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Enumeration of standard Young tableaux

of shifted strips with constant width
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Abstract Let gn1,n2
be the number of standard Young tableau of truncated shifted

shape with n1 rows and n2 boxes in each row. By using of the integral method this

paper derives the recurrence relations of g3,n, gn,4 and gn,5 respectively. Specially, gn,4 is

the (2n− 1)-st Pell number.
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1 Introduction

A shifted diagram of shape λ = (λ1, · · · , λd) (λ1 > · · · > λd) is an array of |λ| boxes,
where row i (from top to bottom) containing λi boxes starts with its leftmost box in po-

sition (i, i). A standard shifted Young tableau of shape λ is a labeling by {1, 2, · · · , |λ|}
of the boxes in the shifted diagram such that each row and column is increasing (from

left to right and from top to bottom respectively). Specially, a standard Young tableaux

(SYT) of shifted staircase shape is δn = (n, n − 1, · · · , 1). The enumeration of SYT is

an important problem in enumerative combinatorics. See R. P. Stanley’s monograph [9]

and R. M. Adin and Y. Roichman’s recent survey paper [2].

The number of SYT of shifted shape λ is given by the well-known product formula[7,

11]:

gλ =
|λ|!

∏d

i=1 λi!

∏

i<j

λi − λj

λi + λj

. (1)
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A SYT of truncated shape is the SYT with some boxes removed from the NE corner,

which was recently discussed by some authors [1, 6, 10]. Adin et al. in [1] derived

the formulas of δn truncated by a square or nearly a square by the method of pivoting

theory. G. Panova independently obtained the product formulas of δn truncated by a

box in term of Schur function [6].

This paper considers the SYT of shifted shape in case of λ1 = · · · = λd, which is

the SYT of shifted shape (n1 + n2 − 1, n1 + n2 − 2, · · · , n2) truncated by a staircase

δn1−1, namely a SYT of truncated shifted shape with n1 rows and n2 boxes in each row,

illustrated as follows

n1 = 5, n2 = 4.

Let gn1,n2
(n1, n2 ≥ 2) be the number of SYT of truncated shifted shape with n1 rows

and n2 boxes in each row. It is clear that g2,n is the (n−1)-th Catalan number 1
n

(

2n−2
n−1

)

,

gn,2 = 1 and gn,3 = 2n−1. This kind of SYT of shifted strips with constant width has

many applications. J. B. Lewis conjectured that the number of alternating permutations

of length 2n − 2 avoiding the pattern 3412 is g3,n, which summation representation

was given by G. Pabova [5]. In fact, gn1,n2
is also the number of n1 × n2 matrices

containing a permutation of [n1n2] in increasing order rowwise, columnwise, diagonally

and (downwards) antidiagonally, because the character in increasing order antidiagonally

of matrix coincides with the shifted property of SYT.

Suppose T (n, k) is the number of n × k matrices containing a permutation of [nk]

in increasing order rowwise, columnwise, diagonally and antidiagonally, R. H. Hardin

gives several empirical formulas of T (n, k) in case of k ≤ 7 [8, A181196]:

Empirical Recurrence Relations (R.H.Hardin)

T (n, 4) : an = 6an−1 − an−2. (2)

T (n, 5) : an = 24an−1 − 40an−2 − 8an−3. (3)

T (n, 6) : an = 120an−1 − 1672an−2 + 544an−3 − 6672an−4 + 256an−5. (4)

T (n, 7) : an = 720an−1 − 84448an−2 + 1503360an−3 − 17912224an−4 − 318223104an−5

+ 564996096an−6 + 270471168an−7 − 11373824an−8 + 65536an−9. (5)

In addition, Ping Sun in [10] shows that gn1,n2
is involved in the nested distribution
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of n1 groups of independent order statistics with n2 samples from uniform distribution

on interval (0, 1). Generally, the order statistics model of SYT in [10] implies

Proposition 1. For n1, n2 ≥ 2,

gn1,n2
= (n1n2)! · J(n1, n2) = (n1n2)!

