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COMBINATORICS OF POINCARÉ’S

AND SCHRÖDER’S EQUATIONS

FRÉDÉRIC MENOUS, JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON

Abstract. We investigate the combinatorial properties of the functional equation
φ[h(z)] = h(qz) for the conjugation of a formal diffeomorphism φ of C to its linear
part z 7→ qz. This is done by interpreting the functional equation in terms of sym-
metric functions, and then lifting it to noncommutative symmetric functions. We
describe explicitly the expansion of the solution in terms of plane trees and prove
that its expression on the ribbon basis has coefficients in N[q] after clearing the de-
nominators (q)n. We show that the conjugacy equation can be lifted to a quadratic
fixed point equation in the free triduplicial algebra on one generator. This can be
regarded as a q-deformation of the duplicial interpretation of the noncommutative
Lagrange inversion formula. Finally, these calculations are interpreted in terms of
the group of the operad of Stasheff polytopes, and are related to Ecalle’s arborified
expansion by means of morphisms between various Hopf algebras of trees.
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1. Introduction

Algebraic identities between generic formal power series can often be interpreted
as identities between symmetric functions. This is the case, for example, with the
Lagrange inversion formula (see, e.g., [34], Ex. 24 p. 35, Ex. 25 p. 132, [30]
Section 2.4, and [31]). The problem can be stated as follows. Given

(1) ϕ(z) =
∑

n≥0

ϕnz
n (ϕ0 6= 0)

find the coefficients gn of the unique power series

(2) g(z) =
∑

n≥0

gnz
n+1 satisfying z =

g(z)

ϕ(g(z))
.

We can assume that ϕ0 = 1 and that

(3) ϕ(g) =
∑

n≥0

hn(X)gn =
∏

n≥1

(1− gxn)
−1 =: σg(X)

is the generating series of the homogeneous symmetric functions of an infinite set of
variables X . In λ-ring notation, the solution reads

(4) gn =
1

n + 1
hn((n + 1)X)

(recall that σt(nX) = σt(X)n, see, e.g., [34] p. 25). On this expression, it is clear that
gn is Schur positive, in fact, it is the Frobenius characteristic of the permutation rep-
resentation of Sn on the set PFn of parking functions of length n. These calculations
can be lifted to the algebra of noncommutative symmetric functions, and the result
is then interpreted in terms of representations of 0-Hecke algebras. This in turn leads
to various combinatorial interpretations, to q-analogues, and to a new interpretation
of the antipode of the Hopf algebra of noncommutative formal diffeomorphisms [39].
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There is another functional equation which can be investigated in this setting.
Given a formal diffeomorphism

(5) φ(z) =
∑

n≥0

φnz
n+1 with φ0 = q 6= 0,

one may look for a formal diffeomorphism tangent to identity

(6) h(z) =
∑

n≥0

gnz
n+1 = zg(z) (g0 = 1),

conjugating φ to its linear part

(7) h−1 ◦ φ ◦ h(z) = qz or equivalently φ[h(z)] = h(qz) = qzg(qz).

In terms of symmetric functions, we can assume that

(8) φ(z) = qzσz(X)

so that the conjugacy equation reads

(9) φ[h(z)] = qh(z)σh(z)(X) = qz
∑

n≥0

gn(qz)
n,

and interpreting gn as symmetric functions gn(X), we can get rid of z by homogeneity
(since gn(zX) = zngn(X)). Our functional equation reads now

(10) g(X)σg(X) = g(qX).

We can lift this to noncommutative symmetric functions, for example as

(11) g(qA) =
∑

n≥0

Sn(A)g(A)
n+1.

For q = 0, this reduces to the functional equation for the antipode of the noncommu-
tative Faà di Bruno Hopf algebra [2, 39], so that this problem can indeed be regarded
as a generalisation of the noncommutative Lagrange inversion.

The conjugacy equation for h is often called Poincaré’s equation, and the equivalent
one for h−1, Schröder’s equation. Indeed, it has been first discussed by Schröder [43],
who discovered a few explicit solutions, which are still essentially the only known
ones. It is easy to show the existence and unicity of a formal solution when q is
not a root of unity. The analyticity of the solution for |q| 6= 1 has been established
by Koenigs [28]. It is interesting that this result can be easily proved by means of
inequalities involving the Schröder numbers [33], defined by the same Schröder in a
totally different context [42]. Much more difficult is Siegel’s proof of convergence in
the case q = e2πiθ with θ satisfying a diophantine condition [44] (see also [16] for a
modern proof under Bruno’s condition). Again in this case, the Schröder numbers
play a crucial role in the majorations.

We shall see that analyzing the conjugacy equation at the level of the noncom-
mutative Faà di Bruno algebra provides a simple explanation of this fact, by letting
Schröder trees appear naturally in the iterative solution of a q-difference equation.
The resulting expressions turn out to be identical to those produced by Ecalle’s ar-
borification method [14, 15, 16]. This coincidence will be explained in Section 11,



4 F. MENOUS, J.-C. NOVELLI AND J.-Y. THIBON

where it will be proved that both methods can be interpreted in terms of calculations
in the group of an operad and in related Hopf algebras.

Identifying the noncommutative Faà di Bruno algebra with noncommutative sym-
metric functions as in [39], we have several bases at our disposal. The solution g of
the noncommutative Poincaré equation is naturally expressed in the complete basis
SI . After clearing out the denominators (q; q)n, it turns out that its homogeneous
components gn are positive on the ribbon basis. This unexpected fact suggests that
these should be the graded characteristics of some projective modules over 0-Hecke
algebra, a conjecture that we expect to investigate in another paper. This positivity
property will be proved in two different ways. We shall first recast the conjugacy
equation as a quadratic fixed point problem, by means of the triduplicial operations
introduced in [40]. On the ribbon basis, the quadratic map is manifestly positive.
Next, comparing the binary tree expansion with the previous one based on reduced
plane trees, we obtain a natural bijection between these trees and hypoplactic classes
of parking functions (aka parking quasi-ribbons or segmented nondecreasing parking
functions). This solves a problem which was left open in [38], and provides a bijection
similar to the duplicial bijection of [40] between nondecreasing parking functions and
binary trees.

In Section 6, we describe the expansion of gn on the ribbon basis. The numerator
of each coefficient is a q-analogue of n!, recording a statistic on permutations which
is explicitly described.

In Section 7, we discuss Schröder’s equation at the level of noncommutative sym-
metric functions. It leads to a different combinatorics. There is no natural expansion
on trees, but instead, there is a rather explicit algebraic formula for the coefficients,
which amounts to applying a simple linear transformation to a famous sequence of
noncommutative symmetric functions, the q-Klyachko elements Kn(q) [19, 29], which
occur as well as Lie idempotents in descent algebras or as noncommutative Hall-
Littlewood functions [24]. It is then shown in Section 8 that the same coefficients
arise when the problem is considered from the point of view of mould calculus and
differential operators. Thus, at least for this problem, the mould calculus approach
can be seen to be dual to that relying on the noncommutative Faà di Bruno algebra.

The rest of the paper is devoted to the explanation of the coincidence between the
coefficients of our first plane tree expansion, and Ecalle’s arborified coefficients. The
short story is that on the one hand, the paper [15] provides an interpretation of the
arborification method as a lift of the original problem to an equation in the group of
characters of a Connes-Kreimer algebra. On the other hand, our version with plane
trees of the functional equation can be naturally interpreted in the group of a free
operad. This group turns out to be isomorphic to the group of characters of a Hopf
algebra of reduced plane forests, which admits a surjective morphism to the previous
Connes-Kreimer algebra.

Section 9 provides some background on the operad of reduced plane trees. It is
a free operad with one generator in each degree n ≥ 2, also known as the operad
of Stasheff polytopes, or as a free S-magmatic operad [26, 32]. We describe the
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associated group, and prove that it is isomorphic to the group of characters of the
Hopf algebra of reduced plane trees of [12].

In Section 10, we explain the encoding of the previous group by means of Polish
codes of trees, and illustrate the method on the cases of Lagrange inversion and of
the Poincaré equation.

In Section 11, we recall the Hopf algebraic interpretation of the arborification
method [15, 16], and prove that the skeleton map already introduced in [39] induces
a morphism of Hopf algebras between reduced plane forests and the N

∗-decorated
Connes-Kreimer algebra.

In Section 12, we review briefly the interpretation of Lagrange inversion and of
Cayley’s formula for the solution of a generic differential equation in terms of an
operad on (non-reduced) plane trees.

Finally, it is generally interesting to look at the images of formal series in combi-
natorial Hopf algebras under various characters. In the Appendix (Section 13), we
review a few examples of explicit solutions of the conjugacy equation. Apart from
the trivial case of linear fractional transformations φ(z) = qz/(1− z) (corresponding
to the alphabet A = {1}), there is the already nontrivial case of the logistic map
φ(z) = qz(1 − z), corresponding to A = {−1}, for which explicit solutions (already
given by Schröder) are known for q = −2, 2, 4. The case A = E, corresponding to
φ(z) = qzez is not explicitly solved, but it leads to interesting statistics on pairs of
permutations. These examples are investigated numerically in [7, 8, 9, 10].

Acknowledgements.- This project has been partially supported by the project CARMA of the

French Agence Nationale de la Recherche.

2. Notations

This paper is a continuation of [39, 40]. Our notations for ordinary symmetric
functions are as in [34], and for noncommutative symmetric functions as in [19, 29].

The classical algebra of symmetric functions, denoted by Sym or Sym(X), is a
free associative and commutative graded algebra with one generator in each degree:

(12) Sym = C[h1, h2, . . .] = C[e1, e2, . . .] = C[p1, p2, . . .]

where the hn are the complete homogeneous symmetric functions, the en the elemen-
tary symmetric functions, and the pn the power sums.

Its usual bialgebra structure is defined by the coproduct

(13) ∆0hn =

n∑

i=0

hi ⊗ hn−i (h0 = 1)

which allows to interpret it as the algebra of polynomial functions on the multiplica-
tive group

(14) G0 = {a(z) =
∑

n≥0

anz
n (a0 = 1)}

of formal power series with constant term 1: hn is the coordinate function

(15) hn : a(z) 7−→ an.
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Indeed, hn(a(z)b(z)) = (∆0hn)(a(z)⊗ b(z)).
But hn can also be interpreted as a coordinate on the group

(16) G1 = {A(z) =
∑

n≥0

anz
n+1 (a0 = 1)}

of formal diffeomorphisms tangent to identity, under functional composition. Again
with hn(A(z)) = an and hn(A(z)B(z)) = ∆1(A(z)⊗ B(z)), the coproduct is now

(17) ∆1hn =
n∑

i=0

hi ⊗ hn−i((i+ 1)X) (h0 = 1)

where hn(mX) is defined as the coefficient of tn in (
∑
hkt

k)m. The resulting bialgebra
is known as the Faà di Bruno algebra [27].

