave explicit expressions for the coefficients of the poly-
nomialsCnpqq andPnpqq in the companion paper [18] (see Theorems 1.1 and 1.2
in loc. cit.). We obtained a rather striking positivity result, namely the coefficients
of Pnpqq are allnon-negativeintegers. For the sake of completeness we recall our
formulas for the coefficients of the polynomialsCnpqq andPnpqq in Appendix A.

The paper is organized as follows. Section 2 is devoted to some preliminaries:
we first recall the one-to-one correspondence between the ideals of the localiza-
tion S´1A of an algebraA and certain ideals ofA; we also count tuples of polyno-
mials subject to certain constraints over a finite field.

In Section 3 we recall Conca and Valla’s parametrization of the affine cells in
a decomposition of the Hilbert scheme ofn points in the plane; these cells are
indexed by the partitions ofn. We show how to deduce a parametrization of the
cells in the induced decomposition of the Hilbert scheme ofn points in a Zariski
open subset of the plane.

In Section 4 we apply the techniques of the preceding sectionto compute the
number of ideals of codimensionn of Fqrx, y, y´1s. In passing we give a criterion
(Proposition 4.1) which will also be used in the proof of Theorem 1.1.

In Section 5 we define what we call an invertible Gröbner cell, which is a Zariski
open subset of the corresponding affine cell, and compute its cardinality over a
finite field. We derive a proof of Theorem 1.1.

The proofs of Corollary 1.4 of and of Corollary 1.2 are given in Section 6.
In Appendix A we briefly recall the results on the coefficients ofCnpqq andPnpqq

we obtained in [18].

2. Preliminaries

We fix a ground fieldk. By algebra we mean an associative unitalk-algebra. In
this paper all algebras are assumed to becommutative.

2.1. Ideals in localizations. Let A be a (commutative) algebra,S a multiplicative
submonoid ofA not containing 0, andS´1A the corresponding localization ofA.
We assume that the canonical algebra mapi : A Ñ S´1A is injective (this is the
case, for instance, whenA is a domain).

Recall the well-known correspondence between the ideals ofS´1A and those
of A (see [4, Chap. 2,§ 2, no 4–5], [7, Prop. 2.2]).
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(a) For any idealJ of S´1A, the seti´1pJq “ J X A is an ideal ofA and we
haveJ “ i´1pJqS´1A. The mapJ ÞÑ i´1pJq is an injection from the set
of ideals ofS´1A to the set of ideals ofA.

(b) An idealI of A is of the formi´1pJq for some idealJ of S´1A if and only
if for all s P S the endomorphism ofA{I induced by the multiplication
by s is injective.

Given an integern ě 1, a n-codimensionalideal of A is an ideal such that
dimk A{I “ n. For such an ideal, the previous condition (b) is then equivalent to:
for all s P S, the endomorphism ofA{I induced by the multiplication bys is a
linear isomorphism.

We leave the proof of the following lemma to the reader.

Lemma 2.1. If J is a finite-codimensional ideal of Ś1A, then the canonical alge-
bra map i: A Ñ S´1A induces an algebra isomorphism

A{i´1pJq – pS´1Aq{J.

It follows that there is a bijection between the set ofn-codimensional ideals
of S´1A and the set ofn-codimensional idealsI of A such that for alls P S, the
endomorphism ofA{I induced by the multiplication bys is a linear isomorphism.
The latter assertion is equivalent tos being invertible moduloI , that is the image
of s in A{I being invertible.

The following criterion will be used in Sections 4 and 5.

Lemma 2.2. Let A be a commutative algebra. For any sP A, let p: A Ñ A{psq be
the natural projection onto the quotient algebra of A by the ideal generated by s.
If I is an ideal of A, then s is invertible modulo I if and only ifppIq “ A{psq.

Proof. If s is invertible moduloI , then there existst P A such thatst́ 1 P I . Hence,
pp1q belongs toppIq, which impliesppIq “ A{psq. Conversely, ifppIq “ A{psq,
then pp1q “ ppuq for someu P I . Hence 1́ u P psq, which means that there is
t P A such that 1́ u “ st. Thus,st ” 1 pmod Iq. �

2.2. Counting polynomials over a finite field. In this subsection we assume that
k “ Fq is a finite field of cardinalityq. We shall need the following in Section 5.

Proposition 2.3. Let d, h be integersě 1 and Q1, . . . ,Qh P Fqrys be coprime
polynomials. The number ofph ` 1q-tuples pP,P1, . . . ,Phq satisfying the three
conditions

(i) P is a degree d monic polynomial with Pp0q ‰ 0,
(ii) P1, . . . ,Ph are polynomials of degreeă d, and
(iii) P and P1Q1 ` ¨ ¨ ¨ ` PhQh are coprime,

is equal to

pq ´ 1q2 qph´1qd q2d ´ 1

q2 ´ 1
.

Before giving the proof, we state and prove two auxiliary lemmas.

Lemma 2.4. Let R be a finite commutative ring and a1, . . . , ah P R such that a1R`
¨ ¨ ¨ ` ahR “ R. For any bP R, the number of h-tuplespx1, . . . , xhq P Rh such that
a1x1 ` ¨ ¨ ¨ ` ahxh “ b is equal topcardRqh´1.
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Proof. The mappx1, . . . , xhq ÞÑ a1x1 ` ¨ ¨ ¨ ` ahxh is a homomorphismRh Ñ
R of additive groups. Since it is surjective, the number ofh-tuples satisfying
the above condition is equal to the cardinality of its kernel, which is equal to
cardRh{cardR “ pcardRqh´1. �

Lemma 2.5. Let d ě 1 be an integer. The number of couplespP,Qq P Fqrys2 such
that P is a degree d monic polynomial with Pp0q ‰ 0, Q is of degreeă d, and P
and Q are coprime is equal to

cd “ pq ´ 1q2 q2d ´ 1

q2 ´ 1
.

Proof. This amounts to counting the number of couplespP, zq, whereP P Fqrys is
a degreed monic polynomial not divisible byy andz is an invertible element of the
quotient ringFqrys{pPq.

ExpandingP into a product of irreducible polynomials and using the Chinese
remainder lemma, we have

1 `
ÿ

dě1

cdtd “
ź

P irreducible
P‰y

˜
1 `

ÿ

kě1

cardpFqrys{pPqqˆ tkdegpPq

¸
,

where the product is taken over all irreducible polynomialsof Fqrys different fromy
and where degpPq denotes the degree ofP. First observe that for any irreducible
polynomialP P Fqrys the grouppFqrys{pPqqˆ of invertible elements ofFqrys{pPq
is of cardinalityqkdegpPq ´ qpk´1q degpPq: indeed, there areqkdegpPq polynomials of
degreeă kdegpPq andqpk´1q degpPq of them are divisible byP, hence not invertible
in Fqrys{pPq. Consequently,

1 `
ÿ

dě1

cdtd “
ź

P irreducible
P‰y

˜
1 `

´
1 ´ q´ degpPq

¯ ÿ

kě1

pqtqk degpPq

¸

“
ź

P irreducible
P‰y

˜
1 `

´
1 ´ q´ degpPq

¯ pqtqdegpPq

1 ´ pqtqdegpPq

¸

“
ź

P irreducible
P‰y

1 ´ tdegpPq

1 ´ pqtqdegpPq
.

On one hand the infinite product
ś

P irreducible
P‰y

p1 ´ tdegpPqq´1 is equal to the zeta

functionZA1zt0uptq of the affine line minus a point. On the other,

ZA1zt0uptq “ ZA1ptq
Zt0uptq “ 1 ´ t

1 ´ qt
.

