
ON THE DISTRIBUTION OF THE TRACE

IN THE UNITARY SYMPLECTIC GROUP

AND THE DISTRIBUTION OF FROBENIUS

GILLES LACHAUD

Abstract. The purpose of this article is to study the distribution of the trace
on the unitary symplectic group. We recall its relevance to equidistribution

results for the eigenvalues of the Frobenius in families of abelian varieties over

finite fields, and to the limiting distribution of the number of points of curves.
We give four expressions of the trace distribution if g = 2, in terms of special

functions, and also an expression of the distribution of the trace in terms of

elementary symmetric functions. In an appendix, we prove a formula for the
trace of the exterior power of the identity representation.
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1. Introduction

Let G be a connected compact Lie group, and π : G −→ GL(V ) a continuous
representation of G on a finite dimensional complex vector space V . The map

m 7→ τ (m) = Traceπ(m)

is a continuous central function on G, whose values lie in a compact interval I ⊂ R.
The distribution or law of τ is the measure µτ = τ ∗(dm) on I which is the image
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2 GILLES LACHAUD

by τ of the mass one Haar measure dm on G. That is, for any continuous real
function ϕ ∈ C (I), we impose the integration formula∫

I

ϕ(x)µτ (x) =

∫
G

ϕ(Traceπ(m)) dm.

Alternately, if x ∈ R, then

volume {m ∈ G | Traceπ(m) ≤ x} =

∫ x

−∞
µτ .

We are especially interested here with the group G = USp2g of symplectic

unitary matrices of order 2g, with π equal to the identity representation in V = C4.
With the help of Weyl’s integration formula, one establishes that the distribution µτ

has a density fτ , that is, a positive continuous function such that dµτ (x) = fτ (x)dx.
Our main purpose is the study of fτ , especially in the case g = 2 and g = 3. For
instance, for g = 2, we have

fτ (x) =
1

4π

(
1− x2

16

)4

2F1

(
3

2
,

5

2
; 5; 1− x2

16

)
if |x| ≤ 4, with Gauss’ hypergeometric function 2F1 (see Theorem 5.2).

Another representation of the distribution of the trace, following a program of
Kohel, is realized by the Viète map, which is the polynomial mapping

s(t) = (s1(t), . . . , sg(t)), t = (t1, . . . , tg),

where sn(t) is the elementary symmetric polynomial of degree n. Let Ig = [−2, 2]g.
The symmetric alcove is the set

Σg = s(Ig) ⊂ Rg,

which is homeomorphic to the g-dimensional simplex. By a change of variables in
Weyl’s integration formula, one obtains a measure αx on the hyperplane section

Vx = {s ∈ Σg | s1 = x}
such that, if |x| < 2g,

fτ (x) =

∫
Vx

αx(s).

As a motivation for the study of these distributions, it is worthwhile to recall that
they provide an answer to the following question:

Can one predict the number of points of a curve of given genus over a finite field?

When a curve C runs over the set Mg(Fq) of Fq-isomorphism classes of (nonsingular,
absolutely irreducible) curves of genus g over Fq, the number |C(Fq)| seems to
vary at random. According to Weil’s inequality, an accurate approximation to this
number is close to q + 1, with a normalized “error” term τ (C) such that

|C(Fq)| = q + 1− q1/2 τ (C), |τ (C)| ≤ 2g.

The random matrix model developed by Katz and Sarnak gives many informations
on the behaviour of the distribution of τ (C) on the set Mg(Fq). For instance,
according to their theory, and letting g be fixed, for every x ∈ R, we have, as
q →∞ (cf. Corollary 4.3):

|{C ∈ Mg(Fq) | τ (C) ≤ x}|
|Mg(Fq)|

=

∫ x

−∞
fτ (s)ds+O

(
q−1/2

)
.
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Hence, the knowledge of fτ provides a precise information on the behaviour of the
distribution of the number of points of curves.

The outline of this paper is as follows. After Section 2, devoted to notation,
we recall in Section 3 the Weyl’s integration formula, expressed firstly in terms
of the angles (θ1 . . . , θg) defining a conjugacy class, and secondly in terms of the
coefficients tj = 2 cos θj . We discuss equidistribution results for a family of curves or
abelian varieties over a finite field in Section 4. In Section 5 we obtain four explicit
formulas for the trace distribution if g = 2, respectively in terms of hypergeometric
series, of Legendre functions, of elliptic integrals, and of Meijer G-functions. We
also give the distribution of the trace for the representation of the group SU2×SU2

in USp4.
In the second part of the paper, we take on a different point of view by using ele-

mentary symmetric polynomials, and obtain a new expression of Weyl’s integration
formula. Section 6 defines the Viète map, asssociating to a sequence of coordinates
the coefficients of the polynomial admitting as roots the elements of this sequence,
and Section 7 describes the symmetric alcove, that is, the image of the set of “nor-
malized real Weil polynomials” by the Viète map. By a change of variables using
the Viète map, we obtain in Section 8 a new integration formula, which leads to
another expression for the distribution of the trace on the conjugacy classes, in the
cases g = 2 and g = 3. If g = 2, we compute also the trace of ∧2π. Finally, we
include an appendix on the character ring of USp2g, including a formula on the
exterior powers of the identity representation.

I would like to thank David Kohel for fruitful conversations. Also, I warmly
thank the anonymous referee for carefully reading this work and for its suggestions,
especially regarding the appendix.

2. The unitary symplectic group

The unitary symplectic group G = USp2g of order 2g is the real Lie group of
complex symplectic matrices

G =
{
m ∈ GL2g(C) | tm.J.m = J and tm.m̄ = I2g

}
,

with

J =

(
0 Ig
− Ig 0

)
.

Alternately, the elements of G are the matrices

m =

(
a −b̄
b ā

)
∈ SU2g, a, b ∈Mg(C).

The torus Tg = (R/2πZ)g is embedded into G by the homomorphism

(2.1) θ = (θ1, . . . , θg) 7→ h(θ) =


eiθ1 . . . 0
. . . . . . . . .
0 . . . eiθg

0

0
e−iθ1 . . . 0
. . . . . . . . .
0 . . . e−iθg


whose image T is a maximal torus in G. The Weyl group W of (G,T ) is the semi-
direct product of the symmetric group Sg in g letters, operating by permutations on
the θj , and of the group N of order 2g generated by the involutions θj 7→ −θj . Since



4 GILLES LACHAUD

every element of USp2g has eigenvalues consisting of g pairs of complex conjugate
numbers of absolute value one, the quotient T/W can be identified with the set
ClG of conjugacy classes of G, leading to a homeomorphism

Tg/W ∼−−−−→ T/W
∼−−−−→ ClG

Remark 2.1. Here is a simple description of the set ClG. Let Φ2g be the subset of
monic polynomials p ∈ R[u] of degree 2g, with p(0) = 1, with roots consisting of g
pairs of complex conjugate numbers of absolute value one. If θ ∈ Tg, let

pθ(u) =

g∏
j=1

(u− eiθj )(u− e−iθj ).

The map θ 7→ pθ is a bijection from Tg/W to Φ2g. Renumbering, we may assume
that

0 ≤ θg ≤ θg−1 ≤ · · · < θ1 ≤ π.
The map m 7→ cpm(u) = det(u. I−m) induces a homeomorphism

ClG
∼−−−−→ Φ2g

with cpm = pθ if and only if m is conjugate to h(θ). The polynomial pθ is palin-
dromic, that is, if

pθ(u) =

2g∑
n=0

(−1)nan(θ)un,

then a2g−n(θ) = an(θ) for 0 ≤ n ≤ g.

3. Weyl’s integration formula

The boxXg = [0, π]g is a fundamental domain for N in Tg and the map F 7→ F ◦h
defines an isomorphism

(3.1) C (G)◦
∼−−−−→ C (Xg)

sym

from the vector space C (G)◦ = C (ClG) of complex central continuous functions on
G to the space C (Xg)

sym of complex symmetric continuous functions on Xg. Notice
that the isomorphism (3.1) has an algebraic analog, namely the isomorphism (A.1)
in the appendix. Let dm be the Haar measure of volume 1 on G. If F ∈ C (G)◦,
then ∫

ClG

F(ṁ) dṁ =

∫
G

F(m) dm,

where dṁ is the image measure on ClG of the measure dm. The following result
is classical [4, Ch. 9, § 6, Th. 1, p. 337], [10, 5.0.4, p. 107].

Theorem 3.1 (Weyl integration formula, I). If F ∈ C (G)◦, then∫
G

F(m) dm =

∫
Xg

F ◦ h(θ))µg(θ),

with the Weyl measure

µg(θ) = δg(θ)dθ, dθ = dθ1 . . . dθg,

δg(θ) =
1

g!

g∏
j=1

(
2

π

)
(sin θj)

2
∏
j<k

(2 cos θk − 2 cos θj)
2
. �
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We call the open simplex

(3.2) Ag = {(θ1, . . . , θg) ∈ Xg | 0 < θg < θg−1 < · · · < θ1 < π}

the fundamental alcove in Xg. The closure Āg of Ag is a fundamental domain for
Sg in Xg, and, for every f ∈ C (Xg)

sym, we have∫
Xg

f(θ) dθ = g!

∫
Ag

f(θ) dθ.

