Enumeration of standard Young tableaux of shifted strips with constant width

Ping Sun*
Department of Mathematics, Northeastern University, Shenyang, 110004, China

Abstract

Let $g_{n_{1}, n_{2}}$ be the number of standard Young tableau of truncated shifted shape with n_{1} rows and n_{2} boxes in each row. By using of the integral method this paper derives the recurrence relations of $g_{3, n}, g_{n, 4}$ and $g_{n, 5}$ respectively. Specially, $g_{n, 4}$ is the $(2 n-1)$-st Pell number.

MSC: 05A15, 05E15
Keywords: Standard Young tableau; multiple integrals; recurrences; Pell numbers

1 Introduction

A shifted diagram of shape $\lambda=\left(\lambda_{1}, \cdots, \lambda_{d}\right)\left(\lambda_{1}>\cdots>\lambda_{d}\right)$ is an array of $|\lambda|$ boxes, where row i (from top to bottom) containing λ_{i} boxes starts with its leftmost box in position (i, i). A standard shifted Young tableau of shape λ is a labeling by $\{1,2, \cdots,|\lambda|\}$ of the boxes in the shifted diagram such that each row and column is increasing (from left to right and from top to bottom respectively). Specially, a standard Young tableaux (SYT) of shifted staircase shape is $\delta_{n}=(n, n-1, \cdots, 1)$. The enumeration of SYT is an important problem in enumerative combinatorics. See R. P. Stanley's monograph [9] and R. M. Adin and Y. Roichman's recent survey paper [2].

The number of SYT of shifted shape λ is given by the well-known product formula[7, 11]:

$$
\begin{equation*}
g^{\lambda}=\frac{|\lambda|!}{\prod_{i=1}^{d} \lambda_{i}!} \prod_{i<j} \frac{\lambda_{i}-\lambda_{j}}{\lambda_{i}+\lambda_{j}} . \tag{1}
\end{equation*}
$$

[^0]A SYT of truncated shape is the SYT with some boxes removed from the NE corner, which was recently discussed by some authors [1, 6, 10]. Adin et al. in [1] derived the formulas of δ_{n} truncated by a square or nearly a square by the method of pivoting theory. G. Panova independently obtained the product formulas of δ_{n} truncated by a box in term of Schur function [6].

This paper considers the SYT of shifted shape in case of $\lambda_{1}=\cdots=\lambda_{d}$, which is the SYT of shifted shape $\left(n_{1}+n_{2}-1, n_{1}+n_{2}-2, \cdots, n_{2}\right)$ truncated by a staircase $\delta_{n_{1}-1}$, namely a SYT of truncated shifted shape with n_{1} rows and n_{2} boxes in each row, illustrated as follows

Let $g_{n_{1}, n_{2}}\left(n_{1}, n_{2} \geq 2\right)$ be the number of SYT of truncated shifted shape with n_{1} rows and n_{2} boxes in each row. It is clear that $g_{2, n}$ is the $(n-1)$-th Catalan number $\frac{1}{n}\binom{2 n-2}{n-1}$, $g_{n, 2}=1$ and $g_{n, 3}=2^{n-1}$. This kind of SYT of shifted strips with constant width has many applications. J. B. Lewis conjectured that the number of alternating permutations of length $2 n-2$ avoiding the pattern 3412 is $g_{3, n}$, which summation representation was given by G. Pabova [5]. In fact, $g_{n_{1}, n_{2}}$ is also the number of $n_{1} \times n_{2}$ matrices containing a permutation of $\left[n_{1} n_{2}\right.$] in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally, because the character in increasing order antidiagonally of matrix coincides with the shifted property of SYT.

Suppose $T(n, k)$ is the number of $n \times k$ matrices containing a permutation of $[n k]$ in increasing order rowwise, columnwise, diagonally and antidiagonally, R. H. Hardin gives several empirical formulas of $T(n, k)$ in case of $k \leq 7$ [8, A181196]:

Empirical Recurrence Relations (R.H.Hardin)

$$
\begin{align*}
T(n, 4): & a_{n}=6 a_{n-1}-a_{n-2} \tag{2}\\
T(n, 5): & a_{n}=24 a_{n-1}-40 a_{n-2}-8 a_{n-3} . \tag{3}\\
T(n, 6): & a_{n}=120 a_{n-1}-1672 a_{n-2}+544 a_{n-3}-6672 a_{n-4}+256 a_{n-5} \tag{4}\\
T(n, 7): & a_{n}=720 a_{n-1}-84448 a_{n-2}+1503360 a_{n-3}-17912224 a_{n-4}-318223104 a_{n-5} \\
& \quad+564996096 a_{n-6}+270471168 a_{n-7}-11373824 a_{n-8}+65536 a_{n-9} \tag{5}
\end{align*}
$$