Therefore,

1 `
ÿ

dě1

cdtd “ 1 ´ qt

1 ´ q2t

N
1 ´ t
1 ´ qt

“ p1 ´ qtq2

p1 ´ tqp1 ´ q2tq .

Subtracting 1 from both sides, we obtain
ÿ

dě1

cdtd “ pq ´ 1q2 t

p1 ´ tqp1 ´ q2tq ,
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from which it is easy to derive the desired formula forcd. �

Proof of Proposition 2.3.We have to count the number of thoseph ` 2q-tuples
pP,Q,P1, . . . ,Phq such thatP is a degreed monic polynomial withPp0q ‰ 0, Q is
a polynomial of degreeă d and coprime toP, each polynomialPi is of degreeă d,
and

řh
i“1 PiQi ” Q moduloP.

By Lemma 2.5, the number of couplespP,Qq satisfying these conditions is equal
to pq ´ 1q2 pq2d ´ 1q{pq2 ´ 1q. Since cardFqrys{pPq “ qd, by Lemma 2.4 we have
qdph´1q choices for theh-tuplespP1, . . . ,Phq. The number we wish to count is the
product of the two previous ones. �

3. The Hilbert scheme of points in a Zariski open subset of the plane

Let k be a field. As is well known, the ideals of codimensionn of an affine
k-algebraA are in bijection with thek-points of the Hilbert scheme parametrizing
finite subschemes of colengthn of the spectrum ofA. For instance the ideals of
codimensionn of the polynomial algebrakrx, ys are in bijection with thek-points
of the Hilbert scheme HilbnpA2

kq of n points on the affine plane. Similarly, the
ideals of codimensionn of the Laurent polynomial algebrakrx, y, x´1, y´1s are in
bijection with thek-points of the Hilbert scheme HilbnppA1

kzt0uq ˆ pA1
kzt0uqq of

n points on the two-dimensional torus, which is a Zariski opensubset of the plane.
In this paragraph we prove that the Hilbert scheme ofn points in a Zariski open

subset of the plane is an open subscheme of the Hilbert schemeof n points in the
plane, and show how to determine it explicitly.

3.1. Parametrizing the finite-codimensional ideals ofkrx, ys. Computing the
homology of Hilbert scheme HilbnpA2

kq, Ellingsrud and Strømme [8] showed that
it has a cellular decomposition indexed by the partitionsλ of n, each cellCλ being
an affine space of dimensionn ` ℓpλq, whereℓpλq is the length ofλ.

It follows that, in the special case whenk “ Fq is a finite field of cardinalityq,
the numberAnpqq of ideals ofFqrx, ys of codimensionn is finite and given by the
polynomial

(3.1) Anpqq “
ÿ

λ$n

qn`ℓpλq,

where the sum runs over all partitionsλ of n (we indicate this by the notationλ $ n
or by |λ| “ n). The polynomialAnpqq clearly has non-negative integer coefficients,
its degree is 2n, andAnp1q “ ppnq is equal to the number of partitions ofn (for
more on the polynomialsAnpqq, see Remark 4.7).

For our purposes we need an explicit description of the affine cellsCλ. We use
a parametrization due to Conca and Valla [6]. Let us now recall it.

Given a positive integern, there is a well-known bijection between the partitions
of n and the monomials ideals of codimensionn of krx, ys. The correspondence is
as follows: to a partitionλ of n we associate the sequence

0 “ m0 ă m1 ď ¨ ¨ ¨ ď mt

of integers counting from right to left the boxes in each column of the Ferrers
diagram ofλ; we havem1 ` ¨ ¨ ¨ ` mt “ n. Then the associated monomial idealI0

λ

is given by

(3.2) I0
λ “ pxt, xt´1ym1, . . . , xymt´1, ymt q.
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(Note that the generating set in the right-hand side of (3.2)is in general not mini-
mal.) The setBλ “ txiy j | 0 ď i ă t, 0 ď j ă miu induces a linear basis of the
n-dimensional quotient algebrakrx, ys{I0

λ
.

Consider the lexicographic ordering on the monomialsxiy j given by

1 ă y ă y2 ă ¨ ¨ ¨ ă x ă xy ă xy2 ă ¨ ¨ ¨ ă x2 ă x2y ă x2y2 ă ¨ ¨ ¨
Then the cellCλ, calledGröbner cell in [6], is by definition the set of idealsI
of krx, ys such that the dominating terms (for this ordering) of the elements ofI
generate the monomial idealI0

λ
. It was proved in [8] thatCλ is an affine space.

Here is how Conca and Valla explicitly parametrizeCλ. Given a partitionλ
of n and the associated sequence 0“ m0 ă m1 ď ¨ ¨ ¨ ď mt, they first define the
sequence of integersd1, . . . , dt by

(3.3) di “ mi ´ mi´1 ě 0.

We haved1 “ m1 ą 0.
Later we shall also need the integer

(3.4) vpλq “ cardti “ 1, . . . , t | di ě 1u ;

this integer is equal to the number of distinct values of the sequencem1 ď ¨ ¨ ¨ ď mt.
Note thatvpλq ě 1; moreover,vpλq “ 1 if and only if the partition is “rectangular”,
i.e. m1 “ ¨ ¨ ¨ “ mt pą 0q.

Let Tλ be the set ofpt ` 1q ˆ t-matricesppi, jq with entries in the one-variable
polynomial algebrakrys satisfying the following conditions:pi, j “ 0 if i ă j, the
degree ofpi, j is less thand j if i ě j andd j ě 1, andpi, j “ 0 for all i if d j “ 0.
The setTλ is an affine space whose dimension isn ` ℓpλq.

Now consider thept ` 1q ˆ t-matrix
(3.5)

Mλ “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

yd1 ` p1 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0
p2,1 ´ x yd2 ` p2 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0

p3,1 p3,2 ´ x yd3 ` p3 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

pi´1,1 pi´1,2 pi´1,3 ¨ ¨ ¨ ydi´1 ` pi´1 0 0 ¨ ¨ ¨ 0
pi,1 pi,2 pi,3 ¨ ¨ ¨ pi,i´1 ´ x ydi ` pi 0 ¨ ¨ ¨ 0

pi`1,1 pi`1,2 pi`1,3 ¨ ¨ ¨ pi`1,i´1 pi`1,i ´ x ydi`1 ` pi`1 ¨ ¨ ¨ 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

pt,1 pt,2 pt,3 ¨ ¨ ¨ pt,i´1 pt,i pt,i`1 ¨ ¨ ¨ ydt ` pt

pt`1,1 pt`1,2 pt`1,3 ¨ ¨ ¨ pt`1,i´1 pt`1,i pt`1,i`1 ¨ ¨ ¨ pt`1,t ´ x

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

,

where for simplicity we setpi “ pi,i .
By [6, Th. 3.3] the map sending the polynomial matrixppi, jq P Tλ to the idealIλ

of krx, ys generated by allt-minors (the maximal minors) of the matrixMλ is a
bijection of Tλ onto Cλ. These minors are polynomial expressions with integer
coefficients in the coefficients of thepi, j ’s.

3.2. Localizing. Let S be a multiplicative submonoid ofkrx, ys not containing 0.
We assume thatS has a finite generating setΣ. In the sequel we shall concentrate
on two cases:Σ “ tyu (in Section 4) andΣ “ tx, yu (in Section 5).