∫

· · ·
∫

D(n1,n2)

dxi,j , (6)

where D(n1, n2) is the following SYT-type integral domain (the variables are increasing
from left to right and from top to bottom)

0 < x1,1 < x1,2 < · · · < x1,n2

∧ ∧
x2,1 < · · · < x2,n2−1 < x2,n2

. . .
. . .

. . .

xn1,1 < · · · · · · < xn1,n2
< 1.

We derive the recurrence formulas of g3,n, gn,4 and gn,5 by using of the integral method

of [10] in this paper. In Section 2 we evaluate the nested distribution of three groups of

independent order statistics with n samples from uniform distribution on interval (0, 1),

which implies a new summation representation of g3,n. So that a non-homogeneous linear

recurrence relation of g3,n is given. In Section 3 we compute the corresponding multiple

integrals and prove the recurrence relations (2) and (3) respectively. In particular, gn,4

is shown to be the (2n− 1)-st Pell number which implies the empirical formula (2).

2 New recurrence relation of g3,n

There are two results of g3,n in the literature. Considering the enumeration of SYT

of shifted shape (n, n − 1, i), 0 ≤ i ≤ n − 2, G. Panova gives the following summation

representation.

Proposition 2. [5] For n ≥ 2,

g3,n =

n−2
∑

i=0

(2n+ i− 1)!(n− i)(n− i− 1)

n! (n− 1)! i! (2n− 1)(n+ i)(n + i− 1)
. (7)

For the number of 3×n matrices containing a permutation of [3n] in increasing order

rowwise, columnwise, diagonally and antidiagonally, V. Kotesovec gives the complicated

order 2 recurrence relation.
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Proposition 3. [8, A181197] For n ≥ 3,

(2n− 1)(7n− 13)n2 · g3,n = 2(182n4 − 1185n3 + 2722n2 − 2625n+ 900) · g3,n−1

+ 3(2n− 5)(3n− 5)(3n− 4)(7n− 6) · g3,n−2, g3,1 = 1, g3,2 = 1. (8)

For 0 < t1 < t2 < t3 < 1, we consider the following integral

Jn−1(t1, t2, t3) =

∫

· · ·
∫

D(t)

dxi,j , n ≥ 2,

where D(t) is the following SYT-type integral domain

0 <xi,1 < xi,2 < · · · < xi,n−1 < ti, 1 ≤ i ≤ 3; x1,2 < x2,1, x2,n−1 < x3,n−2;

t1 < x2,n−1, t2 < x3,n−1; x1,j+2 < x2,j+1 < x3,j , 1 ≤ j ≤ n− 3.

From Proposition 1, there is

g3,n = (3n)!

∫∫∫

0<t1<t2<t3<1

Jn−1(t1, t2, t3)dti, n ≥ 2. (9)

Lemma 1. For n ≥ 1, 0 < t1 < t2 < t3 < 1,

Jn(t1, t2, t3) =
tn1 t

n
2 t

n
3

n!3
+

2

n!(2n)!

n−1
∑

i=0

(−1)n−i

(

2n

i

)

[

tn1 t
2n−i
2 ti3 − t2n−i

1 tn2 t
i
3 + t2n−i

1 ti2t
n
3

]

.(10)

Proof. It is clear that

J1(t1, t2, t3) = t1(t2 − t1)(t3 − t2) = t1t2t3 − (t1t
2
2 − t21t2 + t21t3).