In addition, Ping Sun in [10] shows that $g_{n_{1}, n_{2}}$ is involved in the nested distribution
of n_{1} groups of independent order statistics with n_{2} samples from uniform distribution on interval $(0,1)$. Generally, the order statistics model of SYT in [10] implies

Proposition 1. For $n_{1}, n_{2} \geq 2$,

$$
\begin{equation*}
g_{n_{1}, n_{2}}=\left(n_{1} n_{2}\right)!\cdot J\left(n_{1}, n_{2}\right)=\left(n_{1} n_{2}\right)!\int \cdots \int_{D\left(n_{1}, n_{2}\right)} d x_{i, j} \tag{6}
\end{equation*}
$$

where $D\left(n_{1}, n_{2}\right)$ is the following SYT-type integral domain (the variables are increasing from left to right and from top to bottom)

$$
\begin{array}{rcccl}
0<x_{1,1}<x_{1,2} & <\cdots & <x_{1, n_{2}} & & \\
& \wedge & \wedge & & \\
& x_{2,1} & <\cdots< & x_{2, n_{2}-1} & <x_{2, n_{2}} \\
& \ddots & \ddots & \ddots & \\
& & x_{n_{1}, 1}<\cdots & \cdots & <x_{n_{1}, n_{2}}<1 .
\end{array}
$$

We derive the recurrence formulas of $g_{3, n}, g_{n, 4}$ and $g_{n, 5}$ by using of the integral method of [10] in this paper. In Section 2 we evaluate the nested distribution of three groups of independent order statistics with n samples from uniform distribution on interval $(0,1)$, which implies a new summation representation of $g_{3, n}$. So that a non-homogeneous linear recurrence relation of $g_{3, n}$ is given. In Section 3 we compute the corresponding multiple integrals and prove the recurrence relations (2) and (3) respectively. In particular, $g_{n, 4}$ is shown to be the $(2 n-1)$-st Pell number which implies the empirical formula (2).

2 New recurrence relation of $g_{3, n}$

There are two results of $g_{3, n}$ in the literature. Considering the enumeration of SYT of shifted shape $(n, n-1, i), 0 \leq i \leq n-2$, G. Panova gives the following summation representation.

Proposition 2. [5] For $n \geq 2$,

$$
\begin{equation*}
g_{3, n}=\sum_{i=0}^{n-2} \frac{(2 n+i-1)!(n-i)(n-i-1)}{n!(n-1)!i!(2 n-1)(n+i)(n+i-1)} . \tag{7}
\end{equation*}
$$

For the number of $3 \times n$ matrices containing a permutation of [3n] in increasing order rowwise, columnwise, diagonally and antidiagonally, V. Kotesovec gives the complicated order 2 recurrence relation.

Proposition 3. [8, A181197] For $n \geq 3$,

$$
\begin{gather*}
(2 n-1)(7 n-13) n^{2} \cdot g_{3, n}=2\left(182 n^{4}-1185 n^{3}+2722 n^{2}-2625 n+900\right) \cdot g_{3, n-1} \\
+3(2 n-5)(3 n-5)(3 n-4)(7 n-6) \cdot g_{3, n-2}, \quad g_{3,1}=1, g_{3,2}=1 \tag{8}
\end{gather*}
$$

For $0<t_{1}<t_{2}<t_{3}<1$, we consider the following integral

$$
J_{n-1}\left(t_{1}, t_{2}, t_{3}\right)=\int \cdots \int_{D(t)} d x_{i, j}, n \geq 2
$$

where $D(t)$ is the following SYT-type integral domain

$$
\begin{gathered}
0<x_{i, 1}<x_{i, 2}<\cdots<x_{i, n-1}<t_{i}, 1 \leq i \leq 3 ; \quad x_{1,2}<x_{2,1}, x_{2, n-1}<x_{3, n-2} ; \\
t_{1}<x_{2, n-1}, t_{2}<x_{3, n-1} ; \quad x_{1, j+2}<x_{2, j+1}<x_{3, j}, 1 \leq j \leq n-3 .
\end{gathered}
$$