It follows from Section 2 that the set ofn-codimensional ideals of the localiza-
tion S´1krx, ys can be identified with the subset of HilbnpA2

kq consisting of the
n-codimensional idealsI of krx, ys such that for alls P S, the endomorphismµs

of krx, ys{I induced by the multiplication bys is a linear isomorphism. The latter
is equivalent to detµs ‰ 0 for all s P Σ.
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By the considerations of Section 3.1, the set ofn-codimensional ideals of the
algebraS´1krx, ys is the disjoint union

ž

λ$n

CΣλ ,

whereCΣ
λ

is the Zariski open subset of the affine Gröbner cellCλ consisting of the
points satisfying detµs ‰ 0 for all s P Σ.

Consequently, the Hilbert scheme HilbnpSpecpS´1krx, ysqq parametrizing sub-
schemes of colengthn in SpecpS´1krx, ysq is an open subscheme of HilbnpA2

kq,
hence an open subscheme of HilbnpP2

kq. Since by [10, 12] the latter is smooth and
projective, HilbnpSpecpS´1krx, ysqq is a smooth quasi-projective variety.

The endomorphismµx (resp.µy) of krx, ys{I induced by the multiplication byx
(resp. byy) can be expressed as a matrix in the basisBλ. Observe that the en-
tries of such a matrix are polynomial expressions with integer coefficients in the
coefficients of thepi, j ’s. Therefore, if anys P Σ is a linear combination with
integer coefficients of monomials in the variablesx, y, then the Hilbert scheme
HilbnpSpecpS´1krx, ysqq is defined overZ as a variety.

In particular, the Hilbert schemes HilbnpA1
k ˆ pA1

kzt0uqq and HilbnppA1
kzt0uq2q

are smooth quasi-projective varieties defined overZ.

Example 3.1. Let λ be the unique self-conjugate partition of 3. In this case,t “ 2,
m1 “ 1, m2 “ 2, henced1 “ d2 “ 1. The corresponding matrixMλ, as in (3.5), is

Mλ “

¨
˝

y ` a 0
b ´ x y` d

c e´ x

˛
‚,

wherea, b, c, d, e are scalars. The associated Gröbner cellCλ is a 5-dimensional
affine space parametrized by these five scalars. The idealIλ is generated by the
maximal minors of the matrix, namely bypb´ xqpe´ xq ´ cpy` dq, pe´ xqpy` aq,
andpy ` aqpy ` dq. It follows that moduloIλ we have the relations

x2 ” pb ` eqx ` cy` pcd ´ beq, xy ” ´ax` ey` ae, y2 ” ´pa ` dqy ´ ad.

In the basisBλ “ tx, y, 1u the multiplication endomorphismsµx andµy can be
expressed as the matrices

µx “

¨
˝

b ` e ´a 1
c e 0

cd ´ be ae 0

˛
‚ and µy “

¨
˝

´a 0 0
e ´pa ` dq 1
ae ´ad 0

˛
‚.

We have detµx “ epac´ cd ` beq and detµy “ ´ad2.
It follows from the above computations that, if for instanceΣ “ tx, yu, then

CΣ
λ

is the complement in the affine spaceA5
k of the union of the three hyperplanes

a “ 0, d “ 0, e “ 0 and of the quadric hypersurfaceac´ cd ` be“ 0.

4. The punctual Hilbert scheme of the complement of a line in an affine plane

In this section we apply the considerations of the previous section to the case
Σ “ tyu. HereS is the multiplicative submonoid ofkrx, ys generated byy and
S´1krx, ys “ krx, y, y´1s “ krxsry, y´1s.

By Section 3.2, the Hilbert scheme HilbnpA1
k ˆ pA1

kzt0uqq, that is the set ofn-
codimensional ideals ofkrx, y, y´1s, is the disjoint union over the partitionsλ of n
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of the setsCy
λ
, whereCy

λ
consists of the idealsI P Cλ such thaty is invertible

in krx, ys{I . We call Cy
λ

the semi-invertible Gröbner cellassociated to the parti-
tion λ.

4.1. A criterion for the invertibility of y. Let py : krx, ys Ñ krxs be the algebra
map sendingx to itself andy to 0. Then by Lemma 2.2, the setCy

λ
consists of the

idealsI P Cλ such thatpypIq “ krxs.
Recall from Section 3.1 thatIλ is generated by the maximal minors of the ma-

trix Mλ of (3.5), namely by the polynomialsf0px, yq, . . ., ftpx, yq, where we define
fipx, yq to be the determinant of thet ˆ t-matrix obtained fromMλ by deleting its
pi ` 1q-st row. Then the idealpypIλq can be identified with the ideal ofkrxs gen-
erated by the polynomialsf0px, 0q, . . . , ftpx, 0q P krxs obtained by settingy “ 0.
We need to determine under what conditions this ideal is equal to the whole alge-
brakrxs.

Recall the entries of the matrixMλ and particularly the polynomialspi, j and
pi “ pi,i P krys. Let ai, j “ pi, jp0q be the constant term ofpi, j . As above, we set
ai “ ai,i “ pip0q. Note thata j “ 1 andai, j “ 0 for all i ‰ j wheneverd j “ 0.

Then f0px, 0q, . . . , ftpx, 0q are the maximal minors of the matrix

My
λ

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

a1 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0
a2,1 ´ x a2 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0

a3,1 a3,2 ´ x a3 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0
...

...
...

. . .
...

...
...

...

ai´1,1 ai´1,2 ai´1,3 ¨ ¨ ¨ ai´1 0 0 ¨ ¨ ¨ 0
ai,1 ai,2 ai,3 ¨ ¨ ¨ ai,i´1 ´ x ai 0 ¨ ¨ ¨ 0

ai`1,1 ai`1,2 ai`1,3 ¨ ¨ ¨ ai`1,i´1 ai`1,i ´ x ai`1 ¨ ¨ ¨ 0
...

...
...

. . .
...

...
...

. . .
...

at,1 at,2 at,3 ¨ ¨ ¨ at,i´1 at,i at,i`1 ¨ ¨ ¨ at

at`1,1 at`1,2 at`1,3 ¨ ¨ ¨ at`1,i´1 at`1,i at`1,i`1 ¨ ¨ ¨ at`1,t ´ x

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

.

To be precise,fipx, 0q is the determinant of the square matrix obtained fromMy
λ

by
deleting itspi ` 1q-st row.

The criterion we need is the following.

Proposition 4.1. We have pypIλq “ krxs if and only if ai ‰ 0 for all i “ 1, . . . , t
such that di ě 1.

Proof. Sinceai “ 1 whendi “ 0, it is equivalent to prove thatpypIλq “ krxs if and
only if a1a2 ¨ ¨ ¨ at ‰ 0.

Set Ix “ pypIλq Ă krxs. The conditiona1a2 ¨ ¨ ¨ at ‰ 0 is sufficient. Indeed,
the last polynomial,ftpx, 0q, is the determinant of a lower triangular matrix whose
diagonal entries are the scalarsai ; hence,ftpx, 0q “ a1a2 ¨ ¨ ¨ at. Thus, if ftpx, 0q is
non-zero, thenIx “ krxs.

To check the necessity of the condition, we will prove that for eachi “ 1, . . . , t,
the vanishing of the scalarai implies that the idealIx is contained in a proper ideal
generated by a minor ofMy

λ
.

