ON POWER SUMS OF MATRICES OVER A FINITE COMMUTATIVE RING

P. FORTUNY, J.M. GRAU, A.M. OLLER-MARCÉN, AND I.F. RÚA

ABSTRACT. In this paper we deal with the problem of computing the sum of the k-th powers of all the elements of the matrix ring $\mathbb{M}_d(R)$ with d > 1 and R a finite commutative ring. We completely solve the problem in the case $R = \mathbb{Z}/n\mathbb{Z}$ and give some results that compute the value of this sum if R is an arbitrary finite commutative ring R for many values of k and d. Finally, based on computational evidence and using some technical results proved in the paper we conjecture that the sum of the k-th powers of all the elements of the matrix ring $\mathbb{M}_d(R)$ is always 0 unless d = 2, $\operatorname{card}(R) \equiv 2 \pmod{4}$, $1 < k \equiv -1, 0, 1 \pmod{6}$ and the only element $e \in R \setminus \{0\}$ such that 2e = 0 is idempotent, in which case the sum is $\operatorname{diag}(e, e)$.

1. INTRODUCTION

For a ring R we denote by $\mathbb{M}_d(R)$ the ring of $d \times d$ matrices over R. Now, given an integer $k \geq 1$ we define the sum

$$S_k^d(R) := \sum_{M \in \mathbb{M}_d(R)} M^k.$$

This paper deals with the computation of $S_k^d(R)$ in the case when R is finite and commutative.

When d = 1, the problem of computing $S_k^1(R)$ is completely solved only for some particular families of finite commutative rings. If R is a finite field \mathbb{F}_q , the value of $S_k^1(\mathbb{F}_q)$ is well-known. If $R = \mathbb{Z}/n\mathbb{Z}$ the study of $S_k^1(\mathbb{Z}/n\mathbb{Z})$ dates back to 1840 [9] and has been completed in various works [2, 5, 7]. Finally, the case $R = \mathbb{Z}/n\mathbb{Z}[i]$ has been recently solved in [3]. For those rings, we have the following result.

Theorem 1. Let $k \ge 1$ be an integer.

i) Finite fields:

$$S_k^1(\mathbb{F}_q) = \begin{cases} -1, & \text{if } (q-1) \mid k ; \\ 0, & \text{otherwise.} \end{cases}$$

ii) Integers modulo n:

$$S_k^1(\mathbb{Z}/n\mathbb{Z}) = \begin{cases} -\sum_{p|n,p-1|k} \frac{n}{p}, & \text{if } k \text{ is even or } k = 1 \text{ or } n \not\equiv 0 \pmod{4}; \\ 0, & \text{otherwise.} \end{cases}$$

iii) Gaussian integers modulo n:

$$S_k^1(\mathbb{Z}/n\mathbb{Z}[i]) = \begin{cases} \frac{n}{2}(1+i), & \text{if } k > 1 \text{ is odd and } n \equiv 2 \pmod{4}; \\ -\sum_{p \in \mathcal{P}(k,n)} \frac{n^2}{p^2}, & \text{otherwise.} \end{cases}$$

where

$$\mathcal{P}(k,n) := \{ prime \ p : p \mid \mid n, p^2 - 1 \mid k, p \equiv 3 \pmod{4} \}$$

and $p \mid\mid n$ means that $p \mid n$, but $p^2 \nmid n$.

On the other hand, if d > 1 the problem has been only solved when R is a finite field [1]. In particular, the following result holds.

Theorem 2. Let $k, d \ge 1$ be integers. Then $S_k^d(\mathbb{F}_q) = 0$ unless q = 2 = d and $1 < k \equiv -1, 0, 1 \pmod{6}$ in which case $S_k^d(\mathbb{F}_q) = I_2$.

In this paper we deal with the computation of $S_k^d(R)$ with d > 1 and R a finite commutative ring. In particular Section 2 is devoted to completely determine the value of $S_k^d(R)$ in the case $R = \mathbb{Z}/n\mathbb{Z}$ (that we usually write as \mathbb{Z}_n). In Section 3 we give some technical results regarding sums of non-commutative monomials over $\mathbb{Z}/n\mathbb{Z}$ which will be used in Section 4 to compute $S_k^d(R)$ for an arbitrary finite commutative ring R in many cases. Finally, we close the paper in Section 5 with the following conjecture based on strong computational evidence

Conjecture 1. Let d > 1 and let R be a finite commutative ring. Then $S_k^d(R) = 0$ unless the following conditions hold:

(1) d = 2,

(2) $\operatorname{card}(R) \equiv 2 \pmod{4}$ and $1 < k \equiv -1, 0, 1 \pmod{6}$,

(3) The unique element $e \in R \setminus \{0\}$ such that 2e = 0 is idempotent.