Suppose (10) is true for n− 1, then

Jn(t1, t2, t3) =

∫∫∫

0<x<t1<y<t2<z<t3

Jn−1(x, y, z)dxdydz

=
tn1 (t

n
2 − tn1 )(t

n
3 − tn2 )

n!3
+

2

(n− 1)!(2n− 2)!

n−2
∑

i=0

(−1)n−1−i

(

2n− 2

i

)

1

n(i+ 1)(2n− i− 1)
×

[

tn1 (t
2n−i−1

2 − t2n−i−1

1 )(ti+1

3 − ti+1

2 )− t2n−i−1

1 (tn2 − tn1 )(t
i+1

3 − ti+1

2 ) + t2n−i−1

1 (ti+1

2 − ti+1

1 )(tn3 − tn2 )
]

=
tn1 t

n
2 t

n
3

n!3
+

2

n!(2n)!

n−1
∑

i=0

(−1)n−i

(

2n

i

)

[

tn1 t
2n−i
2 ti3 − t2n−i

1 tn2 t
i
3 + t2n−i

1 ti2t
n
3

]

+Rn(t1, t2, t3),
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where

Rn(t1, t2, t3) = (t2n1 tn2 − tn1 t
2n
2 − t2n1 tn3 )

[

1

n!3
+

2

n!(2n)!

n−1
∑

i=0

(−1)n−i

(

2n

i

)

]

= 0

follows from the known identity [4, 1.86]

n
∑

i=0

(−1)i
(

2n

i

)

= (−1)n
(

2n− 1

n

)

. (11)

The proof of lemma 1 is complete by induction. �

It should be noted that Jn−1(t1, t2, t3) is the shifted nested conditional distribution of

three groups of independent order statistics with n samples from uniform distribution

on interval (0, 1). The following result gives a non-homogeneous linear recurrence of

g3,n.

Theorem 1. For n ≥ 1, the number g3,n of SYT of truncated shifted shape with 3

rows and n boxes in each row satisfies

g3,n+1 = −g3,n +
7n+ 1

n2(n+ 1)2

(

2n− 2

n− 1

)(

3n

n− 1

)

, g3,1 = 1. (12)

Proof. For n ≥ 2, combining (9) and (10) we have the summation representation

g3,n =
(3n)!

6 · n!3 +

n−2
∑

i=0

(−1)n−1−i (3n− 1)!(5n− 3i− 3)

n! i! (2n− i− 1)! (3n− i− 1)
. (13)

Decomposing 5n − 3i − 3 = 3(3n − i − 1) − 4n in above summation, from (11) and

Frisch’s identity [4, 4.2]:

2n−1
∑

i=0

(−1)i
(

2n− 1

i

)

1

n+ i
=

(n− 1)!(2n− 1)!

(3n− 1)!
,

the summation representation (13) of g3,n is simplified to be

g3,n = − 4n− 5

6(2n− 1)
· (3n)!

n!3
+ 4(−1)n−1 + (−1)n4n

(

3n− 1

n

)

· An, (14)

where

An =

n
∑

i=0

(−1)i
(

2n− 1

i

)

1

n+ i
.
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The recurrence of An is not difficult to derive by using of the equality (11).

An+1 =
1

3n+ 2

n+1
∑

i=0

(−1)i
(2n + 1)!

i! (2n− i)!

[

1

2n+ 1− i
+

1

n+ 1 + i

]

=
(−1)n+1

(

2n
n+1

)

3n+ 2
+

2n(2n+ 1)

(3n+ 1)(3n+ 2)

n+1
∑

i=0

(−1)i
(

2n− 1

i

)[

1

2n− i
+

1

n + 1 + i

]

=
(−1)n+1(10n3 + 8n2 − n− 1)

(

2n
n+1

)

2n(n+ 1)(3n+ 1)(3n+ 2)
+

2n(2n+ 1)

(3n+ 1)(3n+ 2)

n
∑

i=0

(−1)i
(

2n−1
i

)

n+ 1 + i
,

and the summation in last equality is equal to

n
∑

i=0

(−1)i+1 1

n+ 1 + i

[(

2n− 1

i+ 1

)

−
(

2n

i+ 1

)]

=
(−1)n+1

[(

2n−1
n+1

)

−
(

2n
n+1

)]

2n+ 1
+ An −

1

3n

n
∑

i=0

(−1)i
(2n)!

i! (2n− 1− i)!