There is another way to state Weyl’s integration formula, which will be used in
Section 8. Let Ig = [−2, 2]g. The map

(θ1, . . . , θg) 7→ (2 cos θ1, . . . , 2 cos θg)

defines an homeomorphism Xg −→ Ig. Let

k(t1, . . . , tg) = h

(
arccos

t1
2
, . . . , arccos

tg
2

)
.

where h(θ) is given by (2.1). Then the map F 7→ F ◦ k defines an isomorphism

C (G)◦
∼−−−−→ C (Ig)

sym

where C (Ig)
sym is the space of complex symmetric continuous function on Ig. For

an algebraic analog, see the isomorphism (A.2) in the appendix. Let

(3.3) D0(t) =
∏
j<k

(tk − tj)2, D1(t) =

g∏
j=1

(4− t2j ).

Proposition 3.2 (Weyl integration formula, II). If F ∈ C (G)◦, then∫
G

F(m) dm =

∫
Ig

F ◦ k(t)λg(t) dt,

where t = (t1, . . . , tg) and dt = dt1 . . . dtg, with the Weyl measure

λg(t)dt, dt = dt1 . . . dtg,

λg(t) =
1

(2π)gg!
D0(t)

√
D1(t).

Proof. If ϕ ∈ C (Ig), we have∫
Xg

ϕ(2 cos θ1, . . . , 2 cos θg)δg(θ) dθ =

∫
Ig

ϕ(t)λg(t)dt.

Apply Weyl’s integration formula of Theorem 3.1. �

As in (3.2), we call the open simplex

(3.4) Ag = {t ∈ Ig | −2 < t1 < t2 < · · · < tg < 2}

the fundamental alcove in Ig. Then Āg is a fundamental domain of Ig for Sg, and
if f ∈ C (Ig)

sym, we have

(3.5)

∫
Ig

f(t) dt = g!

∫
Ag

f(t) dt.
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Examples 3.3. We have

λ2(t) =
1

4π2
(t1 − t2)2

√
(4− t21)(4− t22).

The maximum of λ2 in A2 is attained at the point

t0 = (−
√

2,
√

2), with λ2(t0) =
2

π2
.

We have also

λ3(t) =
1

48π3
(t1 − t2)2(t1 − t3)2(t2 − t3)2

√
(4− t21)(4− t22)(4− t23).

The maximum of λ3 in A3 is attained at the point

t0 = (−
√

3, 0,
√

3), with λ3(t0) =
9

2π3
.

Now, for the convenience of the reader, we recall some notation on the distri-
bution of central functions. Let G be a connected compact Lie group. The Haar
measure dm of volume 1 on G is a probability measure, and G becomes a proba-
bility space; ipso facto, its elements become random matrices, and the functions in
C (G)◦ are complex random variables on G. If F ∈ C (G)◦ is a real random variable,
whose values lie in the compact interval I ⊂ R, the distribution or law of F is the
image measure µF = F∗dm on I such that∫

I

ϕ(x)µF(x) =

∫
G

ϕ(F(m)) dm if ϕ ∈ C (I),

If B is a borelian subset of I, then

µF(B) = volume {m ∈ G | F(m) ∈ B} ,
and the cumulative distribution function of F is

ΦF(x) = P(F ≤ x) =

∫ x

−∞
µF(t) =

∫
F(m)≤x

dm.

The characteristic function of F is the Fourier transform of µF(x):

f̂F(t) =

∫ ∞
−∞

eitxµF(x) =

∫
G

eitF(m) dm =

∫
Xg

eitF◦h(θ)µg(θ).

This is an entire analytic function of t, of exponential type, bounded on the real
line. The distribution µF has a density if µF(x) = fF(x)dx with a positive function
fF in L1(I). If µF has a density, and if Fourier inversion holds, then

fF(x) =
1

2π

∫ ∞
−∞

f̂F(t)e−itx dt.

Conversely, if f̂F ∈ L1(R), then µF has a density. If G = USp2g, notice that Weyl’s
integration formulas supply the joint probability density function for the random
variables (θ1, . . . , θg) and (t1, . . . , tg).

The distribution µF is characterized by the sequence of its moments

Mn(F) =

∫
I

xn µF(x) =

∫
G

F(m)n dm, n ≥ 1,

and the characteristic function is a generating function for the moments:

(3.6) f̂F(t) =

∞∑
n=0

Mn(F)
(it)n

n!
.
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Remark 3.4. If π is an irreducible representation of G, with real character τπ, then
the random variable τπ is standardized, i.e. the first moment (the mean) is equal
to zero and the second moment (the variance) is equal to one.

Remark 3.5. Under suitable conditions, an expression of the density by integration
along the fibers can be given. For instance, let G = USp2g, let F ∈ C (G)◦ be a
C∞ function, and put J = F ◦ h(U), where U is the open box ]0, π[g. If F ◦ h is a
submersion on U , and if x ∈ J , then

Vx = {θ ∈ U | F ◦ h(θ) = x}

is a hypersurface. Let αx be the Gelfand-Leray differential form on Vx, defined by
the relation

d(F ◦ h) ∧ αx = δg(θ)dθ1 ∧ · · · ∧ dθg.
For instance,

αx = (−1)j−1(∂(F ◦ h)/∂θj)
−1δg(θ)dθ1 ∧ . . . dθj−1 ∧ dθj+1 · · · ∧ dθg

if the involved partial derivative is 6= 0. Then the distribution is computed by
slicing: since the cumulative distribution function is

ΦF(x) =

∫
F◦h(θ)≤x

µg(θ) =

∫ x

−∞
ds

∫
Vs

αs(θ),

we have

fF(x) =

∫
Vx

αx(θ).

See [1, Lemma 7.2] and [17, Lemma 8.5].

4. Equidistribution

Let A be an abelian variety of dimension g over Fq. The Weil polynomial of A
is the characteristic polynomial L(A, u) = det(u. I−FA) of the Frobenius endomor-
phism FA of A, and the unitarized Weil polynomial of A is

L̄(A, u) = L(A, q−1/2u) =

g∏
j=1

(u− eiθj )(u− e−iθj ).

This polynomial has coefficients in Z, belongs to the set Φ2g defined in Remark 2.1,
and θ(A) = (θ1, . . . θg) is the sequence of Frobenius angles of A. We write

L̄(A, u) =

2g∑
n=0

(−1)nan(A)un,

keeping in mind that a2g−n(A) = an(A) for 0 ≤ n ≤ 2g, since L̄(A, u) ∈ Φ2g. By
associating to A the polynomial L̄(A, u), each abelian variety defines, as explained
in Section 2, a unique class ṁ(A) in ClG, such that

L̄(A, u) = det(u I−ṁ(A)).

Let Ag(Fq) be the finite set of k-isomorphism classes of principally polarized
abelian varieties of dimension g over k. The following question naturally arises:

As q →∞, and as A runs over Ag(Fq), what are the limiting distributions of the
random variables a1, . . . , ag ?
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In order to clarify this sentence, we look in particular to the coefficient a1, and
focus on the Jacobians of curves. Let C be a (nonsingular, absolutely irreducible,
projective) curve over Fq. The Weil polynomial L(C, u) of C is the Weil polyno-
mial of its Jacobian, and similarly for the unitarized Weil polynomial L̄(C, u), the
sequence of Frobenius angles θ(C), the coefficients an(C), and the conjugacy class
ṁ(C). If FC is the geometric Frobenius of C, then

L̄(C, u) = det(u. I−q−1/2FC) = det(u I−ṁ(C)).

Then

(4.1) |C(Fq)| = q + 1− q1/2τ (C),

where τ (C) = a1(C), namely

τ (C) = q−1/2 TraceFC = 2

g∑
j=1

cos θj ,

with θ(C) = (θ1, . . . , θg).
Then Katz-Sarnak theory [10] models the behavior of the Weil polynomial of a

random curve C of genus g over Fq by postulating that when q is large, the class
ṁ(C) behaves like a random conjugacy class in ClG, viewed as a probability space,
endowed with the image dṁ of the mass one Haar measure. Here is an illustration
of their results. Let R(G) be the character ring of G (cf. the appendix) and

T (G)◦ = R(G)⊗ C ' C[2 cos θ1, . . . 2 cos θg]
sym

the algebra of continuous representative central functions on G, the isomorphism
coming from Proposition A.1. This algebra is dense in C (G)◦, hence, suitable for
testing equidistribution on ClG. We use the following notation for the average of
a complex function f defined over a finite set Z:∮

Z

f(z)dz =
1

|Z|
∑
z∈Z

f(z).

For every finite field k, we denote by Mg(k) the finite set of k-isomorphism classes
of curves of genus g over k. The following theorem follows directly, if g ≥ 3, from
[10, Th. 10.7.15] (with a proof based on universal families of curves with a 3K
structure), and from [10, Th. 10.8.2] if g ≤ 2 (with a proof based on universal
families of hyperelliptic curves).

Theorem 4.1 (Katz-Sarnak). Assume g ≥ 1. If C runs over Mg(Fq), the conjugacy
classes ṁ(C) become equidistributed in ClG with respect to dṁ as q → ∞. More
precisely, if F ∈ T (G)◦, then∮

Mg(Fq)

F(ṁ(C))dC =

∫
ClG

F(m) dm+O
(
q−1/2

)
. �

Theorem 4.1 means that the counting measures

µg,q =
1

|Mg(Fq)|
∑

C∈Mg(Fq)

δ(ṁ(C)),

defined on ClG, converges to dṁ in the weak topology of measures when q → ∞.
Since

F ◦ h(θ(C)) = F(ṁ(C)),
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this theorem means also that if C runs over Mg(Fq), the vectors θ(C) become
equidistributed in the fundamental alcove with respect to the Weyl measure when
q →∞.