These constructions can be repeated word for word with the algebra Sym of non-
commutative symmetric functions. It is a free associative (and noncommutative)
graded algebra with one generator Sn in each degree, which can be interpreted as
above if the coefficients an belong to a noncommutative algebra. In this case, G0 is
still a group, but G1 is not, as its composition is not anymore associative. However,
the coproduct ∆1

(18) ∆1Sn =

n∑

i=0

Si ⊗ Sn−i((i+ 1)A) (S0 = 1)

remains coassociative, and Sym endowed with this coproduct is a Hopf algebra,
known as Noncommutative Formal Diffeomorphims [2, 39], or as the noncommutative
Faà di Bruno algebra [13].

The classical trick of regarding a generic series as a series of symmetric functions
amounts to working in one of these Hopf algebras. The occurence of trees in the
solutions of certain problems can be traced back to the existence of Hopf algebras
morphisms between these algebras and various Hopf algebras of trees.

Recall that bases of Symn are labelled by compositions I of n. The noncommuta-
tive complete and elementary functions are denoted by Sn and Λn, and the notation
SI means Si1 · · ·Sir . The ribbon basis is denoted by RI . The notation I � n means
that I is a composition of n. The conjugate composition is denoted by I∼. The
product formula for ribbons is

(19) RIRJ = RIJ +RI⊲J

where for I = (i1, . . . , ir) and J = (j1, . . . , js),

(20) IJ = (i1, , . . . , ir, j1, . . . , js) and I ⊲ J = (i1, , . . . , ir + j1, . . . , js).

The graded dual of Sym is QSym (quasi-symmetric functions). The dual basis of
(SI) is (MI) (monomial), and that of (RI) is (FI).

The evaluation Ev(w) of a word w over a totally ordered alphabet A is the sequence
(|w|a)a∈A where |w|a is the number of occurrences of a in w. The packed evaluation
I = pEv(w) is the composition obtained by removing the zeros in Ev(w).
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Two permutations σ, τ ∈ Sn are said to be sylvester-equivalent if the decreasing
binary trees1 of σ−1 and τ−1 have the same shape. The generating function of the
number of inversions on a sylvester class is given by the q-hook-length formula [1, 25].

3. Recursive solution of Poincaré’s equation

Equation (11) can be written as a q-difference equation

(21) g(qA)− g(A) =
∑

n≥1

Sn(A)g(A)
n+1.

Introducing a homogeneity parameter t, we have

(22) g(qtA)− g(tA) =
∑

n≥1

tnSn(A)g(tA)
n+1.

Let gn be the term of degree n in g, so that

(23) g(tA) =
∑

n≥1

tngn(A).

Comparing the homogeneous components in both sides of (22), one gets a triangular
system allowing to compute the gn recursively. For n ≤ 3:

g0 = 1,

(q − 1)g1 = S1,

(q2 − 1)g2 = 2S1g1 + S2,

(q3 − 1)g3 = 2S1g2 + S1g
2
1 + 3S2g1 + S3.

(24)

Define

(25) qn = qn − 1, (q)n = qnqn−1 · · · q1 and g̃n = (q)ngn

The first g̃n are then

g̃1 = S1,

g̃2 = (q − 1)S2 + 2S11,

g̃3 = (q)2S3 + 3(q2 − 1)S21 + 2(q − 1)S12 + (5 + q)S111.

(26)

On the ribbon basis of Sym, the expression is quite remarkable:

g̃1 = S1,

g̃2 = (q + 1)R2 + 2R11,

g̃3 = (1 + q)(1 + q + q2)R3 + (2 + q + 3q2)R21 + 3(1 + q)R12 + (5 + q)R111.

(27)

Indeed, g̃n is a linear combination of ribbons with positive coefficients which are all
q-analogues of n!. Note that it is immediate, by induction on n, that g̃n|q=1 = n!Sn

1 ,
but it is not clear that the coefficients are in N[q]. A combinatorial interpretation of
these coefficients will be given below (Theorem 6.4).

1The decreasing tree T (w) of a word without repeated letters w = unv and maximal letter n is
the binary tree with root n and left and right subtrees T (u) and T (v).
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4. A tree-expanded solution

In order to solve (22), define a q-integral by2

(28) −
∫ b

a

tn−1dqt =

[
tn

qn − 1

]b

a

and a q-difference operator

(29) ∆qf(t) =
f(qt)− f(t)

t
.

Then,

(30) ∆q−
∫ t

0

f(s)dqs = f(t)

so that g is the unique solution of the fixed point equation

(31) g(tA) = g0 +
∑

n≥1

Sn(A)−
∫ t

0

sn−1g(sA)n+1dqs.

This equation is of the form

(32) g = g0 +
∑

n≥2

Fn(g, . . . , g)

where

(33) Fn(x1, . . . , xn) = Sn−1−
∫ 1

0

sn−2x1(s) · · ·xn(s)dqs

is an n-linear operator. The solution can therefore be expanded as a sum over reduced
plane trees (plane trees in which all internal vertices have at least two descendants),
which will be called Schröder trees in the sequel.

Proceeding as in [39], we introduce another indeterminate S0 (noncommuting with
the other Sn) and set g0 = S0. The solution is then a linear combinations of mono-
mials SI where I is a vector of nonnegative integers, with i1 > 0.

The first g̃n are then

g̃1 = S100

g̃2 = (q − 1)S2000 + S11000 + S10100

g̃3 = (q)2S
30000 + (q2 − 1)(S210000 + S201000 + S200100)

+ (q − 1)(S120000 + S102000)

+ S1110000 + S1101000 + S1011000 + S1010100 + (q + 1)S1100100.

(34)

We can interpret each Si as the symbol of an (i+1)-ary operation in Polish notation.
Then, g̃n is a sum over Polish codes of Schröder trees as in [39, Fig. 4]:

2This is just the ordinary q-integral up to conjugation by the transformation t 7→ (q − 1)t.
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g̃2 = (q − 1) 2
⑦⑦
⑦ ❅❅

❅

0 0 0

+ 1
⑦⑦
⑦ ❅❅

❅

1
⑦⑦
⑦ ❅❅

❅
0

0 0

+ 1
⑦⑦
⑦ ❅❅

❅

0 1
⑦⑦
⑦ ❅❅

❅

0 0

(35)

= (q − 1)S2000 + S11000 + S10100.(36)

The exponent vectors I encoding Schröder trees as above will be referred to as
Schröder pseudocompositions.

From (33), we have:

Theorem 4.1. Let I be a Schröder pseudocomposition, and T (I) be the tree encoded
by I. The coefficient of SI in g is

(37) mI(q) =
∏

v∈T (I)

1

qφ(v)−1

where v runs over the internal vertices of T (I) and φ(v) is the number of leaves of
the subtree of v.

Note 4.2. These coefficients are precisely those obtained by Ecalle’s arborification
method [14, 15, 16]. This coincidence will be explained in Section 11.

Example 4.3. For

(38) T = 2

✐✐✐
✐✐✐

✐✐✐
✐✐✐

❯❯❯
❯❯❯

❯❯❯
❯❯❯

1
⑦⑦
⑦ ❅❅

❅
1

⑦⑦
⑦ ❅❅

❅
0

0 0 0 3
⑦⑦
⑦ ❅❅

❅

PP
PP

PP
P

0 0 0 0

decorating each internal vertex v with the number φ(v)− 1, we obtain

(39) 7

❦❦❦
❦❦❦

❦❦❦
❦

❙❙❙
❙❙❙

❙❙❙
❙❙

1

✂✂
✂ ❁❁

❁
4

✂✂
✂ ❅❅

❅

3
②②
② ❇❇❇ ❖❖❖

❖❖❖

so that

(40) m210010300000 =
1

q7 q4q 3 q1
.
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Note 4.4. The I whose nonzero entries are all equal to 1 correspond to binary trees.
The anti-refinements J � I of such an I, obtained by summing consecutive nonzero
entries in all possible ways, correspond to the trees T (J) obtained by contracting
(internal) left edges in all possible ways in T (I). This procedure provides a way to
group Schröder trees into classes labelled by binary trees. An algebraic interpretation
of these groups will be provided below.

Example 4.5. The contractions of the binary tree T (1101100011000) are

•
✐✐✐

✐✐✐
✐✐✐

✐✐

❯❯❯
❯❯❯

❯❯❯
❯❯

•
⑦⑦
⑦ ❉❉

•
③③ ❅❅

❅

•
③③ ❅❅

❅
•

⑦⑦
⑦ ❉❉

❉

•
③③ ●●

●

•
✐✐✐

✐✐✐
✐✐✐

❯❯❯❯
❯❯❯❯

❯

•
②② ❅❅❅

•
②② ❅❅❅•

②② ■■■
•

②② ■■■

•
✐✐✐✐

✐✐✐✐
✐

❯❯❯
❯❯❯

❯❯

•
⑦⑦⑦

❊❊
•

②② ❅❅❅•
✉✉✉ ❊❊

•
②② ■■■

•
✐✐✐

✐✐✐
✐✐

❚❚❚
❚❚❚

❚

•
⑦⑦⑦

❊❊
•

⑦⑦⑦ ❅❅❅•
②② ❄❄❄•

②② ■■■

•
❦❦❦

❦❦❦
❦

❯❯❯❯
❯❯❯❯

❯

•
⑦⑦⑦ ❅❅❅

•
②② ❅❅❅•

②② ■■■

•
✐✐✐

✐✐✐
✐✐✐

❚❚❚
❚❚❚

❚

•
②② ❅❅❅

•
⑦⑦⑦ ❅❅❅•

②② ■■■

•
✐✐✐✐

✐✐✐✐
✐

❚❚❚
❚❚❚

❚

•
⑦⑦⑦

❊❊
•

⑦⑦⑦ ❅❅❅•
✉✉✉ ❊❊

•
❦❦❦

❦❦❦
❦

❚❚❚
❚❚❚

❚

•
②② ❊❊

•
②② ❊❊

which are respectively, reading the diagram by rows, T (201100011000), T (110200011000),
T (110110002000), T (20200011000), T (20110002000), T (11020002000), and T (2020002000).

5. A binary tree expansion

5.1. A bilinear map on Sym. The preceding remark (Note 4.4) suggests that, as
in the case of Lagrange inversion, the conjugacy equation can be cast as a quadratic
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fixed point problem. This is easily done at the level of noncommutative symmetric
functions.

