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Vorticity evolution in a rigid pipe of circular cross-section

By F. Lam

Yet every exact solution of the equations of fluid mechanics can actually

occur in Nature. The flows must not only obey the equations which are

non-linear, but also evolve in the distinct dynamic states as observed.

In this paper, we show that the spatio-temporal evolution of incompressible
flows in a long circular pipe can be described by vorticity dynamics. The principal
techniques to obtain solutions are similar to those used for flows in R

3. As the
consideration of the Navier-Stokes equations is given in a cylindrical co-ordinates
system, two aspects of complication arise. One is the interaction of the velocity
components in the radial and azimuthal directions, due to the fictitious centrifugal
force in the equations of motion. The rate of the vorticity production at the pipe
wall depends on the initial data at entry, and hence is unknown a priori; it must
be determined as part of the solution. The vorticity solution obtained defines an
intricate flow-field of multitudinous degrees of freedom. As the Reynolds number
increases, the analytical solution predicts vorticity-scale proliferations in succession.
For sufficiently large initial data, pipe flows are of a turbulent nature. The solution
of the governing equations is globally regular and does not bifurcate in space or in
time. It is asserted that laminar-turbulent transition is a dynamic process inbred
in the non-linearity. The presence of exogenous disturbances, due to imperfect test
environments or purpose-made artificial forcing, distorts the course of the intrinsic
transition. The flow structures observed by Reynolds (1883) and others can be
synthesised and elucidated in light of the current theory.

Keywords: Navier-Stokes Equations; Vorticity; Pipe Hagen-Poiseuille Flow;

Laminar Flow; Transition; Turbulence; Reynolds Number; Randomness
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1. Introduction

In the Eulerian description of the motion of an incompressible, homogeneous New-
tonian fluid, the momentum and the continuity equations for fluid dynamics are

∂u/∂t+ (u.∇)u = ν∆u− ρ−1∇p, ∇.u = 0, (1.1)

where the velocity vector u = u(x, t) is the velocity, the scalar quantity p = p(x, t)
is the pressure, the space variable is denoted by x=(x, y, z), and ∆ is the Laplacian.
The density and the viscosity of the fluid are denoted by ρ and µ respectively. The
kinematic viscosity is ν=µ/ρ. These equations are known as the Navier-Stokes equa-
tions (Navier 1823; Stokes 1845). They are derived on the basis of the continuum
hypothesis (see, for example, Lamb 1975; Batchelor 1967).

We seek the solution of (1.1) as an initial-boundary value problem in the space-
time domain denoted by Ω×[0, t > 0], where Ω has a smooth impermeable boundary
∂Ω. The initial condition is given by

u(x, t=0) = u0(x) ∈ C∞

c x ∈ Ω, (1.2)

and the no-slip boundary condition is

u(x, t) = 0 x ∈ ∂Ω. (1.3)

The postulation that u0 is a smooth function with compact support is to simplify
the technicalities in the subsequent analysis.

The vector quantity, known as the vorticity ω = (ω1, ω2, ω3), is related to the
velocity by ω = ∇×u. The vorticity field must be solenoidal because of the vector
formula ∇.(∇×u) = 0. The vorticity is a direct consequence of conservation of
the angular momentum of fluid particles. Because of fluid viscosity, particles are
subjected to shearing force during motion. Locally, they behave like a rigid body
in rotation. At the same time, their moments of inertia redistribute as a result of
deformation. The two effects give rise to the dynamic equations,

∂ωi/∂t− ν∆ωi = (ω.∇)ui − (u.∇)ωi, i = 1, 2, 3. (1.4)

Because the pressure has been eliminated, the vorticity equations are more acces-
sible in deriving a priori bounds, which are critical in global regularity theory of
the Navier-Stokes equations (Lam 2013). In particular, it is verified that the total
vorticity is an invariant in any fluid motion with smooth initial velocity of bounded
energy,

d

dt

∫

R3

(
ω1 + ω2 + ω3

)
dx = 0.

Consequently every vorticity component must be finite. By virtue of the Sobolev
embedding theorem, the invariant principle can be extended to show that

ω(x, t) ∈ C∞

B (x) C∞

B (t), t ≥ tc > 0, (1.5)
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Navier-Stokes Equations in Cylindrical Co-ordinates 3

where tc is the small time limit for smoothness in the classical regularity theory.
Since the vorticity is a fundamental quantity in fluid motion, we need an inverse
relation which enables us to compute the velocity and the pressure. In view of the
incompressibility hypothesis and of the vector identity

∇× ω = ∇(∇.u) −∆u, (1.6)

an elliptic equation can be derived and used to bound ∇u in space because di-
vorticity, ∇×ω, is a sub-set of Jacobian, ∇ω. The space-regularity in the velocity
gradients ensures the pressure gradient ∇p is suitably bounded. From the momen-
tum equation, we assert that

∥∥∇u(·, t)
∥∥
L∞(R3)

≤ C (νt)−3/4, t > 0. (1.7)

In conjunction with the classical local-in-time regularity, the global well-posedness
follows for initial smooth data of finite energy (see, for example, Doering & Gibbon
1995; Constantin 2001; Heywood 2007). By a similarity reduction, it has been shown
that, at high Reynolds number, the vorticity field is nothing more than an amal-
gamation of viscous shearing motions, giving rise to multitudinous spatio-temporal
scales. In the sequel, we shall work with infinitely differentiable bounded functions,
as no finite-time singularity can develop in solution of the Navier-Stokes equations.
Viscosity of fluids, no matter how small it may be, activates energy consumption;
the non-linearity in the equations facilitates the dissipation by self-multiplying vis-
cous shears into smaller sizes. In fact, the continuity defines a zero-sum of three
extended reals, ∂ui/∂xi, i=1, 2, 3 at any given instant of time. None of them can go
out of bounds as the “measure” ∞−∞=a, where a is a finite real, is undefined in
analysis. The physics is clear; any motion due to an incompressible flow of finite
energy cannot instigate an unbounded plenum adjacent to an infinity vacuum, in
any finite region whose flow rate of matter is finite.

The space-time vorticity boundedness, ω ∈ L∞(x) L∞(t), holds in the limit of
vanishing viscosity ν→0. Hence the Euler equations (µ=0) cannot blow up in finite
time according to the BKM theorem (Beale et al. 1984), assuming that there exists
a fluid of zero viscosity. The impossibility of singularities in inviscid flows of finite
energy is consistent with Helmholtz’s vortex theorems (1858) and Kelvin’s circula-
tion principle (1869). Owing to lack of energy dissipation, flow motions described
by the Euler can only re-distribute their energy. Thus, it is comprehensible that,
at least locally, inviscid flow fields may evolve into less smooth states compared to
their viscous counter-parts. Nevertheless, the Euler equations do not constitute a
self-contained model for the physics of turbulence, where diffusive dissipation by
viscosity is of importance in vorticity proliferation.

2. Velocity-vorticity formulation

In the present paper, we deal with flows in the presence of solid surfaces and we
must strictly impose the no-slip boundary condition (1.3). We first establish that,
in the “kinematic” system

∇× u = ω, ∇.u = 0, u = 0 x ∈ ∂Ω, (2.1)
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4 F. Lam

the velocity can be recovered uniquely from

∆u = −∇× ω, (2.2)

where the region Ω is simply-connected having a C2 boundary ∂Ω. The necessary
condition to confirm (2.2) is the vector identity (1.6). The continuity implies that the
vorticity field in Ω is solenoidal ∇.ω = 0. Denote G by Green’s function satisfying
the homogeneous boundary condition. Conversely, if we are given a bounded vector
function A in Ω. The Poisson equation, ∆u = −∇×A, is inverted

u(x) =

∫

Ω

G(x,x′)∇x
′×A(x′)dx′ = −

∫

Ω

∇x×G(x′,x)A(x′)dx′, (2.3)

where the boundary term from integration by parts vanishes because function G is
zero on the boundary, and the last integral holds in view of the symmetric property
of Green’s function: G(x,x′) = G(x′,x). Thus the incompressibility ∇.u = 0 is
verified if we take divergence operation. Taking curl on the Poisson equation driven
by A, we obtain

∆(∇× u) = ∆A−∇(∇.A).
If the vector A is solenoidal and coincides with ω a.e., then the function A = ω+Ab

generally holds such that A ≡ ω, and ∆Ab = 0, ∇.Ab = 0, and this system has no
boundary conditions. Given Ab as a vector, we must have ∇×∇×Ab = 0 or the last
elliptic system reduces to

∇.Ab = 0, ∇×Ab = a,

where a is a constant. Thus the following condition can be established:

Ab(x ∈ ∂Ω) = a

∫

Ω

dx = a vol(Ω), (2.4)

which defines a vortex sheet over the boundary. In application, we have two scenar-
ios: (1) The volume Ω is unbounded. Since we are interested in fluid motions of finite
energy, there can be no singular vortex sheets on the boundary in view of (1.5) and
(1.7). The function A is nothing but the vorticity. (2) For domains of finite vol(Ω),
the function Ab can be fixed by initial data (say at t=0). The problem is to trace
the spatio-temporal flow development from a set of initial-boundary conditions by
solving the Navier-Stokes equations. In particular, if the initial vorticity in Ω is
zero, the system of (2.1) and (2.2) is well-posed in any singly-connected region with
smooth boundaries; the velocity can be recovered uniquely from the vorticity (2.3).
Our ultimate aim is to solve the dynamic equation (1.1) or (1.4) in Ω where both
u and ω exist and evolve in real fluids. The use of the dynamic no-slip boundary
condition is therefore justified, as homogeneous Dirichlet condition (1.3) is valid at
every given instant of time.

In addition, imposing (1.3) has another advantage which simply fixes the velocity
field in the Helmholtz decomposition. Let us write

u = ∇φ +∇× ψ.

The function ψ can be determined by taking curl operation so that ∆ψ = −∇×u =
−ω as long as the ψ-field is solenoidal. The continuity demands that φ is harmonic

∆φ = 0.
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Navier-Stokes Equations in Cylindrical Co-ordinates 5

In R
3, it is postulated that the “potential” φ decays at infinity, or we consider

only finite energy solutions as a requirement for physics. Thus, a harmonic function
bounded in R

3 must be a constant by virtue of Liouville’s theorem. The contribution
from the irrotational part drops out implicitly. For real fluids in Ω, the no-slip
condition adds the boundary condition ∇φ(x) = 0, ∀x ∈ ∂Ω. The solvability
constraint for the Laplace equation,

∫

∂Ω

∇φ(x)dx = 0,

holds. Hence the only solution for the equation is a constant. Briefly, the formulation
(2.1)-(2.2) uniquely specifies the velocity or the vorticity field for real fluids µ>0.

3. Dynamic equations in cylindrical co-ordinates

In a cylindrical co-ordinates system (r, θ, z), we consider the initial-boundary value
of flow evolution. The velocity and pressure (u, p)(x, t) = (u, p)(r, θ, z, t). Let u =
(u, v, w) denote the velocity components in the radial, circumferential and axial
directions respectively. Without loss of generality, we take the pipe radius (denoted
by a) as unity. The domain of interest Ω consists of the interior of a semi-infinite
circular cylinder

0 ≤ r ≤ 1, 0 ≤ θ < 2π, 0 ≤ z <∞. (3.1)

We denote the wall at r = 1 in Ω. The cross-section at the location z = 0 is the
pipe entry. The pipe surface is assumed to be hydraulically smooth. The choice
of the co-ordinates attempts to model, as closely as possible, practical laboratory
conditions. In many pipe-flow experiments, controlled water or air from a reservoir
is forced into the pipe under external pressure differences. By experience, good
flows may be generated in practice by maintaining a constant mass flow through
the entire pipe test section. At the same time, care must be taken to minimise
fluctuations in the flow rate. The flow far downstream is inevitably in turbulent
stage and the presence of the turbulence needs to be accounted for in theoretical
treatment. The axial length is typically 100-1000 times of pipe diameter, depending
on specific set-up. Although the practical pipe length may not be long enough for
the flow to decay completely at the far end of the pipe, the flow field close to the
inlet must be, to a good approximation, independent of downstream flow.