[

1

n + i
+

1

2n− i

]

=
1

3
An −

n2 − 1

6n2(2n+ 1)
(−1)n+1

(

2n

n+ 1

)

,

therefore the recurrence of An is

An+1 =
2n(2n+ 1)

3(3n+ 1)(3n+ 2)
An + (−1)n+1 28n3 + 22n2 − n− 1

6n(n + 1)(3n+ 1)(3n+ 2)

(

2n

n + 1

)

, A1 =
1

2
.

So that the recurrence relation (12) of g3,n follows from

An =
(−1)n

4n
(

3n−1
n

)g3,n +
1

n
(

3n−1
n

) + (−1)n
4n− 5

8n(2n− 1)

(

2n− 1

n

)

.

The proof of theorem 1 is complete. �

3 Recurrence relations of gn,4 and gn,5

It is well-known the Pell numbers Pn are defined by the recurrence relation [8, A000129]

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1. (15)

The Pell numbers arise historically in the rational approximation to
√
2, which are

used to enumerate the numbers of certain pattern-avoiding permutations recently[3].
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Theorem 2. For n ≥ 1, the number gn,4 of SYT of truncated shifted shape with n

rows and 4 boxes in each row is the (2n− 1)-st Pell number P2n−1, which satisfies

gn,4 = 6gn−1,4 − gn−2,4, g1,4 = 1, g2,4 = 5. (16)

Proof. For 1 ≤ i ≤ n, write the variable t2i−1 corresponding to the box (i, i+1), t2i

corresponding to the box (i, i+2) in the SYT of shifted strip with width 4 respectively:

. . .
. . .

◦ = t2n−1, • = t2n.
t1 t2
t3 t4
t5 t6

◦ •

Proposition 1 implies that

gn,4 = (4n)!

∫

· · ·
∫

0<t1<t2<t3<···<t2n<1

t1(1− t2n)
n
∏

i=2

(t2i−1 − t2i−3)(t2i − t2i−2)dt1 · · · t2n

= (4n)!

∫∫

0<t2n−1<t2n<1

(1− t2n)Jn(t2n−1, t2n)dt2n−1dt2n, n ≥ 2.

We shall now use the method of induction to prove the following

Jn(t2n−1, t2n) =

∫

· · ·
∫

0<t1<t2<t3<···<t2n−2<t2n−1

t1

n
∏

i=2

(t2i−1 − t2i−3)(t2i − t2i−2)dt1 · · · t2n−2

=
t4n−4
2n−1

(4n− 3)!
{(4n− 3)P2n−2t2n − [(4n− 4)P2n−2 − P2n−3]t2n−1} , (17)

where Pi is the Pell number.

It is clear that

J2(t3, t4) =

∫∫

0<t1<t2<t3

t1(t3 − t1)(t4 − t2)dt1dt2 =
t43
5!
(10t4 − 7t3),

which agrees with (17) because P1 = 1, P2 = 2.
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Furthermore, from the recurrence relation (15) of Pell numbers,

Jn+1(t2n+1, t2n+2) =

∫∫

0<t2n−1<t2n<t2n+1

Jn(t2n−1, t2n)(t2n+1 − t2n−1)(t2n+2 − t2n)dt2n−1dt2n

=

∫ t2n+1

0

t4n−2
2n

(4n− 1)!
{(4n− 1)P2n−1t2n+1 − [(4n− 2)P2n−1 − P2n−2]t2n}(t2n+2 − t2n)dt2n

=
t4n2n+1

(4n+ 1)!
[(4n+ 1)P2nt2n+2 − (4nP2n − P2n−1)t2n+1] ,

which shows (17) is true. Therefore,

gn,4 = (4n)!