From Proposition 1, there is

$$
\begin{equation*}
g_{3, n}=(3 n)!\iiint_{0<t_{1}<t_{2}<t_{3}<1} J_{n-1}\left(t_{1}, t_{2}, t_{3}\right) d t_{i}, \quad n \geq 2 \tag{9}
\end{equation*}
$$

Lemma 1. For $n \geq 1,0<t_{1}<t_{2}<t_{3}<1$,

$$
\begin{equation*}
J_{n}\left(t_{1}, t_{2}, t_{3}\right)=\frac{t_{1}^{n} t_{2}^{n} t_{3}^{n}}{n!^{3}}+\frac{2}{n!(2 n)!} \sum_{i=0}^{n-1}(-1)^{n-i}\binom{2 n}{i}\left[t_{1}^{n} t_{2}^{2 n-i} t_{3}^{i}-t_{1}^{2 n-i} t_{2}^{n} t_{3}^{i}+t_{1}^{2 n-i} t_{2}^{i} t_{3}^{n}\right] . \tag{10}
\end{equation*}
$$

Proof. It is clear that

$$
J_{1}\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)=t_{1} t_{2} t_{3}-\left(t_{1} t_{2}^{2}-t_{1}^{2} t_{2}+t_{1}^{2} t_{3}\right) .
$$

Suppose (10) is true for $n-1$, then

$$
\begin{aligned}
& J_{n}\left(t_{1}, t_{2}, t_{3}\right)=\iiint_{0<x<t_{1}<y<t_{2}<z<t_{3}} J_{n-1}(x, y, z) d x d y d z \\
& =\frac{t_{1}^{n}\left(t_{2}^{n}-t_{1}^{n}\right)\left(t_{3}^{n}-t_{2}^{n}\right)}{n!}+\frac{2}{(n-1)!(2 n-2)!} \sum_{i=0}^{n-2}(-1)^{n-1-i}\binom{2 n-2}{i} \frac{1}{n(i+1)(2 n-i-1)} \times \\
& {\left[t_{1}^{n}\left(t_{2}^{2 n-i-1}-t_{1}^{2 n-i-1}\right)\left(t_{3}^{i+1}-t_{2}^{i+1}\right)-t_{1}^{2 n-i-1}\left(t_{2}^{n}-t_{1}^{n}\right)\left(t_{3}^{i+1}-t_{2}^{i+1}\right)+t_{1}^{2 n-i-1}\left(t_{2}^{i+1}-t_{1}^{i+1}\right)\left(t_{3}^{n}-t_{2}^{n}\right)\right]} \\
& =\frac{t_{1}^{n} t_{2}^{n} t_{3}^{n}}{n!^{3}}+\frac{2}{n!(2 n)!} \sum_{i=0}^{n-1}(-1)^{n-i}\binom{2 n}{i}\left[t_{1}^{n} t_{2}^{2 n-i} t_{3}^{i}-t_{1}^{2 n-i} t_{2}^{n} t_{3}^{i}+t_{1}^{2 n-i} t_{2}^{i} t_{3}^{n}\right]+R_{n}\left(t_{1}, t_{2}, t_{3}\right),
\end{aligned}
$$

where

$$
R_{n}\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1}^{2 n} t_{2}^{n}-t_{1}^{n} t_{2}^{2 n}-t_{1}^{2 n} t_{3}^{n}\right)\left[\frac{1}{n!^{3}}+\frac{2}{n!(2 n)!} \sum_{i=0}^{n-1}(-1)^{n-i}\binom{2 n}{i}\right]=0
$$

follows from the known identity $[4,1.86]$

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\binom{2 n}{i}=(-1)^{n}\binom{2 n-1}{n} \tag{11}
\end{equation*}
$$

The proof of lemma 1 is complete by induction.
It should be noted that $J_{n-1}\left(t_{1}, t_{2}, t_{3}\right)$ is the shifted nested conditional distribution of three groups of independent order statistics with n samples from uniform distribution on interval $(0,1)$. The following result gives a non-homogeneous linear recurrence of $g_{3, n}$.