Momentum equations

The continuity equation reads

∇.u =
1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0. (3.2)

The Navier-Stokes momentum equations are

∂tu+ (u.∇)u − v2

r
= −1

ρ

∂p

∂r
+ ν

(
∆′u− 2

r2
∂v

∂θ

)
,

∂tv + (u.∇)v +
u v

r
= − 1

ρr

∂p

∂θ
+ ν

(
∆′v +

2

r2
∂u

∂θ

)
,

∂tw + (u.∇)w = −1

ρ

∂p

∂z
+ ν∆w,

(3.3)
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6 F. Lam

where ∆ is the cylindrical Laplacian

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
, (3.4)

and the differential operator ∆′ = ∆−1/r2, and ∇B = (∂rB, ∂θB/r, ∂zB) for a
scalar B (see, for example, Batchelor 1967; Schlichting 1979; Wu et al. 2006).

The pressure p satisfies the following Poisson equation:

∆p

ρ
= 2

(∂u
∂r

)2

+ 2
(1
r

∂v

∂θ
+
u

r

)2

+ 2
(∂w
∂z

)2

+
(1
r

∂u

∂θ
+
∂v

∂r
−v
r

)2

+
(∂u
∂z

+
∂w

∂r

)2

+
(∂v
∂z

+
1

r

∂w

∂θ

)2

.

(3.5)

Hence the pressure can be determined uniquely with respect to a reference pressure,
once the velocity gradients are known. The elliptic equation contains no time-wise
information; any variation in the velocity gradients causes instantaneous changes
in the pressure. This apparently unphysical causality effect is a consequence of the
continuity (3.2). If the density of the fluid is assumed to vary with the pressure, as
given in a state equation, the pressure variation propagates at the local speed of
sound. In standard laboratory conditions, the speeds of sound for pure water and
air are about 1500 m/s and 340 m/s respectively. Thus, the incompressibility is a
well-suited hypothesis in pipe flow experiments.

We suppose that the motion starts impulsively from rest at time t = 0, and the
flow is initiated afterwards. The initial condition is taken as

u (r, θ, z > 0, t ≤ 0) = 0. (3.6)

Equations (3.2) and (3.3) are to be solved subject to the following boundary con-
ditions ∀t ∈ (0, T <∞]. The velocity must satisfy the no-slip condition at wall

u (r = 1, θ, z > 0, t > 0) = 0, (3.7)

and decays at infinity
u → 0 as z → ∞. (3.8)

The decay is plausible in physics for flows of finite energy. In addition, the velocity
inside the pipe is assumed to be bounded everywhere,

∣∣ u (0 ≤ r < 1, θ, z)
∣∣ <∞. (3.9)

Because of the azimuthal symmetry, it is evident that the velocity must satisfy the
periodic condition

u (r, θ = 0, z) = u (r, θ = 2π, z), (r, z) ∈ Ω (3.10)

at every instant of time. For t ≥ 0, we postulate that the flow condition at the pipe
entry can be specified as smooth functions of position and time

u (r, θ, z = 0, t) = ue (r, θ, t) = ( ue ve we )(r, θ, t). (3.11)

Since the entry velocity is also governed by the equations of motion, we require
that ∇.ue = 0, and the initial energy is finite.
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Vorticity equations

The vorticity components in the cylindrical co-ordinates are

ξ =
1

r

∂w

∂θ
− ∂v

∂z
, η =

∂u

∂z
− ∂w

∂r
, ζ =

1

r

∂(rv)

∂r
− 1

r

∂u

∂θ
(3.12)

in the r, θ, z directions respectively. In the vector identity,∇×ω = ∇(∇.u)−∆u, the
quantity on the left-hand side is known as the di-vorticity which links the velocity
and the vorticity

∆u = −∇×ω (3.13)

for incompressible flows. In terms of the di-vorticity, the Navier-Stokes momentum
equations (3.3) can be re-written as

∂tu+ ω × u+ ν∇×ω = ∇χ, (3.14)

where χ = −(u2/2+p/ρ), is the Bernoulli-Euler pressure (cf. (3.5)). Taking the curl
on (3.14) and (3.2), and making use of the vector identity ∇.(∇×u) = 0, we obtain
the dynamics equations for the vorticity components

∂tξ − ν∆′ξ = (ω.∇
)
u− (u.∇)ξ − 2ν

r2
∂η

∂θ
= X − 2ν

r2
∂η

∂θ
= X̄,

∂tη − ν∆′η = (ω.∇
)
v − (u.∇)η +

2ν

r2
∂ξ

∂θ
+
ηu− ξv

r
= Y +

2ν

r2
∂ξ

∂θ
= Ȳ ,

∂tζ − ν∆ζ = (ω.∇
)
w − (u.∇)ζ = Z = Z̄,

(3.15)

where the vector components (X Y Z) = X, and (X̄ Ȳ Z̄) = X̄. Note that the
continuity equation is satisfied. In addition, the pressure drops out of the vorticity
formulation (3.15) so that the number of unknowns is now three, instead of four. The
dynamic pressures, ∂tp, ∂t∂rp and the other derivatives, must be found, indirectly,
from one of the momentum equations in (3.3).

As our motion starts impulsively from rest, condition (3.6) means the initial
data for vorticity are identically zero

ω (r, θ, z > 0, t ≤ 0) = 0. (3.16)

At any subsequent instant during the evolution, the vorticity satisfies the periodic
condition

ω (r, θ = 0, z) = ω (r, θ = 2π, z). (3.17)

From the velocity distribution (3.11), the vorticity at the entry can be calculated

∇× ue (r, θ, z = 0, t) = ωe (r, θ, t), (3.18)

where we have explicitly expressed ue or ωe as a function of time. The axial gradient
of the entry vorticity is given by

∂∇× ue

∂z

∣∣∣
z=0

= υe (r, θ, t) = ( fe ge he )(r, θ, t). (3.19)

The left-hand sides in (3.15) are diffusion operators. During the vorticity evo-
lution, the pipe wall acts as a source for vorticity in view of the no-slip condition.
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8 F. Lam

However, the amount of the vorticity generated across the wall per unit area per
unit time is not known and clearly depends on the dynamics of the whole flow field.
Theoretically, the wall vorticity must constitute part of the solution. For conve-
nience, we designate the vorticity boundary value as

ω (r = 1, θ, z, t) = ωb (θ, z, t). (3.20)

To simplify our notations, the following short-hand is helpful:

∫

Ω

=

∫ 1

0

∫ 2π

0

∫
∞

0

,

∫

∂Ω

=

∫ 2π

0

∫
∞

0

,

∫

Ω
⊗
=

∫ 1

0

∫ 2π

0

,

where the middle integral is over the entire pipe wall and it is used to specify the
wall vorticity while the last over the inner cross-sectional area. Similarly, space-time
integrals are

∫

ΩT

=

∫ t

0

∫ 1

0

∫ 2π

0

∫
∞

0

,

∫

∂ΩT

=

∫ t

0

∫ 2π

0

∫
∞

0

,

∫

Ω
⊗

T

=

∫ t

0

∫ 1

0

∫ 2π

0

.

In our presentation, we use the following notations for the independent variables

x = (r, θ, z), y = (r, θ), z = (θ, z).

Use of them becomes clear when the domain of integration is stated.
In the present paper, we intend to develop an analytical theory for the flow-field

evolution from the commencement of motion, given the prescribed data. The fluid
dynamics in circular pipes has been subjected to intensive investigations for more
than 130 years, starting with Reynolds’ experiments (Reynolds 1883). We refer
the reader to a recent review, and the references therein, on the latest development
(Mullin 2011). It is an experimental fact that pipe flow is too mysterious to compre-
hend. Little may be extracted from experiments as guides for theoretical treatment.
It would be fair to acknowledge that laboratory experiments using various exploita-
tion techniques are almost exhaustive, as far as incompressible flows are concerned.
It is lack of a rigorous mathematical framework which hinders progress, because of
the difficulties in reconstructing the non-linear characters of fluid dynamics from
test data.

4. Kinematics of vorticity induction

The components of Poisson’s equation in (3.13) have the explicit expressions

∆′u = −
(1
r

∂ζ

∂θ
− ∂η

∂z
− 2

r2
∂v

∂θ

)
,

∆′v = −
(∂ξ
∂z

− ∂ζ

∂r
+

2

r2
∂u

∂θ

)
,

∆w = −
(η
r
+
∂η

∂r
− 1

r

∂ξ

∂θ

)
,

(4.1)

which are viewed as a system of elliptic equations subject to conditions (3.7) on the
pipe wall, and (3.11) at the pipe entry. Green’s function for the Laplacian ∆ can
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Navier-Stokes Equations in Cylindrical Co-ordinates 9

be found by the method of separation of variables. In view of the no-slip condition
at the wall, it has the form of

G(x,x′) =
1

2π

( ∞∑

k=1

J0
(
λkr

)
J0
(
λkr

′
)

λk J2
1

(
λk)

E0(z, z
′)

+ 2

∞∑

n=1

∞∑

k=1

Jn
(
σn,kr

)
Jn

(
σn,kr

′
)

σn,k (Jn+1

(
σn,k)

)2 cos
(
n(θ−θ′)

)
E(z, z′)

)
,

(4.2)

where

E0(z, z
′) = exp

(
−λk|z−z′|

)
− exp

(
−λk|z+z′|

)
,

E(z, z′) = exp
(
−σn,k|z−z′|

)
− exp

(
−σn,k|z+z′|

)
,

and the constant, λk, k = 1, 2, · · · , is the kth positive zero of the Bessel function
J0(λ) = 0, σn,k the kth positive zero of Jn(σ) = 0. The zeros, σn,k, are larger than
λ1 = 2.404826 (see appendix A for some examples). Similarly, Green’s function for
operator ∆′ is found to be

D(x,x′) =
1

π

∞∑

n=1

∞∑

k=1

Jn
(
σn,kr

)
Jn

(
σn,kr

′
)

σn,k (Jn+1

(
σn,k)

)2 cos
(
n(θ−θ′)

)
E(z, z′). (4.3)

There exists a rich collection of literature on Bessel functions, see, for example,
Watson (1944) and Olver et al. (2010). Bessel functions Jn(x) are entire functions
of the argument x,

Jn(x) =
(x
2

)n ∞∑

k=0

(−1)k (x2/4)k

k! Γ(n+ k + 1)
, n ≥ 0, (4.4)

and

J2
n(x) =

(x
2

)2n ∞∑

k=0

(−1)k (x2/4)k Γ(2n+ 2k + 1)

k! (Γ(n+ k + 1))2 Γ(2n+ k + 1)
. (4.5)

The following recurrence relations are well-known (for x > 0)

Jn+1(x) = (2n)Jn(x)/x − Jn−1(x) and J ′

n(x) = Jn−1(x) − nJn(x)/x. (4.6)

The denominators in the Green functions are derived from the orthogonal relation

2

∫ 1

0

xJn
(
σn,kx

)
Jn

(
σn,jx

)
dr = δkj

(
Jn+1

(
σn,k

) )2
,

where δkj is Kronecker’s symbol. For the Bessel functions of all order n ≥ 0,

∫
∞

0

Jn(x)dx = 1, and
∣∣Jn(x)

∣∣ ≤ 1 for 0 ≤ x <∞.

For small arguments, we have

J0(0) = 1, Jn(x) → xn as x→ 0 n ≥ 1.
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10 F. Lam

The Bessel functions oscillate for large arguments

Jn(x) ∼
√

2

πx
cos

(
x−

(n
2
+

1

4

)
π
)

as x→ ∞.