Let Ω be the linear operator on Sym introduced in [38, 39], and defined by

(41) ΩS(i1,...,ir) = S(i1+1,i2,...,ir) .

Writing

g(qtA)− g(tA) =
∑

n≥1

tnSn(A)g(tA)
n+1(42)

=

(
∑

n≥1

tnSn(A)g(tA)
n

)
g(tA)(43)

= tS1(A)g(tA)
2 + t

(
∑

n≥2

tn−1Sn(A)g(tA)
n

)
g(tA)(44)

= tS1(A)g(tA)
2 + tΩ

[
∑

n≥1

tnSn(A)g(tA)
n+1

]
g(tA)(45)

= tS1(A)g(tA)
2 + tΩ[g(qtA)− g(tA)]g(tA)(46)

we see that g is the unique solution of the quadratic functional equation

(47) g(tA) = 1 +−
∫ t

0

(S1(A)g(sA) + tΩ∆qg(sA)) g(sA)dqs

of the form

(48) g = 1 +Bq(g, g).

The bilinear map Bq has a simple expression in the complete basis. For two
compositions I � i and J � j,

Bq(S
I , SJ) = −

∫ 1

0

(
S1S

ISJsi+j + ΩSI(qi − 1)siSJsj)
)
dqs(49)

=
S1IJ + qiΩS

IJ

qi+j+1
.(50)

It follows that in the ribbon basis

(51) Bq(RI , RJ) =
(R1I + qiR1⊲I)RJ

qi+j+1
.

As a consequence, the coefficients of g̃n on the ribbon basis are in N[q]. A combina-
torial interpretation will be provided below.

For example, with g0 = 1, we have,

g1 = Bq(g0, g0)

g2 = Bq(g0, g1) +Bq(g1, g0)

g3 = Bq(g0, g2) +Bq(g1, g1) +Bq(g2, g0)

(52)
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so that one gets

g̃1 = q1Bq(g̃0, g̃0)

g̃2 = q2(Bq(g̃0, g̃1) +Bq(g̃1, g̃0))

g̃3 = q3(Bq(g̃0, g̃2) +
q2
q1
Bq(g̃1, g̃1) +Bq(g̃2, g̃0))

(53)

and
g̃1 = S1

g̃2 = (S11) + (S11 + q1S2)

g̃3 = (2S111 + q1S
12) +

q2
q1
(S111 + q1S

21) + (2S111 + q1S
12 + 2q2S

21 + q1q2S3)

= q1q2S3 + 3q2S
21 + 2q1S

12 +

(
q2
q1

+ 4

)
S111,

(54)

which coincides with (26).

5.2. Triduplicial expansion. These equations can be lifted to Schröder trees, by
setting as above g0 = S0 and using (49) without modification. We recover then the
same expressions for gn as in the previous section.

Indeed, start again with (53) and g̃0 = g0 = S0. We then have

g̃1 = S100,

g̃2 = (S10100) + (S11000 + q1S
2000),

g̃3 = (S1010100 + S1011000 + q1S
102000) +

q2
q1
(S1100100 + q1S

200100)

+ (S1101000 + S1110000 + q1S
120000 + q2S

201000 + q2S
210000 + q1q2S

30000),

(55)

which again gives back (34).

Now, (51) can be lifted in another way. Indeed, in the same way as Lagrange
inversion is directly related to Catalan numbers (in the guise of nondecreasing parking
functions) and to the free duplicial algebra on one generator CQSym [40], we find
here the little Schröder numbers which are related to the free triduplicial algebra on
one generator (defined in [40]), into which CQSym is naturally embedded.

More precisely, the co-hypoplactic subalgebra of PQSym, denoted by SQSym in
[38], spanned by hypoplactic classes of parking functions (parking quasi-ribbons), has
been identified in [40] as the free triduplicial algebra on one generator. Its graded
dimension is given by the number of Schröder trees, but no natural bijection between
these trees and parking quasi-ribbons had been known up to now. However, this
algebra has a basis Pα which is mapped to the ribbon basis RI by a Hopf algebra
morphism χ. This suggests that the operations on ribbons involved in (51) might
be the image under χ of triduplicial operations on parking quasi-ribbons and that
an analogue of the S-basis should exist in SQSym. We shall see that this is indeed
the case, by means of bijections between three families of Schröder objects: parking
quasi-ribbons, Schröder trees, and Schröder pseudocompositions. These bijections
will allow to transport the triduplicial structure on the latter objects.
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Recall from [38] that hypoplactic classes of parking functions are represented as
parking quasi-ribbons, or segmented nondecreasing parking functions, i.e., nonde-
creasing parking functions with bars allowed between different values, for example

(56) {1}, {11, 12, 1 | 2},

(57) {111, 112, 11 | 2, 113, 11 | 3, 122, 1 | 22, 123, 1 | 23, 12 | 3, 1 | 2 | 3}.
With a parking quasi-ribbon α, we associate the elements

(58) Pα :=
∑

a=α

Fa,

where a denotes the hypoplactic class of a. For example,

(59) P11|3 = F131 + F311 , P113 = F113.

The product formula in this basis is

(60) PαPβ = Pα|β′ +Pα·β′

where β ′ = β[|α|] (i.e., the word formed by the entries of β shifted by the length
of α), and the dot denotes concatenation. The triduplicial operations on parking
quasi-ribbons are defined by [40]

α ≺ β = α · β[max(α)− 1],(61)

α ◦ β = α | β[|α|],(62)

α ≻ β = α · β[|α|].(63)

One easily checks that they satisfy the seven triduplicial relations

(x ≺ y) ≺ z = x ≺ (y ≺ z)

(x ◦ y) ◦ z = x ◦ (y ◦ z)
(x ≻ y) ≻ z = x ≻ (y ≻ z)

(x ≻ y) ≺ z = x ≻ (y ≺ z)

(x ◦ y) ≺ z = x ◦ (y ≺ z)

(x ≻ y) ◦ z = x ≻ (y ◦ z)
(x ◦ y) ≻ z = x ◦ (y ≻ z).

(64)

In order to define the triduplicial operations on Schröder pseudocompositions, we
first need a bijection, which will be described below.

5.3. A bijection between parking quasiribbons and Schröder trees. The bi-
jection between Schröder pseudocompositions and Schröder trees is trivial, as it is
essentially the Polish notation for the tree. The difficult point is the correspondence
between trees and parking quasi-ribbons.

Among all Schröder trees, we have binary trees, and among parking quasi-ribbons,
we have parking quasi-ribbons without bars, that are nondecreasing parking func-
tions. Both are counted by Catalan numbers.
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We shall first describe the bijection from binary trees to parking quasi-ribbons
without bars. Its extension to all Schröder trees will then be straigthforward. Let φ
be this bijection. It is recursively defined as follows. Set φ(∅) = ∅ and φ(•) = 1.

Given a tree T with left and right subtrees respectively T1 and T2, we have

(65) φ(T ) = φ(T2) · (φ(T1)[max(φ(T2))− 1]) · (|T1|+max(φ(T2)),

with the convention that, if T2 is empty, max(φ(T2)) = 1, and the dot denotes
concatenation. This operation can also be described as collecting the vertices of T
recursively by visiting first its right subtree, then its left subtree and finally its root,
with the rules that a leaf takes the value of the last visited vertex (1 if there were
none) and an internal vertex gets as value the size of its left subtree added to the
value of its right son (added to 1 if there is no right son).

Example 5.1. We have

(66) 8
▼▼

▼▼
▼▼

qq
qq
qq

6
❁❁

5
❁❁✂✂

6
✂✂

4 4
✂✂

5 2
❁❁✂✂

1 1

−→ 1124455668.

Let us now extend φ to all Schröder trees. First, Schröder trees are in bijection
with binary trees with two-colored left edges: if an internal node s has more than
two children with corresponding subtrees T1, T2, . . . , Tr, draw r− 1 left edges (of the
second color) from s and attach to the new r nodes the r subtrees in order, as in a
binary tree:

s
◗◗◗

◗◗◗
◗◗

⑦⑦ ❇❇
❇❇

♠♠♠
♠♠♠

♠

T1 T2 . . . Tr

−→ s

②②
②②
②

②②
②②
② ❊❊

❊

⑧⑧
⑧⑧

⑧⑧
⑧⑧ ❍❍

❍❍
❍ Tr

⑧⑧⑧
⑧ ❄❄ . . .

T1 T2

This amounts to reverting the contraction process described in Note 4.4.
Having computed this tree, send it with the previous bijection to a nondecreasing

parking function, and insert a bar between two letters if they are separated by a left
branch of the second color.

Example 5.2. The continuation of (66) is

(67) 8
▼▼

▼▼
▼▼

qq
qq
qq

6
❁❁

5
❁❁✂✂

6
✂✂

4 4
✂✂

5 2
❁❁✂✂

1 1

−→ 8
qq
qq
qq

qq
qq
qq

▼▼
▼▼

▼▼

6
❁❁

5
✂✂✂
✂ ❁❁

6
✂✂

4 4
✂✂

5 2
✂✂✂
✂ ❁❁

1 1

−→ 11|244|5566|8.
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Theorem 5.3. The previous algorithm provides a bijection between Schröder trees
and parking quasi-ribbons.

Before proving the theorem, let us describe the inverse bijection ψ = φ−1 from
nondecreasing parking functions to binary trees. Set ψ(1) = ∅. Let p = a1 . . . ar
be a nondecreasing parking function. Let w = w1 . . . wr−1 be the word such that
wk = ak + r − 1 − k. Let ℓ be greatest index of w such that aℓ = aℓ+1 and wℓ = ar
(as a0 = 1, if ℓ does not exist, set ℓ = 0). Then compute recursively the images
of a1 . . . aℓ as the right subtree of the root, and of (aℓ+1 . . . ar−1)[aℓ − 1] as the left
subtree of the root.

Example 5.4. Consider all nondecreasing parking functions 112445566X , where
X is bound by the constraint of being a nondecreasing parking function, so that
X ∈ {6, 7, 8, 9, 10}. The word w is the same for all those parking functions, namely
988988776, where we write in boldface the wk such that ak = ak+1. Note that the 6
can be bold or not depending on the value of X : if X is 6, it is indeed in bold. Now,
the index ℓ is well-defined in all the examples, so that we can separate the word and
apply it recursively:

1124455666 −→ℓ=9 (∅, 112445566)
1124455667 −→ℓ=8 (1, 11244556)

1124455668 −→ℓ=6 (122, 112445)

1124455669 −→ℓ=4 (12233, 1124)

112445566 10 −→ℓ=0 (112445566, ∅)

(68)

Proof – Let us now prove that φ is indeed a bijection and that its inverse is ψ as
claimed.