If a1 “ 0, then f1px, 0q “ ¨ ¨ ¨ “ ftpx, 0q “ 0 since these are determinants of
matrices whose first row is zero. It follows thatIx is the principal ideal generated
by the characteristic polynomialf0px, 0q, which is of degreet ě 1. Hence,Ix is a
proper ideal ofkrxs.
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Let now i ě 2. If for k ě i, we delete thepk ` 1q-st row of My
λ
, we obtain a

lower block-triangular matrix of the form
ˆ

M1 0

˚ Mpkq
2

˙
,

whereM1 is the square submatrix ofMy
λ

corresponding to the rows 1, . . . , i and to
the columns 1, . . . , i; this is a lower triangular matrix whose diagonal entries are
a1, . . . , ai . Consequently, ifai “ 0, then fkpx, 0q “ 0 for all k ě i.

Under the same conditionai “ 0, if we delete thepk`1q-st row ofMy
λ

for k ă i,
then we obtain a lower block-triangular matrix of the form

ˆ
Mpkq

1 0
˚ M2

˙
,

whereM2 is the square submatrix ofMy
λ

corresponding to the rowsi ` 1, . . . t ` 1
and to the columnsi, . . . t:

M2 “

¨
˚̊
˚̊
˚̋

ai`1,i ´ x ai`1 ¨ ¨ ¨ 0 0
ai`2,i ai`2,i`1 ´ x ¨ ¨ ¨ 0 0
...

...
. . .

...
...

at,i ¨ ¨ ¨ ¨ ¨ ¨ at,t´1 ´ x at

at`1,i at`1,i`1 ¨ ¨ ¨ at`1,t´1 at`1,t ´ x

˛
‹‹‹‹‹‚
.

Consequently, the polynomialsfkpx, 0q for k ă i are all divisible by the determi-
nant of M2. Thus, Ix is contained in the ideal generated by detpM2q, which is a
characteristic polynomial of degreet ´ i `1. Sincet ´ i `1 ě 1 for all i “ 1, . . . , t,
we haveIx ‰ krxs. �

As an immediate consequence of Section 3.2 and of Proposition 4.1 we obtain
the following.

Corollary 4.2. The set of n-codimensional ideals of krx, y, y´1s is the disjoint union
ž

λ$n

Cy
λ
,

where Cy
λ

is the complement in the affine Gröbner cell Cλ of the union of the hy-
perplanes ai “ 0 where i runs over all integers i“ 1, . . . , t such that di ě 1.

4.2. On the number of finite-codimensional ideals ofFqrx, y, y´1s. Recall the
positive integervpλq defined by (3.4).

Proposition 4.3. Let k “ Fq. For each partitionλ of n, the set Cy
λ

is finite and its
cardinality is given by

cardCy
λ

“ pq ´ 1qvpλq qn`ℓpλq´vpλq.

Proof. By Corollary 4.2 the setCy
λ

is parametrized byn ` ℓpλq parameters subject
to the sole condition thatvpλq of them are not zero. �

Corollary 4.4. For each integer ně 1, the number Bnpqq of n-codimensional
ideals ofFqrx, y, y´1s is equal topq ´ 1q qn B˝

npqq, where

B˝
npqq “

ÿ

λ$n

pq ´ 1qvpλq´1 qℓpλq´vpλq.
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Note thatB˝
npqq is a polynomial inq sincevpλq ě 1 andℓpλq ě vpλq for all

partitions. It is of degreen´1 and has integer coefficients. The coefficients ofB˝
npqq

may be negative, as one can see in Table 3 at the end of the paper.

Remark 4.5. Let vn be the valuation of the polynomialB˝
npqq, i.e. the maximal

integerr such thatqr dividesB˝
npqq. We conjecture thatvn “ 0, 1, or 2, and that

the infinite wordv1v2v3 . . . is equal to 0
ś8

n“1 012n02n.

Let us now give a product formula for the generating functionof the sequence
of polynomialsBnpqq and an arithmetical interpretation for two values ofB˝

npqq.

Theorem 4.6. (a) Let Bnpqq be the number of ideals ofFqrx, y, y´1s of codimen-
sion n. We have

1 `
ÿ

ně1

Bnpqq
qn tn “

ź

iě1

1 ´ ti

1 ´ qti
.

(b) Let B̋npqq be the polynomial B̋npqq “ pq ´ 1q´1q´nBnpqq. It has integer
coefficients and satisfies

B˝
np1q “ σ0pnq,

whereσ0pnq is the number of divisors of n, and

B˝
np´1q “

"
p´1qk´1 if n “ k2 for some integer k,

0 otherwise.

Proof. (a) Since an analogous proof will be used in Remark 4.7 and in Section 6.2,
we give here a detailed proof. LetX be a set andM be the free abelian monoid onX
(X is called a basis ofM). We say that a functionϕ : M Ñ R from M to a ringR
is multiplicative if ϕpuvq “ ϕpuqϕpvq for all couplespu, vq P M2 of words having
no common basis element. Under this condition, it is easy to check the following
identity:

(4.1)
ÿ

wPM

ϕpwq “
ź

xPX

˜
1 `

ÿ

eě1

ϕpxeq
¸
.

Now, identifying each partition with its planar diagram, weconsider a partitionλ
as a union of rectangular partitionsiei , with ei parts of lengthi, for ei ě 1 and
distinct i ě 1, which we denote by the formal productλ “ ś

iě1 iei . Thus the
set of partitions is equal to the free abelian monoid onX “ Nzt0u. Before we
apply (4.1), let us remark that|λ| “

ř
i iei and ℓpλq “

ř
i ei . Moreover, the

multisetstei | i ě 1u andtdi | i ě 1u are equal (recall that the integersdi are those
associated withλ in (3.3)); therefore,vpλq “

ř
i 1 “ cardti | ei ě 1u.
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The functionλ ÞÑ cardCy
λ

s|λ| computed in Proposition 4.3 is clearly multiplica-
tive. Applying (4.1), we obtain

1 `
ÿ

ně1

Bnpqqsn “ 1 `
ÿ

|λ|ě1

cardCy
λ

s|λ|

“
ź

iě1

˜
1 `

ÿ

eě1

cardCy
ie sie

¸

“
ź

iě1

˜
1 `

ÿ

eě1

pq ´ 1qqie`é 1sie

¸

“
ź

iě1

˜
1 ` pq ´ 1qq´1

ÿ

eě1

pqi`1siqe

¸

“
ź

iě1

ˆ
1 ` pq ´ 1qq´1 qi`1si

1 ´ qi`1si

˙

“
ź

iě1

p1 ´ qi`1siq ` pq ´ 1qqi si

1 ´ qi`1si

“
ź

iě1

1 ´ qi si

1 ´ qi`1si
.

Finally replacesby q´1t.
(b) To computeB˝

np1q we use the formula of Corollary 4.4. Since the values at
q “ 1 of pq ´ 1qvpλq´1 is 1 if vpλq “ 1 and 0 otherwise and sincevpλq “ 1 if and
only if m1 “ ¨ ¨ ¨ “ mt “ d, in which casedt “ n, we have

B˝
np1q “

ÿ

dt“n

1 “
ÿ

d|n

1 “ σ0pnq.

For B˝
np´1q we use the infinite product expansion of Item (a): replacingBnpqq

by pq ´ 1qqnB˝
npqq, we obtain

1 `
ÿ

ně1

pq ´ 1qB˝
npqqtn “

ź

iě1

1 ´ ti

1 ´ qti
.

Settingq “ ´1 yields

1 ´ 2
ÿ

ně1

B˝
np´1qtn “

ź

iě1

1 ´ ti

1 ` ti
.