Theorem 1. For $n \geq 1$, the number $g_{3, n}$ of $S Y T$ of truncated shifted shape with 3 rows and n boxes in each row satisfies

$$
\begin{equation*}
g_{3, n+1}=-g_{3, n}+\frac{7 n+1}{n^{2}(n+1)^{2}}\binom{2 n-2}{n-1}\binom{3 n}{n-1}, \quad g_{3,1}=1 \tag{12}
\end{equation*}
$$

Proof. For $n \geq 2$, combining (9) and (10) we have the summation representation

$$
\begin{equation*}
g_{3, n}=\frac{(3 n)!}{6 \cdot n!^{3}}+\sum_{i=0}^{n-2}(-1)^{n-1-i} \frac{(3 n-1)!(5 n-3 i-3)}{n!i!(2 n-i-1)!(3 n-i-1)} . \tag{13}
\end{equation*}
$$

Decomposing $5 n-3 i-3=3(3 n-i-1)-4 n$ in above summation, from (11) and Frisch's identity [4, 4.2]:

$$
\sum_{i=0}^{2 n-1}(-1)^{i}\binom{2 n-1}{i} \frac{1}{n+i}=\frac{(n-1)!(2 n-1)!}{(3 n-1)!}
$$

the summation representation (13) of $g_{3, n}$ is simplified to be

$$
\begin{equation*}
g_{3, n}=-\frac{4 n-5}{6(2 n-1)} \cdot \frac{(3 n)!}{n!^{3}}+4(-1)^{n-1}+(-1)^{n} 4 n\binom{3 n-1}{n} \cdot A_{n} \tag{14}
\end{equation*}
$$

where

$$
A_{n}=\sum_{i=0}^{n}(-1)^{i}\binom{2 n-1}{i} \frac{1}{n+i}
$$

The recurrence of A_{n} is not difficult to derive by using of the equality (11).

$$
\begin{aligned}
A_{n+1} & =\frac{1}{3 n+2} \sum_{i=0}^{n+1}(-1)^{i} \frac{(2 n+1)!}{i!(2 n-i)!}\left[\frac{1}{2 n+1-i}+\frac{1}{n+1+i}\right] \\
& =\frac{(-1)^{n+1}\binom{2 n}{n+1}}{3 n+2}+\frac{2 n(2 n+1)}{(3 n+1)(3 n+2)} \sum_{i=0}^{n+1}(-1)^{i}\binom{2 n-1}{i}\left[\frac{1}{2 n-i}+\frac{1}{n+1+i}\right] \\
& =\frac{(-1)^{n+1}\left(10 n^{3}+8 n^{2}-n-1\right)\binom{2 n}{n+1}}{2 n(n+1)(3 n+1)(3 n+2)}+\frac{2 n(2 n+1)}{(3 n+1)(3 n+2)} \sum_{i=0}^{n}(-1)^{i} \frac{\binom{2 n-1}{i}}{n+1+i},
\end{aligned}
$$

and the summation in last equality is equal to

$$
\begin{aligned}
& \sum_{i=0}^{n}(-1)^{i+1} \frac{1}{n+1+i}\left[\binom{2 n-1}{i+1}-\binom{2 n}{i+1}\right] \\
& =\frac{(-1)^{n+1}\left[\binom{2 n-1}{n+1}-\binom{2 n}{n+1}\right]}{2 n+1}+A_{n}-\frac{1}{3 n} \sum_{i=0}^{n}(-1)^{i} \frac{(2 n)!}{i!(2 n-1-i)!}\left[\frac{1}{n+i}+\frac{1}{2 n-i}\right] \\
& =\frac{1}{3} A_{n}-\frac{n^{2}-1}{6 n^{2}(2 n+1)}(-1)^{n+1}\binom{2 n}{n+1}
\end{aligned}
$$

therefore the recurrence of A_{n} is

$$
A_{n+1}=\frac{2 n(2 n+1)}{3(3 n+1)(3 n+2)} A_{n}+(-1)^{n+1} \frac{28 n^{3}+22 n^{2}-n-1}{6 n(n+1)(3 n+1)(3 n+2)}\binom{2 n}{n+1}, A_{1}=\frac{1}{2}
$$

So that the recurrence relation (12) of $g_{3, n}$ follows from

$$
A_{n}=\frac{(-1)^{n}}{4 n\binom{3 n-1}{n}} g_{3, n}+\frac{1}{n\binom{3 n-1}{n}}+(-1)^{n} \frac{4 n-5}{8 n(2 n-1)}\binom{2 n-1}{n}
$$

The proof of theorem 1 is complete.