Remark 4.2. In the preceding theorem, and the above comments, one can substitute
the set Ag(Fq) to the set Mg(Fq) [10, Th. 11.3.10]. This is an answer to the question
raised in the beginning of this section.

As discussed above, the random variable τ (C) rules the number of points on the
set Mg(Fq), and its law is the counting measure on the closed interval [−2g, 2g]:

νg,q =
1

|Mg(Fq)|
∑

C∈Mg(Fq)

δ(τ (C)) =

2g∑
x=−2g

fg,q(x)δ(x),

where δ(x) is the Dirac measure at x, with the probability mass function

fg,q(x) =
|{C ∈ Mg(Fq) | (τ (C) = x}|

|Mg(Fq)|
,

defined if x ∈ [−2g, 2g] and q1/2x ∈ Z. We put now

τ (m) = Tracem, τ ◦ h(θ) = 2

g∑
j=1

cos θj ,

for m ∈ G and θ ∈ Xg. We take F(m) = τ (m) in Theorem 4.1, and call µτ be the
distribution of the central function τ as defined at the end of Section 3. We obtain:

Corollary 4.3. If q → ∞, the distributions νg,q of the Frobenius traces converge
to the distribution µτ . More precisely, for any continuous function ϕ on [−2g, 2g],
we have ∮

Mg(Fq)

ϕ(τ (C))dC =

∫ 2g

−2g

ϕ(x)µτ (x) +O
(
q−1/2

)
,

and for every x ∈ R, we have

|{C ∈ Mg(Fq) | τ (C) ≤ x}|
|Mg(Fq)|

=

∫ x

−∞
fτ (s)ds+O

(
q−1/2

)
. �

Lemma 4.4. If 1 ≤ n ≤ 2g − 1,∮
Ag(Fq)

an(A) dA = εn +O
(
q−1/2

)
,

where εn = 1 if n is even and εn = 0 if n is odd.

Proof. As Equation (A.4) in the appendix, let

τn(m) = Trace(∧nm),

in such a way that τ 1 = τ . By equality (A.5), we have

an(A) = τn ◦ h(θ(A)).

Since τn ∈ T (G)◦, we have, by Remark 4.2,∮
Ag(Fq)

τn ◦ h(θ(A)) dA =

∫
G

τn(m) dm+O
(
q−1/2

)
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but Lemma A.6 implies that the multiplicity of the character τ 0 of the unit repre-
sentation 1 is equal to εn, hence,∫

G

τn(m) dm = εn. �

Corollary 4.5. Let u ∈ C and q →∞.

(i) If |u| < q1/2, then∮
Ag(Fq)

L(A, u) dA =
u2g+2 − qg+1

u2 − q
+O

(
qg−

1
2

)
.

(ii) We have ∮
Ag(Fq)

|A(Fq)| dA = qg +O
(
qg−1

)
.

(iii) We have ∮
Mg(Fq)

|C(Fq)| dC = q +O(1).

The implied constants depend only on g.

Proof. We have

L(A, u) = qgL̄
(
A, q−1/2u

)
=

2g∑
n=0

(−1)nan(A)q(2g−n)/2un,

with a0 = 1 and a2g−n = an for 0 ≤ n ≤ g. From Lemma 4.4, we get

q(2g−n)/2un
∮

Fg(Fq)

an(A) dA = εnq
(2g−n)/2un + unO

(
q(2g−n−1)/2

)
for 1 ≤ n ≤ 2g− 1, and there is no second term in the right hand side if n = 0 and
n = 2g. Now, if |u| < q1/2,

2g∑
n=0

εnq
(2g−n)/2un =

u2g+2 − qg+1

u2 − q
,

and the absolute value of the difference between this expression and∮
Ag(Fq)

L(A, u) dA

is bounded by

B

2g−1∑
n=1

|u|nq(2g−n−1)/2,

with B depending only on g. If |u| ≤ q1/2, then |u|nq(2g−n−1)/2 ≤ q(2g−1)/2, and
this proves (i). If |u| ≤ 1, then |u|nq(2g−n−1)/2 ≤ qg−1, hence,∮

Ag(Fq)

L(A, u) dA = qg +O
(
qg−1

)
.

and this proves (ii), since |A(Fq)| = L(A, 1). Since Lemma 4.4 holds by substituting
Mg to Ag, (iii) is a consequence of this lemma applied to a1(C), and of formula
(4.1). �
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With Corollary 4.5(i), it appears as though the Frobenius angles were close in
the mean to the vertices of the regular polygon with (2g + 2) vertices, inscribed in
the circle of radius q1/2, the points ±q1/2 being excluded.

C

Mg

Vertical

Horizontal

2 3 5 … p

m(Cp)

µg,2 µg,3 µg,5 … µg,p

Figure 1. Horizontal versus vertical distribution.

Another approach on the limiting equidistribution of Frobenius angles is the
generalized Sato-Tate conjecture, see [17] for a comprehensive description. Let C
be an absolutely irreducible nonsingular projective curve of genus g over Q, and S
a finite subset of prime numbers such that the reduction Cp = CFp

over Fp is good
if p /∈ S. Then one says that the group USp2g arises as the Sato-Tate group of C if
the conjugacy classes ṁ(Cp) are equidistributed with respect to the Weyl measure
of G when p→∞. In other words, this means that if F ∈ C (G)◦, then

lim
n→∞

∮
PS(n)

F(ṁ(Cp)) dp =

∫
G

F(m) dm,

where PS(n) = {p ∈ P \ S | p ≤ n}. The case g = 1 is the Sato-Tate original
conjecture, now a theorem. Here is an example of what one expects [12] :

Conjecture 4.6 (Kedlaya-Sutherland). If EndC(JacC) = Z, and if g is odd, or
g = 2, or g = 6, then the group USp2g arises as the Sato-Tate group of C.

The two preceding types of equidistribution are symbolically shown in Figure 1.
The sequence of prime numbers are on the horinzontal axis, and the vertical axis
symbolizes the space of curves. The Katz-Sarnak approach is figured as a (horizon-
tal) limit of vertical averages µp over vertical lines, and the Sato-Tate approach is
a mean performed on horizontal lines.

5. Expressions of the law of the trace in genus 2

Assume now g = 2. Our purpose is to express the density of the distribution
of the trace function τ on USp4 with the help of special functions. In order to
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do this, the first step is to compute the characteristic function. The density of the
Weyl measure on X2 is

δ2(θ1, θ2) =

(
2

π2

)
sin2 θ1 sin2 θ2(2 cos θ2 − 2 cos θ1)2.

The fundamental alcove is

A2 = {(θ1, θ2) ∈ X2 | 0 < θ2 < θ1 < π} .

The maximum of δ2 in A2 is attained at the point

θm = (αm, π − αm), where tan
αm
2

=

√
2 +
√

3, δ(θm) =
128

27π2
.

We have τ ◦ h(θ1, θ2) = 2 cos θ1 + 2 cos θ2, and the characteristic function of τ is

f̂τ (t) =

∫
X2

e2it(cos θ1+cos θ2)δ2(θ1, θ2)dθ1dθ2.

Proposition 5.1. For every t ∈ R, we have

f̂τ (t) =
4J1(2t)2

t2
− 6J1(2t)J2(2t)

t3
+

4J2(2t)2

t2
.

Here, J1 and J2 are Bessel functions.

Proof. Let

Va(x) = 25 cos2 x sin2 x = 8 sin2(2x)
Vb(x) = 25 cos2 x sin2 x cos 2x = 4 sin 2x cos 4x
Vc(x) = 25 cos2 x sin2 x cos2 2x = 2 sin2 4x

Then

32π2δ(x, y) = Vc(x)Va(y) + Va(x)Vc(y)− 2Vb(x)Vb(y).

and

F̂ (t) = 2V̂a(t)V̂c(t)− 2V̂b(t)
2.

But

V̂a(t) =

√
2

t
J1(2t), V̂b(t) =

i
√

2

t
J2(2t), V̂c(t) =

√
2

t
J1(2t)− 3√

2t2
J2(2t),

and the result follows. �

We now compute the momentsMn(τ ) of τ . By Proposition 5.1, the characteristic
function can be expressed by a generalized hypergeometric series [9, §9.14, p. 1010]:

f̂τ (t) = 1F2

(
3

2
; 3, 4;−4t2

)
=

∞∑
n=0

(−1)n
( 3

2 )n

(3)n(4)n
22n t

2n

n!
,

where (a)n = a(a+ 1) . . . (a+ n− 1) is the Pochhammer’s symbol. It then follows
from (3.6) that the odd moments are equal to zero. Since

( 3
2 )n

(3)n(4)n
=

24√
π

(n+ 1
2 )Γ(n+ 1

2 )

Γ(n+ 3)Γ(n+ 4)

and [9, p. 897]

Γ

(
n+

1

2

)
=
√
π 2−2n (2n)!

n!
,
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we obtain

M2n(τ ) =
6.(2n)!(2n+ 2)!

n!(n+ 1)!(n+ 2)!(n+ 3)!
for n ≥ 0.