∫∫

0<t2n−1<t2n<1

(1− t2n)Jn(t2n−1, t2n)dt2n−1dt2n

=
(4n)!

(4n− 3)!

∫ 1

0

[

P2n−2 −
(4n− 4)P2n−2 − P2n−3

4n− 2

]

t4n−2
2n (1− t2n)dt2n

= 4n(4n− 1)

∫ 1

0

P2n−1t
4n−2
2n (1− t2n)dt2n = P2n−1.

It is clear (16) follows from the recurrence relation of Pell number. �

Theorem 3. For n ≥ 4, the numbers gn,5 of SYT of truncated shifted shape with n

rows and 5 boxes in each row satisfy the following recurrence relation

gn,5 = 24gn−1,5 − 40gn−2,5 − 8gn−3,5, g1,5 = 1, g2,5 = 14, g3,5 = 290. (18)

Proof. We shall derive the recurrence of gn,5 from the relations of certain integrals.

For convenient, write the variables 0 < xi < yi < zi < si < ti < 1 corresponding to the

five boxes in row i (1 ≤ i ≤ n) in the SYT of shifted strip with width 5 respectively.

. . .
. . .

. . .
. . .

. . .

xn−1 yn−1 zn−1 sn−1 tn−1

xn yn zn sn tn

From Proposition 1, we have

gn,5 = (5n)!

∫

· · ·
∫

D(n,5)

dxidyidzidsidti = (5n)! · Jn(5).

8



Denote D1(x1, y1, z1, s1) = 1, consider the following integral

Dn(xn, yn, zn, sn) =

∫

· · ·
∫

Dn−1,5, yn−1<xn,
zn−1<yn, sn−1<zn, tn−1<sn

dx1y1z1s1t1 · · · dxn−1yn−1zn−1sn−1tn−1,

Jn(5) can be written to be

Jn(5) =

∫

· · ·
∫

0<xn−1<yn−1<zn−1<sn−1<tn−1<sn,
sn−1<zn, zn−1<yn<zn<sn<tn<1

(yn − yn−1)Dn−1(xn−1, · · · , sn−1)dxn−1 · · · tn−1dynznsntn

=

∫

· · ·
∫

0<zn−1<sn−1<tn−1<sn,
sn−1<zn,zn−1<yn<zn<sn<tn<1

(Anyn −Bn)dzn−1sn−1tn−1dynznsntn, (19)

where

An =

∫∫

0<xn−1<yn−1<zn−1

Dn−1(xn−1, yn−1, zn−1, sn−1)dxn−1dyn−1

= C1(n)
z5n−9
n−1

(5n− 9)!
sn−1 − C2(n)

z5n−8
n−1

(5n− 8)!
,

Bn =

∫∫

0<xn−1<yn−1<zn−1

yn−1Dn−1(xn−1, yn−1, zn−1, sn−1)dxn−1dyn−1

= C3(n)
z5n−8
n−1

(5n− 8)!
sn−1 − C4(n)

z5n−7
n−1

(5n− 7)!
.

Notice that the definition of Dn(xn, yn, zn, sn) implies

An+1 =

∫∫

0<xn<yn<zn

Dn(xn, yn, zn, sn)dxndyn

=

∫

· · ·
∫

0<zn−1<sn−1<tn−1<sn,
sn−1<zn,zn−1<yn<zn<sn

(Anyn − Bn)dzn−1sn−1tn−1dyn, (20)

then

An+1 =[10(n− 1)(5n− 7)C1(n)− (10n− 11)C2(n)− (10n− 11)C3(n) + 2C4(n)]×
z5n−4
n

(5n− 4)!
sn − [(5n− 4)(5n− 7)(10n− 11)C1(n)− 2(5n− 4)(5n− 6)C2(n)

− 50(n− 1)2C3(n) + (10n− 9)C4(n)]
z5n−3
n

(5n− 3)!
.
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By the similar arguments,