3 Recurrence relations of $g_{n, 4}$ and $g_{n, 5}$

It is well-known the Pell numbers P_{n} are defined by the recurrence relation [8, A000129]

$$
\begin{equation*}
P_{n}=2 P_{n-1}+P_{n-2}, \quad P_{0}=0, P_{1}=1 \tag{15}
\end{equation*}
$$

The Pell numbers arise historically in the rational approximation to $\sqrt{2}$, which are used to enumerate the numbers of certain pattern-avoiding permutations recently[3].

Theorem 2. For $n \geq 1$, the number $g_{n, 4}$ of SYT of truncated shifted shape with n rows and 4 boxes in each row is the $(2 n-1)$-st Pell number $P_{2 n-1}$, which satisfies

$$
\begin{equation*}
g_{n, 4}=6 g_{n-1,4}-g_{n-2,4}, \quad g_{1,4}=1, g_{2,4}=5 . \tag{16}
\end{equation*}
$$

Proof. For $1 \leq i \leq n$, write the variable $t_{2 i-1}$ corresponding to the box $(i, i+1), t_{2 i}$ corresponding to the box $(i, i+2)$ in the SYT of shifted strip with width 4 respectively:

Proposition 1 implies that

$$
\begin{aligned}
g_{n, 4} & =(4 n)!\int_{0<t_{1}<t_{2}<t_{3}<\cdots<t_{2 n}<1} \cdots t_{1}\left(1-t_{2 n}\right) \prod_{i=2}^{n}\left(t_{2 i-1}-t_{2 i-3}\right)\left(t_{2 i}-t_{2 i-2}\right) d t_{1} \cdots t_{2 n} \\
& =(4 n)!\quad \iint_{0<t_{2 n-1}<t_{2 n}<1}\left(1-t_{2 n}\right) J_{n}\left(t_{2 n-1}, t_{2 n}\right) d t_{2 n-1} d t_{2 n}, \quad n \geq 2
\end{aligned}
$$

We shall now use the method of induction to prove the following

$$
\begin{align*}
J_{n}\left(t_{2 n-1}, t_{2 n}\right) & =\int_{0<t_{1}<t_{2}<t_{3}<\cdots<t_{2 n-2}<t_{2 n-1}} \cdots t_{i=2}^{n}\left(t_{2 i-1}-t_{2 i-3}\right)\left(t_{2 i}-t_{2 i-2}\right) d t_{1} \cdots t_{2 n-2} \\
& =\frac{t_{2 n-1}^{4 n-4}}{(4 n-3)!}\left\{(4 n-3) P_{2 n-2} t_{2 n}-\left[(4 n-4) P_{2 n-2}-P_{2 n-3}\right] t_{2 n-1}\right\}, \tag{17}
\end{align*}
$$

where P_{i} is the Pell number.
It is clear that

$$
J_{2}\left(t_{3}, t_{4}\right)=\iint_{0<t_{1}<t_{2}<t_{3}} t_{1}\left(t_{3}-t_{1}\right)\left(t_{4}-t_{2}\right) d t_{1} d t_{2}=\frac{t_{3}^{4}}{5!}\left(10 t_{4}-7 t_{3}\right)
$$

which agrees with (17) because $P_{1}=1, P_{2}=2$.

Furthermore, from the recurrence relation (15) of Pell numbers,

$$
\begin{aligned}
& J_{n+1}\left(t_{2 n+1}, t_{2 n+2}\right)=\iint_{0<t_{2 n-1}<t_{2 n}<t_{2 n+1}} J_{n}\left(t_{2 n-1}, t_{2 n}\right)\left(t_{2 n+1}-t_{2 n-1}\right)\left(t_{2 n+2}-t_{2 n}\right) d t_{2 n-1} d t_{2 n} \\
& =\int_{0}^{t_{2 n+1}} \frac{t_{2 n}^{4 n-2}}{(4 n-1)!}\left\{(4 n-1) P_{2 n-1} t_{2 n+1}-\left[(4 n-2) P_{2 n-1}-P_{2 n-2}\right] t_{2 n}\right\}\left(t_{2 n+2}-t_{2 n}\right) d t_{2 n} \\
& =\frac{t_{2 n+1}^{4 n}}{(4 n+1)!}\left[(4 n+1) P_{2 n} t_{2 n+2}-\left(4 n P_{2 n}-P_{2 n-1}\right) t_{2 n+1}\right]
\end{aligned}
$$