One finds as expected Mihailovs’ formula, in accordance with [12, §4.1], which

includes another formula for f̂τ (t), and also [17, p. 126].
In what follows, four different but equivalent expressions for the distribution of

τ are given.

5.1. Hypergeometric series. An expression of the density fτ of the distribution
of τ is the following. Recall that Gauss’ hypergeometric series

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

converges if |z| < 1 [9, §9.1.0, p. 1005].

Theorem 5.2. If |x| < 4, we have

fτ (x) =
1

4π

(
1− x2

16

)4

2F1

(
3

2
,

5

2
; 5; 1− x2

16

)
.

This theorem immediately follows from the following lemma.

Lemma 5.3. If |x| < 4, we have

fτ (x) =
64

5π2
m(x)4I(m(x)), where m(x) = 1− x2

16
,

and

I(m) =

∫ 1

0

t2
(

1− t2

1−mt2

) 5
2

dt.

Moreover

I(m) =
5π

256
2F1

(
3

2
,

5

2
; 5;m

)
.

Proof. We use a formula of Schläfli, see [18, Eq. 1, p. 150]. If µ and ν are real
numbers, then

Jµ(t)Jν(t) =
2

π

∫ π/2

0

Jµ+ν(2t cosϕ) cos(µ− ν)ϕdϕ (µ+ ν > −1).

As particular cases of this formula, we get

J1(t)2 =
2

π

∫ 4

0

J2

(
ut

2

)
du√

16− u2

J1(t)J2(t) =
2

π

∫ 4

0

J3

(
ut

2

)
u

4

du√
16− u2

,

J2(t)2 =
2

π

∫ 4

0

J4

(
ut

2

)
du√

16− u2
.

By transferring these equalities in Proposition 5.1, we obtain

f̂τ (t) =
4

t2
J1(2t)2 − 6

t3
J1(2t)J2(2t) +

4

t2
J2(2t)2

=
2

π

∫ 4

0

[
4

t2
J2(ut)− 3u

2t3
J3(ut) +

4

t2
J4(ut)

]
du√

16− u2
.
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and since

fτ (x) =
1

π

∫ ∞
0

f̂τ (t) cos tx dt,

we have

(5.1) fτ (x) =
2

π2

∫ 4

0

du√
16− u2

∫ ∞
0

[
4

t2
J2(ut)− 3u

2t3
J3(ut) +

4

t2
J4(ut)

]
cos tx dt.

We use now a formula of Gegenbauer on the cosine transform, see [15, p. 409] and
[18, Eq. 3, p. 50]. Assume Re ν > −1/2, u > 0 and let n be an integer ≥ 0. If
0 < x < u, then∫ ∞

0

t−νJν+2n(ut) cos tx dt = (−1)n2ν−1u−ν
Γ(ν)

Γ(2ν + n)
(u2 − x2)ν−1/2Cν2n

(x
u

)
,

where Cνn(x) is the Gegenbauer polynomial. If u < x <∞, this integral is equal to
0. From Gegenbauer’s formula we deduce that if 0 < x < u, then∫ ∞

0

t−2J2(ut) cos tx dt =
1

3

(u2 − x2)3/2

u2
,∫ ∞

0

t−3J3(ut) cos tx dt =
1

15

(u2 − x2)5/2

u3
,∫ ∞

0

t−2J4(ut) cos tx dt = − 1

30

(u2 − x2)3/2

u2

(
12x2

u2
− 2

)
,

since C2
2 (x) = 12x2 − 2. Transferring these relations in (5.1), we get

5π2fτ (x) = 16

∫ 4

x

(u2 − x2)3/2

u2

du√
16− u2

−
∫ 4

x

(u2 − x2)5/2

u2

du√
16− u2

− 16x2

∫ 4

x

(u2 − x2)3/2

u4

du√
16− u2

,

and this leads to

fτ (x) =
1

5π2

∫ 4

x

(u2 − x2)5/2

u4

√
16− u2 du.

By the change of variables

u = 4
√

1−m(x)t2, where m(x) = 1− x2

16
.

we obtain

fτ (x) =
64m(x)4

5π2

∫ 1

0

t2
(

1− t2

1−m(x)t2

) 5
2

dt,

which is the first result. Euler’s integral representation of the hypergeometric series
is

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt

if Re z > 0, and Re c > Re b > 0. From this we deduce, with the change of variables
t = u2, that

I(m) =
5π

256
2F1

(
3

2
,

5

2
; 5;m

)
,

which is the second result. �
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5.2. Legendre function. Another expression of fτ is given by the associated Le-
gendre function of the first kind Pab (z), defined in the half-plane Re z > 1. If a is
not an integer ≥ 1, and if b > 3/2, this function is defined by [9, Eq. 8.702, p. 959]
:

Pab (z) =
1

Γ(1− a)

(
z + 1

z − 1

) a
2

2F1

(
−b, b+ 1; 1− a;

1− z
2

)
.

If a = m is an integer and if z > 1 is real, then [9, Eq. 8.711.2, p. 960] :

Pmb (z) =
(b+ 1)a

π

∫ π

0

(
z +

√
z2 − 1 cosϕ

)b
cosmϕdϕ.

If a = 0, this is the Laplace integral.

Theorem 5.4. If |x| < 4, then

fτ (x) = − 64

15π

√
|x|
(

1− x2

16

)2

P2
1
2

(
x2 + 16

4x

)
.

Proof. By Theorem 5.2, we have

F (x) =
1

4π
m(x)4

2F1

(
3

2
,

5

2
; 5;m(x)

)
.

But [15, p. 51]

2F1

(
3

2
,

5

2
; 5; z

)
= (1− z)−3/4

2F1

(
3

2
,

7

2
; 3;− (1−

√
1− z)2

4
√

1− z

)
and [15, p. 47]

2F1

(
3

2
,

7

2
; 3; z

)
= (1− z)−2

2F1

(
−1

2
,

3

2
; 3; z

)
.

On the other hand, if z = m(x), then

− (1−
√

1− z)2

4
√

1− z
= − (x− 4)2

16x
.

By the definition of Legendre functions,

P−2
1
2

(
1

2

(
x

4
+

4

x

))
=

(
x− 4

x+ 4

)4

2F1(−1

2
,

3

2
; 3;− (x− 4)2

16x
),

and this implies

fτ (x) =
4

π

√
x

(
1− x2

16

)2

P−2
1
2

(
1

2

(
x

4
+

4

x

))
.

Since

Pmb (z) =
Γ(b+m+ 1)

Γ(b−m+ 1)
P−mb (z)

if m ∈ Z, we obtain the required expression. �

Since 2F1(a, b; c; 0) = 1, we deduce from Theorem 5.2 that

fτ (x) =
1

4π

(
1− x2

16

)4

+O(x− 4)5

and hence, in accordance with [17, p. 126]:



16 GILLES LACHAUD

Corollary 5.5. If |x| = 4− ε, with ε→ 0 and ε > 0, then

fτ (x) =
ε4

64π
+O(ε5). �

Since

lim
x→0

√
xP2

1
2

(
1

2
(
x

4
+

4

x
)

)
= − 1

π
,

we deduce from Proposition 5.4 that the maximum of fτ is reached for x = 0, and

fτ (0) =
64

15π2
= 0.432 . . .

The graph of fτ is given in Figure 2 ; we recover the curve drawn in [12, p. 124].

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure 2. Density of the distribution of τ , case g = 2.

5.3. Elliptic integrals. Another expression of fτ is given by Legendre elliptic
integrals. Let

K(m) =

∫ π/2

0

dϕ√
1−m sin2 ϕ

, E(m) =

∫ π/2

0

√
1−m sin2 ϕ dϕ,

be the Legendre elliptic integrals of first and second kind, respectively. The imple-
mentation of fτ in the Maple software gives:

Corollary 5.6. If |x| < 4, then

15

64
π2fτ (x) = (m2 − 16m+ 16)E(m)− 8(m2 − 3m+ 2)K(m),

where m = 1− (x2/16). �

The mention of the existence of such a formula is made in [7].
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5.4. Meijer G-functions. Another expression of fτ is given by Meijer G-functions
[9, §9.3, p. 1032]. They are defined as follows : take z in C with 0 < |z| < 1 and
m,n, p, q in N. Then

Gm,np,q

(
z

∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)

=
1

2iπ

∫
C

∏m
k=1 Γ(s+ bk)∏p

k=n+1 Γ(s+ ak)
.

∏n
k=1 Γ(−s− ak + 1)∏q

k=m+1 Γ(−s− bk + 1)
z−sds

Here, a1, . . . , ap, b1, . . . , bq are a priori in C, and C is a suitable Mellin-Barnes
contour.

Corollary 5.7. If |x| < 4,

fτ (x) =
6

π
G

(
x2

16

)
, with G(z) = G2,0

2,2

(
z

∣∣∣∣∣ 52 , 7
2

0, 1

)
.

We have

G(z) =
1

2iπ

∫
Re s=c

Γ(s)Γ(s+ 1)

Γ
(
s+ 5

2

)
Γ
(
s+ 7

2

) z−sds,
with 0 < c < 1

2 .