Bn+1 =

∫∫

0<xn<yn<zn

ynDn(xn, · · · , sn)dxndyn

=

∫

· · ·
∫

0<zn−1<sn−1<tn−1<sn,
sn−1<zn,zn−1<yn<zn<sn

(Any
2
n −Bnyn)dzn−1sn−1tn−1yn

=[(5n− 4)(5n− 7)(10n− 11)C1(n)− 50(n− 1)2C2(n)− 2(5n− 4)(5n− 6)C3(n)

+ (10n− 9)C4(n)]
z5n−3
n

(5n− 3)!
sn − (5n− 3)[2(5n− 4)(5n− 6)(5n− 7)C1(n)

− (5n− 6)(10n− 9)C2(n)− (5n− 6)(10n− 9)C3(n) + 10(n− 1)C4(n)]
z5n−2
n

(5n− 2)!
.

Therefore, For n ≥ 2, the recurrence relations of Ci(n) (1 ≤ i ≤ 4) are

C1(n+ 1) =10(n− 1)(5n− 7)C1(n)− (10n− 11)C2(n)− (10n− 11)C3(n) + 2C4(n),

C2(n+ 1) =(5n− 4)(5n− 7)(10n− 11)C1(n)− 2(5n− 4)(5n− 6)C2(n)

− 50(n− 1)2C3(n) + (10n− 9)C4(n),

C3(n+ 1) =(5n− 4)(5n− 7)(10n− 11)C1(n)− 50(n− 1)2C2(n)

− 2(5n− 4)(5n− 6)C3(n) + (10n− 9)C4(n),

C4(n+ 1) =2(5n− 3)(5n− 4)(5n− 6)(5n− 7)C1(n)− (5n− 3)(5n− 6)(10n− 9)C2(n)

− (5n− 3)(5n− 6)(10n− 9)C3(n) + 10(n− 1)(5n− 3)C4(n),

with the initial values C1(2) = 0, C2(2) = −1, C3(2) = 0, C4(2) = −2.

On the other hand, combining (19) and (20), we have

Jn(5) =

∫∫∫

0<zn<sn<tn<1

An+1dznsntn

=

∫∫∫

0<zn<sn<tn<1

[C1(n + 1)
z5n−4
n

(5n− 4)!
sn − C2(n+ 1)

z5n−3
n

(5n− 3)!
]dznsntn

=
(5n− 2)C1(n+ 1)− C2(n+ 1)

(5n)!
,

then,

gn,5 = (5n− 2)C1(n + 1)− C2(n + 1), (21)
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and

gn,5 = (5n− 7)(25n− 24)C1(n)− (25n− 26)C2(n)− (25n− 28)C3(n) + 5C4(n), (22)

which follows from (21) and the recurrences of Ci(n).

Furthermore, by using of the recurrence relations of Ci(n) again, (22) implies

gn+1,5 =(5n− 2)(25n+ 1)C1(n + 1)− (25n− 1)C2(n+ 1)

− (25n− 3)C3(n + 1) + 5C4(n+ 1)

=(5n− 7)(550n− 524)C1(n)− (550n− 590)C2(n)

− (550n− 594)C3(n) + 110C4(n). (23)

So that from (21)-(23) we have

gn+1,5 = 22gn,5 + 4(5n− 7)C1(n) + 18C2(n)− 22C3(n)

= 22gn,5 + 4gn−1,5 + 22[C2(n)− C3(n)], n ≥ 2.

Finally, the recurrence relation of Ci(n) shows

C2(n + 1)− C3(n + 1) = 2[C2(n)− C3(n)], n ≥ 2,

which implies

gn+1,5 − 22gn,5 − 4gn−1,5 = 2(gn,5 − 22gn−1,5 − 4gn−2,5), n ≥ 3.

The initial values g1,5 = 1, g2,5 = 14 and g3,5 = 290 are obvious, then the proof of

theorem 3 is complete. �
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