First, the values of φ are clearly nondecreasing parking functions.
For ψ, the crucial point is to prove that it is well-defined (see (68) for an illustra-

tion).
Given a nondecreasing parking function p = a1 . . . ar, the allowed values for ar are

in the interval [ar−1, r]. And this interval corresponds precisely to the values taken
by the subword of w obtained by selecting the indices i such that ai = ai+1. Indeed,
any of these values belong to this interval, since all values of w do. Conversely, a
direct induction on the length of p implies the result, since the only question concerns
the index r − 1 which is considered in the subword of w iff ar−1 = ar. Finally, if one
splits p after the rightmost occurrence wℓ of such a value, both the prefix of p and its
suffix aℓ+1 . . . ar−1 are parking functions: it is obvious for the prefix and is easy for
the suffix, since we considered the rightmost occurrence. This occurrence has only
strictly smaller values to its left (wi − wi+1 can be at most 1), so that the shifted
suffix is a parking function. Now, by definition, the values of ψ are binary trees, so
that at this point, we have maps going from each set to the other. Let us now see
why they are inverses of each other.

Both maps are recursive, so we just need to prove that they are inverse of each
other on the first step. Let p = a1 . . . ar be a nondecreasing parking function which
is the image under φ of a binary tree T having T1 and T2 as left and right subtrees.
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Since ar is the sum of the size of T1 and of the maximal value of φ(T2), ar corresponds
to the value wℓ in the word w where ℓ is the size of T2 and r − ℓ − 1 is the size of
T1. Now, this value ℓ necessarily satisfies aℓ = aℓ+1, since aℓ is the maximal value
M of T2 and aℓ+1 = 1 +M − 1. Finally, among all indices k satisfying ak = ak+1

and wk = wℓ, ℓ is the only one such that the suffix aℓ+1 . . . ar−1 is a parking function,
since any other occurrence in w has one equal value to its right, which contradicts
the fact of being a nondecreasing parking function.

Since φ and ψ both have the right image sets and ψ ◦ φ is the identity map on
binary trees, they both are bijections, inverses of each other.

Finally, let us see why the extension of φ to Schröder trees is a bijection. First,
all left branches relate numbers that cannot be equal, so that separations on nonde-
creasing parking functions are made between non equal letters, which is the required
condition about parking quasi-ribbons. The converse is also true: the number of left
branches in a binary tree T is equal to the number of different letters plus one in φ(T ).
So the map from binary trees with two-colored left branches to parking quasi-ribbons
is a bijection and the composition of both bijections through the middle object of
binary trees with two-colored left branches is still a bijection.

5.4. Triduplicial operations on Schröder pseudocompositions. Now that we
have a bijection between parking quasiribbons and Schröder pseudocompositions, we
can translate the triduplicial operations initially defined on parking quasiribbons to
Schröder pseudocompositions.

Definition 5.5. Let I and J be two Schröder pseudocompositions. Define J ′ such
that J = J ′0m and J ′ does not end by a 0.

Then

I ≺ J = J ⊲ I = J ′0m−1.I(69)

I ◦ J = J ′ ⊲ I · 0m−1(70)

I ≻ J = J ′ · I · 0m−1 .(71)

Example 5.6. Denoting by a the parking quasi-ribbon 1 and by x the pseudocom-
position 100,

a ≺ a = 11 x ≺ x = 10100(72)

a ◦ a = 1|2 x ◦ x = 2000(73)

a ≻ a = 12 x ≻ x = 11000,(74)

which coincide with the bijection described in the previous section.

Theorem 5.7. The operations above endow the set of Schröder pseudocompositions
with the structure of a triduplicial algebra, freely generated by x = 100.

Proof – This is a direct consequence of the translation of the triduplicial operations
on Schröder pseudocompositions.
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We shall prove it for each rule. Operation ≺ on parking quasi-ribbons is defined
by α ≺ β = α · β[max(α) − 1] and via the bijection ψ extended to parking quasi-
ribbons, it corresponds to glueing the image of α to the rightmost leaf of β so that,
on Schröder pseudocompositions, one obtains J ′.0m−1.I.

Operations ◦ and ≻ on parking quasi-ribbons are defined by α ◦ β = α | β[|α|] and
α ≻ β = α · β[|α|] and via the bijection ψ extended to parking quasi-ribbons, it
corresponds to putting the image of α as the left child of the rightmost internal node
labelled 1 of the image of β (which is also the last visited internal node of the tree in
Polish notation) with an edge of the natural color (for ≻) or of the second color (for
◦). The translation on Schröder pseudocompositions is straightforward.

Define now an order ≤ on parking quasiribbons by the cover relation

(75) β ⋗ α if α = uv, β = u|v′

with v′ = v if the last letter of u is smaller than the first letter of v, and v′ = v[1]
otherwise.

For example, the predecessors of 11|23 are 11|2|3 and 1|2|34.
With this order, we can define a basis Sα by

(76) Sα =
∑

α≤β

Pβ .

For example,

(77) S1 = P1, S
11 = P11 +P1|2, S

12 = P12 +P1|2, S
1|2 = P1|2

and

(78) S11|23 = P11|23 +P1|2|34 +P11|2|3 +P1|2|3|4.

The Hopf epimorphism χ : SQSym → Sym is defined by

(79) χ(Pα) = RI∼

where I is the bar composition of α whose parts are the lengths of the factors between
the bars, e.g., for α = 111|24|5, I = 321.

It is then clear that

(80) χ(Sα) = SI∼.

For Um ∈ SQSymm and Vn ∈ SQSymn, define

(81) Bq(Um, Vn) = qm+n+1Bq(Um, Vn),

where Bq is defined after Eq. (48). Then, in the bases P and S with both indexations:

Bq(S
α,Sβ) = q|α|S

β≺(α◦1) + Sβ≺(α≻1)(82)

Bq(S
I ,SJ) = q|I|ΩS

IJ + S1IJ(83)

Bq(Pα,Pβ) = q|α|Pβ≺(α◦1) +Pβ≺(α≻1) + q|α|Pβ◦α◦1 +Pβ◦α≻1(84)

Bq(PI ,PJ) = q|I|PΩIJ +P1IJ + q|I|P1⊲J ′⊲I0m +P1J ′⊲I0m(85)

where, as above, J = J ′0m and J ′ does not end by a 0.
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For example, one can recover the computation of g̃3 in (55): start from the expres-
sion of g̃1 and g̃2 in this same equation and then compute g̃3 according to Eq. (53):

The first term is Bq(g̃0, g̃2):

Bq(S0, S
10100) = q0S

110100 + S1010100 = S1010100,

Bq(S0, S
11000) = q0S

111000 + S1011000 = S1011000,

Bq(S0, S
2000) = q0S

12000 + S102000 = S102000.

(86)

Note that some SI here are not indexed by Schröder pseudocompositions, but these
terms eventually disappear as their coefficient is q0 = q0− 1 = 0. The second term is
Bq(g̃1, g̃1):

(87) Bq(S
100, S100) = q1S

200100 + S1100100.

The third term is Bq(g̃2, g̃0):

Bq(S
10100, S0) = q2S

201000 + S1101000,

Bq(S
11000, S0) = q2S

210000 + S1110000,

Bq(S
2000, S0) = q2S

30000 + S120000,

(88)

so that we recover (55).

6. Expansion on the ribbon basis

The expression of g in Sym is recovered by setting S0 = 1. As in the case of the
Lagrange series, it is interesting to expand g on the ribbon basis. As we have already
seen before, the first terms are

g̃1 = R1,(89)

g̃2 = (1 + q)R2 + 2R11,(90)

g̃3 = (1 + q)(1 + q + q2)R3 + (2 + q + 3q2)R21 + 3(1 + q)R12 + (5 + q)R111.(91)

We can observe that each coefficient is a q-analogue of n!. We shall now prove this
fact, and describe the relevant statistics on permutations.

For a pseudo-composition I, let Î be the ordinary composition obtained by remov-
ing the zero entries.

For a binary tree t = T (I), set

(92) Pt =
∑

J�I

mJ(q)S
J

For a pseudo-composition J encoding a tree T (J), let

(93) dJ =
∑

v∈T (J)

(φ(v)− 1)

Then, the coefficient of RK in (q)nPt is equal to

(94) (q)nmI(q)q
dI−dJ
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where J is the coarsest anti-refinement of I such that K ≤ Ĵ . Indeed, RK will then
occur in all the refinements of J , and if I ′ is such a refinement, then,

(95) mI′(q) = mI(q)
∏

v∈C(I,I′)

qφ(v)−1

where C(I, I ′) is the set of vertices of T (I) which have been contracted in T (I ′).
Thus, factoring the coefficient mI(q), we see that RK picks up a factor

(96)
∏

i

(qi + 1)ni = qdI−dJ if
mJ(q)

mI(q)
=
∏

i

qni

i

when summing over the Boolean lattice of refinements of J .

Example 6.1. For I = (1101100011000) and K = (51), we have J = (20200011000),
and on the picture (extracted from 4.5)

6
❥❥❥

❥❥❥
❥❥

❚❚❚
❚❚❚

❚❚

3
✄✄
✄ ❆❆

2
⑥⑥ ❀❀

❀

2
⑥⑥ ❀❀

❀ 1
✄✄
✄ ❆❆

❆

1
④④ ●●

●

6
❦❦❦

❦❦❦
❦❦❦

❚❚❚
❚❚❚

❚❚❚

2
⑥⑥ ❁❁

❁ 2
⑥⑥ ❁❁

❁

1
④④ ●●

● 1
④④ ●●

●

6
❥❥❥

❥❥❥
❥❥❥

❚❚❚
❚❚❚

❚❚

3
✂✂
✂ ❆❆

2
⑥⑥ ❁❁

❁

2
✇✇
✇ ❈❈

1
⑤⑤ ●●

●

6
♠♠
♠♠♠

♠♠
❚❚❚

❚❚❚
❚❚❚

2
✂✂
✂ ❁❁

❁ 2
⑥⑥ ❁❁

❁

1
④④ ●●

●

we can read that the coefficient of R51 in the projection of (q)6PT (1101100011000) on
Sym is

(97)
(q)6

q6q3q22q
2
1

q4 =
q5q4
q2q1

q4 = q10 + 2q8 + q9 + 2q7 + 2q6 + q5 + q4.