By the series expansion for the Bessel function, we find

Jn(σn,kx)

x
≤ σn,k

2

∣∣Jn−1(σn,kx)
∣∣ ≤ σn,k

2
, n ≥ 1, k ≥ 1. (4.7)

We have carried out some numerical experiments for the double sum

∞∑

n=1

∞∑

k=1

Jn
(
σn,kr

)
Jn

(
σn,kr

′
)

r′ (Jn+1

(
σn,k)

)2 .

For n, k ∼ O(100) and 0<r, r′<1, all the computations can be done efficiently.
There have been no numerical difficulties.

The inversion of the last equation in (4.1) is given by

w(x) =

∫

Ω

r′G(x,x′)
( η
r′

+
∂η

∂r′
− 1

r′
∂ξ

∂θ′

)
(x′)dx′ +

∫

Ω
⊗
r′
[
∂z′G

]
(x,y) we(y)dy

=

∫

Ω

(
G η(x′)− r′ (∂r′G) η(x

′) + (∂θ′G) ξ(x′)
)
dx′ +We(x),

(4.8)

where the functions,

∂r′G(x,x
′) = ∂G/∂r′, ∂θ′G(x,x′) = ∂G/∂θ′, (4.9)

are obtained from integration by parts. The boundary terms vanish in view of the
periodic condition for vorticity (3.17), and the properties of the Bessel functions.
Moreover, the notation

[
∂z′G

]
= ∂G/∂z′

∣∣
z′=0

, and we have introduced the notation,

Ve(x) = (Ue Ve We)(x),

to account for the contribution from the velocity at the pipe entry. To continue the
process of inversion, we reduce the first two equations in (4.1) to

u(x) =

∫

Ω

(
r′(∂z′D) η(x′)− (∂θ′D) ζ(x′)

)
dx′ − 2

∫

Ω

∂θ′D

r′
v(x′)dx′ + Ue(x),

v(x) =

∫

Ω

r′
(
(∂z′D) ζ(x′)− (∂r′D) ξ(x′)

)
dx′ + 2

∫

Ω

∂θ′D

r′
u(x′)dx′ + Ve(x),

(4.10)

where the derivatives on Green’s function D are derived in the same manner as
those in (4.9), and use is made of the velocity periodic condition (3.10), and the
decay of Green’s function at z′ → ∞. In particular, the function ∂θ′D/r′ remains
regular as r′→0 by virtue of (4.4) and (4.7). The induced velocities by the entry,
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ue and ve, are found in an analogous manner to that by we. In (4.8), we replace
the kernel G and we by D and ue so as to obtain Ue,

Ue(x) =

∫

Ω
⊗
r′
[
∂z′D

]
(x,y) ue(y)dy, (4.11)

where
[
∂z′D

]
= ∂D/∂z′

∣∣
z′=0

. The component Ve is obtained analogously. In view
of the incompressibility, the induced velocity Ve is completely determined and fixed
for given geometry. It is evident that the influence of the entry data of finite energy
is restricted to a portion of the pipe downstream of the entry, and diminishes at
large distance z → ∞, as both E0(z, z

′) → 0 and E(z, z′) → 0.
Because of the rotational symmetry from 0 to 2π, we readily verify that

∫

Ω

∫

Ω

∂θ′D

r′
dxdx′ =

∫ 1

0

∫ 1

0

∫
∞

0

∫
∞

0

1

r′

(∫ 2π

0

∫ 2π

0

∂θ′Ddθdθ′
)
dzdz′drdr′ = 0.

From the properties of the zeros for Jn(σn,k), neither 1 nor 2 is an eigenvalue of
the homogeneous operator ∆′u = 0. The equations in (4.10) are a pair of Fredholm
integral equations of the second kind with continuous bounded kernels. They may
be re-written in vector form for the unknown vector U = (u v)

U + H ∗ U = K ∗ ω + V = F , (4.12)

where V=(Ue Ve), and the ad hoc operator ∗ stands for integrals of matrix kernel
multiplying a vector function. (It should not be confused with the usual convolution
operator.) The domain of integration is clear by considering the kernel and the
function; it is over the space x. Explicitly, the kernel H = H (x,x′) is a non-zero
square matrix with zero trace,

H =

(
0 2 ∂θ′D/r′

−2 ∂θ′D/r′ 0

)
, (4.13)

and K = K (x,x′) is 2×3,

K =

(
0 r′∂z′D −∂θ′D

−r′∂r′D 0 r′∂z′D

)
. (4.14)

Pre-multiplying (4.12) by H , we obtain

U + H ∗ U + H ∗ H ∗ U = H ∗ F + F .

Carrying out the multiplication once more, we get

U + H ∗ H ∗ H ∗ U = H ∗ H ∗ F + H ∗ F + F .

After k-times multiplications, we write the result as

U =

k∑

i=1

H ∗ · · · H ∗︸ ︷︷ ︸
i fold

F + F − H ∗ · · · ∗ H ∗︸ ︷︷ ︸
k+1 fold

U. (4.15)
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12 F. Lam

As shown earlier, the boundedness for ∂θ′D/r′ implies ‖H ‖L∞<A0. Since we are
interested in fluid motions of finite energy, we consider ‖ue‖L∞<B0, then the tail
on the right in (4.15) vanishes as

B0A
k+1
0

(
I ∗ · · · ∗ I∗︸ ︷︷ ︸

k+1 fold

I
)
≤ B0A

k+1
0

(k + 1)!
→ 0 as k → ∞,

where I is the identity matrix. By the Sobolev embedding theorem, we may make
reference to the L2-theory for Fredholm integral equations of the second kind (see,
for example, Chapter 2 of Tricomi 1957). The operation sum must converge in the

limit of k → ∞. Let us denote the infinite sum of the multiple operations by H̃ ,
and it is called the resolvent kernel of H . For bounded vorticity, the solution of
the integral equations (4.12) or (4.10) is given by

U = K ∗ ω + (H̃ ∗ K ) ∗ ω + V + H̃ ∗ V.
Combining the result with (4.8), we write the relation between the velocity and the
vorticity as u = V ∗ ω + W ∗Ve, or




u

v

w


 (x) =

∫

Ω




V11 V12 V13
V21 V22 V23
V31 V32 0


 (x,x′)




ξ

η

ζ


 (x′)dx′

+

∫

Ω
⊗




W11 W12 0

W21 W22 0

0 0 W33


 (x,y)



ue
ve
we


 (y)dy.

(4.16)

This relation holds for every instant of time, but it does not contain time informa-
tion, since equation (4.1) is elliptic. This is a consequence of the incompressibility
hypothesis (3.2). We draw our attention to the fact that the vortices, ξ and η, do
contribute to their velocities u and v, in contrast to the velocity induction in the
Cartesian co-ordinates. The reason is that u Laplacian is linked to the azimuthal
gradient in v, which is partly driven by vorticity component ξ. When a unit-mass
fluid particle at r = r0 from the pipe centre is rotating in the r−θ plane instan-
taneously, the term v2/r0 in the u-momentum equation in (3.14) is the centrifugal
acceleration on the particle toward the centre.

It may have been a generalisation of the potential theory or the electromag-
netism in classical physics, suggestion has been put forward to represent the veloc-
ity field by a solenoidal vector stream function, where u = ∇×Ψ. Instead of (4.1),
we have

∆Ψ(x) = −∇× u = −ω. (4.17)

Although this set of lower-order equations appears to be simpler, its general use can
be tricky and hence is not recommended, except for flows in unbounded space R

3.
The reason is that no quantitative knowledge of the stream function on solid walls
is available; the inversion of (4.17) cannot be readily obtained. The integral of u
contains arbitrary constants, depending on local flow condition. On the other hand,
imposing the no-slip condition involves two Green’s functions for every component
of Ψ and hence the evaluation of these Green’s functions becomes substantially
more complicated.
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5. Vorticity due to entry flow

Because of the specific characters of our co-ordinates, we prefer to write Green’s
function for the diffusion kernels in (3.15) as

H(x,x′, t) = Z1(z, z
′, t) r′ K(r, r′, θ, θ′, t), (5.1)

where H is diagonal, and we denote its components in a row matrix

H = ( H H H3 ).

The function,

Z1(z, z
′, t) =

1√
4νtπ

{
exp

(
− (z − z′)2

4νt

)
+ exp

(
− (z + z′)2

4νt

)}
, (5.2)

is the gradient of the fundamental solution of heat equation in one space dimension
(z ≥ 0). The second part of the Green function satisfying the Neumann homoge-
neous condition on the wall is written in the diagonal matrix

K = ( K K K3 ).

The first two elements are K = 1/π +K0, where

K0 =
1

π

∞∑

n=1

∞∑

m=1

α2
n,m Jn

(
αn,mr

)
Jn

(
αn,mr

′
)

(α2
n,m − n2) (Jn

(
αn,m)

)2 cos
(
n(θ−θ′)

)
exp

(
−α2

n,m νt
)
, (5.3)

and

K3 =
1

π
+

1

π

∞∑

m=1

J0
(
βmr

)
J0

(
βkr

′
)

J2
0

(
βm)

exp
(
−β2

m νt
)
+ 2K0. (5.4)

The constant, βm,m = 1, 2, · · · , is the mth positive zero of Bessel function J ′

0(β) =
0, and αn,m the mth positive zero of J ′

n(α) = 0. The zeros, αn,m, are larger than
β1 = 1.841184 (see appendix A).

As a first approximation, we investigate the vorticity field caused by the entry
vorticity (3.16) and, for the time being, we ignore the contributions from the wall.
Then the dynamics equations (3.15) can be expressed in integral form:

ω(0)(x, t) =

∫ t

0

∫

Ω
⊗
He(x,y, t−t′)υe(y, t′)dydt′

+

∫ t

0

∫

Ω

H(x,x′, t−t′)X̄(0)(x′, t′)dx′dt′,

(5.5)

where He is a diagonal matrix. We denote the elements by

He = ( A A A3 ),

and
He = −ν r′ K

[
Z1

]
z′=0

= −ν r′ K(r, r′, θ, θ′, t− t′) Z0(z, t− t′),

where t > t′

Z0(z, t) =
1√
4νt π

exp
(
− z2

4νt

)
.
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14 F. Lam

As implied in X̄(0) = X̄(0)(ω(0)), the last integral term represents the non-linear
interaction in the vorticity field.

By contrast with the vorticity dynamics in the Cartesian co-ordinates, two extra
terms arise in (3.15), namely,

1

r2
∂η

∂θ
and

1

r2
∂ξ

∂θ
.

We expect that they are invariant with respect to the rotational symmetry. For
instance, we obtain the following result by integration by parts:

∫ 1

0

1

r′2

( ∫ 2π

0

r′K
( ∂η
∂θ′

)
(r′, θ′)dθ′

)
dr′

= −
∫

Ω
⊗
∂θ′K(r, r′, θ, θ′)

η

r′
(r′, θ′)dr′dθ′

(5.6)

for fixed time t′. We draw our attention to the fact that this reduction is performed
independently of the heat kernel Z1. The first two vorticity components in ω(0) can
be reduced to integral equations

ξ(0)(x, t) = 2ν

∫ t

0

∫

Ω

Z1
∂θ′K

r′
(x,x′, t−t′) η(0)(x′, t′)dx′dt′ +A ⋆ fe +H ⋆X(0),

η(0)(x, t) = −2ν

∫ t

0

∫

Ω

Z1
∂θ′K

r′
(x,x′, t−t′) ξ(0)(x′, t′)dx′dt′ +A ⋆ ge +H ⋆ Y (0).

(5.7)

This is a system of two Volterra-Fredholm integral equations of the second kind (cf.
(4.12)) for the unknowns (ξ(0), η(0)) over space-time. We note that K/r′ is regular
at r′ = 0 because J1 ∝ r near r = 0. The operator ⋆ indicates the integration over
space-time (x, t). We express the kernel of the system as

k0 =

(
0 2 ν Z1 ∂θ′K/r′

−2 ν Z1 ∂θ′K/r′ 0

)
.