Now recall the following identity of Gauss (see [9, (7.324)]or [17, 19.9 (i)]):

(4.2)
ź

iě1

1 ´ ti

1 ` ti
“

ÿ

kPZ

p´1qktk
2
.

It follows that

1 ´ 2
ÿ

ně1

B˝
np´1qtn “ 1 ` 2

ÿ

kě1

p´1qktk
2
,

which allows us to conclude. �
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Remark 4.7. The results of Theorem 4.6 should be compared to the following ones
concerning the numberAnpqq of ideals ofFqrx, ys of codimensionn. Proceeding as
in the proof of Theorem 4.6, we deduce from (3.1) that

1 `
ÿ

ně1

Anpqqsn “
ź

iě1

1

1 ´ qi`1si
.

Settingq “ ´1, we have

(4.3) 1`
ÿ

ně1

Anp´1qsn “
ź

iě1

1

1 ´ p´1qi`1si
“

ź

mě1

1

p1 ´ s2m´1qp1 ` s2mq .

Multiplying by
ś

mě1 p1 ` s2mq´1 both sides of the Euler identity
ź

mě1

1

1 ´ s2m´1
“

ź

iě1

p1 ` siq

(see [17, (19.4.7)]), we deduce that the right-hand side of (4.3) is equal to the
infinite product ź

mě1

p1 ` s2m´1q.

Thus by [1, Table 14.1, p. 310] or [17, (19.4.4)], the valueAnp´1q is equal to the
number2 of partitions ofn with unequal odd parts. Note thatAnp1q is equal to the
number3 of partitions ofn. See Table 4 at the end for a list of the polynomialsAnpqq
(1 ď n ď 12).

5. Invertible Gröbner cells

Let HilbnppA1
kzt0uq2q be the Hilbert scheme parametrizing finite subschemes of

colengthn of the two-dimensional torus, i.e. of the complement of two distinct
intersecting lines in the affine plane. Itsk-points are in bijection with the set of
ideals ofkrx, y, x´1, y´1s of codimensionn. By Section 3.2 this set of ideals is the
disjoint union over the partitionsλ of n of the setsCx,y

λ
, whereCx,y

λ
consists of the

ideals I P Cλ such that bothx andy are invertible inkrx, ys{I . We callCx,y
λ

the
invertible Gröbner cellassociated to the partitionλ.

When the ground field is finite, so isCx,y
λ

. The aim of this section is to compute
the cardinality ofCx,y

λ
whenk “ Fq.

5.1. The cardinality of an invertible Gr öbner cell. Recall the non-negative in-
tegersd1, . . . , dt defined by (3.3) and the positive integervpλq defined by (3.4). We
now give a formula for cardCx,y

λ
.

Theorem 5.1. Let k“ Fq, n an integerě 1 andλ be a partition of n. Then

cardCx,y
λ

“ pq ´ 1q2vpλq qn´ℓpλq
ź

i“1,...,t
di ě1

q2di ´ 1
q2 ´ 1

.

The theorem will be proved in Section 5.3. It has the following straightforward
consequences.

2See Sequence A000700 in [19].
3See Sequence A000041 in [19].
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Corollary 5.2. Let k“ Fq andλ be a partition of n.
(a) cardCx,y

λ
is a monic polynomial in q with integer coefficients; it is of de-

gree n` ℓpλq.
(b) The polynomialcardCx,y

λ
is divisible bypq ´ 1q2. The quotient

Pλpqq “
cardCx,y

λ

pq ´ 1q2

is a monic polynomial in q with integer coefficients and of degree ǹ ℓpλq ´ 2.
(c) If the partitionλ is rectangular, i.e., if vpλq “ 1, in which case d2 “ ¨ ¨ ¨ “

dt “ 0 and d“ d1 is a divisor of n, then

Pλpqq “ qn´d q2d ´ 1

q2 ´ 1
“ qn´d

`
1 ` q2 ` ¨ ¨ ¨ ` q2d´2˘

.

In this case, Pλp1q “ d.
(d) If vpλq ě 2, then Pλpqq is divisible bypq ´ 1q2, and Pλp1q “ 0.

Remark 5.3. The polynomialsPλpqq may have negative coefficients. For instance,
if λ is the partition of 4 corresponding tot “ 2, d1 “ 1, d2 “ 2, then

Pλpqq “ q5 ´ 2q4 ` 2q3 ´ 2q2 ` q.

The rest of the section is devoted to the proof of Theorem 5.1.

5.2. A criterion for the invertibility of x. In Section 4 we introduced the algebra
mappy : krx, ys Ñ krxs sendingx to itself andy to 0. Similarly, letpx : krx, ys Ñ
krxs be the algebra map sendingx to 0 andy to itself. Then by Lemma 2.2, the set
Cx,y
λ

consists of the idealsI P Cλ such thatpxpIq “ krys and pypIq “ krxs. We
already have a criterion forpypIq “ krxs (see Proposition 4.1). We shall now give
a necessary and sufficient condition forpxpIq to be equal tokrys.

Resuming the notation of Section 4, we see thatpxpIq can be identified with the
ideal of krys generated by the polynomialsf0p0, yq, . . . , ftp0, yq P krys obtained
from the polynomialsf0px, yq, . . . , ftpx, yq by setting x “ 0. The polynomials
f0p0, yq, . . . , ftp0, yq are the maximal minors of the matrix

Mx
λ “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

yd1 ` p1 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0
p2,1 yd2 ` p2 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0
p3,1 p3,2 yd3 ` p3 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

pi´1,1 pi´1,2 pi´1,3 ¨ ¨ ¨ ydi´1 ` pi´1 0 0 ¨ ¨ ¨ 0
pi,1 pi,2 pi,3 ¨ ¨ ¨ pi,i´1 ydi ` pi 0 ¨ ¨ ¨ 0

pi`1,1 pi`1,2 pi`1,3 ¨ ¨ ¨ pi`1,i´1 pi`1,i ydi`1 ` pi`1 ¨ ¨ ¨ 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

pt,1 pt,2 pt,3 ¨ ¨ ¨ pt,i´1 pt,i pt,i`1 ¨ ¨ ¨ ydt ` pt

pt`1,1 pt`1,2 pt`1,3 ¨ ¨ ¨ pt`1,i´1 pt`1,i pt`1,i`1 ¨ ¨ ¨ pt`1,t

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

obtained from the matrixMλ of (3.5) by settingx “ 0.
Let µi be the determinant of the submatrixMi of Mx

λ
corresponding to the rows

pi ` 1q, . . . , pt ` 1q and to the columnsi, . . . , t. We haveµt “ pt`1,t and

µi “

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pi`1,i ydi`1 ` pi`1 ¨ ¨ ¨ 0
...

...
. . .

...

pt,i pt,i`1 ¨ ¨ ¨ ydt ` pt

pt`1,i pt`1,i`1 ¨ ¨ ¨ pt`1,t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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if 1 ď i ă t. Expandingµi along its first column, we obtain

(5.1) µi “
t´i`1ÿ

j“1

pi` j,i qi` j,i ,

where
(5.2)

qi` j,i “

$
’&
’%

µi`1 if j “ 1,

p´1q j´1 pydi`1 ` pi`1q ¨ ¨ ¨ pydi` j´1 ` pi` j´1q µi` j if 1 ă j ă t ´ i ` 1,

p´1qt´i pydi`1 ` pi`1q ¨ ¨ ¨ pydt´1 ` pt´1qpydt ` ptq if j “ t ´ i ` 1.

