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Abstract

We prove that deciding whether a given input word contains as subsequence every possible permutation
of integers {1, 2, . . . , n} is coNP-complete. The coNP-completeness holds even when given the guarantee
that the input word contains as subsequences all of length n−1 sequences over the same set of integers. We
also show NP-completeness of a related problem of Partially Non-crossing Perfect Matching in Bipartite
Graphs, i.e. to find a perfect matching in an ordered bipartite graph where edges of the matching incident
to selected vertices (even only from one side) are non-crossing.

1 Introduction and Preliminaries
The question of deciding for two words whether one is a subsequence of the other is one of the most basic
problems in combinatorics. A folklore result states that a greedy solution is correct, and the problem is
trivially in P. However, if we consider the related questions of finding the shortest common supersequence or
the longest common subsequence (LCS), both have been shown to be NP-complete when allowed multiple
input words, by Maier [12], improved to binary alphabets for LCS by Räihä and Ukkonen [16].

The question of constructing the shortest word containing as subsequences all permutations (so called
universal words), was first posed by Knuth and attributed to Karp [6]. More precisely, writing f(n) for the
length of such a shortest word where n is the size of the alphabet, the question of determining the values of
f(n) was investigated (see [1] for known exactly values). Independently [2, 8, 11,13,14] provided an upper
bound f(n) ≤ n2 − 2n+ 4, while Newey [14] proved that this is tight for n ≤ 7. A stronger upper bound
f(n) ≤ dn2 − 7/3n+ 19/3e has been recently provided by Radomirović [15]. Complementary, Kleitman and
Kwiatkowski [9] have shown a lower bound of the form f(n) ≥ n2 − Cεn

7/4+ε for ε > 0.
In this paper, we investigate the problem of deciding whether a given sequence is universal. The question

on the hardness of this problem was first, to our knowledge, posed by Amarilli [4]. We prove that this
problem is coNP-complete, that is, a counterexample to the universality of any given word can be verified in
polynomial time, but unless P= NP, no efficient algorithm exists to verify universality itself. Our result thus
proves a separation between the problems of testing universality and testing whether an input word contains
every word of given length (not only ones using distinct characters), with former being coNP-complete and
the latter being in P by a simple greedy algorithm.∗

In order to prove the coNP-hardness of All Permutations Supersequence (see Definition 1), we introduce
the intermediate problem of Locally Constrained Permutation (see Definition 2), which captures the essential
hardness of former, while itself being much easier to work with. This problem, where we ask to reconstruct
a permutation given sets of available values for each given position, and a list of linear order constraints
which every pair of consecutive positions has to satisfy, falls into a larger category of NP-complete problems

∗The idea of the algorithm is as follows: iteratively take a letter of the alphabet for which the earliest occurrence after the
current position is as far to the right as possible.
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Figure 1: The sequence 1, 2, 3, 1, 2, 1, 3 satisfies All Permutations Supersequence for the set {1, 2, 3}. The
length of 7 is minimal.

involving permutation reconstruction. Similar problems were considered, e.g. permutation reconstruction
from differences (De Biasi [5]) and recognizing sum of two permutations (Yu et al. [18]).

The reduction proving hardness of Locally Constrained Permutation can be shown to provide a very
restricted instances. This fact, coupled with interpretation of permutations as perfect matchings in bipartite
graphs, immediately provides us with a NP-hardness result for Partially Non-crossing Perfect Matching in
Bipartite Graphs (see Definition 4). The problem of finding maximal non-crossing matching in bipartite
graph, has been proposed and extended by Widmayer and Wong [17], and the problem itself reduces to
longest increasing subsequence, which is solvable in polynomial time (Fredman [7]). Our result shows that
lifting some non-crossing restrictions increases the computational complexity of the problem.

Notation. In this paper we will denote permutations using greek letter π. To ease the notation, we will
use π both for the function π : {1, 2, . . . , n} → {1, 2, . . . , n} and for the word π = π1π2 . . . πn. The set of all
permutations of set {1, . . . , n} will be denoted as Sn. Given word w, we will write wR to denote w reversed.
For two words, we will write w v v meaning that w is a subsequence of v. Given a set S, a linear order on S
is any binary relation ≺ such that for any two distinct x, y ∈ S exactly one of x ≺ y or y ≺ x holds, and
additionally x 6≺ x.

Now we are ready to formally define the problem that was already mentioned previously:

Definition 1. All Permutations Supersequence:

Input: Integer n > 0, word T over alphabet {1, . . . , n}.

Question: For every π ∈ Sn, does it hold that π v T?