which shows (17) is true. Therefore,

$$
\begin{aligned}
g_{n, 4} & =(4 n)!\quad \iint_{0<t_{2 n-1}<t_{2 n}<1}\left(1-t_{2 n}\right) J_{n}\left(t_{2 n-1}, t_{2 n}\right) d t_{2 n-1} d t_{2 n} \\
& =\frac{(4 n)!}{(4 n-3)!} \int_{0}^{1}\left[P_{2 n-2}-\frac{(4 n-4) P_{2 n-2}-P_{2 n-3}}{4 n-2}\right] t_{2 n}^{4 n-2}\left(1-t_{2 n}\right) d t_{2 n} \\
& =4 n(4 n-1) \int_{0}^{1} P_{2 n-1} t_{2 n}^{4 n-2}\left(1-t_{2 n}\right) d t_{2 n}=P_{2 n-1} .
\end{aligned}
$$

It is clear (16) follows from the recurrence relation of Pell number.
Theorem 3. For $n \geq 4$, the numbers $g_{n, 5}$ of SYT of truncated shifted shape with n rows and 5 boxes in each row satisfy the following recurrence relation

$$
\begin{equation*}
g_{n, 5}=24 g_{n-1,5}-40 g_{n-2,5}-8 g_{n-3,5}, \quad g_{1,5}=1, g_{2,5}=14, g_{3,5}=290 \tag{18}
\end{equation*}
$$

Proof. We shall derive the recurrence of $g_{n, 5}$ from the relations of certain integrals. For convenient, write the variables $0<x_{i}<y_{i}<z_{i}<s_{i}<t_{i}<1$ corresponding to the five boxes in row $i(1 \leq i \leq n)$ in the SYT of shifted strip with width 5 respectively.

From Proposition 1, we have

$$
g_{n, 5}=(5 n)!\int \cdots \int_{D(n, 5)} d x_{i} d y_{i} d z_{i} d s_{i} d t_{i}=(5 n)!\cdot J_{n}(5)
$$

Denote $D_{1}\left(x_{1}, y_{1}, z_{1}, s_{1}\right)=1$, consider the following integral

$$
D_{n}\left(x_{n}, y_{n}, z_{n}, s_{n}\right)=\int_{\substack{D_{n-1,5}, y_{n-1}<x_{n}, z_{n-1}<y_{n}, s_{n-1}<z_{n}, t_{n-1}<s_{n}}} d x_{1} y_{1} z_{1} s_{1} t_{1} \cdots d x_{n-1} y_{n-1} z_{n-1} s_{n-1} t_{n-1}
$$

$J_{n}(5)$ can be written to be

$$
\begin{align*}
J_{n}(5) & =\int_{\substack{0<x_{n-1}<y_{n-1}<z_{n-1}<s_{n-1}<t_{n}<1<s_{n}, s_{n-1}<z_{n}, z_{n-1}<y_{n}<z_{n}<s_{n}<t_{n}<1}}\left(y_{n}-y_{n-1}\right) D_{n-1}\left(x_{n-1}, \cdots, s_{n-1}\right) d x_{n-1} \cdots t_{n-1} d y_{n} z_{n} s_{n} t_{n} \\
& \left.=\int_{\substack{0<z_{n-1}<s_{n}-1<t_{n-1}<s_{n}, s_{n-1}<z_{n}, z_{n-1}<y_{n}<z_{n}<s_{n}<t_{n}<1}} \cdots A_{n} y_{n}-B_{n}\right) d z_{n-1} s_{n-1} t_{n-1} d y_{n} z_{n} s_{n} t_{n}, \tag{19}
\end{align*}
$$

where

$$
\begin{aligned}
A_{n} & =\iint_{0<x_{n-1}<y_{n-1}<z_{n-1}} D_{n-1}\left(x_{n-1}, y_{n-1}, z_{n-1}, s_{n-1}\right) d x_{n-1} d y_{n-1} \\
& =C_{1}(n) \frac{z_{n-1}^{5 n-9}}{(5 n-9)!} s_{n-1}-C_{2}(n) \frac{z_{n-1}^{5 n-8}}{(5 n-8)!}, \\
B_{n} & =\iint_{0<x_{n-1}<y_{n-1}<z_{n-1}} y_{n-1} D_{n-1}\left(x_{n-1}, y_{n-1}, z_{n-1}, s_{n-1}\right) d x_{n-1} d y_{n-1} \\
& =C_{3}(n) \frac{z_{n-1}^{5 n-8}}{(5 n-8)!} s_{n-1}-C_{4}(n) \frac{z_{n-1}^{5 n-7}}{(5 n-7)!} .
\end{aligned}
$$