Moreover, in this case

$$S_k^d(R) = \begin{pmatrix} e & 0\\ 0 & e \end{pmatrix}.$$

2. Power sums of matrices over \mathbb{Z}_n

In what follows we will consider integers n, d > 1. For the sake of simplicity, M_n^d will denote the set of integer matrices with entries in the range $\{0, \ldots, n-1\}$. Furthermore, for an integer $k \ge 1$, let $S_k^d(n) = \sum_{M \in M_n^d} M^k$. Our main goal in this section will be to compute the value of $S_k^d(n)$ modulo n. This is exactly the sum $S_k^d(\mathbb{Z}/n\mathbb{Z})$.

We start with the prime case. If n = p is a prime, we have the following result [1, Corollary 3.2]

Proposition 1. Let p be a prime. Then, $S_k^d(p) \equiv 0 \pmod{p}$ unless d = p = 2.

Thus, the case n = 2 must be studied separately. In fact, we have

Proposition 2.

$$S_k^2(2) \equiv \begin{cases} 0_2 \pmod{2}, & \text{if } k \equiv 1 \text{ or } k \equiv 2, 3, 4 \pmod{6}; \\ I_2 \pmod{2}, & \text{if } 1 < k \equiv 0, 1, 5 \pmod{6}. \end{cases}$$

 $\mathbf{2}$

Proof. For every $M \in M_n^2$ it holds that $M^2 \equiv M^8 \pmod{2}$. As a consequence $S_k^2(2) \equiv S_{k+6}^2(2) \pmod{2}$ for every k > 1. Thus, the result follows just computing $S_k^2(2)$ for $1 \le k \le 7$.

Now, we turn to the prime power case. The following lemma is straightforward **Lemma 1.** Let p be a prime. Then, any element M in $M_{p^{s+1}}^d$ can be uniquely written in the form $A + p^s B$, where $A \in M_{p^s}^d$, $B \in M_p^d$.

Using this lemma we can prove the following useful result.

Proposition 3. Let p be a prime. Then, $S_k^d(p^{s+1}) \equiv p^{d^2} S_k^d(p^s) \pmod{p^{s+1}}$.

Proof. By the previous lemma we have

(1)
$$S_k^d(p^{s+1}) = \sum_{M \in M_{p^{s+1}}^d} M^k = \sum_{A \in M_{p^s}^d} \sum_{B \in M_p^d} (A + p^s B)^k.$$

Using the non-commutative version of the binomial theorem we have that

$$(A + p^{s}B)^{k} \equiv A^{k} + p^{s} \sum_{t=1}^{k} A^{k-t} B A^{t-1} \pmod{p^{s+1}}.$$

Thus, combining this with (1) we obtain

$$S_k^d(p^{s+1}) \equiv \sum_{B \in M_p^d} \left(\sum_{A \in M_{p^s}^d} A^k \right) + \sum_{t=1}^k \sum_{A \in M_{p^s}^d} A^{k-t} \left(p^s \sum_{B \in M_p^d} B \right) A^{t-1}$$
$$\equiv p^{d^2} S_k^d(p^s) + \sum_{t=1}^k \sum_{A \in M_{p^s}^d} A^{k-t} \left(p^s S_1^d(p) \right) A^{t-1}$$
$$\equiv p^{d^2} S_k^d(p^s) \pmod{p^{s+1}}$$

because $S_1^d(p) \equiv 0 \pmod{p}$ by Propositions 1 and 2 (depending on whether p is odd or not).

Remark. Note that Proposition 3 implies that if $S_k^d(p^s) \equiv 0 \pmod{p^s}$, then also $S_k^d(p^{s+1}) \equiv 0 \pmod{p^{s+1}}$.

As a consequence we get the following result which extends Proposition 1.

Corollary 1.
$$S_k^d(p^s) \equiv 0 \pmod{p^s}$$
 unless $d = p = 2$ and $s = 1$.

Proof. If p = d = 2, then Proposition 1 implies that $S_k^2(4) \equiv 2^4 S_k^2(2) \equiv 0 \pmod{4}$, so the previous remark leads to $S_k^2(2^s) \equiv 0 \pmod{2^s}$, for every s > 1. On the other hand, if d or p is odd, then we know by Proposition 1 that $S_k^d(p) \equiv 0 \pmod{p}$. Again, the remark gives us $S_k^d(p^s) \equiv 0$, by induction for all $s \geq 1$.

In order to study the general case the following lemma will be useful. It is an analogue of [6, Lemma 3 i)]

Lemma 2. If $m \mid n$, then $S_k^d(n) \equiv \left(\frac{n}{m}\right)^{d^2} S_k^d(m) \pmod{m}$.