For a pseudo-composition I, let I♯ be its coarsest anti-refinement. The polynomial

(98) (q)nmI(q)q
dI−dI♯

is, up to left-right symmetry, the q-hook-length formula for the binary tree T (I)
[1, 25] (with its leaves removed). Indeed, for a vertex v of a binary tree t = T (I),
dI − dI♯ coincides with the number of internal nodes of its left subtree.
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Example 6.2. Continuing with I = (110110011000), I♯ = (2020002000),

(99) T (I) = 6
❥❥❥

❥❥❥
❥❥

❚❚❚
❚❚❚

❚❚

3
✄✄
✄ ❆❆

2
⑥⑥ ❀❀

❀

2
⑥⑥ ❀❀

❀ 1
✄✄
✄ ❆❆

❆

1
④④ ●●

●

T (I♯) = 6
♠♠♠

♠♠♠
♠

❘❘❘
❘❘❘

❘

2
④④ ❈❈

2
④④ ❈❈

and (98) yields

(100)
(q)6

q6q3q22q
2
1

q6+3+2+1+2+1−(6+2+2) =
q5q4
q2q1

q3+1+1 =
q5q4
q2q1

q5

which is the q-hook-length formula for the left-right flip

(101) 6
♥♥♥

♥♥♥ PPP
PPP

2
❆❆

3
⑥⑥

1 2
❆❆

1

3
♥♥♥

♥♥♥ PPP
PPP

1
❆❆

0
⑥⑥

0 1
❆❆

0

of the skeleton of T (I). Indeed, the power of q is 3 + 1 + 1 = 5 (given by the sum
of the sizes of the right subtrees), and the denominator is q6q2q1q3q2q1 (recording the
sizes of all the subtrees).

Thus, up to a fixed power of q, this expression enumerates by number of non-
inversions the permutations in the sylvester class labelled by the binary tree T (I).

Summing over all binary trees, we see that each coefficient cK(q) of RK in g̃n is
indeed a q-analogue of n!.

Translating these results at the level of permutations yields the following descrip-
tion of the expansion of g̃n on the ribbon basis of Sym:

Definition 6.3. Let σ be a permutation and let α be the top of its sylvester class,
that is, the permutation with the smallest number of inversions in its sylvester class.
Let I = (i1, . . . , ir) be a composition and let D be the descent set of the conjugate Ĩ.
Define CI(σ) as

(102) qinv(σ)−inv(α)qinv(α,D),

where inv(α,D) is the number of pairs (i < j) such that αi > αj and j ∈ D.

Theorem 6.4. The coefficient of RI in the expansion of g̃n is equal to

(103)
∑

σ∈Sn

CI(σ).

For example, here are the tables for n = 3 and n = 4 of all coefficients CI , where
permutations are grouped by sylvester classes.
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(104)

σ/I 3 21 12 111

123 1 1 1 1

132 q q 1 1

312 q2 q2 q q

213 q 1 q 1

231 q2 q2 1 1

321 q3 q2 q 1

(105)

σ/I 4 31 22 211 13 121 112 1111

1234 1 1 1 1 1 1 1 1

1243 q q q q 1 1 1 1

1423 q2 q2 q2 q2 q q q q

4123 q3 q3 q3 q3 q2 q2 q2 q2

1324 q q 1 1 q q 1 1

3124 q2 q2 q q q2 q2 q q

1342 q2 q2 q2 q2 1 1 1 1

3142 q3 q3 q3 q3 q q q q

3412 q4 q4 q4 q4 q2 q2 q2 q2

1432 q3 q3 q2 q2 q q 1 1

4132 q4 q4 q3 q3 q2 q2 q q

4312 q5 q5 q4 q4 q3 q3 q2 q2

2134 q 1 q 1 q 1 q 1

2143 q2 q q2 q q 1 q 1

2413 q3 q2 q3 q2 q2 q q2 q

4213 q4 q3 q4 q3 q3 q2 q3 q2

2314 q2 q2 1 1 q2 q2 1 1

2341 q3 q3 q3 q3 1 1 1 1

2431 q4 q4 q3 q3 q q 1 1

4231 q5 q5 q4 q4 q2 q2 q q

3214 q3 q2 q 1 q3 q2 q 1

3241 q4 q3 q4 q3 q 1 q 1

3421 q5 q5 q3 q3 q2 q2 1 1

4321 q6 q5 q4 q3 q3 q2 q 1
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7. Schröder’s equation for the inverse of h

Let now f = h−1 where h−1 ◦ φ ◦ h(z) = qz or equivalently

(106) f ◦ φ(w) = qf(w) (w = h(z)).

This is Schröder’s equation. In the noncommutative setting, with again φ(z) =
qzσz(A), it becomes

(107)
∑

k≥0

fkq
k+1wk+1σw((k + 1)A) = q

∑

n≥0

fnw
n+1

which translates into the recurrence relation

(108) fn =
∑

k+l=n

qkfkSl((k + 1)A).

Theorem 7.1. Let L be the linear endomorphism of Sym defined by

(109) L(SI) = Si1(A)Si2((i1 + 1)A)Si3((i1 + i2 +1)A) · · ·Sir((i1 + · · ·+ ir−1 +1)A).

Then,

(110) fn = L

(
Sn

(
A

1− q

))
=
∑

I�n

qmaj(I)

(1− qi1)(1− qi1+i2) · · · (1− qi1+···+ir)
L(SI),

where A/(1− q) and maj is defined as in [29, 6.1]3.

For example,

(111) f1 =
1

1− q
S1(A)

(112) f2 =
1

1− q2
S2(A) +

q

(1− q)(1− q2)
S1(A)S1(2A)

f3 =
1

1− q3
S3(A) +

q2

(1− q2)(1− q3)
S2(A)S1(3A)

+
q

(1− q)(1− q3)
S1(A)S2(2A) +

q3

(1− q)(1− q2)(1− q3)
S1(A)S1(2A)S1(3A)

(113)

Proof – Replacing Sl((k + 1)A) by Sl(A) in (108), we obtain a recurrence relation
satisfied by the expansion on the basis SI of the Sn(A/(1−q)). To recover fn from this
expression, we just have to replace each factor Sik of SI by Sik((i1+ · · ·+ ik−1+1)A).

3maj(I) is the sum of the descents of I, i.e.,maj(I) = (r − 1)i1 + (r − 2)i2 + · · · + ir−1 if
I = (i1, . . . , ir).
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Note 7.2. The noncommutative symmetric function

(114) Kn(q) = (q)nSn

(
A

1− q

)
=
∑

I�n

qmaj(I)RI

is the q-Klyachko function. For q a primitive nth root of 1, it is mapped to Klyachko’s
Lie idempotent in the descent algebra of the symmetric group [19, 29]. It is also a
noncommutative analogue of the Hall-Littlewood function Q′1n [24].

Naturally, we may also choose to define f by

(115) fn =
∑

k+l=n

qkSl((k + 1)A)fk.

With this choice

(116) f =

(
L

(
σ1

(
A

1− q

)))

and it is what we obtain by mould calculus in the next section (the bar involution is

defined by SI = SI , where I is the mirror composition).

8. A noncommutative mould expansion

Ecalle’s approach to the linearization equation (7) is to find a closed expression of
the substitution automorphism

(117) H : ψ 7−→ ψ ◦ h
as a differential operator. The idea is to look for an expansion of the form

(118) H =
∑

I

MIU
I

where I = (i1, . . . , ir) runs over all compositions, U I = Ui1 · · ·Uir as usual, and the
Un are the homogeneous component of the differential operator

(119) U : ψ 7−→ ψ ◦ u, where φ(z) = qu(z),

given by the Taylor expansion at z of ψ(z + (u(z)− z)),

(120) Un =
∑

I�n

uI

ℓ(I)
zn+ℓ(I)∂ℓ(I)z .

In this setting, the functional equation (7) reads

(121) HUMq =MqH, where (Mqψ)(z) = ψ(qz).

We have already identified our generic power series φ(z) with qzσz(X), so that
un = hn(X). A natural noncommutative analogue is to set un = Sn(A). There
is another way to introduce noncommutative symmetric functions in this problem.
The substitution maps U and H , being automorphisms, are grouplike elements in the
Hopf algebra of differential operators. So, it is natural to introduce a second alpha-
bet B (commuting with A) and to identify Un with Sn(B). The problem amounts
to looking for H as an element of (the completion of) Sym(A) ⊗ Sym(B). Let us
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write it as H(B), regarded as a symmetric function of B with coefficients in Sym(A).
Then (121) reads now

(122) H(B)σ1(B) = H(qB).

This is solved by

(123) H(B) =

←∏

i≥0

λ−qi(B) = · · ·λ−q2(B)λ−q(B)λ−1(B)

which may be denoted by

(124) H(B) = σ1

(
B

q − 1

)

Setting F = H−1, we have that

(125) F (B) = σ1(B)σq(B)σq2(B) · · ·
is the image of σ1(A/(1− q)) (in the sense of [29]) by the bar involution SI 7→ S Ī , so
that

(126) Fn =
∑

I�n

qmaj(I)

(1− qi1)(1− qi1+i2) · · · (1− qn)
S Ī ,

The function f(z) is obtained by acting on the identity: f(z) = Fz. This is obtained
from

(127) U Iz = L(S Ī(A))z|I|+1 .

Indeed,

(128) Unz
m =

∑

I�n

SI

ℓ(I)!

m!

(m− ℓ(I))!
zm+n =

∑

I�n

MI(m)SIzm+n = Sn(mA)z
m+n.

9. The operad of reduced plane trees

9.1. A free operad. We shall now investigate the relation between our Schröder tree
expansion (Section 4) and Ecalle’s arborification. So far, the SI with I a Schröder
pseudocomposition have been interpreted as elements of the free triduplicial algebra
SQSym. They can also be interpreted as elements of a free operad (see [3, 5]). We
shall see that this operad, which is based on reduced plane trees, is also related to
the noncommutative version of the Hopf algebra of formal diffeomorphisms tangent
to identity [2].

The set of reduced plane trees with n leaves will be denoted denoted by PTn, and
PT denotes the union

⋃
n>1PTn.

The number of leaves of a tree t will be called its degree d(t), and we define the
grading gr(t) of a tree as its degree minus 1. In low degrees we have

(129) PT1 = {◦}, PT2 = { }, PT3 = { , , }, . . .
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The leaves (in white in the pictures) are also called external vertices whilst the
other vertices (in black) are said to be internal (note that ◦ has no internal vertex).
For instance, the tree

t =

has degree d(t) = 8, grading gr(t) = 7 and i(t) = 4 internal vertices.