An example of a shortest supersequence of all permutations of the set {1, 2, 3} is provided in the Figure 1,
together with placement of all permutations as subsequences.
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2 Locally Constrained Permutation
First, we formally define the LCP problem.

Definition 2. Locally Constrained Permutation:

Input: Integer n > 0, n sets H1, . . . ,Hn ⊆ {1, . . . , n} and n − 1 linear orders on {1, . . . , n}: ≺1

, . . . ,≺n−1.

Question: Is there π ∈ Sn such that for each 1 ≤ i ≤ n: πi ∈ Hi and for each 1 ≤ i ≤ n − 1
we have πi ≺i πi+1?

To show the hardness of this problem, we will create an instance of LCP that encodes a given 3SAT
instance. First, let us fix an instance of 3SAT, which consists of: m variables v1, . . . , vm, and d clauses of
form `i,1 ∨ `i,2 ∨ `i,3, where for each 1 ≤ i ≤ d, 1 ≤ j ≤ 3: `i,j ∈ {v1, . . . , vm,¬v1, . . . ,¬vm}.

We observe that for any given i we don’t need to fully specify the full order of ≺i on all of {1, . . . , n}, as it
is enough to specify it on Hi ∪Hi+1 only. We will also specify ≺ constraints not on every position, assuming
it is possible for two consecutive positions to be under no constraint. Later we will show how to take care of
this in LCP encoding.

The important property of LCP problem (and as well of any permutation reconstruction problem) is the
fact that values can be used only once. Thus by assigning value to a position we are “blocking” this value
from future use.

Literal encoding. We will encode each literal in a “memory cell” gadget. It consists of a separate position
in the permutation with only two available choices, each of them corresponding to evaluating the underlying
variable such that the literal evaluates to True or False, respectively. Thus, the information available
can be “carried” over a long distance (to other occurrences of the same variable, or to positions evaluating
truthfulness of the formula) by the fact that certain value is unblocked. However, this information is easily
destroyed (one can think of it as read-once type of memory), thus we will need several working copies of the
same memory cell.

Let p ≤ 3d be the upper bound on the number of occurrences of a single variable in literals. Thus,
for each literal `i,j , there will be consecutive positions mem(i, j), mem(i, j) + 1, . . . , mem(i, j) + p, together
with distinct values f(i, j), f(i, j) + 1, . . . , f(i, j) + p, t(i, j), t(i, j) + 1, . . . , t(i, j) + p, such that Hmem(i,j) =
{f(i, j), t(i, j)}, . . . ,Hmem(i,j)+p = {f(i, j) + p, t(i, j) + p}. To enforce proper value copying, we set ≺mem(i,j)
, . . . ,≺mem(i,j)+p−1 such that:

f(i, j) ≺mem(i,j) (f(i, j) + 1) ≺mem(i,j) t(i, j) ≺mem(i,j) (t(i, j) + 1),

(f(i, j) + 1) ≺mem(i,j)+1 (f(i, j) + 2) ≺mem(i,j)+1 (t(i, j) + 1) ≺mem(i,j)+1 (t(i, j) + 2),

. . .

(f(i, j) + p− 1) ≺mem(i,j)+p−1 (f(i, j) + p) ≺mem(i,j)+p−1 (t(i, j) + p− 1) ≺mem(i,j)+p−1 (t(i, j) + p).

Observe, that there is a possibility for a one-sided error, that is assigning False to mem(i, j) and True to
mem(i, j) + x. However, those errors are not a problem for us, as they only occur when the literal is evaluated
to False, thus the value of this literal is irrelevant to the evaluation of this clause in satisfying assignment.

Clause evaluation. For each clause we add a single position gadget verifying that the clause evaluates to
True. Thus, for i-th clause, we have position clause(i) such that Hclause(i) = {f(i, 1), f(i, 2), f(i, 3)}. Thus,
assigning value to position clause(i) will be possible iff at least one of literals it contains is evaluated to
True.
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Variable values consistency. To make sure that different occurrences of the same variable are assigned
the same value, we use a literal equality gadget. Furthermore, we will say that a literal is positive if it contains
the simple variable, and is negative if it contains the negated variable.

We iterate over all pairs of literals using the same variable. Let `i,j and `i′,j′ be respectively the k-th and
k′-th occurrences of this variable. We will be using the k′-th copy of “memory cell” gadget of `i,j and k-th
copy of `i′,j′ , thus making sure that each copy is used at most once for comparison.

