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Abstract

A novel construction of lattices is proposed. This construction can be thought of as a special class of

Construction A from codes over finite rings that can be represented as the Cartesian product of L linear codes over

Fp1
, . . . ,FpL

, respectively, and hence is referred to as Construction πA. The existence of a sequence of such lattices

that is good for channel coding (i.e., Poltyrev-limit achieving) under multistage decoding is shown. A new family

of multilevel nested lattice codes based on Construction πA lattices is proposed and its achievable rate for the

additive white Gaussian channel is analyzed. A generalization named Construction πD is also investigated which

subsumes Construction A with codes over prime fields, Construction D, and Construction πA as special cases.

I. INTRODUCTION

Lattices and codes based on lattices have been considered as one of the potential transmission schemes

for point-to-point communications for decades. Consider the additive white Gaussian (AWGN) channel

y = x+ z, (1)

where y is the received signal, x is the transmitted signal with input power constraint P , and z ∼ N (0, η2I).
In [4], de Buda showed that one can use lattices shaped by a proper thick shell to reliably communicate

under rates arbitrarily close to the channel capacity 1
2
log (1 + SNR) bits/channel where SNR , P/η2

represents the signal-to-noise ratio. This result was then corrected by Linder et al. [5] which states that

with de Buda’s approach, only those lattice points that lie inside a thin spherical region are allowed to

be used in order to achieve the rates promised by de Buda, which destroys the desired lattice structure.

Urbanke and Rimoldi [6] then showed that lattice codes with the minimum angle decoder can achieve the

channel capacity. On the other hand, for lattice codes with lattice decoding, it was long believed that they

can only achieve 1
2
log (SNR) bits/channel [7]. In [8], Erez and Zamir finally showed that lattice codes can

achieve the channel capacity with lattice decoding with the help of nested lattice shaping and an MMSE

estimator at the receiver. Erez and Zamir’s coding scheme is based on sequences of nested lattices that

are constructed by Construction A [9] [10]1.

Recently, lattices have been adopted to many problems in network communications and their benefits

have gone beyond merely practical aspects [11]. In many networks (e.g. [12]–[16]), it has been shown

that the lattice structure enables one to exploit the structural gains induced by the channels and hence

achieve higher rates than that provided by random codes. In most of these examples, the coding schemes

are based on the random ensemble of nested lattice codes from Construction A by Erez and Zamir [8]. On
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one hand, this ensemble of nested lattice codes is known for its ability of producing capacity-achieving

lattice codes and its structure which is suitable for many problems in network communications. On the

other hand, decoding of a Construction A lattice typically depends on decoding the underlying linear code

implemented over a prime field whose size has to be large in order to have a good lattice code [8] [17].

This results in a large decoding complexity for lattices and codes based on them.

To alleviate this drawback, in this paper, we propose a novel lattice construction called Construction

πA (previously called product construction in [18] a precursor of this paper) that can be thought of

as a generalization of Construction A to codes which can be represented as the Cartesian product of L
linear codes over different prime fields Fp1 , . . ., FpL . This generalization is enabled by a ring isomorphism

between the product of prime fields and the quotient ring
(

Z/ΠL
l=1plZ

)

which is guaranteed by the Chinese

remainder theorem (CRT). Due to the multilevel nature, the Construction πA lattices admit multistage

decoding which decodes the coset representatives level by level. This construction is then shown to be

able to produce lattices that are good for channel coding (Poltyrev-limit achieving) under multistage

decoding. This allows one to achieve the Poltyrev-limit with a substantially lower decoding complexity

as now the complexity is dominated by the code over the prime field with the largest size rather than the

product of them.

Construction πA lattices are then adopted for communication over the AWGN channel. Following [7],

we show the existence of lattice codes with sphere shaping that can achieve 1
2
log(SNR) bits/channel with

multistage decoding. We also tailor a recent construction of nested lattice codes by Ordentlich and Erez

[19] specifically for our Construction πA lattices. For such lattice codes, an isomorphism between lattice

codewords and messages is guaranteed and can be easily identified. The achievable rate of the proposed

multilevel nested lattice codes under multistage decoding is then analyzed. It is shown that with hypercube

shaping, the proposed nested lattice codes only suffer from 1.53 dB SNR loss in shaping gain. This gap

can be further reduced if there exists Construction πA lattices that can provide better shaping than that of

hypercube shaping.

Lattices generated by the Construction πA preserve most of the structure of Construction A lattices

with codes over prime fields and hence can be applied to most of the applications using lattices from

Construction A. However, there are some subtle differences between these constructions that may have a

bearing on the application at hand. For e.g., lattices built from Construction πA appear to be ideally suited

for lattice index coding [20] [21] and more so than other known constructions. Lattices from Construction

πA have been considered for the compute-and-forward paradigm [16] in [1]. In this case, the set of integer

combinations that can be decoded and forwarded may be smaller than those from Construction A since

in effect the modulo operation at the relay is only over a ring instead of over a prime field.