Definition 9.1. The free non-Σ operad S in the category of vector spaces is the
vector space

(130) S =
⊕

n>1

Sn where Sn = CPTn.

The composition operations

(131) Sn ⊗ Sk1 ⊗ . . .⊗ Skn −→ Sk1+...+kn (n > 1, ki > 1)

map the tensor product of trees t0 ⊗ t1 ⊗ . . .⊗ tn to the tree t0 ◦ (t1, . . . , tn) obtained
by replacing the leaves of t0, from left to right, by the trees t1, . . . , tn.

For instance,

(132) ◦
(
◦, , ◦,

)
=

The tree ◦ of PT1 is the unit of this composition. A proof of its associativity can
be found in [3] or [5], where this operad is called a free S-magmatic operad. Note
that S is also called the operad of Stasheff polytopes (see [26, 32]) so that the letter
S can stand for Stasheff or Schröder as well.

9.2. The group of the operad. Let Ŝ be the completion of the vector space S
with respect to the grading gr(t) = d(t) − 1. The group of the operad S is defined
as:

Definition 9.2. Let

(133) Gncdiff =

{
◦+
∑

n>2

p(n), p(n) ∈ Sn

}
⊂ Ŝ

endowed with the composition product

(134) p ◦ q = q +
∑

n>2

p(n) ◦


q, . . . , q︸ ︷︷ ︸

n


 ∈ Gncdiff

for p = ◦+
∑

n>2 p(n) and q ∈ Gncdiff .

This is indeed a group (see e.g., [5]). Elements of Gncdiff can be described by their
coordinates

(135) p =
∑

t∈PT

ptt and q =
∑

t∈PT

qtt.
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(with q◦ = p◦ = 1) so that the coordinates of r = p ◦ q are given by

(136) rt =
∑

t=t0◦(t1,...,tn)

pt0qt1 . . . qtn

This expression involves the so-called admissible cuts defining the coproduct in Hopf
algebras of the Connes-Kreimer family. It suggests that the elements of Gncdiff can
be interpreted as characters of the bialgebra defined as follows.

Let

(137) T̄ (S) =
⊕

p>1

S⊗p

be the reduced tensor algebra over S (whose basis is given by plane forests f =
t1 · . . . · tk) equipped with the coalgebra structure defined on trees by

(138) ∆̃(t) =
∑

t=t0◦(t1,...tn)

t0 ⊗ (t1 · . . . · tn)

where · means concatenation, and then extended as an algebra morphism on T̄ (S).
For example,

(139) ∆̃

( )
= ◦⊗ + ⊗ · ◦+ ⊗ ◦ · ◦ · ◦.

It is then clear that any p ∈ Gncdiff can be identified as the algebra morphism ϕp

defined by

(140) ϕp(t) = pt

so that, if r = p ◦ q, then
(141) ϕp◦q = ϕr = ϕp ∗ ϕq = µ ◦ (ϕp ⊗ ϕq) ◦ ∆̃
where ∗ is the usual convolution product for a bialgebra, and µ is the multiplication
of C. Note that if

∧
(t1 · t2 · . . . · tn) (with n > 2) is the tree obtained by grafting the

trees t1, . . . , tn to a common root (in other words,
∧
(t1 · t2 · . . . · tn) = cn ◦ (t1, . . . , tn),

where cn is the corolla with n leaves) the map ∆̃ is the unique algebra map such that

∆̃(◦) = ◦⊗ ◦,(142)

∆̃
(∧

(t1, . . . , tn)
)
= ◦⊗

∧
(t1, . . . , tn) +

(∧
⊗Id

)
◦ ∆̃(t1 · t2 · . . . · tn)(143)

9.3. The Hopf algebra of reduced plane trees and its characters. The quo-
tient of the bialgebra T̄ (S) by the relations t · ◦ = ◦ · t = t is a graded unital algebra
HPT, spanned by ◦ and the forests t1 · t2 · . . . · tn with ti ∈ ∪n>2PTn, with ◦ as unit.

It is a Hopf algebra for the coproduct defined on trees by

(144) ∆(t) = (p⊗ p) ◦ ∆̃(t)

where p is the projection from T̄ (S) to HPT.
In the former example:

(145) ∆

( )
= ◦⊗ + ⊗ + ⊗ ◦.
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It is now clear that the group Gncdiff is precisely the group of characters of this
Hopf algebra (for p ∈ Gncdiff, ϕp(◦) = 1).

This Hopf algebra was first considered in [12] (with the opposite coproduct P ◦∆,
where P (u⊗ v = v ⊗ u)), where it is called the Hopf algebra of reduced plane trees
Hred

pl . The coproduct can be described in terms of admissible cuts of a tree t ∈ PT,
i.e., (possibly empty) subsets c of edges not connected to a leaf with the rule that
along any path from the root of t to any of its leaves, there is at most one edge in
c. The edges in c are naturally ordered from left to right. To any admissible cut
c corresponds a unique subforest P c(t), the pruning , concatenation of the subtrees
obtained by cutting the edges in c, in the order defined above. The coproduct can
then be defined by:

(146) ∆(t) =
∑

c∈Adm t

Rc(t)⊗ P c(t),

where Rc(t) is the trunk, obtained by replacing each subtree of P c(t) with a single
leaf.

So far, we have defined the group of the operad of Stasheff polytopes (or Schröder
trees), and shown that it coincides with the group of characters of the Hopf algebra
of reduced plane trees. We shall see that it is also a group of formal noncommutative
diffeomorphisms related to the noncommutative Lagrange inversion (see [39]) and to
the noncommutative version of Poincaré’s equation.

10. Noncommutative formal diffeomorphisms

10.1. A group of noncommutative diffeomorphisms. As pointed out in [2], it
is possible to consider formal diffeomorphisms in one variable with coefficients in an
associative algebra, but if this algebra is not commutative, the set of such diffeomor-
phisms is not anymore more a group because associativity is broken. Nevertheless,
there is still a noncommutative version of the Faà di Bruno Hopf algebra.

We can recover a group by regarding the coefficients as well as the variable as formal
noncommutative variables. Heuristically, let us start with a fixed diffeomorphism u
of

(147) Gdiff = {u(z) = z +
∑

n≥1

unz
n+1 ∈ C[[z]]}

in the variable z with coefficients un. Consider now that z is replaced by S0 and that
each un is replaced by a variable Sn. We get a series

(148) gc = S0 +
∑

n>1

SnS
n+1
0

in an infinity of noncommuting variables. Nothing prevents us from “iterating” gc as
we would do with an ordinary power series

(149) gc ◦ gc = gc +
∑

n>1

Sng
n+1
c = S0 + S1S

2
0 + S2S

3
0 + S1(S1S

2
0)S0 + S1S0(S1S

2
0) + ...

Further iterations lead to words in the variables S0, S1, . . . indexed by Schröder
pseudocompositions, which will eventually represent all reduced plane trees.
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Let S◦ = S0 and, if t =
∧
(t1, . . . , tn), S

t = Sn−1S
t1 . . . Stn . We recover the

correspondence with Polish codes. For example,

(150) S = S2S0S1S3S0S0S0S0S0S1S0S0 = S201300000100

Identifying trees with their Polish codes, the group Gncdiff can be described as

(151) Gncdiff =

{
g =

∑

t∈PT

gtS
t, gt ∈ C, g◦ = 1

}
⊂ C〈〈S0, S1, . . .〉〉

where C〈〈S0, S1, . . .〉〉 is the completion of the algebra of polynomials, with respect
to the degree in S0.

If we set g = g(S0, S1, . . .) = g(S0;S) (S = S1, . . .), then,

Theorem 10.1. The composition f ◦ g = h in Gncdiff is given by

(152) h(S0;S) = f(g;S).

In other words we substitute g to the variable S0 in f . Graphically we substitute
trees to leaves. It is easy to check that this group coincides with the previous one. If

(153) g =
∑

t∈PT

gtS
t, f =

∑

t∈PT

ftS
t, h = f ◦ g =

∑

t∈PT

htS
t ∈ Gncdiff ,

then ht is a sum of contributions from f and g. The contributions to ht can be

• ftSt if we substitute the S0 part of g to any S0 (a leaf) of the term ftS
t of f .

• gtSt if we substitute the term gtS
t of g to the S0 part of f

• ft0gt1 . . . gtnSt if when substituting (from left to right) the terms gt1S
t1 , ...,

gtnS
tn to n S0 variables (leaves) in ft0S

t0 , we get the monomial St.

This means that

(154) ht =
∑

(t0;t1...tn)=(Rc(t);P c(t))

ft0gt1 . . . gtn

which is precisely the convolution of characters in HPT.
In the sequel, we shall denote by the same letter (for instance g) an element of

Gncdiff regarded as a series of trees

(155) g =
∑

t

gtt,

as a series of noncommutative monomials

(156) g =
∑

t

gtS
t,

or as the character g sending t on gt.
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10.2. Inversion in Gncdiff and Lagrange inversion. One can compute the compo-
sitional inverse of fc (defined by ft = 1 if t is a corolla and 0 otherwise). This yields
a signed series involving all trees.

Consider the series

(157) fc = S◦ +
∑

n>1

S
∧
(◦·n+1).

We shall work here in T̄ (S) (where ◦ is not the unit). Let i(t) be the number of
internal vertices of a tree t. The inverse of fc is then given by

(158) gc =
∑

t∈PT

(−1)i(t)St

since

gc = S0 +
∑

n>1

∑

t=
∧
(t1·...·tn+1)

ti∈PT

(−1)i(t)S
∧
(t1·...·tn+1)(159)

= S0 +
∑

n>1

∑

t=
∧
(t1·...·tn+1)

ti∈PT

(−1)1+i(t1)+...i(tn+1)SnS
t1 . . . Stn+1(160)

= S0 −
∑

n>1

Sng
n+1
c(161)

so that S0 = gc +
∑

n>1 Sng
n+1
c = fc ◦ gc.

In order to establish a link with the noncommutative analogue of Lagrange inver-
sion (see [39]), we can look for the compositional inverse of

(162) fL =

(
1 +

∑

n>1

SnS
n
0

)−1
· S0 ∈ Gncdiff,

where the exponent −1 means here the multiplicative inverse as a formal power series.
Working with trees, consider the series of trees L such that

(163) L = ◦+
∑

k>1

∧
(L·k · ◦)

then L =
∑
Ltt with Lt = 1 or 0.