Observe also that

(5.3) fip0, yq “

$
’&
’%

µ1 if i “ 0,

pyd1 ` p1q ¨ ¨ ¨ pydi ` piq µi`1 if 1 ď i ă t,

pyd1 ` p1q ¨ ¨ ¨ pydt ` ptq if i “ t.

Lemma 5.4. If 1 ď i ď j ď t, thenµi belongs to the idealpµ j , ydj ` p jq generated
byµ j andpydj ` p jq.

Proof. The casei “ j is obvious. Otherwise, consider the matrixMi whose deter-
minant isµi; the column ofMi containing the entryydj ` p j can be written as the
sum of a column containing only the entryydj ` p j , the other entries being zero,
and of a column whose top entry is zero and the bottom ones formthe first column
of the matrixM j whose determinant isµ j . Therefore by the multilinearity property
of determinants,µi is the sum of a determinant which is a multiple ofydj ` p j and
of another determinant which is a multiple ofµ j; indeed, this second determinant
is block-triangular with one diagonal block equal toµ j. �

Here is our criterion for the invertibility ofx.

Proposition 5.5. We have pxpIλq “ krys if and only if ydi ` pi andµi are coprime
for all i “ 1, . . . , t.

Proof. (a) Let us first check that the above condition is sufficient. The fact that
ydt ` pt andµt are coprime implies that by (5.3) the gcd offtp0, yq and of ft´1p0, yq
is pyd1 ` p1q ¨ ¨ ¨ pydt´1 ` pt´1q. Now the gcd of the latter and offt´2p0, yq is
pyd1 ` p1q ¨ ¨ ¨ pydt´2 ` pt´2q in view of the fact thatydt´1 ` pt´1 and µt´1 are
coprime. Repeating this argument, we find that the gcd off0p0, yq, . . . , ftp0, yq is 1,
which implies thatpxpIλq “ krys.

(b) Conversely, suppose thatydj ` p j andµ j are not coprime for somej, i.e.,
pµ j , ydj ` p jq ‰ krys. By (5.3) and Lemma 5.4,f0p0, yq, . . . , f j´1p0, yq belong to
the idealpµ j , ydj ` p jq. On the other hand, again by (5.3), the remaining polyno-
mials f jp0, yq, . . . , ftp0, yq are divisible byydj ` p j , hence belong topµ j , ydj ` p jq.
Therefore,pxpIλq Ď pµ j , ydj ` p jq ‰ krys. �

For the proof of Theorem 5.1, we shall also need the followingresult.

Lemma 5.6. If ydj ` p j and µ j are coprime for all j ą i, then the polynomials
qi`1,i , . . . , qt`1,i of (5.2)are coprime.
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Proof. Proceeding as in Part (a) of the proof of Proposition 5.5 and using (5.2), one
shows by descending induction onj that the gcd ofq j`1,i , . . . , qt`1,i is

pydi`1 ` pi`1q ¨ ¨ ¨ pydj ` p jq.

In particular, for j “ i ` 1, the gcd ofqi`2,i , . . . , qt`1,i is pydi`1 ` pi`1q. The
conclusion follows from this fact together with the coprimality of pydi`1 ` pi`1q
and ofqi`1,i “ µi`1. �

5.3. Proof of Theorem 5.1. By Propositions 4.1 and 5.5, it is enough to count the
entries of the matrixMλ over Fqrys such thatpip0q ‰ 0 andydi ` pi andµi are
coprime for all i “ 1, . . . t. We consider these conditions successively fori “
t, t ´ 1, . . . , 1.

Assume first that all integersd1, . . . , dt are non-zero. Fori “ t, ydt ` pt is
a monic polynomial of degreedt with non-zero constant term,µt “ pt`1,t is of
degreeă dt, and both polynomials are coprime. It follows from Lemma 2.5(or
from Proposition 2.3 withd “ dt andh “ 1) that we havepq´1q2pq2dt ´1q{pq2´1q
possible choices for the last column ofMλ.

For i “ t ´ 1, it follows from (5.1) thatµt´1 “ P1Q1 ` P2Q2, whereQ1 “
qt,t´1 and Q2 “ ´qt`1,t´1, which are coprime by Lemma 5.6,P1 “ pt,t´1 and
P2 “ pt`1,t´1, which are both polynomials of degreeă dt´1. The polynomial
P “ ydt´1 ` pt´1 is monic of degreedt´1 with non-zero constant term, andQ “
µt´1 “ P1Q1 ` P2Q2 is coprime toP by the coprimality condition. It then follows
from Proposition 2.3 applied to the cased “ dt´1 andh “ 2 that there are

pq ´ 1q2qdt´1
q2dt´1 ´ 1

q2 ´ 1

possible choices for thept ´ 1q-st column ofMλ.
In general, the polynomialP “ ydi ` pi is monic of degreedt´1 with non-zero

constant term, and is assumed to be coprime toQ “ µi “
řt´i`1

j“1 pi` j,i qi` j,i .
By Lemma 5.6 the polynomialsqi`1,i , . . . , qt`1,i are coprime. Applying Proposi-
tion 2.3 to the cased “ di andh “ t ` 1 ´ i, we see that there are

pq ´ 1q2qpt´iqdi
q2di ´ 1

q2 ´ 1

possible choices for thei-th column ofMλ.
In the end we obtain a number of possible entries forMλ equal to

tź

i“1

pq ´ 1q2qpt´iqdi
q2di ´ 1

q2 ´ 1
“ qn´ℓpλq

tź

i“1

pq ´ 1q2 q2di ´ 1

q2 ´ 1

sinceℓpλq “ řt
i“1 di andn “ |λ| “ řt

i“1 pt ´ i ` 1q di . We have thus proved the
theorem when alld1, . . . , dt are non-zero.

Let E be the subset oft1, . . . , tu consisting of those subscriptsi for whichdi “ 0.
(Note that 1 does not belong toE sinced1 ą 0.) Assume now thatE is non-empty
and sett1 “ t ´ cardE. By assumptiont1 ă t. For any positive integeri ď t1, let d1

i
be equal to thei-th non-zerodi . The integersd1

1 “ d1, d1
2, . . .d

1
t1 are positive.

Recall that ifi P E, then thei-th column of the matrixMλ is zero except for the
pi, iq-entry which is 1. Permuting rows and columns, we may rearrange Mλ into a
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matrix M1
λ

of the form

M1
λ “

ˆ
Mν 0
N It´t1

˙
,

where It´t1 is an identity matrix of sizept ´ t1q. The pt1 ` 1q ˆ t1-matrix Mν
is of the form (3.5) witht replaced byt1, the sequenced1, . . . , dt by the shorter
sequenced1

1, . . . , d
1
t1 , and the partitionλ by the partitionν associated to the sequence

d1
1, . . . , d

1
t1 .

Let f 1
i be the determinant of the square matrix obtained fromM1

λ
by deleting

its pi ` 1q-st row. It is clear that up to sign and to reordering the maximal minors
f 1
0, . . . , f

1
t of M1

λ
are the same as those ofMλ. In view of the special form ofM1

λ
,

observe that

f 1
i “

#
f pνq
i if 0 ď i ď t1,

0 if t1 ă i ď t.

where f pνq
i is the determinant of thet1 ˆ t1-matrix obtained fromMν by deleting its

pi ` 1q-st row.
The number of possible entries ofMλ, which is the same as the number of possi-

ble entries ofM1
λ
, is then the product of the number of possible entries ofN, which

is a power ofq, and of the number of possible entries ofMν. Sinced1
1, . . . , d

1
t1 are

positive, by the first part of the proof, we know that the number of possible entries
of Mν is the product of a power ofq by

t1ź

i“1

pq ´ 1q2 q2d1
i ´ 1

q2 ´ 1
.