Evidently, the kernel is a continuous bounded function of x and t > 0. Let K̃ be
the resolvent kernel of k0. On the basis of standard theory for parabolic differential
equations (see, for example, Chapters 1 & 2 of Friedman 1964), we find that

∣∣K̃
∣∣ < C

(νt− νt′ )1/2
exp

(
− κ

(z ± z′)2

4ν(t− t′)

)

for a constant C, and 0 < κ < 1. Denote

R̃1 = K̃ ⋆ A, R̃2 = K̃ ⋆ H. (5.8)

Then we verify that

∣∣R̃1

∣∣ < C1

(νt− νt′ )1/2
exp

(
− κ1

(z ± z′)2

4ν(t− t′)

)
,
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and ∣∣R̃2

∣∣ < C2(νt− νt′ )1/2 exp
(
− κ2

(z ± z′)2

4ν(t− t′)

)
,

where C1 and C2 are constant, and 0 < κ1, κ2 < 1. It is well-known that the zeros
of the Bessel functions, αn,m, are large and positive. Thus, the term in Green’s
functions K has exponential damping effects in time. The pair of integral equations
can now be solved. The result is combined with the ζ-component to give

ξ(0) = A ⋆ fe + R̃1 ⋆ fe + R̃1 ⋆ ge +H ⋆X(0) + R̃2 ⋆ X
(0) + R̃2 ⋆ Y

(0),

η(0) = A ⋆ ge + R̃1 ⋆ ge + R̃1 ⋆ fe +H ⋆ Y (0) + R̃2 ⋆ Y
(0) + R̃2 ⋆ X

(0),

ζ(0) = A3 ⋆ he +H3 ⋆ Z
(0),

(5.9)

where the entry vorticity in the radial and the azimuthal directions is filtered by
the Volterra-Fredholm operator. For example, the second term in the first equation
on the right is, for t > t′ > t′′,

R̃1 ⋆ fe(x, t) =

∫

ΩT

∫

Ω
⊗

T

K̃(x,x′, t−t′)A(x′,y, t′−t′′)fe(y, t′′)dydx′dt′dt′′

=

∫

Ω
⊗

T

R̃1(x,x
′, t−t′)fe(y, t′)dydt′,

where we have interchanged the orders of integrals, assuming Fubini’s theorem.
Similarly, the fifth term is

R̃2 ⋆ X
(0)(x, t) =

∫

ΩT

∫

ΩT

K̃(x,x′, t−t′)H(x′,x′′, t′−t′′)X(0)(x′′, t′′)dx′′dt′′dx′dt′

=

∫

ΩT

R̃2(x,x
′, t−t′)X(0)(x′, t′)dx′dt′.

We write the system (5.9) in the short-hand form

ω(0) = Ge ⋆ υe +Gs ⋆X
(0), (5.10)

where the matrix kernels are

Ge =




A+ R̃1 R̃1 0

R̃1 A+ R̃1 0

0 0 A3


 , (5.11)

and

Gs =




H + R̃2 R̃2 0

R̃2 H + R̃2 0

0 0 H3


 . (5.12)

From result (5.6), definition (5.8) and properties of kernels A and H , we see that
the elements of Ge and Gs are proportional to

(νt)−3/2 exp
(
− z2

4νt

)
, and (νt)−1/2 exp

(
− z2

4νt

)
(5.13)
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respectively. To save space, we write

(
u(0), ω(0)

)
as

(
u, ω

)(0)
.

Let us consider ξ(0) component in (5.9). First

H ⋆X(0)(x, t) =

∫

ΩT

H(x,x′, t−t′)
(
(ω.∇

)
u− (u.∇)ξ

)(0)

(x′, t′)dx′dt′

=

∫

ΩT

∇x
′H

(
ξv + ξw − ηu− ζu

)(0)
dx′dt′,

where we have performed integrating by parts in the space variable, and made use
of the no-slip boundary condition for u, the periodic condition for u and ω, zero
boundary value forK at r′=0, and the solenoidal conditions∇.u=∇.ω=0. Note that
the two terms ξu from the vorticity convection and stretching cancel each other.
By the same token, we find similar expressions for the other two components:

H ⋆ Y (0)(x, t) =

∫

ΩT

∇x
′H

(
ηw + ηu− ζv − ξv

)(0)
dx′dt′,

H3 ⋆ Z
(0)(x, t) =

∫

ΩT

∇x
′H3

(
ζu+ ζv − ξw − ηw

)(0)
dx′dt′.

Second, consider

R̃2 ⋆ (X
(0) + Y (0))(x, t) =

∫

ΩT

R̃2(x,x
′, t−t′)

(
(ω.∇

)
u− (u.∇)ξ

+ (ω.∇
)
v − (u.∇)η + (ηu− ξv)/r′

)(0)

(x′, t′)dx′dt′.

Carrying out similar expansion, the right-hand side is simplified as

∫

ΩT

∇x
′R̃2

(
(ξ + η)w − ξu− ζv

)(0)

dx′dt′ +

∫

ΩT

R̃2

r′

(
ηu− ξv

)(0)

dx′dt′.

There have been some cancellations among the terms arising from the vorticity
convection and stretching. We notice that the same reduction can be made for η(0)

component. Lastly, ζ(0) component is simplified as

∫

ΩT

∇x
′H3

(
ζu+ ζv − (ξ + η)w

)(0)

dx′dt′.

Thus the system (5.10) can be separated into the individual contributions from
the vorticity, and the velocity:

ω(0) = Ge ⋆ υe +C1 ⋆
(
F

(0)
1 u(0)

)
+C2 ⋆

(
F

(0)
2 u(0)

)
+C3 ⋆

(
F

(0)
3 u(0)

)
, (5.14)

where

F
(0)
1 =




−(η + ζ) ξ ξ

η −(ζ + ξ) η

ζ ζ −(ξ + η)




(0)

, (5.15)
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F
(0)
2 =




−ζ −ζ (ξ + η)

−ζ −ζ (ξ + η)

0 0 0




(0)

, F
(0)
3 =




η −ξ 0

η −ξ 0

0 0 0




(0)

. (5.16)

In equation (5.14), the brackets are used to emphasise our conventions that the
vorticity and velocity matrix multiplications are performed first. The kernels C’s
are diagonal, and we summarise their elements in

C1 =
(
∇x

′H ∇x
′H ∇x

′H3

)
,

C2 =
(
∇x

′R̃2 ∇x
′R̃2 0

)
,

C3 =
(
R̃2/r R̃2/r 0

)
.

(5.17)

In view of bounds (5.13) and the properties of the heat kernel Z1 in Green’s function,
the time-wise dependence of these elements becomes clear. In particular, we have

∇x
′H ∝ (νt− νt′ )−3/2 exp

(
− (z ± z′)2

4ν(t− t′)

)
. (5.18)

By virtue of the inverse relation (4.16), we substitute vorticity ω(0) for u(0).
After straightforward algebraic manipulations, we find that system (5.14) can be
expressed as

ω(0) = Ge ⋆ υe +

∫

ΩT

(
R0(ue) +R1(ω

(0))
)
(x,x′, t−t′) ω(0)(x′, t′)dx′dt′, (5.19)

where the elements of R0 and R1 can be found from those C’s, Vij and Wij . By
the estimate (5.13), the term associated with the entry vorticity is found to behave
like diffusion in one space dimension,

Ge ⋆ υe(x, t) ∝ (νt)−1/2 exp
(
− z2

4νt

)
.

The flow evolution really occurs in three space dimensions because r and θ vorticity
components, ξ and η, are closely coupled. In terms of the resolvent kernel of R0,
this integral equation is further reduced to

ω(0) = G̃e ⋆ υe +

∫

ΩT

Q(x,x′, t−t′;ω(0))ω(0)(x′, t′)dx′dt′. (5.20)

The last integral is quadratic in vorticity components, ω
(0)
i . The kernels G̃e and Q

are non-linear functions of the entry velocity ue.
Following our treatment of vorticity development in R

3 (see Chapters 7 and 8
of Lam 2013), we notice that every integral component in (5.20) may be expressed
in the form of

∫

ΩT

∫

Ω

3∑

l=1

Ail(x,x
′,y, t−t′)ω(0)

l (y, t′)ω(0)(x′, t′)dydx′dt′, i = 1, 2, 3.

In view of (5.18), we have

G̃e ⋆ υe(x, t)
(
≡ ̟(x, t)

)
∝ (νt)−3/2 exp

(
− z2

4νt

)
.
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Similarly, coefficient matrix Aij has this identical temporal dependence. Thus the
non-linear integral equation (5.20) has the component form

ω
(0)
i (x, t) = ̟i(x, t)

+

∫

ΩT

∫

Ω

3∑

l=1

Ail(x,x
′,x′′, t−t′)ω(0)

l (x′′, t′)ω(0)(x′, t′)dx′′dx′dt′.
(5.21)

These expressions imply an algorithm for similarity reductions; over a small time
interval in ∆t ∈ [0, t], we multiply the left-hand by Ail and ω

(0) for every i = 1, 2, 3.
The sum of the results is equivalent to the difference of ω(0) and the initial data
̟(0). The reductions can be performed as many times as we wish. Written in vector
form, the non-linearity in the integral equation is effectively transformed into an
infinite sum:

ω(0)(x, t) = ̟(x, t) +

∫

ΩT

B(0)(x,x′, t−t′)ω(0)(x′, t′)dx′dt′ + q(x, t), (5.22)

where q is an infinite sequence

q(x, t) =

∞∑

m=2

h(m)(x, t),

and h(m) stands for m-fold integral of Ail and ̟. Let B̃(0) be the resolvent kernel
for B(0). The unknown vorticity in equation (5.22) can be recast and expressed as

ω(0)(x, t) = γ(x, t) + q(x, t) +

∫

ΩT

B̃(0)(x,x′, t−t′)(γ + q)(x′, t′)dx′dt′, (5.23)

where γ is the Volterra-Fredholm filtered entry data, and is given by

γ(x, t) = ̟(x, t) +

∫

ΩT

B̃(0)(x,x′, t−t′)̟(x′, t′)dx′dt′. (5.24)

By the method of successive approximation, equation (5.23) can be completely
solved for any given initial data at pipe entry υe. We express the solution in terms
of the vorticity integral powers V [γ]k = V [γ(x, t)]k in the following convergent
series:

ω(0)(x, t) = γ(x, t) + 2 V [ γ ]2 + 10 V [ γ ]3 + 62 V [ γ ]4 + 430 V [ γ ]5

+ 3194 V [ γ ]6 + 24850 V [ γ ]7 + · · · · · · .
(5.25)

It is convenient to write the solution as

ω(0)(x, t) = L
(
γ
)
. (5.26)

6. Flow evolution over space-time

After a small time t = ts, the flow field defined by (5.5), or given by local solution
(5.26), occupies the entire interior of the pipe. For convenience, we may re-define
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the start at time t = ts. Applying Duhamel’s principle, the dynamic equations
(3.15) can be expressed in integral form (t > t′):

ω(x, t) =

∫ t

0

∫

Ω
⊗
He(x,y, t−t′)υe(y, t′)dydt′ +

∫

Ω

H(x,x′, t)ωs(x
′)dx′

+

∫ t

0

∫

∂Ω

Hb(x, z, t−t′)ϕb(z, t
′)dzdt′

+

∫ t

0

∫

Ω

H(x,x′, t−t′)X̄(x′, t′)dx′dt′
(
= Ie + Is + Ib +Φ

)
, t > t′.

(6.1)

This equation comprises all the vorticity contributions of the initial-boundary value
problem (cf. (5.5)).