Proof. Given a matrix $M \in M_n^d$, let $M = (m_{i,j})$ with $1 \le i, j \le d$. Then,

$$S_k^d(n) = \sum_{M \in M_n^d} M^k = \sum_{0 \le m_{i,j} \le n-1} \left(m_{i,j} \right)^k$$
$$\equiv \left(\frac{n}{m} \right)^{d^2} \sum_{0 \le m_{i,j} \le m-1} \left(m_{i,j} \right)^k = S_k^d(m) \pmod{m}$$

Now, we can prove the main result of this section.

Theorem 3. The following congruence modulo n holds:

$$S_k^d(n) \equiv \begin{cases} \frac{n}{2} \cdot I_2, & \text{if } d = 2, \ n \equiv 2 \pmod{4} \ and \ 1 < k \equiv 0, 1, 5 \pmod{6}; \\ 0_2, & otherwise. \end{cases}$$

Proof. Let $n = 2^s p_1^{r_1} \cdots p_t^{r_t}$ be the prime power decomposition of n. If $1 \le i \le t$, we have by Lemma 2 and Corollary 1 that

$$S_k^d(n) \equiv \left(\frac{n}{p_i^{r_i}}\right)^{d^2} S_k^d(p_i^{r_i}) \equiv 0 \pmod{p_i^{r_i}}.$$

On the other hand, using again Lemma 2 we have that

$$S_k^d(n) \equiv \left(\frac{n}{2^s}\right)^{d^2} S_k^d(2^s) \pmod{2^s}.$$

Hence, Corollary 1 implies that $S_k^d(n) \equiv 0 \pmod{2^s}$ unless d = p = 2 and s = 1.

To conclude, it is enough to apply Proposition 2 together with the Chinese Remainder Theorem. $\hfill \Box$

The following corollary easily follows from Theorem 3 and it confirms the conjecture stated in the sequence A017593 from the OEIS [8].

Corollary 2. $S_n^2(n) \not\equiv 0 \pmod{n}$ if and only if $n \equiv 6 \pmod{12}$.

As a further application of Theorem 3 application we are going to compute the sum of the powers of the Hamilton quaternions over $\mathbb{Z}/n\mathbb{Z}$.

Proposition 4. For every $n \in \mathbb{N}$ and l > 0, it holds that

$$\sum_{z \in \mathbb{Z}_n[i,j,k]} z^l = 0.$$

Proof. Since for all $z \in \mathbb{Z}_2[i, j, k]$ we have that $z^2 \in \mathbb{Z}_2$, we deduce that $z^4 = z^2$, and so it can be straightforwardly checked that

$$\sum_{z \in \mathbb{Z}_2[i,j,k]} z^l = 0$$

Now, if s > 1, observing that

$$\mathbb{Z}_{2^{s}}[i,j,k] \cong \left\{ \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} : a,b,c,d \in \mathbb{Z}_{2^{s}} \right\}$$

we can adapt Lemma 1, Proposition 3 and Corollary 1 to inductively obtain that

$$\sum_{z \in \mathbb{Z}_{2^s}[i,j,k]} z^l = 0.$$

Finally, if $n = 2^{s}m$ with m odd we know [4, Theorem 4] that

$$\mathbb{Z}_n[i,j,k] \cong \mathbb{Z}_{2^s}[i,j,k] \times \mathbb{Z}_m[i,j,k] \cong \mathbb{Z}_{2^s}[i,j,k] \times \mathbb{M}_2(\mathbb{Z}_m)$$

and the result follows from Theorem 3.

3. Sums of non-commutative monomials over \mathbb{Z}_n

We will now consider a more general setting. Let $r \ge 1$ be an integer and consider $w(x_1, \ldots, x_r)$ a monomial in the non-commuting variables $\{x_1, \ldots, x_r\}$ of total degree k. In this situation, we define the sum

$$S_w^d(n) := \sum_{A_1,\dots,A_r \in M_n^d} w(A_1,\dots,A_r).$$

Note that if r = 1, then $w(x_1) = x_1^k$ and $S_w^d(n) = S_k^d(n)$ so we recover the situation from Section 2. Thus, in what follows we assume r > 1.

We want to study the value of $S_w^d(n)$ modulo n. To do so we first introduce two technical lemmas that extend [1, Lemma 2.3].

Lemma 3. Let $\tau \ge 1$ be an integer and let $\beta_i > 0$ for every $1 \le i \le \tau$. If p is an odd prime,

$$\sum_{x_1,\dots,x_\tau} x_1^{\beta_1} \cdots x_\tau^{\beta_\tau} \equiv \begin{cases} (-p^{s-1})^\tau, & \text{if } p-1 \mid \beta_i \text{ for every } i; \\ 0, & \text{otherwise.} \end{cases} \pmod{p^s}$$

where the sum is extended over x_1, \ldots, x_{τ} in the range $\{0, \ldots, p^s - 1\}$. Also, if some $\beta_i = 0$, then $\sum_{x_1, \ldots, x_{\tau}} x_1^{\beta_1} \cdots x_{\tau}^{\beta_{\tau}} \equiv 0 \pmod{p^s}$.