Additionally, for any such pair of literals, there are two unique positions comp1(i, j, i′, j′) and comp2(i, j, i′, j′)
such that:

• Hcomp1(i,j,i′,j′) = {t(i, j) + k′, f(i′, j′) + k} and Hcomp2(i,j,i′,j′) = {f(i, j) + k′, t(i′, j′) + k} if both literals
are positive or both are negative;

• Hcomp1(i,j,i′,j′) = {t(i, j) + k′, t(i′, j′) + k} and Hcomp2(i,j,i′,j′) = {f(i, j) + k′, f(i′, j′) + k} otherwise.

The satisfying assignment to positions comp1(i, j, i′, j′) and comp2(i, j, i′, j′) is thus possible (in first case)
iff both t(i, j) + k′ and t(i′, j′) + k or both f(i, j) + k′ and f(i′, j′) + k values were unblocked (and the second
case works by analogy).

Balancing the number of positions and values. The above construction introduces n1 possible values
and n2 positions for some n2 ≤ n1. We introduce n2 − n1 new positions πn1+1, . . . , πn2

such that Hn1+1 =
. . . = Hn2

= {1, . . . , n2}, so that there exists a permutation π ∈ Sn2
satisfying the larger instance iff there

exists an injective function π′ : {1, . . . , n1} → {1, . . . , n2} satisfying the original constraints.

Missing constraints. We also observe that we can choose not to impose any linear ordering restriction
between any consecutive two positions i and i+ 1 by inserting a dummy position between them. Thus, all
positions i+ 1, . . . are moved one to the right, and a new dummy i+ 1 position is inserted. We also create a
unique value ci such that Hi+1 = {ci} and ci 6∈ Hj for j 6= i+ 1, and and we construct the new linear orders
<i and <i+1 such that ci is the largest value with respect to ≺i and the smallest value with respect to ≺i+1.

Thus all missing linear order constraints can be taken care of iteratively, adding one extra position and
value for each.

Lemma 2.1. An instance of 3SAT is satisfiable iff a corresponding LCP instance is satisfiable.

Proof. For the "only if" direction, it is clear by construction that a solution to the 3SAT instance can be
used to construct a solution to the LCP instance.

To complete the proof, we need to show how one can reconstruct satisfying assignment to variables in
3SAT from a permutation π satisfying LCP instance.

Let us iterate over all the literals `i,j . We will say that a literal is assigned True (respectively False)
if for every 0 ≤ k ≤ p the corresponding position mem(i, j) + k in π holds value t(i, j) + k (respectively
f(i, j) + k), and that its value is Undecided otherwise.

Similarly, we will say that an occurrence of variable in literal is assigned value True (respectively False,
Undecided) if the literal is positive and is assigned the value of True (respectively False, Undecided) or
the literal is negative and is assigned the value of False (respectively True, Undecided). We observe that
for any two occurrences of the same variable, any configuration of values is allowed except one holding True
and another holding False. However, as in the clause gadget we are using the first copy of any literal, any
variable holding Undecided is not helping to evaluate the clause to True (the corresponding mem(i, j) is
assigned the value f(i, j)).

Consider assignment of values to variables of 3SAT as follow: if there exists occurrence holding True or
False, we assign True or False, respectively, and otherwise we assign any value arbitrarily. By previous
reasoning, this is a satisfying assignment to the given 3SAT instance.

Clearly, LCP is in NP and the reduction from 3SAT to LCP is constructed in polynomial time. Thus, by
Lemma 2.1 we immediately get the following:
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Figure 2: An example of an instance of Partially Non-crossing Perfect Matching in Bipartite Graphs (on the
left). We require that matching edges incident to blacked nodes are non-crossing. A matching satisfying the
constraints is on the right.

Proposition 2.2. LCP is NP-complete.

Observe that in the reduction from 3SAT to LCP we are explicitly using linear order constraints only for
the memory cell gadget. Thus it is possible to define the values such that for any 1 ≤ i ≤ m, 1 ≤ j ≤ 3:

f(i, j) < (f(i, j) + 1) < . . . < (f(i, j) + p) < t(i, j) < (t(i, j) + 1) < . . . < (t(i, j) + p)

and have every explicitly written ≺k be the ordering of integers. Additionally, we can make all the mem()
positions smaller than any other ones, and possible values f(i, j) and t(i, j) are in the same order as for the
corresponding positions, i.e. mem(i, j) < mem(i′, j′) iff t(i, j) < f(i′, j). This way we make the reduction work
so that the only linear order constraint used is monotonicity, it is used on some prefix of positions, and in
this prefix even if there is no constraint, the possible values still satisfy monotonicity. Then, consider the
following problem:

Definition 3. Prefix Increasing Permutation:

Input: Integer n > 0, n sets H1, . . . ,Hn ⊆ {1, . . . , n} and integer 0 ≤ k ≤ n.