(a) Initial vorticity

As in many physical problems where parabolic differential equations are appli-
cable, the second term on the right is the contribution from the initial vorticity.
If the interior fluid is set into motion impulsively from rest, instead of the void
vorticity (3.16), we must specify the initial distribution over the whole pipe wall in
the form of a vortex sheet. The strength of the sheet is difficult to quantify without
approximation. By considering the local-in-time shears on the wall due to the entry
vorticity (5.25), we prescribe the initial data for vorticity as

ωs(r, θ, z > 0) = ( ξs ηs ζs )(r, θ, z > 0) = ω(0) (r, θ, z > 0, t = ts). (6.2)

An alternative, which is popular in numerical computations and circumvents the
uncertainty in the initial data, is to disturb an existing Hagen-Poiseuille parabolic
profile over a part of the pipe length. Written in dimensionless form, parabolic
distribution, w(r)=1−r2, is widely used. The mathematical model is periodically
extended over the whole length of the pipe. The two underlying assumptions in
this model are that, Hagen-Poiseuille flow is absolutely steady in the complete
pipe, and the parabolic profile exists at arbitrary Reynolds number. However, as an
initial-boundary value problem, a fluid motion may start from an arbitrary initial
profile. The dependence of the initial condition cannot be ignored, as the initial
data dominates the subsequent flow development. In fact, both the assumptions
can hardly be justified (see §7).

(b) Wall vorticity

The third integral states the contribution of the vorticity production from the
boundary; it is calculated by means of time-dependent integral relation

∫

∂ΩT

Hb(x, z, t−t′)ϕb(z, t
′)dzdt′, (6.3)

where the vorticity derivative in the r-direction at wall is evaluated from

ϕb(z, t) =
∂ω(x, t)

∂r

∣∣∣
r=1

, (6.4)
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and the kernel is given by

Hb = ν Z1 [ r′K ]r′=1 = ν Z1(z, z
′, t)K′(r, θ, z, θ′, z′, t). (6.5)

The diagonal kernel Hb has elements

Hb = ( B B B3 ).

Similarly, function K′ = (K ′ K ′ K ′

3 ), where K
′ = 1/π +K ′

0, and

K ′

0 =
1

π

∞∑

n=1

∞∑

m=1

α2
n,m Jn

(
αn,mr

)

(α2
n,m − n2) Jn

(
αn,m

) cos
(
n(θ−θ′)

)
exp

(
−α2

n,m νt
)
,

and

K ′

3 =
1

π
+

1

π

∞∑

m=1

J0
(
βmr

)

J0
(
βm

) exp
(
−β2

m νt
)
+ 2K ′

0.

The analytic form of the kernel Green function indicates that the wall layer is
determined by every part of the flow though the influence at the far end of the pipe
is clearly insignificant, specifically for small data. For initial flow of arbitrary size,
our method of solution takes the global characters into account since the vorticity
field so solved (ϕb) contains all the interaction among the shears of different scales
over the complete pipe length. In particular, the wall term retains the essential
structure of the vorticity solution (5.25). The dependence of the kernel Hb on
viscosity ν shows that it is absolutely essential to consider the viscous effect. On
the other hand, the wall vorticity gradient illustrates the fact that the pipe flow
field is dynamic in nature. Modelling pipe flow in terms of steady Hagen-Poiseuille
flow of parabolic profile ought to be a crude approximation for the study of the
dynamics; it would be misleading to consider the axial symmetrical flow over a
significant part of the pipe length, particularly over Reynolds number range of
turbulence transition.

We call the flow structure at the solid surfaces as a wall layer in contrast to a
boundary layer as the latter suggests that Prandtl’s boundary layer approximations
are involved. Evidently, the flow is everywhere fully viscous, and there does not
exist a clear-cut “free-stream” where the flow may be considered as uniform and
inviscid. Equation (3.5) implies that the pressure must be strongly dependent on
the instantaneous values of the velocity gradients. The shears themselves evolve in
the transport process of convection and diffusion.

One particular feature of the wall vorticity is rather interesting. Suppose that
the motion is set up impulsively, and we then maintain a sustained supply of the
constant flow rate through the entry. The local vorticity diffuses out of the wall
into the interior in the same way as heat is released from a surface. The velocity
gradient normal to the wall contains a natural decay, i.e., the factor exp(−α2

n,m νt).
For fluids of small viscosity, the decay near the entry appears to be time-insensitive,
and the diffusion may proceed linearly even in the presence of the wall. This is of
course a misinterpretation, because the main vorticity dynamics is determined by
ϕb which is non-linear and unsteady. In particular, if vorticity ω(x, t) has a complex
structure like in a turbulence, the flow in the wall layer can be readily understood,
even though experimental measurements may be difficult to conduct.
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Solution by time-marching

We solve the vorticity evolution (6.1) by considering the following iterations:
For j = 1, 2, 3, · · · ,

ω(j)(x, t) = Ie(x, t) + I(j−1)
s (x, t) + Ib(x, t) + Φ(ω(j))(x, t), (6.6)

where the initial data are given by

I(j−1)
s (x, t) =

∫

Ω

H(x,x′, t)ω(j−1)(x′)dx′. (6.7)

The wall vorticity gradient (6.4) is written as

Ib(x, t) =

∫ t

0

∫

∂Ω

Hb(x, z, t−t′)ϕb(z, t
′)dzdt′, (6.8)

where the starting value may be taken from the result of ω(0),

ϕ
(0)
b =

∂ω(0)

∂r

∣∣∣
r=1

(θ, z, t) = ( pb qb rb )(θ, z, t).

Solution ω(1)

The new vorticity evolves according to

ω(1)(x, t) = Ie(x, t) + I(0)s (x, t) +

∫

∂ΩT

Hb(x, z, t−t′)ϕb(z, t
′)dzdt′

+

∫

ΩT

H(x,x′, t−t′)X̄(1)(x′, t′)dx′dt′.

(6.9)

The updated pair of integral equations (5.7) now read

ξ(1)(x, t) = 2ν

∫ t

0

∫

Ω

Z1
∂θ′K

r′
(x,x′, t−t′) η(1)(x′, t′)dx′dt′

+A ⋆ fe +H ⋆ ξ(0)s +B ⋆ pb +H ⋆X(1),

η(1)(x, t) = −2ν

∫ t

0

∫

Ω

Z1
∂θ′K

r′
(x,x′, t−t′) ξ(1)(x′, t′)dx′dt′

+A ⋆ ge +H ⋆ η(0)s +B ⋆ qb +H ⋆ Y (1).

(6.10)

Evidently, the reduction of the integral involving X̄(1) can be carried out in the
same manner as we did for X̄(0) (cf. (5.5)). There is no point to repeat the detailed
procedures. Equation (5.14) takes the revised form of

ω(1) = Ge ⋆ υe +Gs ⋆ ω
(0)
s +Gb ⋆ ϕ

(0)
b

+C1 ⋆
(
F

(1)
1 u(1)

)
+C2 ⋆

(
F

(1)
2 u(1)

)
+C3 ⋆

(
F

(1)
3 u(1)

)
,

(6.11)

where Gs is given by (5.12), and

Gb =




B + K̃b K̃b 0

K̃b B + K̃b 0

0 0 B3


 , (6.12)
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and K̃b = K̃ ⋆ B. The matrices, F1, F2 and F3, are still given by (5.15) to (5.16)
with the current value of vorticity ω(1). Since

B, B3 ∝ (νt)−1/2 exp
(
− z2

4νt

)
,

we calculate that

K̃b ∝ (νt− νt′ )1/2 exp
(
− κ

(z ± z′)2

4ν(t− t′)

)

for 0 < κ < 1. Equation (5.19) is revised as

ω(1)(x, t) =Ge ⋆ υe +Gs ⋆ ω
(0)
s +Gb ⋆ ϕ

(0)
b

+

∫

ΩT

(
R0(ue) +R1(ω

(1))
)
(x,x′, t−t′) ω(1)(x′, t′)dx′dt′.

(6.13)

Although we have not yet had the full structure of the wall layer, we may infer from
this result that it is dominated by the global vorticity field. Essentially, the last two
integrals contain the quadratic non-linearity. The analogous equation to (5.20) has
the expression

ω(1) = G̃e ⋆ υe + G̃s ⋆ ω
(0)
s + G̃b ⋆ ϕ

(0)
b

+

∫

ΩT

Q(x,x′, t−t′;ω(1))ω(1)(x′, t′)dx′dt′.
(6.14)

In view of the velocity-vorticity relation (4.16), the non-linear integral equation for
the vorticity can be derived:

ω
(1)
i (x, t) = ̟

(0)
i (x, t)

+

∫

ΩT

∫

Ω

3∑

l=1

A
(1)
il (x,x′,x′′, t−t′)ω(1)

l (x′′, t′)ω(1)(x′, t′)dx′′dx′dt′,
(6.15)

where it is clear that the revised ̟,

̟(0)(x, t) = ̟(x, t) + G̃s ⋆ ω
(0)
s (x, t) + G̃b ⋆ ϕ

(0)
b (x, t),

takes into account the initial vorticity and the vorticity production at the wall.
Accordingly, the function γ can be updated to

γ(1)(x, t) = ̟(0)(x, t) +

∫

ΩT

B̃(1)(x,x′, t−t′)̟(0)(x′, t′)dx′dt′. (6.16)

The solution of (6.15) is given by

ω
(1)
0 (x, t) = L

(
γ(1)

)
,

where the subscript refers to ϕ
(0)
b . Next we perturb the wall vorticity gradient ϕ

(0)
b

by a small amount to

ϕ
(1)
b = ϕ

(0)
b + δϕb.
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From the dependence of the wall vorticity given in ̟(0), we have

∂ω
(1)
0

∂ϕ
(0)
b

(x, t) ≈ G̃b(x, t) +

∫

ΩT

B̃(1)(x,x′, t−t′)G̃b(x
′, t′)dx′dt′ <∞.

Thus the starting wall vorticity ϕ
(0)
b is replaced by

ϕ
(1)
b =

∂ω
(1)
0

∂r

∣∣∣
r=1

(θ, z, t) = ( pb qb rb )(θ, z, t).

With the updated wall vorticity gradient, we solve equation (6.9) to obtain the

updated solution ω
(1)
1 . This is nothing more than a Newton-Raphson procedure.

We continue our iterations until

max
(x,t)

∣∣ ω(1)
k+1 − ω

(1)
k

∣∣ < ε, k = 1, 2, 3, · · · ,

where ε is a prescribed tolerance at k =M . The final vorticity solution is denoted

by ω
(1)
M (x, t) = ω(1)(x, t).

Solution ω(j)

Once ω(1) has been determined, we march into time t+ δt. By shifting the time

origin, we carry out the similar calculations for ω(2). First, we update I
(0)
s in (6.9)

to I
(1)
s . In view of the Newton-Raphson iteration, the wall vorticity and hence ω(2)

can be found. The solution may be written as ω(2)(x, t) = L
(
γ(2)

)
. To continue

the time-marching, suppose that we have the solution for ω(j−1),

ω(j−1)(x, t) = L
(
γ(j−1)

)
.

The evolutional solution, ω(j), is determined from the current equation (6.6):

ω(j)(x, t) = Ie(x, t) + I(j−1)
s (x, t) +

∫

∂ΩT

Hb(x, z, t−t′)ϕ(j−1)
b (z, t′)dzdt′

+

∫

ΩT

H(x,x′, t−t′)X̄(j)(x′, t′)dx′dt′,

(6.17)

where I
(j−1)
s is the vorticity initialisation from ω(j−1), and the starting wall value

is given by

ϕ
(j−1)
b =

∂ω(j−1)

∂r

∣∣∣
r=1

.

The first two functions on the right in 6.17) are known. The third one may be
determined by iterations. Now equation (6.11) becomes

ω(j) = Ge ⋆ υe +Gs ⋆ ω
(j−1)
s +Gb ⋆ ϕ

(j−1)
b

+C1 ⋆
(
F

(j)
1 u(j)

)
+C2 ⋆

(
F

(j)
2 u(j)

)
+C3 ⋆

(
F

(j)
3 u(j)

)
.