Proof. It is enough to apply [6, Lemma 3 ii)] which states that

$$\sum_{x_i=0}^{p^s-1} x_i^{\beta_i} \equiv \begin{cases} -p^{s-1}, & if \ p-1 \mid \beta_i; \\ 0, & otherwise. \end{cases} \pmod{p^s}$$

for every $1 \leq i \leq \tau$. Observe that, if $\beta_i = 0$, then:

$$\sum_{x_1,...,x_{\tau}} x_1^{\beta_1} \cdots x_{\tau}^{\beta_{\tau}} = \sum_{x_i} \sum_{x_j, j \neq i} x_1^{\beta_1} \cdots x_{i-1}^{\beta_{i-1}} x_{i+1}^{\beta_{i+1}} \cdots x_{\tau}^{\beta_{\tau}} \equiv 0 \pmod{p^s}$$

Remark. Observe that in the previous situation, if $\tau \geq 2$ and s > 1, it easily follows that $\sum_{x_1,...,x_{\tau}} x_1^{\beta_1} \cdots x_{\tau}^{\beta_{\tau}} \equiv 0 \pmod{p^s}$ regardless the values of $\beta_i \geq 0$.

Lemma 4. Let $\tau \geq 1$ be an integer and let $\beta_i > 0$ for every $1 \leq i \leq \tau$. Then,

$$\sum_{x_1,...,x_{\tau}} x_1^{\beta_1} \cdots x_{\tau}^{\beta_{\tau}} \equiv \begin{cases} 1, & \text{if } s = 1; \\ 0, & \text{if } s > 1 \text{ and } \beta_i > 1 \text{ and odd for some } i; \\ (-1)^A (2^{s-1})^B, & \text{if } s > 1 \text{ and } \beta_i = 1 \text{ or even for every } i \end{cases} \pmod{2^s}$$

where the sum is extended over x_1, \ldots, x_{τ} in the range $\{0, \ldots, 2^s - 1\}$, $A = card\{\beta_i : \beta_i = 1\}$ and $B = card\{\beta_i : \beta_i \text{ is even}\}$. Also, if some $\beta_i = 0$, then $\sum_{x_1, \ldots, x_{\tau}} x_1^{\beta_1} \cdots x_{\tau}^{\beta_{\tau}} \equiv 0 \pmod{2^s}$.

Proof. It is enough to apply [6, Lemma 3 iii)] which states that

$$\sum_{x_i=0}^{2^s-1} x_i^{\beta_i} \equiv \begin{cases} 2^{s-1}, & \text{if } s = 1 \text{ or } s > 1 \text{ and } \beta_1 > 1 \text{ is even;} \\ -1, & \text{if } s > 1 \text{ and } \beta_i = 1; \\ 0, & \text{if } s > 1 \text{ and } \beta_1 > 1 \text{ is odd.} \end{cases} \pmod{p^s}$$

for every $1 \le i \le \tau$. The proof of the case when some $\beta_i = 0$ is identical to that of the previous lemma.

As a consequence, we get the following results.

Proposition 5. Let p be an odd prime and let s > 1 be an integer. Then,

 $S^d_w(p^s) \equiv 0 \pmod{p^s}.$

Proof. Let $A_l = (a_{i,j}^l)_{1 \le i,j \le d}$ for every $1 \le l \le r$. Note that each entry in the matrix $S_w^d(p^s)$ is a homogeneous polynomial in the variables $a_{i,j}^l$. Observe also that these variables are summation indexes in the range $\{0, \ldots, p^s - 1\}$. Hence, the number of variables is $rd^2 > 2$ and, since s > 1, the Remark 3 can be applied to the sum of its monomials, and the result follows.

Proposition 6. Let s > 1 be an integer. Assume that one of the following conditions holds:

i) $k \leq rd^2$, ii) $k > rd^2$ and $k + rd^2$ is even. Then, $S_w^d(2^s) \equiv 0 \pmod{2^s}$.

Proof. Just like in the previous proposition each entry in the matrix $S_w^d(2^s)$ is a homogeneous polynomial in the rd^2 variables $a_{i,j}^l$. Hence, it is a sum of elements of the form

$$\sum_{\substack{l\\i,j\in\mathbb{Z}_{2^s}}}\prod(a_{i,j}^l)^{\beta_{i,j,l}}$$

Observe that $\sum_{i,j,l} \beta_{i,j,l} = k$ so, if $k < rd^2$ it follows that some $\beta_{i,j,l} = 0$, and so each monomial sum is 0 mod 2^s (because of Lemma 3). Therefore, each entry in the matrix $S_w^d(p)$ is 0 (mod 2^s) in this case, as claimed.