Question: Is there π ∈ Sn such that for each 1 ≤ i ≤ n: πi ∈ Hi and for each 1 ≤ j ≤ k: πj < πj+1

are satisfied?

It is worth noting, that both permutation reconstruction problems presented here have quite a natural
interpretation in terms of matchings in bipartite graphs: each position i in permutation corresponds to some
vertex ai, and each value j corresponds to some vertex bj , where we connect by edge (ai, bj) iff j ∈ Hi. Such
a problem itself is naturally in P, however additional linear order constrains we impose transform it into
NP-complete one.

For example, Prefix Increasing Permutation reduces to:

Definition 4. Partially Non-crossing Perfect Matching in Bipartite Graphs:

Input: Ordered bipartite graph G = (U, V,E) with orderings sets U = (a1, . . . , an), V = (b1, . . . , bn), and
a subset W ⊆ U .

Question: Is there a perfect matching M ⊆ E, such that the restricted matching M ′ =M ∩ (W × V ) is
non-crossing, i.e. if (ai, bj), (ak, bl) ∈M ′ then i < j iff k < l?

An example of an instance to this problem is presented on a Figure 2. We have the following immediate
corollary of Proposition 2.2:
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Corollary 2.3. Prefix Increasing Permutation and Partially Non-crossing Perfect Matching in Bipartite
Graphs are both NP-complete.

3 All Permutations Supersequence
Now we are ready to show hardness of All Permutations Supersequence problem. We will do it by analyzing
the complementary problem:

Definition 5. Permutation Non-subsequence:

Input: Integer n > 0 and word T over alphabet {1, . . . , n}.

Question: Is there π ∈ Sn such that π 6v T?

Theorem 3.1. Permutation Non-subsequence is NP-complete.

Proof. Permutation Non-subsequence is clearly in NP. Thus, it is enough to construct a Preduction from
LCP to Permutation Non-subsequence. Let us take an instance of LCP. Let us denote, given linear order ≺,
by ORD(≺) = i1i2 . . . in a word build from the permutation defining the order, that is i1 ≺ i2 ≺ . . . ≺ in.
Similarly, given a set H ⊆ {1, . . . , n}, let ENC(H) = i1 . . . i|H| be an arbitrary word containing every element
of H. We also denote by H = {1, 2, . . . , n} \H.

Consider a word of the following form built from LCP instance:

W = ENC(H1)(ORD(≺1)
R)ENC(H2)(ORD(≺2)

R) . . . (ORD(≺n−1)
R)ENC(Hn).

Clearly, W can be constructed in P.
We will show that for any given π ∈ Sn, π is a feasible solution to the LCP instance iff π is not a subword

of W . Observe that each ORD(≺i) is a permutation of {1, . . . , n}, so W clearly contains as a subword any
word of length n− 1 (not necessarily a permutation).

To prove the if part, observe that if π is not a solution to the LCP instance, it must be for the following
two reasons:

• For some i, πi 6∈ Hi. We have π v W for the following reason: πj ∈ ORD(≺j)
R for 1 ≤ j < i,

πi ∈ ENC(Hi) and πj+1 ∈ ORD(≺j)
R for i ≤ j < n.

• For some i, πi 6≺i πi+1. But then πi, πi+1 are exactly in this order in ORD(≺i)
R, hence, matching πj

for j < i and for j > i as in the previous case.

To prove the only if part, let us take a π vW . Let i1 < i2 < . . . < in be such that π =W [i1]W [i2] . . .W [in].
At least one of the following conditions is fulfilled (as any subsequence contradicting both conditions at once
can consist of positions from ORD(≺i)

R, one position per value of i, thus has length n− 1 at most):

• There is j such that position ij in W is part of ENC(Hj). But then πj 6∈ Hj , meaning that π is not a
solution to this LCP instance.

• There is j such that both ij and ij+1 positions in W are part of ORD(≺j)
R. But that implies

πj 6≺j πj+1, thus π is not a solution to this LCP instance.

As an immediate corollary of Theorem 3.1, we have:

Corollary 3.2. All Permutations Supersequence is coNP-complete.
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4 Conclusion
We proved the hardness of a problem of deciding whether a sequence is universal to every permutation with
respect to having as subsequence. Somehow related to testing universality of a sequence with respect to
certain combinatorial structures are following open questions on hardness of testing whether a sequence is an
universal traversal sequence (Aleliunas et al. [3]) and whether a sequence is an universal exploration sequence
(Koucký [10]), that is whether a sequence defines a series of moves capable of exploring every (fixed size)
connected graph.

Acknowledgements. We are grateful both to Antoine Amarilli and to Jukka Suomela for providing with
valuable suggestions and for fruitful discussions.
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