(6.18)
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Since the structure of this non-linear equation is identical to (6.11) for the case
j=1, in view of the velocity-vorticity link (4.16), we convert it into the vorticity
quadratic form, i.e.,

ω
(j)
i (x, t) = ̟

(j−1)
i (x, t)

+

∫

ΩT

∫

Ω

3∑

l=1

A
(j)
il (x,x′,x′′, t−t′)ω(j)

l (x′′, t′)ω(j)(x′, t′)dx′′dx′dt′
(6.19)

(cf. (5.21)). Thus the function γ(j−1) can be updated:

γ(j)(x, t) = ̟(j−1)(x, t) +

∫

ΩT

B̃(j)(x,x′, t, t′)̟(j−1)(x′, t′)dx′dt′. (6.20)

We iterate on the wall vorticity gradient, using the Newton-Raphson method to
obtain ω(j). By the method of similarity reduction and successive approximations,
we assert that the solution of (6.6) is given by

ω(j)(x, t) = L
(
γ(j)

)
, j = 1, 2, 3, · · · .

The solution is unique and regular for any t>0.

7. Gradated flow regimes

Mathematical description of turbulence

We have demonstrated that the vorticity dynamics governed by the non-linear
integral equation (6.1) is globally well-posed. Its solution can be represented in the
series

ω(x, t) = γ̃(x, t) + 2 V [ γ̃ ]2 + 10 V [ γ̃ ]3 + 62 V [ γ̃ ]4 + 430 V [ γ̃ ]5

+ 3194 V [ γ̃ ]6 + 24850 V [ γ̃ ]7 + 199910 V [ γ̃ ]8

+ 1649350 V [ γ̃ ]9 + 13879538V [ γ̃ ]10 + · · · · · · ,

(7.1)

where γ̃ = γ̃(υe). Function υe or ωe is the vorticity value at pipe entry and may be
called the input vorticity as it completely specifies the flow evolution.

A vorticity power term, V [ γ̃ ]k=V [ γ̃ ]k(x, t), generally represents the k-fold
integral convolution on the initial data γ̃. Over space-time, the convolution effect
cultivates a “vortice”; the higher k, the smaller the vorticity scale because of the
heat kernel Z1. The coefficient integers form an integer sequence, and the integral
convolutions obey certain combinatorics rules.† For every additional term in the
series, the number of vortices is increased roughly by an order of magnitude com-
pared to the preceding scale. The solution (7.1) designates turbulence in the sense
that the vorticity field is composed of interacting shears in numerous scales. The
solution can be computed to an arbitrary degree of accuracy, at least in principle.

† This is sequence A107841 in The On-Line Encyclopaedia of Integer Sequences www.oeis.org
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The numerical values obtained at specific space-time locations represent the mean
quantities in fluid motion. In reality, physics demands a demarcation on the mini-
mum allowable scales. It is a fact from experiment that turbulent motions observed
in nature and laboratory can be described by ensemble-averages and statistically
invariant fluctuations (an assumption by Reynolds),

u(x, t) = ū(x, t) + u′(x, t), u′ = 0,

where an overbear denotes the mean or the ensemble-average. Both properties are
repeatable in practice, as long as the experimental samples are sufficiently large, so
that the theory of large numbers is applicable. The missing random characters in
real turbulence is out of the question in the current continuum approach. Because
of the viscous diffusion, we may examine the origin of the randomness in terms
of the Maxwell-Boltzmann kinetic theory of gases. The law of energy conservation
dictates that the loss of the kinetic energy via viscous dissipation equals the increase
in the internal energy of fluid’s molecules. The diffusive process on the shears of
dissipative scale must be irregular because the thermal energy of the molecules
fluctuates randomly (Lam 2013). From the application point of view, we notice
that the structure of the wall vorticity ψb resembles many features in turbulece.

To preserve the generality of solution (7.1), we shall not, at this stage of analy-
sis, classify flows into particular categories, such as rolls, streaks, hairpins and sta-
tionary or travelling waves though these dynamic flow features are basic building
blocks for complex flow fields at large Reynolds number. The process of initiation,
sustainment and diversification must be history-dependent and scale-specific, at
least during the early phase of flow evolution.

Given entry data (3.11), the magnitude and distribution of the input vorticity ωe

determines the subsequent dynamic flow development. In general, a characteristic
velocity at every axial location throughout the pipe prior to transition must be the
function of entry velocity ue. As the local flow is in evolution, the local velocity is
evolving and hence cannot be constant. In the present paper, we define the Reynolds
number as

Re =
w̄d

ν
, (7.2)

where w̄ = w̄(ue) is the mean velocity, and d the pipe diameter. This is a textbook
definition for Hagen-Poiseuille parabolic profile,

w/wmax = 1− r2, (7.3)

and w̄ = wmax/2. In practice, it is extremely difficult, if ever possible, to generate
and maintain the parabolic velocity from pipe entry to end. Most pipe flow exper-
iments are carried out in the condition of constant stream-wise pressure gradient
or of constant mass-flow, for flow starting from specific inlet design to minimise
the local disturbances. Velocity measurements in the vicinity of pipe entry indicate
that the local profiles are not self-similar. A Hagen-Poiseuille parabolic profile or
the fully developed pipe flow may only be realised at downstream distance of order
of 100−1000 diameters for small initial data or lower to moderate Re.

We would like to emphasise the fact that, the similarity rule implied in relation
(7.2) is valid strictly for the given distribution ue. Care is needed in the interpreta-
tion of conclusions drawn from different experimental measurements, particularly
for those on the nature of laminar-turbulent transition.
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(a) Uni-directional approximation for entry flow

The velocity components in the radial and circumferential directions are as-
sumed as identically zero over a small time interval t ∈ [0, Tǫ]. The axial compo-
nent is treated as a function of the variables r and t only, i.e., w = w(r, t), and
the pressure varies with the axial variable, p = p(z, t). The differential equation is
much simplified as

∂w

∂t
− ν

(∂2w
∂r2

+
1

r

∂w

∂r

)
= νP0(z, t), w(1) = 0, w(r, 0) = we(r), (7.4)

where P0 = −(∂p/∂z)/µ denotes the axial pressure gradient. The solution of the
initial-boundary value problem can be expressed in terms of the Fourier-Bessel
series (cf. Lam 2015),

w(r, t) =

∫ 1

0

we(r
′)G0(r, r

′, t)dr′ + ν

∫ t

0

∫ 1

0

P0(z, τ)G0(r, r
′, t−τ)dr′dτ, (7.5)

where Green’s function is given by

G0(r, r
′, t) = 2 r′

∞∑

n=1

exp
(
− λ2nνt

) J0
(
λnr

)
J0

(
λnr

′
)

J2
1

(
λn

) . (7.6)

This is the one-dimension version of (5.3)-(5.4). Consider the case of constant pres-
sure gradient and the velocity is normalised by P0/4. The scaled velocity is com-
puted from

w∗(r, t) =

∫ 1

0

w∗

e(r
′)G0(r, r

′, t)dr′ + (4νt)

∫ 1

0

∫ 1

0

G0(r, r
′, t(1−τ)

)
dr′dτ

= wI + wG.

(7.7)

(If the initial data we=0 or the motion is assumed to start impulsively from rest, see
Szymański 1932 and §4.3 of Batchelor 1967, the second term produces a parabolic
profile in the limit of νt→∞, i.e., wmax=1 in the distribution (7.3).) In figures 1 and
2, we present the time evolution of two constant entry profiles. Briefly, the actual
long-time evolution depends on the relative strength of the two contributions; the
first term involving initial data w∗

e may well be dominant in the solution (7.7) and
hence renders the parabolic profile irrelevant.

To relate our theory of uni-directional flow (7.5) in the vicinity of pipe entrance
to experiments, we set

νt

a2
=
xexpt
a

1

Rr
=
xeff
d

1

Re
,

where the quantity xeff is an effective distance measured from an origin of zero
viscous thickness at the theoretical “entrance”, and Rr is the Reynolds number
based on pipe radius. It is known from experimental work (Smith 1960; Pfenninger
1961; Tritton 1976; Mullin 2011) that pipe inlets are streamlined designs to minimise
irregularity in starting flow. The present approximate theory does not model any
specific designs, and hence the velocity profile is assumed to start some distance
upstream of the entrance. At entry location, z=0, the local velocity then satisfies the
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Figure 1. Influence of initial data on flow regime near pipe entry by theory of uni-directional
flow. For scaled entry velocity: constant distributions w∗

e = 0.5 and w∗

e = 4.0. The pipe
velocity is given by (7.7) for several fixed values νt. As time νt increases, the initial velocity
decays and the wall layer grows in thickness, while the flow driven by the constant pressure
gradient ∂p/∂z builds up. The combined profile w∗ is shown in the last row. As νt→∞,
the initial influence diminishes, and the pressure gradient becomes dominant, until the
total profile approaches to the Hagen-Poiseuille parabolic distribution (7.3). For small

initial data, our solution explains why the fully developed pipe flow at large νt has a
parabolic velocity distribution. The developed flow may be treated as history-independent
after sufficiently long time.

no-slip condition. This practice results in a shift in quantity νt/a2. Comparisons in
figures 3 and 4 show that the unsteady solution (7.7) is very satisfactory over a wide
range of νt, despite of the use of flow conditioners in the experiments. The initial-
boundary value formulation of the Navier-Stokes equations must be well-founded.
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Figure 2. Importance of the initial unsteady phase in pipe flow. The magnitude of entry
velocity is increased to w∗

e = 4.0, so that the developing pipe profiles are far from parabolic
over almost all time. For flow development at high Reynolds number, whether the local
flow is laminar or turbulent depends strongly on the initial data. The Hagen-Poiseuille
profile (7.3) is just a particular case of developing flows, that can be generated in long
circular pipes.

Even in the present approximation, the solution is an excellent description of the
initial pipe flow development over substantial entry-length.

Our chief interest here is to study how turbulence transition initiates naturally.
We wish to elucidate the way in which a streamlined flow structure evolves into
a complex vorticity field, in the absence of any disturbances. The experiments by
Durst & Uensal (2006) are a synopsis which demonstrates many important aspects
of the natural transition in well-crafted test ambience (figure 5).
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Figure 3. Theory of uni-directional flow for initial evolution in circular pipes. Experi-
mental results are averaged values of the data given in Smith (1960) at Rr = w̄a/ν
= 0.01, 0.02, 0.03, 0.04. Note that the data were taken from three collections of experi-
ments, where the test conditions were very different, and, in particular, the detailed inlet
geometries were not fully reported, while the initiation flows were specifically tailored.
In the theory, the entry velocity is considered as a constant value w∗

e = 0.6. The full
lines are calculations at νt/a2 = 0.015, 0.025, 0.035, 0.045 for a pipe of radius unity with
sharp-edged inlet. The broken blue line is a solution at νt/a2 = 0.25 which indicates a
possible decay of the inlet flow. As νt → ∞, the flow can be treated as fully developed
and tends to parabolic profile (7.3) (broken black line). The two broken lines are given
for reference only, as the uni-directional flow is supposed to exist in a small time interval
from the start of motion.

Distinct flow stages

In his pipe experiments (Reynolds 1883), Reynolds established that there are
two fundamental categories of flows: laminar and turbulent. Laminar flows are char-
acterised by well-defined streamlines. Turbulence is observed on macroscopic scale
as a fluctuating random motion consisting of various flow scales. The intermediate
flow stage between these two flow states during flow evolution is known as transi-
tion. The process of transition from the laminar state to turbulence attracts most
attention. The reverse scenario is known as re-laminarisation. Intuitively, turbu-
lence transition must merge the streamlined structures and the growing gradations
of finer-scale flows. As established from experiments, transition appears to initiate
in localised regions in intermittent manners. There are patches of irregularly fluc-
tuating flows during evolution; these are commonly referred as turbulent puffs, or
slugs, or spots, which are often recognised in wall-bounded shear flows.