Now, assume that $k \ge rd^2$ and $k + rd^2$ is even (in particular if $k = rd^2$). Due to Lemma 4 an element $\sum_{a_{i,j}^l \in \mathbb{Z}_{2^s}} \prod (a_{i,j}^l)^{\beta_{i,j,l}}$ is 0 (mod 2^s) unless in one of its

monomials the set of rd^2 exponents $\beta_{i,j,l}$ is formed by exactly $rd^2 - 1$ ones and 1 even value. But in this case $k = (rd^2 - 1) + 2\alpha$ so $k + rd^2$ is odd, a contradiction. Consequently, each entry in the matrix $S_w^d(p)$ is also 0 (mod 2^s) in this case and the result follows.

As Remark 3 and Lemma 4 point out, the case s = 1 must be considered separately. In this case, we have the following result.

Proposition 7. Let p be a prime. Assume that one of the following conditions holds:

Then, $S_w^d(p) \equiv 0 \pmod{p}$.

Proof. If p = 2 condition ii) cannot hold and if condition i) holds, we can apply the same argument of the proof of the first part of Proposition 6 to get the result.

Now, if p is odd, again each entry in the matrix $S_w^d(p)$ is a homogeneous polynomial in the rd^2 variables $a_{i,j}^l$. Hence, it is a sum of elements of the form

$$\sum_{a_{i,j}^l \in \mathbb{Z}_p} \prod (a_{i,j}^l)^{\beta_{i,j,l}}.$$

We have that $\sum_{i,j,l} \beta_{i,j,l} = k$ so, if $k < rd^2(p-1)$ or if it is not a multiple of p-1 it follows that some $\beta_{i,j,l}$ is either 0 or not a multiple of p-1. In either case the corresponding element is 0 (mod p) due to Lemma 3 and, consequently, each entry in the matrix $S_w^d(p)$ is also 0 (mod p) as claimed.

Observe that in the previous results we have considered sums of the form

$$S_w^d(p^s) = \sum_{A_1,\dots,A_r \in M_{p^s}^d} w(A_1,\dots,A_r),$$

where all the matrices A_i belong to the same matrix ring $M_{p^s}^d$. The following proposition will be useful in the next section and deals with the case when the matrices A_i belong to different matrix rings. First, we introduce some notation. Given a prime p, let

$$S_w^d(p^{s_1}, \dots, p^{s_r}) := \sum_{A_i \in M_{p^{s_i}}^d} w(A_1, \dots, A_r).$$

If $s_1 = \cdots = s_r = s$, then $S^d_w(p^{s_1}, \ldots, p^{s_r}) = S^d_w(p^s)$ and we are in the previous situation.

Proposition 8. With the previous notation, if $s_1 > 1$, then

$$S^d_w(p^{s_1+1}, p^{s_2}, \dots, p^{s_r}) \equiv p^{d^2} S^d_w(p^{s_1}, p^{s_2}, \dots, p^{s_r}) \pmod{p^{s_1+1}}.$$

Proof. Since $s_1 > 1$ we have that $2s_1 > s_1 + 1$ so, due to Lemma 1

$$S_{w}^{d}(p^{s_{1}+1}, p^{s_{2}}, \dots, p^{s_{t}}) = \sum_{\substack{A_{1} \in M_{p^{s_{1}+1}}^{d} \\ A_{i} \in M_{p^{s_{i}}}^{d}, C \in M_{p}^{d} \\ A_{i} \in M_{p^{s_{i}}}^{d}, C \in M_{p}^{d}}} w(B + p^{s_{1}}C, A_{2}, \dots, A_{r}) \equiv \sum_{\substack{B \in M_{p^{s_{1}}}^{d}, C \in M_{p}^{d} \\ A_{i} \in M_{p^{s_{i}}}^{d}, C \in M_{p}^{d}}} \left(w(B, A_{2}, \dots, A_{r}) + p^{s_{1}} \sum_{l} w_{l}(B, C, A_{2}, \dots, A_{r}) \right) = p^{d^{2}} S_{w}^{d}(p^{s_{1}}, \dots, p^{s_{r}}) + p^{s_{1}} \sum_{l} \sum_{\substack{B \in M_{p^{s_{i}}}^{d}, C \in M_{p}^{d} \\ A_{i} \in M_{p^{s_{i}}}^{d}}} w_{l}(B, C, A_{2}, \dots, A_{r})$$

 $\pmod{p^{s_1+1}}.$

Where $w_l(x, y, x_2, \ldots, x_r)$ denotes the monomial $w(x_1, x_2, \ldots, x_r)$ where the l-th ocurrence of the term x_1 is substituted by y and the remaining ones by x (for instance, $w(x_1, x_2) = x_1^2 x_2 x_1$ gives us $w_1(x, y, x_2) = y x x_2 x, w_2(x, y, x_2) = x y x_2 x, w_3(x, y, x_2) = x^2 x_2 y$).