Notice that the definition of $D_{n}\left(x_{n}, y_{n}, z_{n}, s_{n}\right)$ implies

$$
\begin{align*}
A_{n+1} & =\iint_{0<x_{n}<y_{n}<z_{n}} D_{n}\left(x_{n}, y_{n}, z_{n}, s_{n}\right) d x_{n} d y_{n} \\
& \left.=\int_{\substack{0<z_{n}<s_{n-1}<t_{n}-1<s_{n}, s_{n-1}<z_{n}, z_{n-1}<y_{n}<z_{n}<s_{n}}} \cdots A_{n} y_{n}-B_{n}\right) d z_{n-1} s_{n-1} t_{n-1} d y_{n} \tag{20}
\end{align*}
$$

then

$$
\begin{aligned}
A_{n+1}= & {\left[10(n-1)(5 n-7) C_{1}(n)-(10 n-11) C_{2}(n)-(10 n-11) C_{3}(n)+2 C_{4}(n)\right] \times } \\
& \frac{z_{n}^{5 n-4}}{(5 n-4)!} s_{n}-\left[(5 n-4)(5 n-7)(10 n-11) C_{1}(n)-2(5 n-4)(5 n-6) C_{2}(n)\right. \\
& \left.-50(n-1)^{2} C_{3}(n)+(10 n-9) C_{4}(n)\right] \frac{z_{n}^{5 n-3}}{(5 n-3)!} .
\end{aligned}
$$

By the similar arguments,

$$
\begin{aligned}
B_{n+1}= & \iint_{0<x_{n}<y_{n}<z_{n}} y_{n} D_{n}\left(x_{n}, \cdots, s_{n}\right) d x_{n} d y_{n} \\
= & \int_{\substack{0<z_{n-1}<s_{n-1}<t_{n-1}<s_{n}, s_{n-1}<z_{n}, z_{n}-1<y_{n}<z_{n}<s_{n}}}\left(A_{n} y_{n}^{2}-B_{n} y_{n}\right) d z_{n-1} s_{n-1} t_{n-1} y_{n} \\
= & {\left[(5 n-4)(5 n-7)(10 n-11) C_{1}(n)-50(n-1)^{2} C_{2}(n)-2(5 n-4)(5 n-6) C_{3}(n)\right.} \\
& \left.+(10 n-9) C_{4}(n)\right] \frac{z_{n}^{5 n-3}}{(5 n-3)!} s_{n}-(5 n-3)\left[2(5 n-4)(5 n-6)(5 n-7) C_{1}(n)\right. \\
& \left.-(5 n-6)(10 n-9) C_{2}(n)-(5 n-6)(10 n-9) C_{3}(n)+10(n-1) C_{4}(n)\right] \frac{z_{n}^{5 n-2}}{(5 n-2)!} .
\end{aligned}
$$

Therefore, For $n \geq 2$, the recurrence relations of $C_{i}(n)(1 \leq i \leq 4)$ are

$$
\begin{aligned}
C_{1}(n+1)= & 10(n-1)(5 n-7) C_{1}(n)-(10 n-11) C_{2}(n)-(10 n-11) C_{3}(n)+2 C_{4}(n), \\
C_{2}(n+1)= & (5 n-4)(5 n-7)(10 n-11) C_{1}(n)-2(5 n-4)(5 n-6) C_{2}(n) \\
& -50(n-1)^{2} C_{3}(n)+(10 n-9) C_{4}(n), \\
C_{3}(n+1)= & (5 n-4)(5 n-7)(10 n-11) C_{1}(n)-50(n-1)^{2} C_{2}(n) \\
& -2(5 n-4)(5 n-6) C_{3}(n)+(10 n-9) C_{4}(n), \\
C_{4}(n+1)= & 2(5 n-3)(5 n-4)(5 n-6)(5 n-7) C_{1}(n)-(5 n-3)(5 n-6)(10 n-9) C_{2}(n) \\
& -(5 n-3)(5 n-6)(10 n-9) C_{3}(n)+10(n-1)(5 n-3) C_{4}(n),
\end{aligned}
$$