The inverse gL of fL is
∑
LtSt. Indeed,

gL = S◦ +
∑

k>1

S
∧
(L·k·◦)(164)

= S0 +
∑

k>1

Skg
k
LS0(165)

=

(
1 +

∑

n>1

Sng
n
L

)
S0(166)

and obviously fL ◦ gL = S0.
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Apart from ◦, all the trees of PT occuring in gL are such that the rightmost subtree
of each internal vertex is a leaf (S0). Let PTL be the set of such trees, and let α
be the map sending ◦ to itself and t ∈ PTL to the tree (with possible unary internal
vertices) obtained by removing all the righmost leaves of its internal vertices. We
obtain in this way the tree expansion of Section 5.3 in [39].

One can also define St for such trees. Now

(167) α(L) = ◦+
∑

n>1

∧
(α(L)·n)

and if we replace trees by their Polish codes, the resulting series g satisfies

(168) g = S0 +
∑

n>1

Sng
n,

the functional equation considered in [39]. This correspondence will be explained in
details in Section 12, using a group morphism from Gncdiff to the group GC of the
Catalan operad.

10.3. The conjugacy equation. Let Y be the grading operator on trees (Y (t) =
(d(t)−1)t), and let qY (t) = qd(t)−1t. The noncommutative analogue of the conjugacy
equation can be written as

(169) g(qS0;S) = qgc(g;S)

where the initial diffeomorphism is the corolla series. This equation also reads

(170) q−1g(qS0;S) = qY g = gc ◦ g.
It is not difficult to compute the coefficients of the solution g =

∑
t ct(q)t, noticing

that c◦(q) = 1 and, if t =
∧
(t1, . . . , tn) then,

(171) qd(t)−1ct(q) = ct(q) + ct1(q) . . . ctn(q).

As we have already seen, the coefficients have the closed form

(172) ct(q) =
∏

v∈t

1

qφ(v)−1 − 1

where v runs over the internal vertices of t and φ(v) is the number of leaves of the
subtree of v.

For example, for

(173) t = , ct(q) =
1

(q7 − 1)(q − 1)(q4 − 1)(q3 − 1)
.

Surprisingly, the same coefficients appear in the commutative case, in Ecalle’s
arborified solution of the conjugacy equation, which has been interpreted in [15] in
terms of characters on the Connes-Kreimer Hopf algebra HCK of (non plane) rooted
trees decorated by positive integers. We shall see that there is indeed a kind of
noncommutative arborification, which will be eventually explained by a morphism of
Hopf algebras.
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11. Commutative versus noncommutative

11.1. Commutative diffeomorphisms and the Connes-Kreimer algebra. In
this section we recall briefly how certain (commutative) formal diffeomorphisms can
be obtained as characters of a Hopf algebra (see [15] and [16]), in particular the
solution of the conjugacy equation

(174) qu(h(z)) = h(qz)

where u and h are formal diffeomorphisms of Gdiff (tangent to the identity). The
use of trees to encode diffeomorphisms appears in [14] and is related to differential
operators indexed by trees, an idea originally due to Cayley.

We shall rely upon the references [6], [17] and [18], except that we use the opposite
coproduct, in order to avoid antimorphisms.

A rooted tree4 T is a connected and simply connected set of oriented edges and ver-
tices such that there is precisely one distinguished vertex (the root) with no incoming
edge. A forest F is a (commutative) monomial in rooted trees.

Let l(F ) be the number of vertices in F . One can decorate a forest by N∗, that is,
with each vertex v of F , we associate an element nv of N∗. We denote by TN (resp.
FN) the set of decorated trees (resp. forests). It includes the empty tree, denoted by
∅. As for sequences, if a forest F is decorated by n1, . . . , ns (l(F ) = s), we write

(175) |F | = n1 + . . .+ ns.

For n in N∗, the operator B+
n associates with a forest of decorated trees the tree

with root decorated by n connected to the roots of the forest : B+
n (∅) is the tree with

one vertex decorated by n. For example,

(176) B+
n




n4

n5

n1

n2n3



 =

n

n1

n2
n3

n4

n5

The linear span HCK of FN is the graded Connes-Kreimer Hopf algebra of trees
decorated by N∗ for the product

(177) π(F1 ⊗ F2) = F1F2

and the unit ∅.
The coproduct ∆ can be defined by induction

∆(∅) = ∅ ⊗ ∅,(178)

∆(T1 . . . Tk) = ∆(T1) . . .∆(Tk),(179)

∆(B+
n (F )) = ∅ ⊗B+

n (F ) + (B+
n ⊗ Id) ◦∆(F ).(180)

There exists a combinatorial description of this coproduct (see [17]). For a given
tree T ∈ TN, an admissible cut c is a subset of its vertices such that, on the path
from the root to an element of c, no other vertex of c is encountered. For such an
admissible cut, P c(T ) is the product of the subtrees of T whose roots are in c and

4Not to be confused with rooted plane trees, of which Schröder trees are a special case.
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Rc(T ) is the remaining tree, once these subtrees have been removed. With these
definitions, for any tree T , we have

(181) ∆(T ) =
∑

c adm.

Rc(T )⊗ P c(T ).

For example,

∆

(
n1

n2n3

)
=

n1

n2n3

⊗∅+
n1

n3

⊗•n2+
n1

n2

⊗•n3+•n1⊗•n2•n3+∅⊗
n1

n2n3

Definition 11.1. Given a formal diffeomorphism

(182) u(z) = z +
∑

n>1

unz
n+1,

we associate with any tree T (see [15, 16, 36, 37]) a monomial AT (z) recursively
defined as follows:

• For the empty tree A∅(z) = z,
• If T = Bn

+(∅) then AT (z) = unz
n+1,

• If T = Bn
+(F ) where F = T a1

1 . . . T ak
k is a non empty product of k distinct

decorated trees, with multiplicities a1, . . . , ak (a1 + . . .+ ak = s), then

(183) AT (z) =
1

a1! . . . ak!
Aa1

T1
(z) . . . Aak

Tk
(z)
(
∂a1+···+ak
z unz

n+1
)

The main result is then:

Theorem 11.2. The map ρu sending a character ϕ of HCK to the formal diffeomor-
phism of Gdiff

(184) ρu(ϕ)(z) =
∑

T∈TN

ϕ(T )AT (z)

is a group homomorphism from the group of characters GCK of HCK to Gdiff.

See [15, 16, 36, 37] for proofs.

Going back to the equation u(h(z)) = q−1h(qz), one can observe that

• u = ρu(ϕ0), where ϕ0 is the character given by ϕ0(T ) = 1 (resp. 0) if T = ∅
or T = Bn

+(∅) (resp. otherwise).
• If the conjugating h is given by a character θ (h = ρu(θ)) then q−1h(qz) is
given by the character θ ◦ qY where qY (F ) = q|F |F .

Therefore, the conjugacy equation can be lifted to the character equation

(185) ϕ0 ∗ θ = θ ◦ qY .
This equation is easily solved. For a tree T = Bn

+(T1 . . . Ts), we get

(186) (q|T | − 1)θ(T ) = θ(T1) . . . θ(Ts)

so that

(187) θ(T ) =
∏

v∈T

1

q|Tv| − 1
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where Tv is the subtree of T whose root is the vertex v.
A more explicit expression can be found in [16]. Such “arborified” expressions are

useful for analysis since they allow to prove the analyticity of the conjugating map
under some diophantine conditions on q (ensuring a geometric growth of the numbers
θ(T ), see e.g., [16]).

11.2. Relating HCK and HPT. The similarity of the coefficients ct(q) and θ(T )
suggests a link between both versions of the conjugacy equation, which turns out to
be understandable at the level of Hopf algebras.

Theorem 11.3. Let sk (for “skeleton”) be the map defined from PT to TN by sk(◦) =
∅ and, if t =

∧
(t1, . . . , tn) (n > 2), then sk(t) = Bn−1

+ (sk(t1) . . . sk(tn)).
This map extends naturally to an algebra morphism from HPT to HCK which is

actually a Hopf algebra morphism.

For example if t = ,

(188) T = sk (t) =

2

11

3

The proof follows immediately by comparing the recursive (or combinatorial) def-
inition of the coproducts.

This Hopf morphism induces a group morphism sk∗ sending a character ϕ ∈ GCK

to the character sk∗(ϕ) = ϕ ◦ sk. It sends the character θ to the character defined by

(189) g =
∑

t

ct(q)t.

In other words, for any reduced plane tree t, ct(q) = θ(sk(t)).

11.3. The final diagram. Let us summarize the situation:

• We have a noncommutative analogue of the conjugacy equation whose solution
is a character on HPT defined by the coefficients ct(q),

• In the commutative case, the solution can be computed as a character on
HCK,

• Both characters are related by the group morphism sk∗.

There is also a morphism from Gncdiff to Gdiff, so that we also get the solution in
the commutative case. For u ∈ Gdiff, the algebra map αu sending S0 to z and Sn to
un defines a group morphism and, if we denote by gc ∈ Gncdiff the sum of all corollas,
then αu(gc) = u. This morphism also sends the solution of the noncommutative
conjugacy equation to the solution of the commutative one.

The final picture is then:
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Theorem 11.4. The diagram

(190)

GCK
sk∗−→ Gncdiff

ց
ρu

↓ αu

Gdiff

is commutative.

Proof – Consider a character ϕ ∈ GCK. Then, on the one hand

(191) ρu(ϕ) =
∑

T

ϕ(T )AT (z)

and, on the other hand, as φ = sk∗(ϕ) (φ(t) = ϕ(sk(t)),

(192) αu(φ) = αu

(
∑

t

φ(t)St

)
=
∑

T

ϕ(T )αu



∑

sk(t)=T

St


 .

The above diagram commutes if, for any tree T ,

(193) AT (z) = αu



∑

sk(t)=T

St


 .

The result is obvious for T = ∅, and for any tree Cn = B+
n (∅), since ACn(z) = unz

n+1

and the only reduced tree with such a skeleton is the corolla cn+1:

(194) αu(S
cn+1) = αu(SnS

n+1
0 ) = unz

n+1 = ACn(z).

Now, from Definition 11.1, if T = B+
n (T

a1
1 . . . T ak

k ) where T1,...,Tk are distinct rooted
trees, then

(195) AT (z) =

(
n + 1

a1, a2, . . . , ak

)
Aa1

T1
(z) . . . Aak

Tk
(z)unz

n+1−a1−...−ak .

Let

(196) X0 = S0 and Xi =
∑

sk(t)=Ti

St.