In other words, the number of possible entries ofMλ is

qc
ź

i“1,...,t
di ě1

pq ´ 1q2 q2di ´ 1

q2 ´ 1

for some non-negative integerc. Now since the invertible Gröbner cellCx,y
λ

is a
Zarisky open subset of the affine Gröbner cellCλ, the degree of the previous poly-
nomial inq must be the same as the degree of the cardinal ofCλ, which isqn`ℓpλq

by Section 3.1. This suffices to establish thatc “ n ´ ℓpλq and to complete the
proof of the theorem.

5.4. Proof of Theorem 1.1. By our remark at the beginning of Section 5, the num-
berCnpqq of ideals ofFqrx, y, x´1, y´1s of codimensionn is given by

(5.4) Cnpqq “
ÿ

λ$n

cardCx,y
λ
,

whereCx,y
λ

is theinvertible Gröbner cellassociated to the partitionλ. The equality
in Theorem 1.1 follows then from the formula for cardCx,y

λ
given in Theorem 5.1.

By Corollary 5.2 (a) cardCx,y
λ

is a monic polynomial which has integer coeffi-
cients and whose degree isn ` ℓpλq. Therefore,Cnpqq has integer coefficients and
its degree is maxtn ` ℓpλq | λ $ nu. Now ℓpλq is maximal if and only ifλ “ 1n, in
which caseℓpλq “ n. ThereforeCnpqq is monic and its degree is 2n.

Sinceνpλq ě 1, it follows from the formula in Theorem 5.1 that cardCx,y
λ

is
divisible by pq ´ 1q2 for each invertible Gröbner cell. Therefore, the polyno-
mial Cnpqq is divisible bypq ´ 1q2.
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6. Proofs of the corollaries

We now start the proofs of Corollary 1.2 and of Corollary 1.4.

6.1. Proof of Corollary 1.2. SinceCnpqq andpq´1q2 are both monic with integer
coefficients, so isPnpqq. The latter is the sum over all partitions ofn of the poly-
nomialsPλpqq (introduced in Corollary 5.2 (b)). By Corollary 5.2 (c)–(d), we have
Pλp1q “ 0 if vpλq ě 2 and, ifvpλq “ 1, thenλ is of the formtd, wheredt “ n, in
which casePλp1q “ d. The desired formula forPnp1q follows.

6.2. Proof of Corollary 1.4. As in the proof of Theorem 4.6 we consider each
partition λ as a union of rectangular partitionsiei , with ei parts of lengthi, for
ei ě 1 and distincti ě 1. Recall that|λ| “ ř

i iei , ℓpλq “ ř
i ei , andvpλq “ ř

i 1.
To indicate the dependance ofei on λ, we write ei “ eipλq. We then obtain the
following statement.

Proposition 6.1. We have the infinite product expansion

1 `
ÿ

λ

cardCx,y
λ

se1pλq
1 se2pλq

2 ¨ ¨ ¨ “
ź

iě1

p1 ´ qi siq2

p1 ´ qi`1siqp1 ´ qi´1siq
.

Proof. Proceeding as in the proof of Theorem 4.6 and using Theorem 5.1, we de-
duce that the left-hand side is equal to

1 `
ÿ

λ

ź

iě1

pq ´ 1q2 q2ei ´ 1

q2 ´ 1
qiei ´ei sei

i ,

which in turn is equal to

ź

iě1

˜
1 ` pq ´ 1q2

q2 ´ 1

ÿ

ei ě1

`
pqi`1siqei ´ pqi´1siqei

˘
¸

“
ź

iě1

ˆ
1 ` pq ´ 1q2

q2 ´ 1

ˆ
qi`1si

1 ´ qi`1si
´ qi´1si

1 ´ qi´1si

˙˙

“
ź

iě1

ˆ
1 ` pq ´ 1q2

q2 ´ 1

pq2 ´ 1qqi´1si

p1 ´ qi`1siqp1 ´ qi´1siq

˙

“
ź

iě1

ˆ
1 ` pq ´ 1q2qi´1si

p1 ´ qi`1siqp1 ´ qi´1siq

˙

“
ź

iě1

p1 ´ qi siq2

p1 ´ qi`1siqp1 ´ qi´1siq
.

�

Proof of Corollary 1.4.(a) Replacesi by pt{qqi in Proposition 6.1, use (5.4) and
Theorem 1.1, and observe thatp1 ´ qtiqp1 ´ q´1tiq “ 1 ´ pq ` q´1qti ` t2i .

(b) The infinite product is clearly invariant under the transformationq Ø q´1;
thus,Cnpq´1q “ q´2n Cnpqq. Together with degCnpqq “ 2n, this implies that
Cnpqq is palindromic. The polynomialPnpqq is palindromic as a quotient of two
palindromic polynomials. �
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6.3. An alternative proof of Corollary 1.4 (a). After we made public a first ver-
sion of this article, we learnt of an alternative geometric approach to the polyno-
mialsCnpqq. Indeed, Göttsche and Soergel determined the mixed Hodge structure
of the punctual Hilbert schemes of any smooth complex algebraic surface (see [11,
Th. 2]). Applying their result to the Hilbert schemeHn

C
“ HilbnpCˆ ˆ Cˆq of

n points of the complex two-dimensional torus, Hausel, Letellier and Rodriguez-
Villegas observed in [16, Th. 4.1.3] that the compactly supported mixed Hodge
polynomialHcpHn

C
; q, uq of Hn

C
fits into the equality of formal power series

(6.1) 1`
ÿ

ně1

HcpHn
C; q, uq tn

qn “
ź

iě1

p1 ` u2i`1tiq2

p1 ´ u2i`2qtiqp1 ´ u2iq´1tiq .

Settingu “ ´1 in (6.1), we obtain an infinite product expansion for the generating
function of theE-polynomialEpHn

C
; qq “ HcpHn

C
; q,´1q of Hn

C
, namely

(6.2) 1`
ÿ

ně1

EpHn
C; qq tn

qn “
ź

iě1

p1 ´ tiq2

1 ´ pq ` q´1qti ` t2i
.

Now, Hn
C

is strongly polynomial-count in the sense of Nick Katz (see [13, Appen-
dix]), probably a well-known fact (which also follows from the computations in
the present paper). Therefore, by [13, Th. 6.1.2] theE-polynomial counts the num-
ber of elements ofHn over the finite fieldFq, which is also the numberCnpqq of
ideals of codimensionn of Fqrx, y, x´1, y´1s. Thus (6.2) implies the equality of
Corollary 1.4 (a).

Remark 6.2. In the same vein as above, there is a geometric explanation ofthe
palindromicity of the polynomialsCnpqq. In [5] de Cataldo, Hausel, Migliorini ob-
served that any diffeomorphism betweenCˆ ˆCˆ and the cotangent bundleE ˆC
of the elliptic curveE “ C{Zris induces a linear isomorphism of graded vec-
tor spaces between the cohomology groups of the corresponding Hilbert schemes:
H˚pHn

C
,Qq – H˚pHilbnpE ˆ Cq,Qq. This isomorphism does not preserve the

mixed Hodge structures, as the one on the right-hand side is pure whereas the
one on the left-hand side is not. Nevertheless, such an isomorphism identifies the
weight filtration onH˚pHn

C
,Qq with the perverse Leray filtration onH˚pHilbnpEˆ

Cq,Qq associated to the natural projective map from HilbnpE ˆCq to then-th sym-
metric product ofC induced by the projection ofE ˆ C on the second factor. The
perverse Leray filtration is “palindromic” as a consequenceof the relative hard
Lefschetz theorem for the map above (see [5, Th. 4.1.1 and Th.4.3.2]).