Proof. If |z| < 1, then [19, 07.34.03.0653.01]:

G2,0
2,2

(
z

∣∣∣∣ a, c
b,−a+ b+ c

)
=

√
π

Γ(a− b)
(1− z)a−b− 1

2 z
1
4 (−2a+2c−1)+bP

−a+b+ 1
2

−a+c− 1
2

(
z + 1

2
√
z

)
and the left hand side is equal to zero if |z| > 1. Hence, if |z| < 1,

G2,0
2,2

(
z

∣∣∣∣∣ 52 , 7
2

0, 1

)
=

4

3
(1− z)2z1/4 P−2

1/2

(
z + 1

2
√
z

)
,

and we apply Theorem 5.4. �

Corollary 5.8. If |x| < 4, then the repartition function of τ is

Φτ (x) =
3x

π
G

(
x2

16

)
+

1

2
,

with

G(z) = G2,1
3,3

(
z

∣∣∣∣∣ 12 , 5
2 ,

7
2

0, 1, − 1
2

)
.

Proof. According to [19, 07.34.21.0003.01], we have∫
zα−1Gm,np,q

(
z

∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
dz = zαGm,n+1

p+1,q+1

(
z

∣∣∣∣∣ 1− α, a1, . . . , ap

b1, . . . , bq,−α

)
.

By Corollary 5.7, a primitive of fτ is

Φ0(x) =
6

π

∫
G2,0

2,2

(
x2

16

∣∣∣∣∣ 52 , 7
2

0, 1

)
=

3x

π
G2,1

3,3

(
x2

16

∣∣∣∣∣ 12 , 5
2 ,

7
2

0, 1, − 1
2

)
,

and Φ0(−4) = −1/2. �
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-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

Figure 3. Repartition function of τ

5.5. The trace in SU2×SU2. In order to present a comparison with the above
results, we give here without proof the distribution of the trace of a compact semi-
simple subgroup of rank 2 of USp4, namely, the group SU2×SU2. If

x = (x1, x2) and xi =

(
ai −b̄i
bi āi

)
∈ SU2, |ai|2 + |bi|2 = 1, i = 1, 2,

the map

π(x) =


a1 0 −b̄1 0
0 a2 0 −b̄2
b1 0 ā1 0
0 b2 0 ā2


defines an embedding

π : SU2×SU2 −−−−→ USp4

whose image contains the maximal torus T of USp4. We put

ρ(x) = Traceπ(x).

The characteristic function of ρ is the square of the characteristic function of the
distribution of the trace of SU2:

f̂ρ(t) =
J1(2t)2

t2
.

The even moments are equal to zero, and the odd moments are

M2n(ρ) = CnCn+1 =
2(2n)!(2n+ 1)!

(n!)2(n+ 1)!(n+ 2)!
.

where

Cn =
1

n+ 1

(
2n

n

)
is the nth Catalan number. One finds the sequence

1, 0, 2, 0, 10, 0, 70, 0, 588, 0, 5544 . . .

in accordance with the sequence A005568 in the OEIS [16].
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Theorem 5.9. If |x| < 4, the density of the distribution of ρ is

fρ(x) =
1

2π

(
1− x2

16

)2

2F1

(
1

2
,

3

2
; 3; 1− x2

16

)
. �

Corollary 5.10. If |x| = 4− ε, with ε→ 0 and ε > 0, then

fρ(x) =
ε2

8π
− ε3

64π
− ε4

4096π
+O(ε5). �

The maximum of fρ is reached for x = 0, and

fρ(0) =
8

3π2
= 0.270 . . .

The graph of fρ is given in Figure 4.

-4 -2 2 4
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0.15

0.20

0.25

Figure 4. Density of the distribution of ρ.

6. The Viète map and its image

Another approach of the distribution of the trace is realized by an algebraic
form of Weyl’s integration formula, using symmetric polynomials. This comes from
a general program developed by Kohel [13], formerly outlined by DiPippo and Howe
in [6]. If t = (t1, . . . , tg) ∈ Cg, consider a monic polynomial

(6.1) ht(u) = (u− t1) . . . (u− tg) = ug − s1(t)ug−1 + · · ·+ (−1)gsg(t)

in C[u]. Here

sn(t) =
∑

i1<···<in

ti1 . . . tik

is the elementary symmetric polynomial of degree n in g variables. The discriminant
of ht is

(6.2) discht = D0(t) =
∏
j<k

(tk − tj)2.

The Viète map s : Cg −→ Cg is the surjective polynomial mapping

s(t1, . . . , tg) = (s1(t), . . . , sg(t)),
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where t = (t1, . . . , tg), inducing a bijection

Cg/Sg
∼−−−−→ Cg

which is a homeomorphism, because the map between the corresponding projective
spaces is a continuous bijection between compact spaces. Hence, the Viète map is
open and proper. We denote by

Πg = s(Rg)
the closed subset which is the image of the Viète map. Hence, (s1, . . . , sg) ∈ Πg if
and only ht(u) has only real roots. The induced map

Rg/Sg
∼−−−−→ Πg

is a homeomorphism. The fundamental chamber of Rg related to Sg is

Cg = {t ∈ Rg | t1 < t2 < · · · < tg}
and C̄g is a fundamental domain for Sg in Rg. We are going to show that s is a
local diffeomorphism at the points of an open dense subset of Rg. For this purpose,
we calculate J(s), where J(f) denotes the jacobian matrix of a polynomial map
f : Cg −→ Cg. Recall that the power sums

pn(t) = tn1 + · · ·+ tng (n ≥ 1)

can be expressed in terms of elementary symmetric polynomials. Precisely, from
Newton’s relations

pn =

n−1∑
j=1

(−1)j−1sjpn−j + (−1)n−1nsn (n ≥ 1),

we obtain [14, p. 28] :

pn =

∣∣∣∣∣∣∣∣
s1 1 0 . . . 0
2s2 s1 1 . . . 0
. . . . . . . . . . . . . . .
nsn sn−1 sn−2 . . . s1

∣∣∣∣∣∣∣∣ .
This is related to a more suitable expression [5, p. 72], [2, Ch. IV, § 6, Ex. 6],
obtained by Albert Girard [8] in 1629, and sometimes attributed to Waring (1762):

Proposition 6.1 (Girard’s formula). If 1 ≤ n ≤ g and s = (s1, . . . , sg), let

vn(s) = n
∑
b∈Pn

(b1 + b2 + · · ·+ bg − 1)!

b1! . . . bg!
ub11 . . . ubgg ,

where un = (−1)n−1sn for 1 ≤ n ≤ g, and the summation being extended to

Pn = {b = (b1, . . . , bg) ∈ Ng | b1 + 2b2 + · · ·+ gbg = n} .
Then

pn = vn ◦ s. �

The map ϕ 7→ ϕ ◦ s defines an isomorphism

s∗ : Z[s1, . . . , sg]
∼−−−−→ Z[t1, . . . , tg]

sym.

Since D0 ∈ Z[t1, . . . , tg]
sym, there is a polynomial d0 ∈ Z[s1, . . . , sg] such that

(6.3) d0(s(t)) = D0(t) =
∏
j<k

(tk − tj)2.
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Let
Ug = {t ∈ Rg | D0(t) 6= 0} , Π◦g = {s ∈ Rg | d0(s) 6= 0} .

Then Π◦g = s(Ug), and Π◦g is a dense open set of Πg. The roots of the polynomial
ht ∈ R[u] given by (6.1) are real and simple if and only if s(t) ∈ Π◦g.

Proposition 6.2. With the preceding notation:

(i) If t ∈ Rg, then

|det J(s)(t)| =
√
D0(t) =

∏
j<k

|tk − tj |.

(ii) The map s is a local diffeomorphism at every point of Ug.
(iii) The map s is a diffeomorphism from the fundamental chamber Cg to Π◦g.

Proof. Define two polynomial maps from Cg to Cg:
p(t) = (p1(t), . . . , pg(t)) and v(s) = (v1(s), . . . , vg(s)).

Then p = v ◦ s by Girard’s formula 6.1. If 1 ≤ n ≤ g, then

vn(s) = (−1)n+1nsn + v′n(s),

where v′n(s) depends only of s1, . . . , sn−1. This implies that J(v) is lower triangular,
with n-th diagonal term equal to (−1)n+1n. Hence,

det J(v) = (−1)[g/2] g!

On the other hand,

J(p) =


1 1 . . . 1
. . . . . . . . . . . .

ktk−1
1 ktk−1

2 . . . ktk−1
n

. . . . . . . . . . . .

gtg−1
1 gtg−1

2 . . . gtg−1
n

 .

Then J(p) = D.V (t), where D is the diagonal matrix diag(1, 2, . . . , g), and

V (t) =


1 1 . . . 1
t1 t2 . . . tn
. . . . . . . . . . . .

tg−1
1 tg−1

2 . . . tg−1
n


is the Vandermonde matrix. Hence,

det J(p) = g! detV (t) = g!
∏
j<k

(tk − tj),

and since J(p) = J(v).J(s), we get (i), which implies (ii). Then (iii) comes from
the fact that s is injective on the open subset Cg of Ug. �

The bezoutian of ht is the matrix

B(t) = V (t).tV (t) =


p0 p1 . . . pg−1

p1 p2 . . . pg
. . . . . . . . . . . .
pg−1 pg . . . p2g−2

 ∈Mg(R),

in such a way that detB(t) = D0(t).