For a flow of small Reynolds number or a fluid motion with small initial data,
the vorticity distribution is given by the leading term γ̃ in (7.1), and the flow is
said to be laminar. The dissipation of the kinetic energy is dominated by diffusion
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Figure 4. Theory of uni-directional flow for initial evolution in circular pipes. See previous
plot for experimental data and theoretical computations. The entry velocity is a boundary
layer w∗

e = 0.6(1 − r)1/10. Compared to the case of constant velocity, the differences are
negligible, as both theoretical profiles are assumed to start somewhere upstream of the
pipe entry. The starting profiles at z=0 are almost identical. From the experiment point
of view, it is much easier to produce a constant velocity in the vicinity of the pipe inlet.

on large-scale. As Re is slightly increased, the vorticity solution is considered to
consist of the two-term expansion,

ω(x, t) = γ̃ + 2 V [ γ̃ ]2.

The flow can still be regarded as laminar, and evidently the flow field has a large-
scale structure because the space-time convolutions on γ̃ produce flow scales com-
parable to the initial data. However, some increased degree of unsteadiness is de-
tectable in the flow field, due to the interaction among the eddies. If the Reynolds
number is further increased, the instantaneous vorticity field is best described by

ω(x, t) = γ̃ + 2 V [ γ̃ ]2 + 10 V [ γ̃ ]3,

or possibly, by

ω(x, t) = γ̃ + 2 V [ γ̃ ]2 + 10 V [ γ̃ ]3 + 62 V [ γ̃ ]4.

The water in the pipe now consists of multiple eddies of smaller scales, which
induce pronounced fluctuations in the flow. In practice, Reynolds did not observe
the vorticity field but the velocity field. In view of the induction effect of the Green
functions, the velocity field, must show a space-time intermittent character, due to
the localised vorticity patches by the interaction of the interwoven γ̃ and the wall
layer (cf. ψb). He referred to the regions of the velocity induced by the vorticity
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Figure 5. In this experimental investigation for natural transition in a pipe of diameter
15mm and a length x = 10m, constant mass flows via a feedback control were maintained. To
a good approximation, the Hagen-Poiseuille profile was achieved at every Reynolds number
Re≤10000. Transition was detected at Retr≈13000. At Re=2030, 5000, 10030, 13000, the
values of νt/a2 were 1.313, 0.533, 0.266, 0.205 respectively. All the profiles were measured
at the pipe exit. The manner in which the flow was initiated suggested that the profile at
the inlet ought to be either a constant or a boundary layer. It is seen that, at Re=10030,
the measured flow was an evolving profile. As Re was increased to Retr, the transitional
profile was certainly non-self-similar. The test data at Re=15020 and 16980 showed that
the process of losing laminarity initiated and finalised at locations upstream of the exit. In
fact, the local flows over transitional process need not to be any particular type, as long
as its progenitor at start is sizeable such that the non-linearity in the governing equations
is evoked.

concentrations as flashes (now commonly known as turbulent puffs and slugs). The
whole flow field evolves into a structure which looks like a random motion. The
Green’s functions take into account the downstream transitional or weakly turbulent
flow states which in turn randomise the upstream localised vorticity slugs. At a
higher Re, the number of smaller eddies grows rapidly so that the flow becomes

ω(x, t) = γ̃ + 2 V [ γ̃ ]2 + 10 V [ γ̃ ]3 + 62 V [ γ̃ ]4 + 430 V [ γ̃ ]5 + 3194 V [ γ̃ ]6.

The vorticity field must appear to be chaotic and irregular, due to the strong inter-
actions among the vorticity eddies. As Re is increased further, numerous gradated
eddies grow out of the non-linearity, and viscous dissipation intensifies. The ran-
domness mechanism becomes marked and effective. The whole flow soon becomes
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chaotic, as well as, random as it contains a multitude of eddies in distinct scales.
Beyond this stage, the flow field develops into full turbulence.

Turbulence transition in pipe flow is an intrinsic, three-dimensional, non-linear

process during the evolution. As the Reynolds number increases, the orderly stream-

lined structure of initial laminarity is successively modified by the proliferated eddies

of progressively smaller size, until the entire structure is dissolved into a composi-

tion of fluctuating shears. Depending on given initial data, there exists a Re-number

range in which the non-linearity first becomes conspicuous. The process of transi-

tion can be an abrupt event or can develop intermittently over a large section of

space-time.

(b) Turbulent puffs and slugs

Local turbulent puffs are highly interactive vorticity due to the coupling of the r
and θ components, as given in the governing equations (3.15). The resolvent kernel
rooted in (5.9) or more appropriately (6.10) accumulates the components into local
vorticity blobs. The convolutions are stronger for the vorticity in the wall layer. The
concentrated vortices is advected downstream by the mean stream-wise velocity w,
so that they become elongated and spread out, forming localised vorticity as puffs.
The process of proliferation by the non-linearity tends to weaken the local vorticity
structures, and enhances the local vorticity scales. Turbulent slugs are amalgamated
puffs due to the scale multiplications. The puffs and slugs exist locally over part of
the pipe flow. It is reasonable to expect that the resulting motion incurs intermittent
characters, due to the induction of the vorticity in the whole pipe.

Turbulent puffs refer to localised patches of disordered flow. Their legnths are
typically 10−20 pipe-diameter long. They are normally found at 1600<Re<2500
in good experimental set-ups and advect downstream at 90−95% of the pipe mean
velocity (see, for instance, Wygnanski & Champagne 1973). They are often called
“equilibrium puffs” because they have structured flow features, which do not seem
to vary among different experiments. In most experiments, the deductions of their
lifetime, or the travelling speed must be inferred from the ensemble-averages of
the measurements. Our theory suggests that, in a typical puff, the local vorticity
consists of flow scales in the order of

10 [ γ̃ ]3 to 430 [ γ̃ ]5 (turbulent puffs).

The mean sizes of the vortices ought to be moderate, and are well-above the dis-
sipative scales. Thus, the turbulent puffs are not random in general, as compared
to turbulence. But their dynamic behaviours do require statistical descriptions as
the number of vorticity scales involved is already rather large. It is essential to
notice that these puffs are not strong and abundant enough to trigger transition,
as they represent the transitional flow structures between the streamlined laminar
flow, and the weak turbulence. As the initial data become stronger or the Reynolds
number becomes larger, more vortices of smaller scales will be created out of the
non-linearity. As indicated in the re-laminarisation of the puffs by reducing the
Reynolds number (Peixinho & Mullin 2006), the puff structures in the subsequent
development remain in an identifiable fashion and they do not become chaotic. In
particular, the test results suggest that the decay of the puff follows an exponential
rate in space and in time (a typical smoothing effect due to heat kernel). The flow

Article published on arXiv



Navier-Stokes Equations in Cylindrical Co-ordinates 33

visualisation highlights the existence of two longitudinal vortices preceding the ap-
pearance of the puff flow at Reynolds number Re=1750. It can be interpreted from
many experimental data that, at the Reynolds number Re<1750, the pipe flow has
large-scale non-chaotic structures (§2 of Mullin 2011). The two-terms solution of
(7.1) precisely describes the flow composition in the early evolution.

Turbulent slugs are related to the next flow scales in the vorticity hierarchy of
the non-linearity. They can be described as vorticity patches with the scales from
the vorticity powers

430 [ γ̃ ]5 to 3194 [ γ̃ ]6 (turbulent slugs).

The slugs are more space-filling, as demonstrated in flow visualisations. The fluid
motions in slugs show strong agitations, and contain localised hysteresis, due partly
to the downstream flow effects. However, at Reynolds number Re>3000, the flow
state of initialisation turbulence is characterised by the presence of slugs. The sta-
tistical properties of slugs ought to have similarities typically found in turbulence.
However, the flow inside slugs is unlikely to resemble full turbulence. Unfortunately,
current experimental techniques may not be able to uncover every detail of slug
flow, given the presence of numerous vortices. Hence use of statistical means for
transition study is inevitable.

(c) The intrinsic transition

The ultimate aim of transition investigation is to identify the process, or the
mechanism, which instigates the numerous vortices of various scales, apparently
out of streamlined progenitor flow. In reality, experimental evidence shows a great
variety in the actual processes, depending on the types of the flow in question (free
shear flows, boundary layers, confined flows in pipes or closed channels). The geom-
etry of circular pipe is simple for experiments, though we have seen that the analytic
solutions are much more complicated compared to free shear flows in unbounded
space. It is known that pipe flow development is experiment-dependent because of
varied test conditions. Transition phenomena in different test environments can be
compared only if the disturbance levels are kept below some threshold values (see
below § 8). Should disturbances be significant and potentially aberrant, flow gra-
dations to turbulence, as an initial-boundary problem of the equations of motion,
may take divergent paths and case-dependent routes. We call the laminar-turbulent
transition which is free of influence of disturbances the intrinsic transition.

The proliferation of vortices does not necessarily occur over the complete cross-
sectional area at any fixed stream-wise z location. The intermittency is a natural
phenomenon during flow evolution and transition. Whether local intermittent char-
acters will persist into the subsequent turbulence depends on the initial data and
the vicinity flow conditions.

In practice, velocity profiles other than the self-similar distribution can also be
generated and maintained. In figure 6 we plot and compare selected test data of
Pfenninger (1961). It is comprehensible that delayed transition up to Re∼105 was
achieved. These tests ought to be assessed as dedicated flow controls to postpone
turbulence transition in the same way that suction is applied to laminar boundary
layers in high Reynolds number. In theory, the test υe must be so powerful that
only the first two terms in the vorticity series are adequate to describe the initial
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Figure 6. Measured velocity profiles in accelerating flows, in favourable pressure gradients,
at various Rd = 4(x∗/d)/Re, where pipe diameter d = 50.8mm, and x∗ is the length of an
equivalent straight pipe with zero boundary layer thickness at the entry. For the values
of Rd, the axial distances from the entry are 1.37m, 3.045m, 5.94m and 11.88m respectively.
The velocity profiles substantially deviate from the parabolic profile over the whole pipe
length. The main experiments were conducted in accelerating flows, likely involving strong
swirls. The energy of the flows in the favourable pressure gradients was much higher than
the parabolic profile in constant pressure gradient at the same Reynolds number.

evolution over the complete pipe length. On the other hand, there does not ex-
ist experimental evidence to indicate that fully developed Hagen-Poiseuille flow of
parabolic profile remains laminar at arbitrary Reynolds number.

On the basis of the outcomes from credible constant-mass-flow-rate experiments
(see, for example, Darbyshire & Mullin 1995; Durst & Uensal 2006), a number of
conclusions are compatible with the regularity theory of the Navier-Stokes equa-
tions. Arrays of test techniques, including suction, jets, ring blockage, and iris di-
aphragm, have been utilised to instigate finite perturbations into flows at high
Reynolds number. The established results showed that transition is relatively in-
sensitive to the means of forcing which are the representation of initial data. In par-
ticular, good repeatability in transition measurements has been confirmed in both
natural and forced scenarios. One may opt the term∇ui in every component of (1.1)
as the unknown in view of u=∆−1ω, the equations then become a set of quasi-linear
differential equations, instead of non-linear ones. Such a view may be instructive
in understanding the quantitative repeatability of the test results, that have been
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collected at the Reynolds numbers preceding the full-blown random effect due to
viscous dissipation. The differential operators, ∂t−ν∆ and ∂t−ν∆′ in (3.15), are
the stereotype of continuum diffusion process for finite ν>0. The flow evolution
governed by the Navier-Stokes equations does not behave like certain lower-order
dynamical systems which are sensitive to initial conditions.

A theoretical development of pipe flow transition is to identify particular numer-
ical solutions known as travelling waves. They are identified as unstable solutions
of the governing equations, and are stream-wise vortices propagating with constant
phase speed. Specifically, the wavy topology has been considered to originate from
saddle-node bifurcations of the stability boundaries in the Reynolds number range
770≤Re≤1250 (Faisst & Eckhardt 2003; Wedin & Kerswell 2004). However, the
Navier-Stokes equations are deterministic and globally well-posed; exact solutions

of the governing equations do not bifurcate in space or in time.