But, for every l, the monomial $w_l(B, C, A_2, \ldots, A_r)$ contains C only once and with exponent 1. Hence,

$$\sum_{\substack{B \in M_{p^{s_1}}^d, C \in M_p^d\\A_i \in M_{p^{s_i}}^d}} w_l(B, C, A_2, \dots, A_r) \equiv 0 \pmod{p}$$

because $S_1^d(p) \equiv 0 \pmod{p}$ and the result follows.

The following corollary in now straightforward.

Corollary 3. Assume that $S_w^d(p^s) \equiv 0 \pmod{p^s}$. Let us consider $s_1 \ge s_2 \ge \cdots \ge s_r = s$. Then,

$$S_w^d(p^{s_1},\ldots,p^{s_r}) \equiv 0 \pmod{p^{s_1}}.$$

Proof. Just apply the previous proposition repeatedly.

4. Power sums of matrices over a finite commutative ring

In this section we will use the results from Section 3 to compute $S_k^d(R)$ for an arbitrary finite commutative ring R in many cases.

First of all, note that if $\operatorname{char}(R) = n = p_1^{s_1} \cdots p_t^{s_t}$, then $R \cong R_1 \times \cdots \times R_t$, where $\operatorname{char}(R_i) = p_i^{s_i}$ and each R_i is a subring of characteristic $p_i^{s_i}$ and, in particular, a $Z_{p_i^{s_i}}$ -module. This allows us to restrict ourselves to the case when $\operatorname{char}(R)$ is a prime power.

The simplest case arises when R is a free \mathbb{Z}_{p^s} -module for an odd prime p.

Proposition 9. Let p be an odd prime and let R be a finite commutative ring of characteristic p^s , such that R is a free \mathbb{Z}_{p^s} -module of rank r. Then,

i) If s > 1, $S_k^d(R) = 0$ for every $k \ge 1$ and $d \ge 2$.

ii) If s = 1, $S_k^d(R) = 0$ for every $d \ge 2$ and k such that either $k < rd^2(p-1)$ or k is not a multiple of p-1.

Proof. Note that under the previous assumptions and using Proposition 5 or Proposition 7 (depending on whether s > 1 or s = 1), it follows that

$$\sum_{A_1,\dots,A_r \in M_{p^s}^d} (x_1 A_1 + \dots + x_r A_r)^k \equiv 0 \pmod{p^s}$$

because each entry of such a matrix is a polynomial in x_1, \ldots, x_r whose coefficients are 0 modulo p^s .

Consequently, for every $g_1, \ldots, g_r \in R$ we have that

$$\sum_{A_1,\dots,A_r \in M_{p^s}^d} (g_1 A_1 + \dots + g_r A_r)^k = 0.$$

Now, since R is free of rank r we can take a basis g_1, \ldots, g_r of R so that $M_{p^s}^d =$ $\{g_1A_1 + \cdots + g_rA_r | A_i \in M_{p^s}^d\}$. Therefore

$$S_k^d(R) = \sum_{A_1, \dots, A_r \in M_{p^s}^d} (g_1 A_1 + \dots + g_r A_r)^k.$$

This concludes the proof.

If p = 2, we have the following version of Proposition 9

Proposition 10. Let R be a finite commutative ring of characteristic 2^s , such that R is a free \mathbb{Z}_{2^s} -module of rank r. Then,

- i) If s > 1, $S_k^d(R) = 0$ for every $d \ge 2$ and k such that $k \le rd^2$ or $k > rd^2$ with $k + rd^2$ even.
- ii) If s = 1, $S^d_{\iota}(R) = 0$ for every $d \ge 2$ and k such that either $k < rd^2$.

Proof. The proof is similar to that of Proposition 9, using Proposition 6 or Proposition 7 depending on whether s > 1 or s = 1.

Remark. Note that if R is a finite commutative ring of characteristic p^s and s = 1, then R is necessarily free. Consequently, to study the non-free case we may assume that s > 1.

Assume that elements g_1, \ldots, g_r form a minimal set of generators of a non-free \mathbb{Z}_{p^s} -module R. Since R is non-free and char(R) = p^s , it follows that r > 1 and also s > 1. For every $i \in \{1, \ldots, r\}$ let $1 \leq s_i \leq s$ be minimal such that $p^{s_i}g_i = 0$. Note that it must be $s_i = s$ for some *i* and $s_j < s$ for some *j*. There is no loss of generality in assuming that $s = s_1 \geq \cdots \geq s_r$ and at least one of the inequalities is strict. Note that p^{s_1}, \ldots, p^{s_r} are the invariant factors of the \mathbb{Z} -module R. With this notation we have the following result extending Proposition 9.