Lemma 6.3. Let ht ∈ R[u]. The following conditions are equivalent:
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(i) The roots of ht are real and simple, i.e. s(t) ∈ Π◦g.
(ii) The bezoutian B(t) is positive definite.

Proof. This is a particular case of a theorem of Sylvester, which states that the
number of real roots of ht is equal to p− q, where (p, q) is the signature of the real
quadratic form

Q(x) = tx.B(t).x,

where x = (x0, . . . , xg−1) ∈ Rg. Here is a short proof: if 1 ≤ j ≤ g, define the linear
form

Lj(x) = x0 + x1tj + · · ·+ xg−1t
g−1
j .

Then x.V (t) = (L1(x), . . . , Lg(x)), and

Q(x) =

g∑
j=1

Lj(x)2.

If tj ∈ R, the linear form Lj is real. If tj /∈ R, the non-real linear form Lj = Aj+iBj
appears together with its conjugate, and

L2
j + L̄2

j = 2A2
j − 2B2

j .

This shows that if ht has r real roots and s couples of non-real roots, the signature
of Q is (r + s, s). �

The bezoutian B(t) is positive definite if and only if its principal minors

Mj(p1, . . . , pg) =

∣∣∣∣∣∣∣∣
p0 p1 . . . pj−1

p1 p2 . . . pj
. . . . . . . . . . . .
pj−1 pj . . . p2j−2

∣∣∣∣∣∣∣∣ (1 ≤ j ≤ g)

are > 0, see for instance [3, Prop. 3, p. 116]. By substituting to the power
sums their expression given by Girard’s formula of Proposition 6.1, we obtain g
polynomials

mj = Mj ◦ v ∈ Z[s1, . . . , sg] (1 ≤ j ≤ g).

Of course, m1 = g, and

Mg(p1, . . . , pg) = detB(t) = D0(t),

hence, mg(s) = d0(s). As a consequence of Lemma 6.3, we obtain

Π◦g = {s ∈ Rg | mj(s) > 0 if 2 ≤ j ≤ g} ,
hence:

Lemma 6.4. We have

Πg = {s ∈ Rg | mj(s) ≥ 0 if 2 ≤ j ≤ g} . �

Example 6.5. If g = 2, then d0(s) = s2
1 − 4s2, and

Π2 =
{
s ∈ R2 | d0(s) ≥ 0

}
.

Example 6.6. If g = 3, then

d0(s) = s2
1s

2
2 − 4s3

2 − 4s3
1s3 + 18s1s2s3 − 27s2

3,

and m2(s) = 2(s2
1 − 3s2). But if d0(s) ≥ 0, then m2 ≥ 0. Actually, if

p = −s
2
1 − 3s2

3
, q =

2s3
1 − 9s1s2 + 27s3

27
,
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then

d0(s) = −(4p3 + 27q2), m2 = −6p.

If d0(s) ≥ 0, then 4p3 ≤ −27q2 and p ≤ 0. Hence, as it is well known, Π3 is defined
by only one inequality:

Π3 =
{
s ∈ R3 | d0(s) ≥ 0

}
.

7. The symmetric alcove

The symmetric alcove is the compact set

Σg = s(Ig) ⊂ Πg.

We have s(Āg) = s(Ig), and the induced map

Ig/Sg
∼−−−−→ Σg

is a homeomorphism, leading to the commutative diagram

Ig

π

""

s

��

Āg

ι

>>

'
  

Ig/Sg

'
||

Σg

If p ∈ C[t1, . . . , tg] is a symmetric polynomial and if λ ∈ C, define

p(λ; t) = p(λ+ t1, . . . , λ+ tg), t = (t1, . . . , tg).

The polynomial p(λ; t) is symmetric with respect to t.

Lemma 7.1. If t ∈ Rg and λ > 0, the following conditions are equivalent:

(i) si(λ; t) > 0 and si(λ;−t) > 0 for 1 ≤ i ≤ g.
(ii) |ti| < λ for 1 ≤ i ≤ g.

Proof. It suffices to prove the following result: if t ∈ Rg, the following conditions
are equivalent:

(i) si(t) > 0 for 1 ≤ i ≤ g.
(ii) ti > 0 for 1 ≤ i ≤ g.

If ht ∈ R[u] is defined as in (6.1), namely

ht(u) = (u− t1) . . . (u− tg) = ug − s1u
g−1 + · · ·+ (−1)gsg,

let f [(u) = (−1)gf(−u). Then

f [(u) = (u+ t1) . . . (u+ tg) = ug + s1u
g−1 + s2u

g−2 + · · ·+ sg,

and if (i) is satisfied, the roots of (−1)gf(−u) are < 0, and this implies (ii). The
converse is trivial. �

The polynomial si(λ; t) ∈ C[t1, . . . , tg] is a linear combination of elementary
symmetric polynomials of degree ≤ i:
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Lemma 7.2. If 1 ≤ i ≤ g and if λ > 0, then

si(λ; t) = L+
i (λ; s(t)),

with

L+
i (λ; s) =

i∑
k=0

(
g − i+ k

k

)
si−kλ

k,

which is a linear form with respect to s1, . . . , si. Similarly,

si(λ;−t) = L−i (λ; s(t)),

where

L−i (λ; s1, s2, . . . , si) = L+
i (λ;−s1, s2, . . . , (−1)isi).

Proof. The Taylor expansion of ht(u− λ) with respect to u shows that

si(λ, t) = (−1)i
h

(g−i)
t (−λ)

(g − i)!
.

The first formula is obtained by transferring these equalities in the Taylor expansion

of h
(g−i)
t (λ) at 0 :

h
(g−i)
t (−λ) =

i∑
k=0

(−1)kh
(g−i+k)
t (0)

λk

k!
. �

The second formula is deduced from the first by noticing that si(−t) = (−1)isi(t).

Considering that s0 = 1, we have

s1(λ; t) = s1(t) + gλ,

s2(λ; t) = s2(t) + (g − 1)λs1(t) +
g(g − 1)

2
λ2,

sg(λ; t) =

g∑
k=0

sg−k(t)λk = (−1)ght(−λ) =

g∏
i=1

(ti + λ).

Hence

L±1 (2; s) = ±s1 + 2g, L+
2 (2; s) = s2 ± 2(g − 1)s1 + 2g(g − 1),

and

(7.1) L±g (2; s) =

g∑
k=0

2ksg−k, L−g (2; s) =

g∑
k=0

(−1)g−k2ksg−k.

From Lemmas 7.1 and 7.2 we obtain

Lemma 7.3. Assume t ∈ Rg. Then t ∈ Ig if and only if s(t) ∈ Θg, where

Θg =
{
s ∈ Rg | L±i (2; s) ≥ 0 for 1 ≤ i ≤ g

}
. �

Notice that the polyhedron Θg is unbounded.

Theorem 7.4. If Σg = s(Ig), then

Σg = Θg ∩Πg,
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where Πg and Θg are defined in Lemmas 6.4 and 7.3. Moreover, Σg = s(Āg) is a
semi-algebraic set homeomorphic to the g-dimensional simplex, and

Σg ⊂
g∏
i=1

[
−2i

(
g

i

)
, 2i
(
g

i

)]
.

Proof. By definition, Πg = s(Rg), hence, the first statement follows from Lemma
7.3. The properties of Σg follow from Proposition 6.2, and the last statement is
just a consequence of the definition of s1(t), . . . , sg(t). �

Example 7.5. If g = 2, then d0(s) = s2
1 − 4s2, and

Π2 =
{
s ∈ R2 | d0(s) ≥ 0

}
,

as we saw in Example 6.5. The triangle Θ2 is defined by four inequalities:

L±1 (2, s) = ±s1 + 4 ≥ 0,

L±2 (2, s) = s2 ± 2s1 + 4 ≥ 0.

The symmetric alcove Σ2 the curvilinear triangle, drawn in Figure 5, contained in
the square [−4, 4]× [−4, 4].

-4 -2 0 2 4

-4

-2

0

2

4

Figure 5. The symmetric alcove Σ2.

Example 7.6. If g = 3, then

d0(s) = s2
1s

2
2 − 4s3

2 − 4s3
1s3 + 18s1s2s3 − 27s2

3,

and

Π3 =
{
s ∈ R3 | d0(s) ≥ 0

}
,
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as we saw in Example 6.6. The polyhedron Θ3 is defined by six inequalities

L±1 (2, s) = ±s1 + 6 ≥ 0, L±2 (2, s) = s2 ± 4s1 + 12 ≥ 0,

L±3 (2, s) = ±s3 + 2s2 ± 4s1 + 8 ≥ 0.

The intersection of Θ3 and of the box

[−4, 4]× [−12, 12]× [−8, 8]

make up a polytope P3 with 6 vertices

p1 = (−6, 12,−8) = s(−2,−2,−2), p2 = (−2,−4, 8) = s(2,−2,−2),
p3 = (2,−4,−8) = s(2, 2,−2), p4 = (6, 12, 8) = s(2, 2, 2),
p5 = (6, 12,−8), p6 = (−6, 12, 8),

and 7 facets supported the following hyperplanes:

s2 = 12, s3 = ±8, L±2 (s) = 0, L±3 (s) = 0.

Then

Σ3 = Π3 ∩ P3.