8. Experimental evidence for disturbance-free transition

One of the key outcomes from the present theoretical analysis is that the laminar-
turbulent transition is a direct consequence of the non-linear term (u.∇)u in the
equations of motion. All the integral power terms in (7.1) are emanated from the
non-linearity. Thus, our analysis asserts that the intrinsic transition occurs even
in the complete absence of disturbances, infinitesimal or finite. Since fluid motions
are an initial-boundary value problem of the Navier-Stokes equations, initial and
boundary conditions make allowance for any disturbances.

Microscopic fluctuation and turbulence

One may contemplate that, microscopic fluctuations are the internal distur-
bances that play a role in turbulence transition. However, molecular agitations are
incessant in all types of fluid motions; the fluctuations exist in laminar, transitional,
as well as turbulent flows. In fact, their existence was first discovered in fluids at rest
(Brownian motion). Turbulent flows in finite-energy motion are dynamic in nature,
and hence do not persist indefinitely. Experiments demonstrate that turbulence in
pipe flow undergoes reverse transition during flow decay when a large share of the
energy has been dissipated. In most laboratory tests under standard temperature
and pressure, any temperature increase from the viscous dissipation of flow energy
is not critical enough to alter the mean molecular speed according to kinetic theory
of gases (Maxwell 1867; Boltzmann 1906). For incompressible flows, the internal en-
ergy of fluid’s molecules has a primarily identical Boltzmann distribution in all the
three flow stages. If the microscopic fluctuations are responsible for the transition
from laminar to turbulent state, in the absence of any macroscopic disturbances,
are they the cause for the process of reverse transition?

Nevertheless, the microscopic fluctuations are identified as the origin of the
random characters in turbulence in incompressible flows (Lam 2013). Viscous dissi-
pation on the copious eddies of small scales expedites entropy production in order
to restore the flows to the equilibrium of shear-free state. The diffusion of individual
small-scale eddies is a stochastic process in space and in time, as fluid’s thermal en-
ergy fluctuates. Fluid motions on the continuum inhere the microscopic randomness
through the diffusive dissipation process.
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Environmental disturbances

Environmental disturbances are the external disturbances, such as free-stream
turbulence, acoustic noise, mechanical vibrations of test apparatus. They can be
specified in the initial data (3.11) or (3.19), and in the boundary value (3.7). In
principle, their effect on transition has been fully taken into account in the equations
of motion. Specifically, any background disturbance at the far end of the pipe is
fully enumerated in the Green function (5.1) or (6.3) which encloses the entire pipe
interior. The Fourier-Bessel expansion in the function explicates the flow field as
a space-bounded wave-like structure with diminishing magnitude as νt→∞. The
inherent analytic characters of the solution precisely explain many wavy patterns
observed in flow visualisations (see, for instance, van Dyke 1982; and Samimy et al.

2003).
In the classic experiments of Schubauer & Skramstad (1947) for transition flows

on a flat-plate in zero pressure gradient, it was demonstrated that the transition
location is independent of the free-stream turbulence once the level dropped below
a threshold about 0.08%. The turbulence level is defined as

Tu =
(√(

u′2 + v′2 + w′2
)
/3

)
/u∞,

expressed as a percentage. It was speculated that the acoustic excitation in the
tunnel might be responsible for the transition. Additional tests showed that the
transition was delayed if the environmental noise was carefully regulated (Wells
1967). In particular, when the noise level was below 90db, the transition was ba-
sically insensitive to the ambient disturbances as long as Tu<0.1%. In figure 7 we
summarise the transition location as a function of the free-stream turbulence with
reduced acoustic excitation. The limiting case of zero disturbances can be obtained
by extrapolation. In fact, these limits have been drawn in the early reviews, see,
for example, figure 10 of Tani (1969) or figure 16(a) of Narasimha (1985). However,
the significance of these limits has not been realised, due probably to lack of theo-
retical evidence at the time. Instead, the occurrence of the natural transition was
attributed to residue or background disturbances, such as derivations from inlet
flow, thermal convection due to temperature differences, or imperfections in test
apparatus. Nevertheless, all these perturbation irregularities can be minimised by
means of control, and in principle they are best regarded as extraneous for fluid
motions.

We draw our attention to a puzzling fact in flat-plate experiments: in order
to observe the Tollmien-Schlichting waves, artificial excitations of specific frequen-
cies had to be introduced into the laminar boundary layer so that the resulting
measurements would agree with the predictions by linear stability theory which
was an attempt to solve the complete Navier-Stokes equations by approximation.
In the complete absence of the simulated excitations, instability waves could not
be detected at the neighbourhood of the critical Reynolds number, as long as the
external environmental disturbances were well-kept below a minimum, even though
turbulence transition was unavoidable at some downstream location (Schubauer &
Skramstad 1947; Klebanoff et al. 1962). An explanation of this apparently paradoxi-
cal situation is that the Tollmien-Schlichting waves are usually too weak to measure
with certainty (see, for instance, §17.7 of Tritton 1988). The question is: how can
we distinguish the man-made disturbances from the “genuine” instability waves?
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Figure 7. Transition Reynolds number (ReXtr) as a function of free-stream turbulence
level Tu for flat-plate boundary layers. In each case, the intrinsic turbulence transition is
found to be independent of the threshold value T ∗

u
as shown by a small vertical line at

0.1% and 0.08%. If the turbulence levels are substantially higher than T ∗

u
, loss of laminar

flow occurs prematurely but the actual process is mis-shaped and contorted by the test
environment. Incoming flows with strong fluctuations can induce complete loss of laminar
flow as the first two terms in our series solution (7.1) contain convoluted vortex eddies of
the free-stream turbulence. For the two perturbative environments commonly encountered
in practice, disturbance-free transition is established at a finite value of ReXtr (marked
by a filled diamond) which is determined by extrapolating the test data to Tu = 0.

Evidently, if the flow has been disturbed, the measurement instrument ought to
have picked up the responses of the laminar flow to the forced excitations since, in
any event, the unstable waves are ineffective to impact.

A comparable situation was realised in the leading-edge flow over a swept wing
where the three-dimensional boundary layer was dominated by cross-flows (Deyhle
& Bippes 1996). In particular, controlled excitations or artificial disturbances had
to be generated in order to observe cross-flow instabilities as stipulated in linear
stability theory. The test conclusion says that free-stream turbulence affects transi-
tion indirectly, as long as Tu<0.2%. It is also found that the receptivity effects due
to acoustic excitations and non-uniformities of mean flow are weak. The cross-flow
instabilities are seen to be less vulnerable to free-steam turbulence but the trend
is in accord with the flat-plate experiments. By analogy, the main results may be
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interpreted as a confirmation that unstable cross-flow waves as predicted by the
linear theory are unlikely to be observable in the low turbulence test environments.

To obtain a solution from the equations of motion, any spatio-temporal flow
modification, due to the presence of a disturbance during evolution, requires revised
initial data, and a “new” solution of the governing equations must be sought. This is
particularly relevant to experiments where injections are used as a means of creating
finite disturbances on pipe flow. Since the mass addition must be taken into account
as ∇.u=f(x)6=0, any deviation from the continuity hypothesis must be assessed
locally in a control volume analysis. The vorticity field is no longer solenoidal,
and a modification in the no-slip boundary condition has to be considered. As
a result of the problem reformulation, there are extra terms in the equations of
vorticity dynamics which can be aggressive to reorganise the overall flow evolution.
The forced phenomena observed in these related experimental works need to be
quantified in dedicated studies.

9. Conclusion

We have shown that the flow evolution in a circular pipe from given initial state can
be described by solution of the Navier-Stokes equations. The general solution of the
vorticity equation offers a theoretical explanation to the experimental observations
of Reynolds (1883). The non-linear effects specify a dynamic process of proliferating
vorticity scales. We have also demonstrated that the vorticity production at pipe
wall cannot be prescribed a priori, but can be determined by iteration. It is a matter
of computations to map out the detailed flow structures. In essence, the vorticity
solution not only explicates turbulence, but also clarifies the space-time gradation of
the flow evolution. Specifically, the laminar-turbulent transition is understood to be
an intrinsic part of the process, should the initial vorticity or the Reynolds number
be sufficiently large. It is inevitable for laminar, transitional and turbulent motions
to co-exist over a large part of the pipe, so that the flow field is normally intermittent
in space and in time. In light of test evidence, and our analytical results, we assert
that the intrinsic turbulence transition is primarily instigated by the non-linearity.
Disturbances, either infinitesimal or finite, misrepresent the transition. On practical
as well as theoretical grounds, it is important to understand the transition dynamics
from the primitive equations, without recourse to modelling, because exact vorticity
solutions can be obtained. Consequently, the impact of the non-linear effects on the
flow development can be appreciated with confidence. Given the growing intricacy
in flow field, prior to fully random turbulent state, experimental investigations on
the transition process are surely overwhelmed by aberrant particulars, and hence
have to, more or less, rely on statistical inference.

09 January 2019
f.lam11@yahoo.com
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Appendix A. Zeros for Bessel functions Jn(σn,k) and J
′
n(αn,m)

For every n, the zeros of the Bessel function Jn(σn,1) = 0 may be arranged in
ascending order, 0 < σn,1 < σn,2 < σn,3 < · · · < σn,k < · · · . The ascending order
also holds for the zeros of J ′

n(αn,1) = 0. As n→ ∞, the zeros can be estimated by
the asymptotic formula (Olver et al. 2010)

σ̃n,1 ∼ n+ 1.8557571n1/3 + 1.03315/n1/3 − 0.00397/n,

and
α̃n,1 ∼ n+ 0.8086165n1/3 + 0.07249/n1/3 − 0.05097/n.

We list the first few zeros of Jn(σn,1) = 0 and J ′

n(αn,1) = 0 in the table below.

n σn,1 σ̃n,1

0 2.404826 -

1 3.831706 3.884937

2 5.135622 5.156134

3 6.380162 6.391488

4 7.588342 7.595682

5 8.771484 8.776696

6 9.936110 9.940037

7 11.086370 11.089456

8 12.225092 12.227593

9 13.354300 13.356376

10 14.475501 14.477256

11 15.589848 15.591356

12 16.698250 16.699562

13 17.801435 17.802589

14 18.899998 18.901023

15 19.994431 19.995348

16 21.085146 21.085973

17 22.172495 22.173244

18 23.256776 23.257459

19 24.338250 24.338876

20 25.417141 25.417717

21 26.493647 26.494180

22 27.567944 27.568438

23 28.640185 28.640644

24 29.710509 29.710937

25 30.779039 30.779440

26 31.845887 31.846264

27 32.911154 32.911508

28 33.974930 33.975264

29 35.037299 35.037614

30 36.098337 36.098635

n αn,1 α̃n,1

0 0.000000 -

1 1.841184 1.830137

2 3.054237 3.050843

3 4.201189 4.199499

4 5.317553 5.316522

5 6.415616 6.414913

6 7.501266 7.500752

7 8.577836 8.577441

8 9.647422 9.647107

9 10.711434 10.711176

10 11.770877 11.770661

11 12.826491 12.826308

12 13.878843 13.878685

13 14.928374 14.928237

14 15.975439 15.975317

15 17.020323 17.020215

16 18.063265 18.063168

17 19.104462 19.104375

18 20.144083 20.144003

19 21.182270 21.182197

20 22.219146 22.219080

21 23.254821 23.254759

22 24.289386 24.289329

23 25.322924 25.322872

24 26.355510 26.355461

25 27.387207 27.387161

26 28.418075 28.418032

27 29.448165 29.448125

28 30.477526 30.477488

29 31.506199 31.506163

30 32.534224 32.534190
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