Note that Hausel, Letellier and Rodriguez-Villegas observed a similar palin-
dromicity for theE-polynomial of certain character varieties and termed it “curious
Poincaré duality” in [15, Cor. 5.2.4] (see also [13, Cor. 3.5.3], [14, Cor. 1.4]).

Remark 6.3. The natural action of the groupCˆ ˆ Cˆ on itself induces an action
on the Hilbert schemeHn

C
. Consider the GIT quotientrHn

C
“ Hn

C
{{pCˆ ˆ Cˆq.

Using [13, Th. 2.2.12] and [15, Sect. 5.3], we see that theE-polynomial of rHn
C

is
given by

Ep rHn
C
; qq “ EpHn

C
; qq{pq ´ 1q2 “ Cnpqq{pq ´ 1q2 “ Pnpqq.

Recall from the introduction (see also the appendix below) that the coefficients
of Pnpqq are all non-negative. Therefore,rHn

C
provides an example of a polynomial-

count variety with odd cohomology and a counting polynomialwith non-negative
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coefficients. This implies non-trivial cancellation for the mixed Hodge numbers
of rHn

C
. No similar positivity phenomenon was observed for the character varieties

investigated by Hausel, Letellier and Rodriguez-Villegas.

Appendix A. The coefficients of the polynomials Cnpqq and Pnpqq
We now state the results of the companion paper [18] on the coefficients of the

polynomialsCnpqq andPnpqq.
SinceCnpqq andPnpqq are palindromic of respective degrees 2n and 2n ´ 2, we

may expandCnpqq andPnpqq as follows:

Cnpqq “ cn,0 qn `
nÿ

i“1

cn,i
`
qn`i ` qn´i

˘
,

wherecn,0, cn,1, cn,2 . . . are integers, and

Pnpqq “ an,0 qn´1 `
n´1ÿ

i“1

an,i
`
qn`i´1 ` qn´i`1˘

,

wherean,0, an,1, an,2 . . . are integers.
By Theorem 1.1 of [18] the coefficientscn,i of Cnpqq are given by the following

formulas: (a) For the central coefficientscn,0 we have

cn,0 “
"

2p´1qk if n “ kpk ` 1q{2 for some integerk ě 1,

0 otherwise.

(b) For the non-central coefficients (i ě 1) we have

cn,i “

$
’&
’%

p´1qk if n “ kpk ` 2i ` 1q{2 for some integerk ě 1,

p´1qk´1 if n “ kpk ` 2i ´ 1q{2 for some integerk ě 1,

0 otherwise.

Note that in Item (b) the first two conditions are mutually exclusive.
As for the coefficients ofPnpqq, the coefficient an,i is by [18, Th. 1.2] equal to

the number of divisorsd of n such that

i `
?

2n ` i2

2
ă d ď i `

a
2n ` i2.

It follows that all coefficientsan,i of Pnpqq are non-negative integers.
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Table 1. The polynomials Cnpqq

n Cnpqq
1 q2 ´ 2q ` 1

2 q4 ´ q3 ´ q ` 1

3 q6 ´ q5 ´ q4 ` 2q3 ´ q2 ´ q ` 1

4 q8 ´ q7 ´ q ` 1

5 q10 ´ q9 ´ q7 ` q6 ` q4 ´ q3 ´ q ` 1

6 q12 ´ q11 ` q7 ´ 2q6 ` q5 ´ q ` 1

7 q14 ´ q13 ´ q10 ` q9 ` q5 ´ q4 ´ q ` 1

8 q16 ´ q15 ´ q ` 1

9 q18 ´ q17 ´ q13 ` q12 ` q11 ´ q10 ´ q8 ` q7 ` q6 ´ q5 ´ q ` 1

10 q20 ´ q19 ´ q11 ` 2q10 ´ q9 ´ q ` 1

11 q22 ´ q21 ´ q16 ` q15 ` q7 ´ q6 ´ q ` 1

12 q24 ´ q23 ` q15 ´ q14 ´ q10 ` q9 ´ q ` 1
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Table 2. The polynomials Pnpqq
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q16 ` q15 ` q14 ` q13 ` q12 ` q9

9 `q8 ` q7 ` q4 ` q3 ` q2 ` q ` 1 13

q18 ` q17 ` q16 ` q15 ` q14 ` q13

`q12 ` q11 ` q10 ` q8 ` q7 ` q6

10 `q5 ` q4 ` q3 ` q2 ` q ` 1 18

q20 ` q19 ` q18 ` q17 ` q16 ` q15

11 `q5 ` q4 ` q3 ` q2 ` q ` 1 12

q22 ` q21 ` q20 ` q19 ` q18 ` q17 ` q16 ` q15
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Table 3. The polynomials B̋npqq

n B˝
npqq B˝

np1q B˝
np´1q

1 1 1 1

2 q ` 1 2 0

3 q2 ` q 2 0

4 q3 ` q2 ` q 3 ´1

5 q4 ` q3 ` q2 ´ 1 2 0

6 q5 ` q4 ` q3 ` q2 4 0

7 q6 ` q5 ` q4 ` q3 ´ q ´ 1 2 0

8 q7 ` q6 ` q5 ` q4 ` q3 ´ q 4 0

9 q8 ` q7 ` q6 ` q5 ` q4 ´ q2 ´ q 3 1

10 q9 ` q8 ` q7 ` q6 ` q5 ` q4 ´ q2 ´ q 4 0

11 q10 ` q9 ` q8 ` q7 ` q6 ` q5 ´ q3 ´ 2q2 ´ q 2 0

12 q11 ` q10 ` q9 ` q8 ` q7 ` q6 ` q5 ´ q3 ´ q2 ` 1 6 0

Table 4. The polynomials Anpqq

n Anpqq Anp1q Anp´1q
1 q2 1 1

2 q4 ` q3 2 0

3 q6 ` q5 ` q4 3 1

4 q8 ` q7 ` 2q6 ` q5 5 1

5 q10 ` q9 ` 2q8 ` 2q7 ` q6 7 1

6 q12 ` q11 ` 2q10 ` 3q9 ` 3q8 ` q7 11 1

7 q14 ` q13 ` 2q12 ` 3q11 ` 4q10 ` 3q9 ` q8 15 1

8 q16 ` q15 ` 2q14 ` 3q13 ` 5q12 ` 5q11 ` 4q10 ` q9 22 2

q18 ` q17 ` 2q16 ` 3q15`
9 `5q14 ` 6q13 ` 7q12 ` 4q11 ` q10 30 2

q20 ` q19 ` 2q18 ` 3q17 ` 5q16`
10 `7q15 ` 9q14 ` 8q13 ` 5q12 ` q11 42 2

q22 ` q21 ` 2q20 ` 3q19 ` 5q18`
11 `7q17 ` 10q16 ` 11q15 ` 10q14 ` 5q13 ` q12 56 2

q24 ` q23 ` 2q22 ` 3q21 ` 5q20 ` 7q19`
12 `11q18 ` 13q17 ` 15q16 ` 12q15 ` 6q14 ` q13 77 3
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