The symmetric alcove Σ3 is drawn in Figure 6. This set is invariant by the symmetry
(s1, s2, s3) 7→ (−s1, s2,−s3). The graphical representation leads to suppose that

Σ3 = Π3 ∩∆3,

where ∆3 is the tetrahedron with vertices p1, p2, p3, p4 and support hyperplanes

L±3 (s) = 0, L±0 (s) = 0,

where L±0 (s) = 24± 4s1 − 2s2 ∓ 3s3.

8. Symmetric integration formula

The map ϕ 7→ ϕ ◦ s defines an isomorphism

s∗ : C (Σg)
∼−−−−→ C (Ig)

sym = C (Āg)

If F ∈ C (G)◦, we denote by F̃ the unique function in C (Ig)
sym such that

F̃ ◦ s(t) = F ◦ k(t),

that is,

F̃ ◦ s(2 cos θ1, . . . , 2 cos θg) = F ◦ h(θ1, . . . , θg).

Then the map F 7→ F̃ is an isomorphism

C (G)◦
∼−−−−→ C (Σg).

inducing by restriction an isomorphism, cf. Proposition A.1 in the appendix:

R(G)
∼−−−−→ Z[s1, . . . , sg].

Since D1 ∈ Z[t1, . . . , tg]
sym, there is a polynomial d1 ∈ Z[s1, . . . , sg] such that

(8.1) d1(s(t)) = D1(t) =

g∏
j=1

(4− t2j ),

hence

D1(t) = sg(2; t)sg(2;−t),
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Figure 6. The symmetric alcove Σ3.

where s±(λ; t) is defined in Lemma 7.2, and

d1(s) = L+
g (2; s)L−g (2; s),

where L±g (2; s) is defined by (7.1).

Proposition 8.1 (Symmetric integration formula). If F ∈ C (G)◦, then∫
G

F(m) dm =

∫
Σg

F̃(s)νg(s) ds,

with ds = ds1 . . . dsg, and

νg(s) =
1

(2π)g

√
d0(s)d1(s),

where d0(s) is given by (6.3) and d1(s) by (8.1).

Proof. By Proposition 6.2, we can perform a change of variables from Σg to Ag,
apart from null sets, by putting s = s(t). If ϕ ∈ C (Σg), we have∫

Σg

ϕ(s)
ds√
d0(s)

=

∫
Ag

ϕ(s(t)) dt.

This implies ∫
Σg

ϕ(s)νg(s) ds = g!

∫
Ag

ϕ(s(t))λg(t).
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If ϕ = F̃, then∫
Σg

F̃(s)νg(s) ds = g!

∫
Ag

F ◦ k(t)λg(t) dt =

∫
Ig

F ◦ k(t)λg(t) dt,

the second equality by using (3.5). One concludes with the help of Proposition
3.2. �

In other words, if φg is the characteristic function of Σg, the function νg φg is the
joint probability distribution density function of the distribution for the random
variables s1, . . . , sg.

If τ is the trace map on USp2g, then

τ̃ (s) = s1.

One obtains an integral expression of the density by the method of integration
along the fibers already used in Remark 3.5, which reduces here to an application
of Fubini’s theorem. The linear form s 7→ s1 is a submersion from the open dense
subset U = s(Ag) of Σg onto J = (−2g, 2g), and if x ∈ J , then

Vx = {s ∈ U | s1 = x}
is just an intersection with a hyperplane. If

αx(s2, . . . , sg) = νg(x, s2, . . . , sg) ds2 ∧ · · · ∧ dsg,
then

Φτ (z) =

∫
s1≤z

νg(s)ds1 ∧ · · · ∧ dsg =

∫ z

−2g

dx

∫
Vs

αx(s2, . . . , sg),

hence:

Proposition 8.2. If |x| < 2g, then

fτ (x) =

∫
Vx

αx(s2, . . . , sg). �

Example 8.3. If g = 2, the symmetric alcove Σ2 is described in Example 7.5. Here,

d0(s) = s2
1 − 4s2, d1(s) = (s2 + 4)2 − 4s2

1, ν2(s) =
1

4π2

√
d0(s)d1(s).

The graph of ν2 is shown in Figure 7. The maximum of ν2 in Σ2 is attained at the
point

s0 = (0,−4

3
), with ν2(s0) =

8

3
√

3π2
= 0.155 . . .

By Proposition 8.2, we find a definite integral : if x ≥ 0,

fτ (x) =
1

4π2

∫ x2/4

2x−4

[(
(y + 4)2 − 4x2

) (
x2 − 4y

)] 1
2 dy.

It can be verified that this formula is in accordance with Theorem 5.4.

Example 8.4. If g = 3, the symmetric alcove Σ3 is described in Example 7.6. Here,

d0(s) = s2
1s

2
2 − 4s3

2 − 4s3
1s3 + 18s1s2s3 − 27s2

3,

d1(s) = (2s2 + 8)2 − (4s1 + s3)2,

ν3(s) =
1

8π3

√
d0(s)d1(s),
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Figure 7. The density ν2.

and

Vx =
{
s ∈ R3 | d0(s) ≥ 0, ±s3 + 2s2 ± 4x+ 8 ≥ 0

}
.

The density is

fτ (x) =

∫
Vx

ν3(x, s2, s3)ds2ds3.

With this formula in hands, we are able to compute the even moments :

1, 1, 3, 15, 104, 909, 9 449, 112 398, 1 489 410, 21 562 086 . . .

This sequence is in accordance with the results of [12, Sec. 4] and the sequence
A138540 in the OEIS [16]. Actually, it is faster to compute this sequence by noticing
that, according to Weyl’s integration formula of Proposition 3.2, the characteristic
function of τ is given, for y ∈ R, by

f̂τ (y) =
1

8π3

∫
I3

D0(t)
√
D1(t) cos(y(t1 + t2 + t3)) dt1dt2dt3.

An implementation of this integral in the Mathematica software gives

f̂τ (y) =

24

(
−4J1(2y)3

y5
+

11J1(2y)2J2(2y)

y6
− 2(3 + y2)J1(2y)J2(2y)2

y7
+

5J2(2y)3

y6

)
,

and it suffices to apply (3.6) to obtain the moments. An approximation of fτ
to any order in L2([−6, 6], dx) can be obtained from the sequence of moments,
using Legendre polynomials, which form an orthogonal basis of L2([−1, 1], dx). For
instance the maximum of fτ is reached for x = 0, and we find

fτ (0) = 0.396 467 . . .

The graph of fτ obtained by this approximation process is drawn in Figure 8.

As a final instance, we come back to the case g = 2 and apply the symmetric
integration formula to the distribution of the character τ 2 of the exterior power
∧2π of the identity representation π of USp4 on C4, namely

τ 2 ◦ h(θ) = 2 + 4 cos θ1 cos θ2, τ̃ 2(s) = s2 + 2.
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-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

Figure 8. Density of the distribution of τ , case g = 3

The density of τ 2 is given by

fτ2(x) =

∫
I±

√
16 + 8x+ x2 − 4z2

√
z2 − 4x dz,

with

I− =

(
−x+ 4

2
,
x+ 4

2

)
if − 4 < x < 0,

I+ =

(
−x+ 4

2
,−2
√
x

)
∪
(

2
√
x,
x+ 4

2

)
if 0 < x < 4.

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure 9. Density of the distribution of τ 2, case g = 2

The implementation of this integral in the Mathematica software gives the se-
quence of moments (see below), from which one deduces:

Proposition 8.5. Assume |x| < 4. Then fτ2
(x) is equal to

sgn(x)

24π2

(
x(x2 − 24x+ 16)E

(
1− 16

x2

)
+ 4(3x2 − 8x+ 48)K

(
1− 16

x2

))
. �
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The maximum of fτ2
is reached for x0 = −0.605 . . . , and fτ2

(x0) = 0.403 . . .
Moreover

fτ2
(0) =

8

3π2
= 0.270 . . .

This function is continuous, but the derivative has a logarithmic singularity:

f ′τ2
(x) ∼ log x2

π2
, x→ 0.

The graph of fτ2
is shown in Figure 9. The moments Mn of fτ2

are obtained by
numerical integration:

1,−1, 2,−4, 10,−25, 70,−196, 588,−1764 . . .

Hence, the random variable τ 2 has mean −1 and variance 2. This sequence is, up
to sign, the sequence A005817 in the OEIS [16], such that

M2n(τ 2) = CnCn+1, M2n+1 = −C2
n+1,

where

Cn =
1

n+ 1

(
2n

n

)
is the nth Catalan number.

Remark 8.6. The representation ∧2π is reducible, cf. for instance Lemma A.6 in the
appendix. Actually, the two fundamental representations of USp2 are the identity
representation π = π1 with character τ and a representation π2 of dimension 5 and
character χ2 satisfying

χ2 ◦ h(θ) = 1 + 4 cos θ1 cos θ2, χ̃2(s) = s2 + 1.

The representation π2 is equivalent to the representation corresponding to the mor-
phism of USp2 onto SO5. Since τ 2 = χ2 + 1, we have

∧2π = π2 ⊕ 1,

and τ̃ 2(s) = s2 + 2: this relation is an instance of Theorem A.7 in the appendix.
The random variable χ2, with values on [−3, 5], is standardized, by Remark 3.4.
The moments of fχ2

are

0, 1, 0, 3, 1, 15, 15, 105, 190, 945 . . .

in accordance with the sequence A095922 in the OEIS [16].