IfW (a0, a1, . . . , ak) is the set of all possible words obtained by concatenating ai copies
of Xi, then

(197)
∑

sk(t)=T

St =
∑

w∈W (n+1−a1−...−ak ,a1,...,ak)

Snw

since a tree has skeleton T if and only if it can be written cn ◦ (t1, . . . tn) for the
operadic composition, where the n-tuple (t1, . . . tn) contains exactly ai trees with

skeleton Ti and n + 1 − a1 − · · · − ak trees ◦. There are exactly

(
n+ 1

a1, a2, . . . , ak

)

such n-tuples, and, by induction,
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αu



∑

sk(t)=T

St


 = Aa1

T1
(z) . . . Aak

Tk
(z)unz

n+1−a1...−ak




∑

w∈W (n+1−a1···−ak,a1,...,ak)

1




(198)

= AT (z)

12. The Catalan operad

The preceding considerations can be repeated almost word for word for the free
operad on one generator in each degree

(199) C =
⊕

n≥1

C Tn

where Tn denotes the set of all plane trees on n vertices:

(200) T1 = {•}, T2 = { }, T3 = { , }, T4 = { , , , , }, . . .

endowed with the same composition as in S. We shall call it the Catalan operad,
although it probably has other names [26, 5].

General plane trees can be represented by their Polish codes, as monomials SI ,
where Sn is now the symbol of an n-ary operation, that is S• = S0 and S

B+(t1,...,tk) =
SkS

t1 . . . Stk . For instance,

(201) S = S3100200.

As observed in [39], these I are also the evaluation vectors on nondecreasing parking
functions.

The discussion of Lagrange inversion and related problems given in [39] can be
interpreted as calculations in the group GC of this operad. The functional equation

(202) g =
∑

n≥0

Sng
n

can be rewritten as

(203) (S0 − S10 − S200 − · · · ) ◦ g = S0

so that it amounts to inverting the series

(204) f = S0 −
∑

n≥1

Sn0n

in the groupGC. The relation with the computations in Section 10.2 can be elucidated
with the help of a surjective group morphism from Gncdiff to GC. Recall that PTL is
the set of Schröder trees such that the rightmost subtree of each internal vertex is a
leaf. Let α be the map which sends ◦ to • and any other tree t of PT :
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• to the the plane tree obtained by removing all the rightmost leaves of its
internal vertices if t is in PTL,

• to 0 otherwise.

This map is surjective on plane trees and induces a linear map on monomials in
S0, S1, ... which happens to be a group morphism from Gncdiff to GC. If we still denote
by α this morphism, then, since

α(gc) = α

(
S◦ +

∑

n>1

S
∧
(◦·n+1)

)
= S0 +

∑

n≥1

Sn0n ∈ GC,(205)

α(gL) = α



(
1 +

∑

n>1

SnS
n
0

)−1
S0


 = S0 −

∑

n≥1

Sn0n ∈ GC.(206)

we can obtain the composition inverse of these series of GC as α(fc) and α(fL), which
gives back the formulas of [39].

The functional equation for g can also be written

(207) g = S0 + Ωg · g =: S0 +B(g, g)

Each plane tree in the solution of (202) corresponds to a unique binary tree BT (S0)
in the solution of (207). This induces a bijection between plane trees and binary
trees: writing (see (41))

(208) B(SI , SJ) = ΩSISJ ,

there is a unique way to decompose a plane tree SI on n vertices as

(209) SI = B(SI1, SI2)

so that recursively

(210) SI = BT (S0, . . . , S0)

for a unique binary tree T with n− 1 internal vertices. For example,

S = S10 = B(S0, S0),(211)

S = S200 = B(S10, S0) = B(B(S0, S0), S0),(212)

S = S110 = B(S0, S
10) = B(S0, B(S0, S0))(213)

We recover in this way the classical rotation correspondence.
In fact, if, in the one to one correspondence with plane tree, SI1 = St1 and SI2 =

St2 , the tree corresponding to SI = B(SI1 , SI2) = ΩSISJ is t = B+(B−(t1), t2). Using
this trick we get for instance

(214) S3100200 = S = B(S , S ) = B(B(S , S•), B(S , S•))
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that corresponds finally to the binary tree B(B(B(S0, B(S0, S0)), S0), B(B(S0, S0), S0)):

(215) •
②② ❊❊

•
②②

•
②②• ❊❊ •

•
Another question which can be investigated in this context is the formal solution

of the generic differential equation

(216)
dx

ds
= f(x(s)), x(0) = x0.

Rather than stating Cayley’s formula for x(k) in terms of rooted trees and deriva-
tives, we shall write down a noncommutative version involving plane trees and the
coefficients of the generic power series f . Assuming without loss of generality that
x0 = 0, we can look for a series X(s) ∈ GC satisfying

(217)
dX

ds
=
∑

n≥0

SnX(s)n.

Thus,

(218) X(s) = S0s+
∑

n≥1

Sn

∫ s

0

X(u)ndu =:
∑

n≥1

Xn

sn

n!

and solving iteratively as usual, we get successively

X1 = S0,(219)

X2 = S10,(220)

X3 = 2S200 + S110,(221)

X4 = 6S3000 + 3S2100 + 3S2010 + 2S1200 + S1110.(222)

Identifying as before trees and their Polish codes,

(223) Xn =
∑

t∈Tn

ctS
t

and setting

(224) Fn(Y1 . . . , Yn) = Sn

∫ s

0

Y1(u) · · ·Yn(u)du

we have

(225) Xn+1 =
n∑

k=1

∑

i1+···+ik=n

Fk

(
Xi1

si1

i1!
, . . . , Xik

sik

ik!

)
,

which gives for the coefficient ct of t = B+(t1, . . . , tk) ∈ Tn+1

(226) ct
sn+1

(n+ 1)!
=

∫ s

0

ct1 · · · ctk
u|t1|+···+|tk|

|t1|! · · · |tk|!
du
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so that

(227) ct =

(
n

|t1|, . . . , |tk|

)
ct1 · · · ctk

which is clearly the recursion for the number of decreasing (or increasing) labellings
of t, also given by the hook-length formula

(228) ct = (n + 1)!
∏

v∈t

1

hv

where hv is the number of nodes of the subtree with root v. For instance, for the tree

that corresponds to the monomial S2100, there are 3 decreasing labelings:

(229)

4

32

1

,

4

23

1

,

4

13

2

.

Replacing each Sk by f(k)

k!
, we recover Cayley’s formula for x(n),

(230)
dnx

dsn
=
∑

|t|=n

a(t)δt,

where

(231) a(t) =
|t|!
t!|St|

,

St being the symmetry group of t,

(232) B+(t1, . . . , tn)! = |B+(t1, . . . , tn)| · t1! · · · tn!, •! = 1.

and the elementary differentials are defined by [4]

(233) δi• = f i, δiB+(t1,...,tn) =

N∑

j1,...,jn=1

(δj1t1 · · · δ
jn
tn )∂j1 · · ·∂jnf i

In particular, the solution is given by

(234) x(s) = x0 +
∑

t

s|t|

|t|!a(t)δt(0)

For example,

(235) x(4) = f ′′′(f, f, f) + 3f ′′(f, f ′(f)) + f ′(f ′′(f, f)) + f ′(f ′(f ′(f))).

Note that with the interpretation of Sn as an n-linear operation, our formal calcula-
tions are valid for x ∈ RN : we can write the Taylor expansion of f as

(236) f(x) = F0 + F1(x) + F2(x, x) + F3(x, x, x) + · · ·
without expliciting the expression of Fn in terms of partial derivatives.
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Once again, the functional equation (217) can be recast as a quadratic fixed point
problem:

(237)
dX

ds
= S0 + (S1 + S2X(s) + S3X

2(s) + · · · )X(s) = S0 + (ΩX ′(s))X(s)

so that

(238) X(s) = S0s+

∫ s

0

ΩX ′(u) ·X(u)du = S0s+B(X(s), X(s))

The bilinear map B acts on trees by

(239) B

(
SI s

i

i!
, SJ s

j

j!

)
=

(
i+ j

i, j

)
ΩSIJ si+j+1

(i+ j + 1)!

13. Appendix: numerical examples

In the case of Lagrange inversion, comparison between the formal noncommutative
solution and numerical examples (specializations of the alphabet, or characters) leads
to interesting insights. We shall give here a (short) list of known workable examples.

13.1. Warmup: A = 1. The alphabet A = 1 is defined by Sn(1) = 1 for all n. In
this case,

(240) φ(z) =
qz

1− z
= qzσz(1)

is a Möbius transformation, and it is trivial to conjugate it to its linear part when
q 6= 1. However, it is a good exercise to work out the series solution. We have

(241) Sn(m) =

(
n+m− 1

n

)
so that L(SI)(1) =

n!

i1! · · · ir!
= n!SI(E)

where E is defined by Sn(E) = 1/n!. Hence,

(242) f(z) =

∫ ∞

0

e−tL

(
zσzt

(
E

1− q

))
dt =

z

1− z
1−q

.

13.2. The logistic map: A = −1. The logistic map is defined by

(243) φ(z) = qz(1− z) = qzσz(−1).

Indeed, by definition, σz(−1) is the inverse of σz(1), so that S1(−1) = −1 and
Sn(−1) = 0 for n > 1.

The recurrence for gn(−1) is here

(244) (1− qn)gn =

n−1∑

k=0

gkgn−1−k

yielding

(245) g1 =
1

1− q
, g2 =

2

(1− q)(1− q2)
, g3 =

5 + q

(1− q)(1− q2)(1− q3)
, . . .

the numerator being a q-analogue of n!.
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For q = −2, 2, 4, these series have explicit forms in terms of elementary functions:

q = −2 : f(z) =

√
3

6

(
2π − 3 arccos

(
z − 1

2

))
, h(z) =

1

2
− cos

(
2z√
3
+
π

3

)
,

q = 2 : f(z) = −1

2
ln (1− 2z) , h(z) =

1

2

(
1− e−2z

)
,

q = 4 : f(z) =
(
arcsin

√
z
)2
, h(z) =

(
sin

√
z
)2
.(246)

Numerical investigations, including a conjecture for the radius of convergence in the
general case, can be found in [7, 8].

13.3. The Ricker map: A = E. This case corresponds to

(247) φ(z) = qzez.

No closed expression is known for f or g, but a numerical study can be found in [7].
We have

(248)

Sn(mE) =
mn

n!
, so that L(SI) =

1i1(i1 + 1)i2(i1 + i2 + 1)i3 · · · (i1 + · · · ir−1 + 1)ir

i1!i2! · · · ir!
and we can compute

(249) f1 =
1

1− q
, f2 =

3q + 1

2!(1− q)(1− q2)
, f3 =

16q3 + 11q2 + 8q + 1

3!(1− q)(1− q2)(1− q3)
, . . .

The numerators are q-analogues of (n!)2, whose combinatorial interpretation requires
further investigations.
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