Proposition 11. Let p be an odd prime and let R be a finite commutative ring of characteristic p^s , such that R is a non-free \mathbb{Z}_{p^s} -module. Then,

- i) If $s_r > 1$, $S_k^d(R) = 0$ for every $k \ge 1$ and $d \ge 2$. ii) If $s_r = 1$, $S_k^d(R) = 0$ for every $d \ge 2$ and k such that either $k < rd^2(p-1)$ or k is not a multiple of p-1.

Proof. First of all, observe that

$$S_k^d(R) = \sum_{A_i \in M_{r^{s_i}}^d} (g_1 A_1 + \dots + g_r A_r)^k.$$

In both situations i) and ii) it follows that $S_w^d(p^{s_r}) \equiv 0 \pmod{p^{s_r}}$. Moreover, we are in the conditions of Corollary 3, so it follows that $S_w^d(p^s, p^{s_2}, \ldots, p^{s_r}) \equiv 0 \pmod{p^s}$. Consequently all the coefficients of the above sum are 0 modulo p^s and the result follows.

The corresponding result for p = 2 is as follows.

Proposition 12. Let R be a finite commutative ring of characteristic 2^s , such that R is a non-free \mathbb{Z}_{p^s} -module. Then,

- i) If $s_r > 1$, $S_k^d(R) = 0$ for every $d \ge 2$ and k such that $k \le rd^2$ or $k > rd^2$ with $k + rd^2$ even.
- ii) If $s_r = 1$, $S_k^d(R) = 0$ for every $d \ge 2$ and k such that either $k < rd^2$.

Proof. It is identical to the proof of Proposition 11.

5. Conjectures and further work

Given a finite commutative ring R of characteristic n, we have seen in the last section that $S_k^d(R) = 0$ for many values of k, d and n. In this section we present two conjectures based on strong computational evidence which, being true, would let us to give a general result about $S_k^d(R)$.

With the notation from the previous section, given an *r*-tuple of integers $\kappa = (k_1, \ldots, k_r)$, we consider the set of monomials in the non-commuting variables $\{x_1, \ldots, x_r\}$

$$\Omega_{\kappa} := \{ w : \deg_{x_i}(w) = k_i, \text{ for every } i \}.$$

The following conjectures are based on computational evidence.

Conjecture 2. With the previous notation, let $s_1 \ge s_2 \ge \cdots \ge s_r$. Then

$$S_w^d(p^{s_1}, p^{s_2}, \dots, p^{s_r}) \equiv 0 \pmod{p^{s_1}},$$

unless d = p = 2 and $s_i = 1$ for all i.

Conjecture 3. If p = 2 = d and r > 1 then for every $\kappa \in \mathbb{N}^r$

$$\sum_{w \in \Omega_{\kappa}} \sum_{A_i \in M_2^d} w(A_1, \dots, A_r) \equiv 0 \pmod{2}.$$

The next lemma extends Lemma 2 in some sense. Its proof is straightforward.

Lemma 5. Let R_1 and R_2 be finite commutative rings, and let $R = R_1 \times R_2$ be its direct product. Then

$$S_{k}^{d}(R) = (card(R_{2})^{d^{2}} \cdot S_{k}^{d}(R_{1}), card(R_{1})^{d^{2}} \cdot S_{k}^{d}(R_{2})) \in \mathbb{M}_{d}(R_{1}) \times \mathbb{M}_{d}(R_{2})$$

Now, the following proposition would follow from Conjectures 2 and 3.

Proposition 13. Let R be a finite commutative ring of characteristics p^s for some prime p. Then $S_k^d(R) = 0$ unless d = 2, $R = \mathbb{Z}/2\mathbb{Z}$ and $1 < k \equiv -1, 0, 1 \pmod{6}$. Moreover, in this case $S_k^d(R) = I_2$.

Proof. Assume that $\langle g_1 \ldots, g_r \rangle$ is a minimal set of generators of R as \mathbb{Z}_{p^s} -module. Let $s = s_1 \ge s_2 \ge \cdots \ge s_r$ be integers such that the order of g_i is p^{s_i} ; i.e., s_1, \ldots, s_r are minimal such that $p^{s_i}g_i = 0$.

In this situation,

$$S_k^d(R) = \sum_{A_i \in M_{-s_i}^d} (g_1 A_1 + \dots + g_r A_r)^k = 0,$$

unless d = p = 2, s = r = 1 and $1 < k \equiv -1, 0, 1 \pmod{6}$ due to Conjecture 2.