Appendix A. The character ring of G

The character ring R(G) of G = USp2g is the subring of C (G)◦ generated, as a
Z-module, by the characters of continuous representations ofG on finite dimensional
complex vector spaces. Since every representation of G is semi-simple, the Z-

module R(G) is free and admits as a basis the set Ĝ of characters of irreducible
representations of G :

R(G) =
∑
τ∈Ĝ

Zτ.

The virtual characters are the elements of R(G), and the characters correspond

to the additive submonoid of sums over Ĝ with non-negative coefficients. The
functions θ 7→ eiθj (1 ≤ i ≤ g) make up a basis of the discrete group Tg, and if h(θ)
is as in (2.1), the map h∗ : f 7→ f ◦ h defines an isomorphism from the group X(T )
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of characters of T to the group X(Tg). Hence, if Z[X(T )] is the group ring, we have
a ring isomorphism

h∗ : Z[X(T )]
∼−−−−→ Z[{eiθj , e−iθj}].

Let Z[X(T )]W be the subring of elements invariants under W . Recall that the
restriction map

R(G)
∼−−−−→ Z[X(T )]W

is a ring isomorphism [4, Ch. 9, §7, n◦3, Cor., p. 353]. From the structure of W ,
we deduce that h∗ induces a ring isomorphism

(A.1) R(G)
∼−−−−→ Z[2 cos θ1, . . . 2 cos θg]

sym.

and, by putting (2 cos θ1, . . . 2 cos θg) = (t1, . . . , tg), a ring isomorphism

(A.2) R(G)
∼−−−−→ Z[t1, . . . tg]

sym.

On the other hand, the application ϕ 7→ ϕ ◦ s, where s is the Viète map, induces
the classical isomorphism

s∗ : Z[s1, . . . , sg]
∼−−−−→ Z[t1, . . . , tg]

sym.

If F ∈ R(G), we denote by F̃ the unique polynomial in Z[s1, . . . , sg] such that

F̃ ◦ s(2 cos θ1, . . . , 2 cos θg) = F ◦ h(θ1, . . . , θg).

We obtain:

Proposition A.1. If G = USp2g, the map F 7→ F̃ is a ring isomorphism

R(G)
∼−−−−→ Z[s1, . . . , sg]. �

Recall from Remark 2.1 that Φ2g is the set of monic palindromic polynomials of
degree 2g in C[u] with all roots on the unit circle. We write a typical element of
Φ2g as

pa(u) =

2g∑
n=0

(−1)nanu
2g−n,

where a2g−n = an for 0 ≤ n ≤ g. Moreover pa(u) = u2gpa(u−1). The roots of pa
come by pairs : if pa is monic, then

pa(u) =

g∏
j=1

(u− eiθj )(u− e−iθj ) =

g∏
j=1

(u2 − utj + 1),

with tj = 2 cos θj , and the coefficients an are symmetric polynomials in the variables
{eiθj , e−iθj}, invariant under conjugation.

Theorem A.2. If t = (t1, . . . , tg) ∈ Cg, and if 0 ≤ n ≤ 2g, define an(t) by the
relation

g∏
j=1

(u2 − utj + 1) =

2g∑
n=0

(−1)nan(t)u2g−n.

If 0 ≤ n ≤ g, then

an(t) =

n/2∑
j=0

(
g + 2j − n

j

)
sn−2j(t),

where s0(t) = 1 and sn(t) is the elementary symmetric polynomial of degree n.
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We deduce Theorem A.2 from the following lemma.

Lemma A.3. If s = (s0, . . . , sg) ∈ Cg+1, let

hs(u) =

g∑
n=0

(−1)nsnu
g−n,

and for 0 ≤ n ≤ 2g, define qn(s) by the relation

ughs(u+ u−1) =

2g∑
n=0

(−1)nqn(s)u2g−n.

If 0 ≤ n ≤ g, then

qn(s) =

n/2∑
j=0

(
g + 2j − n

j

)
sn−2j .

Proof. We have

ugh(u+ u−1) = ug
g∑
k=0

(−1)ksk(u+ u−1)g−k.

Since

ug(u+ u−1)g−k = ug
g−k∑
j=0

(
g − k
j

)
(u−1)g−k−juj =

g−k∑
j=0

(
g − k
j

)
uk+2j ,

one finds

ugh(u+ u−1) =
∑

j+k≤g,j≥0,k≥0

(−1)k
(
g − k
j

)
sku

k+2j .

Let k + 2j = n. Then n runs over the full interval [0, 2g] and

j ≥ 0 and k ≥ 0 and j + k ≤ g ⇐⇒ j ≥ 0 and 2j ≤ n and j ≥ n− g.

Hence, if 1 ≤ n ≤ 2g, we have

qn(s) =

n/2∑
j=max(0,n−g)

(
g + 2j − n

j

)
sn−2j ,

and the result follows. �

If p is a Weil polynomial and if p(u) = ugh(u+ u−1), then h has real roots and
is called the real Weil polynomial associated to p.

Proof of Theorem A.2. In Lemma A.3, assume that

hs(u) =

g∏
j=1

(u− tj).

Then sn = sn(t), where t = (t1, . . . , tg), and

ughs(u+ u−1) =

g∏
j=1

(u2 − utj + 1).

Hence, an(t) = qn(1, s1(t), . . . , sn(t)). �
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Define an endomorphism q of Cg+1 by

q : (s0, . . . , sg) 7→ (q0(s), . . . , qg(s)).

By Lemma A.3, the square matrix of order g + 1 associated to q is unipotent and
lower triangular, with coefficients in N. For instance:

(A.3) if g = 2 : q =

1 0 0
0 1 0
2 0 1

 ; if g = 3 : q =


1 0 0 0
0 1 0 0
3 0 1 0
0 2 0 1

 .

Remark A.4. A reciprocal of the map Q : h 7→ ugh(u + u−1) is constructed as
follows. If n ≥ 1, let Tn(u) be the n-th Chebyshev polynomial [9, p. 993], and
cn(u) = 2Tn(u/2), in such a way that

cn(u+ u−1) = un + u−n if n ≥ 1.

Moreover put c0(u) = 1. If pa ∈ Φ2g as above and if

[Rp](u) =

g∑
n=0

(−1)nancg−n(u),

it is easy to see that Q ◦R(p) = p.

Remark A.5. It is worthwile to notice that the map ϕ 7→ ϕ ◦ q defines an isomor-
phism of the two ring of invariants:

q∗ : Z[a1, . . . , ag]
∼−−−−→ Z[s1, . . . , sg]

where we identify Z[a1, . . . , ag] and Z[a1, . . . , a2g−1]/((a2g−n − an)). If we define a
polynomial mapping a : Cg −→ Cg+1 by

a : t = (t1, . . . , tg) 7→ (a0(t), . . . , ag(t)).

and if s(t) = (s0(t), s1(t), . . . , sg(t)) is the (extended) Viète map, then

a = q ◦ s.
These maps are gathered in the following diagram:

Z[{eiθj , e−iθj}]

W

// Z[t1, . . . , tg]

Sg

R(G) : Z[a1, . . . , ag]
q∗
//

a∗

33
Z[s1, . . . , sg]

s∗ // Z[t1, . . . , tg]
sym

We apply the preceding to the character of the n-th exterior power ∧n π of the
identity representation π of G in C2g. For 0 ≤ n ≤ 2g, let

(A.4) τn(m) = Trace(∧nm).

Generally speaking, the representation ∧nπ is reducible, and we describe now its
decomposition. For each dominant weight ω of USp2g, we denote by π(ω) the
irreducible representation with highest weight ω, cf. [4]. The following lemma is
used in Lemma 4.4.

Lemma A.6. Let ω1, . . . , ωg be the fundamental weights of USp2g. Then
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(i) If 1 ≤ 2n+ 1 ≤ g, we have

∧2n+1π =
⊕

0≤j≤n

π(ω2j+1).

(ii) If 2 ≤ 2n ≤ g, we have

∧2nπ = 1⊕
⊕

1≤j≤n

π(ω2j).

Proof. See [11, Lemma, p. 62]; the corresponding result for a simple Lie algebra of
type Cg is proved in [4, Ch. 8, §13, n◦3, (IV), p. 206-209]. �

The characteristic polynomial of m ∈ USp2g is

cpm(u) = det(u. I −m) =

2g∑
n=0

(−1)nτn(m)u2g−n.

The dual pairing

∧nV × ∧2g−nV −−−−→ ∧2gV = C
implies that τ 2g−n = τn for 0 ≤ n ≤ 2g, and this proves that cpm ∈ Φ2g. If m is
conjugate to h(θ1, . . . , θg), then

cpm(u) =

g∏
j=1

(u2 − utj + 1),

with tj = 2 cos θj , and hence τn ◦ k ∈ Z[t1, . . . tg]
sym as expected.

In the notation of Theorem A.2, we have

(A.5) τn ◦ k(t) = an(t),

and we deduce from this theorem:

Theorem A.7. Let m ∈ USp2g be conjugate to k(t1, . . . , tg). If 0 ≤ n ≤ g, then

τn(m) =

n/2∑
j=0

(
g + 2j − n

j

)
sn−2j(t). �

For instance, according to (A.3):

— if g = 2: τ 2(m) = s2(t) + 2 (cf. Remark 8.6),
— if g = 3: τ 2(m) = s2(t) + 3, τ 3(m) = s3(t) + 2s1(t).
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