with the initial values $C_{1}(2)=0, C_{2}(2)=-1, C_{3}(2)=0, C_{4}(2)=-2$.
On the other hand, combining (19) and (20), we have

$$
\begin{aligned}
J_{n}(5) & =\iiint_{0<z_{n}<s_{n}<t_{n}<1} A_{n+1} d z_{n} s_{n} t_{n} \\
& =\iiint_{0<z_{n}<s_{n}<t_{n}<1}\left[C_{1}(n+1) \frac{z_{n}^{5 n-4}}{(5 n-4)!} s_{n}-C_{2}(n+1) \frac{z_{n}^{5 n-3}}{(5 n-3)!}\right] d z_{n} s_{n} t_{n} \\
& =\frac{(5 n-2) C_{1}(n+1)-C_{2}(n+1)}{(5 n)!},
\end{aligned}
$$

then,

$$
\begin{equation*}
g_{n, 5}=(5 n-2) C_{1}(n+1)-C_{2}(n+1), \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{n, 5}=(5 n-7)(25 n-24) C_{1}(n)-(25 n-26) C_{2}(n)-(25 n-28) C_{3}(n)+5 C_{4}(n), \tag{22}
\end{equation*}
$$

which follows from (21) and the recurrences of $C_{i}(n)$.
Furthermore, by using of the recurrence relations of $C_{i}(n)$ again, (22) implies

$$
\begin{align*}
g_{n+1,5}= & (5 n-2)(25 n+1) C_{1}(n+1)-(25 n-1) C_{2}(n+1) \\
& -(25 n-3) C_{3}(n+1)+5 C_{4}(n+1) \\
= & (5 n-7)(550 n-524) C_{1}(n)-(550 n-590) C_{2}(n) \\
& -(550 n-594) C_{3}(n)+110 C_{4}(n) . \tag{23}
\end{align*}
$$

So that from (21)-(23) we have

$$
\begin{aligned}
g_{n+1,5} & =22 g_{n, 5}+4(5 n-7) C_{1}(n)+18 C_{2}(n)-22 C_{3}(n) \\
& =22 g_{n, 5}+4 g_{n-1,5}+22\left[C_{2}(n)-C_{3}(n)\right], \quad n \geq 2 .
\end{aligned}
$$

Finally, the recurrence relation of $C_{i}(n)$ shows

$$
C_{2}(n+1)-C_{3}(n+1)=2\left[C_{2}(n)-C_{3}(n)\right], \quad n \geq 2
$$

which implies

$$
g_{n+1,5}-22 g_{n, 5}-4 g_{n-1,5}=2\left(g_{n, 5}-22 g_{n-1,5}-4 g_{n-2,5}\right), \quad n \geq 3 .
$$

The initial values $g_{1,5}=1, g_{2,5}=14$ and $g_{3,5}=290$ are obvious, then the proof of theorem 3 is complete.

Acknowledgements

The author would like to thank Yu Bao and Yanting He for helpful discussions.

References

[1] Ron M. Adin, Ronald C. King, and Yuval Roichman, Enumeration of standard Young tableaux of certain truncated shapes. Electron. J. Combin., 18(2) (2011), \# P20.
[2] Ron M. Adin, Yuval Roichman, Enumeration of Standard Young Tableaux. arXiv:1408.4497v2, 2014.
[3] M. Barnabei, F. Bonetti, and M. Silimbani, Two permutation classes related to the Bubble Sort operator. Electron. J. Combin., 19(3) (2012), \# P25.
[4] H. W. Gould, Combinatorial Identities. Morgantown, W. Va. 1972.
[5] J. B. Lewis, Generating trees and pattern avoidance in alternating permutations. Electron. J. Combin., 19 (2012), \# P21.
[6] Greta Panova, Tableaux and plane partitions of truncated shapes. Adv. Appl. Math., 49:196-217, 2012.
[7] I. Schur, On the representation of the symmetric and alternating groups by fractional linear substitutions. J. Reine Angew. Math. 139:155-250, 1911.
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.org.
[9] Richard P. Stanley, Enumerative Combinatorics. vol. 2, Cambridge University Press, New York, 1999.
[10] Ping Sun, Evaluating the numbers of some skew standard Young tableaux of truncated shapes. Electron. J. Combin. 22(1) (2015), \# P1.2.
[11] R. M. Thrall, A combinatorial problem. Michigan Math. J. 1:81-88, 1952.

[^0]: *E-mail address: plsun@mail.neu.edu.cn