On the other hand, if d = p = 2, s = r = 1 and $1 < k \equiv -1, 0, 1 \pmod{6}$ it follows that

$$S_k^2(R) = \sum_{A \in M_2^2} (g_1 A)^k = \begin{pmatrix} g_1^k & 0\\ 0 & g_1^k \end{pmatrix}.$$

But since in this case $R = \{0, g_1\}$, there are only two possibilities: $g_1^2 = g_1$ (and hence $R = \mathbb{Z}/2\mathbb{Z}$) or $g_1^2 = 0$ and the result follows.

Finally, the next general result holds provided Conjectures 2 and 3 are correct. It is Conjecture 1, as stated in the introduction to the paper.

Theorem 4. Let d > 1 and let R be a finite commutative ring. Then $S_k^d(R) = 0$ unless the following conditions hold:

- (1) d = 2,
- (2) $\operatorname{card}(R) \equiv 2 \pmod{4}$ and $1 < k \equiv -1, 0, 1 \pmod{6}$,
- (3) The unique element $e \in R \setminus \{0\}$ such that 2e = 0 is idempotent.

Moreover, in this case

$$S_k^d(R) = \begin{pmatrix} e & 0\\ 0 & e \end{pmatrix}.$$

Proof. First, observe that if $\operatorname{card}(R) \equiv 2 \pmod{4}$, then R has 2m elements, where m is odd. Therefore, the 2-primary component of the additive group R has only two elements, and so there is a unique element $e \in R$ of additive order 2.

Now, if R is of characteristic p^s for some prime, the result follows from the above proposition. Hence, we assume that R has composite characteristic. Let $R = R_1 \times R_2$ with R_1 the zero ring or char $(R_1) = 2^s$ and char (R_2) odd. Due to Lemma 5 and Proposition 13 it follows that $S_k^d(R) = (\operatorname{card}(R_2)^{d^2} \cdot S_k^d(R_1), 0)$.

Now, $S_k^d(R_1) = 0$ unless d = 2 = p, $R_1 = \mathbb{Z}/2\mathbb{Z}$ and $1 < k \equiv -1, 0, 1 \pmod{6}$ in which case

$$S_k^d(R) = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix},$$

where $e = (1,0) \in R_1 \times R_2$ is the only idempotent of R such that 2e = 0.

Remark. Note that if, in addition, R is unital then the element e from the previous theorem is just $e = \frac{\operatorname{card}(R)}{2} \cdot 1_R$. Also note that if $S_k^d(R) \neq 0$, then $R \cong \mathbb{Z}/2\mathbb{Z} \times R_2$ with $\operatorname{card}(R_2)$ odd or $R_2 = \{0\}$.

We close the paper with a final conjecture.

Conjecture 4. Theorem 4 remains true if R is non-commutative.

References

- J.V. Brawley, L. Carlitz, J. Levine. Power sums of matrices over a finite field. Duke Math. J., 41:9–24, 1974.
- [2] L. Carlitz. The Staudt-Clausen theorem. Math. Mag., 34:131–146, 1960-1961.
- [3] P. Fortuny, J.M. Grau, A. M. Oller-Marcén. A von Staudt-type result for $\sum_{z \in \mathbb{Z}_n[i]} z^k$. Monatsh.

Math. DOI: 10.1007/s00605-015-0736-5, 2015.

- [4] J.M. Grau, C. Miguel, A.M. Oller-Marcén. On the structure of quaternion rings over Z/nZ. Adv. Appl. Clifford Algebr., DOI: 10.1007/s00006-015-0544-y, 2015.
- [5] J.M. Grau, P. Moree, A.M. Oller-Marcén. Solutions of the congruence $\sum_{k=1}^{n} k^{f(n)} \equiv 0 \pmod{n}$. Math. Nachr., to appear.
- [6] J.M. Grau, A.M. Oller-Marcén, J. Sondow. On the congruence $1^m + 2^m + \cdots + m^m \equiv n \pmod{m}$ with $n \mid m$ Monatsh. Math., DOI 10.1007/s00605-014-0660-0, 2014.
- [7] P. Moree. On a theorem of Carlitz-von Staudt. C. R. Math. Rep. Acad. Sci. Canada, 16(4):166–170, 1994.
- [8] N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org.
- [9] K.G.C. von Staudt. Beweis eines Lehrsatzes die Bernoullischen Zahlen betreffend. J. Reine Angew. Math, 21:372–374, 1840.

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE OVIEDO, AVDA. CALVO SOTELO, S/N, 33007 OVIEDO, SPAIN

E-mail address: fortunypedro@uniovi.es

Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain

E-mail address: grau@uniovi.es

Centro Universitario de la Defensa de Zaragoza, Ctra. Huesca s/n, 50090 Zaragoza, Spain

E-mail address: oller@unizar.es

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE OVIEDO, AVDA. CALVO SOTELO, S/N, 33007 OVIEDO, SPAIN

E-mail address: rua@uniovi.es