We also provide a generalization of Construction πA to codes over rings. This generalization is called

Construction πD and subsumes Construction A, Construction D [22] [10, Page 232], and Construction

πA as special cases. The main idea which allows this generalization is from the observation made in [23]

indicating the connection between Construction D and Construction A with codes over rings.

A. Organization

The paper is organized as follows. In Section II, some background on lattices and algebra are provided

together with a review and discussion about Construction A lattices. In Section III, we present the

Construction πA lattices and show that such construction can produce good lattices. A detailed comparison

between these lattices and Construction D lattices is provided in Section IV. We then propose in Section V

a generalization of the Construction πA lattices, which we refer to as the Construction πD lattices.

Discussions about the Construction πA lattices are provided in Section VI followed by the proposed

efficient decoding algorithms in Section VII. In Section VIII, we consider using the Construction πA

lattices for point-to-point communication over AWGN channel and propose a novel ensemble of nested

multilevel lattice codes that can achieve the capacity under multistage decoding. Section IX concludes the

paper.
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B. Notations

Throughout the paper, we use N, R, and C to represent the set of natural numbers, real numbers, and

complex numbers, respectively. Z, Z[i], and Z[ω] are the rings of integers, Gaussian integers, and Eisenstein

integers, respectively. We use i ,
√
−1 to denote the imaginary unit and define ω , −1

2
+ i

√
3
2

. We use

P(E) to denote the probability of the event E. Vectors and matrices are written in lowercase boldface and

uppercase boldface, respectively. Random variables are written in Sans Serif font, for example X. We use

× to denote the Cartesian product and use ⊕ and ⊙ to denote the addition and multiplication operations,

respectively, over a finite ring/field where the ring/field size can be understood from the context if it is

not specified.

II. PRELIMINARIES

In this section, we briefly summarize background knowledge on lattices followed by some preliminaries

on abstract algebra. For more details about lattices, lattice codes, and nested lattice codes, the reader is

referred to [8] [17] [10]. We then summarize the famous Construction A lattices.

A. Lattices

An N-dimensional lattice Λ is a discrete subgroup of RN which is closed under reflection and ordinary

vector addition operation. i.e., ∀λ ∈ Λ, we have −λ ∈ Λ, and ∀λ1,λ2 ∈ Λ, we have λ1 +λ2 ∈ Λ. Some

important operations and notions for lattices are defined as follows.

Definition 1 (Lattice Quantizer). For a x ∈ RN , the nearest neighbor quantizer associated with Λ is

denoted as

QΛ(x) = λ ∈ Λ; ‖x− λ‖ ≤ ‖x− λ′‖ ∀λ′ ∈ Λ, (2)

where ‖.‖ represents the L2-norm operation and the ties are broken arbitrarily.

Definition 2 (Fundamental Voronoi Region). The fundamental Voronoi region VΛ is defined as

VΛ = {x : QΛ(x) = 0}. (3)

Definition 3 (Modulo Operation). The mod Λ operation returns the quantization error with respect to Λ
and is represented as

x mod Λ = x−QΛ(x). (4)

The second moment of a lattice is defined as the average energy per dimension of a uniform probability

distribution over VΛ as

σ2(Λ) =
1

Vol(VΛ)

1

N

∫

VΛ

‖x‖2dx, (5)

where Vol(VΛ) is the volume of VΛ. The normalized second moment of the lattice is then defined as

G(Λ) =
σ2(Λ)

Vol(VΛ)2/N
, (6)

which is lower bounded by that of a sphere which asymptotically approaches 1
2πe

in the limit as N → ∞.

Note that G(Λ) is invariant to scaling.

We now define two important notions of goodness for lattices.

Definition 4 (Goodness for MSE Quantization). We say that a sequence of lattices is asymptotically good

for MSE quantization if

lim
N→∞

G(Λ) =
1

2πe
. (7)
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Consider the unconstrained AWGN channel y = x+ z where x, y, and z ∼ N (0, η2 · I) represent the

transmitted signal, the received signal, and the noise, respectively. Moreover, let x ∈ Λ and let there be

no power constraint on x so that any lattice point could be sent.

Definition 5 (Goodness for Channel Coding). We say that a sequence of lattices is asymptotically good

for channel coding if whenever

η2 <
Vol(VΛ)

2
N

2πe
, (8)

the error probability of decoding x from y can be made arbitrarily small as N increases.

Here, by goodness for channel coding, we particularly mean a sequence of lattices that approach the

Poltyrev limit defined in (8). There is a stronger version of Poltyrev-goodness stating that the sequence

of lattices achieves an error exponent lower bounded by the Poltyrev exponent [24]. However, the proof

of achieving Poltyrev exponent is more involved and we do not pursue it in this paper. The interested

reader is referred to [24] and [8].

B. Algebra

In this subsection, we provide some preliminaries that will be useful in explaining our results in the

following sections. All the lemmas are provided without proofs for the sake of brevity; however, their

proofs can be found in standard textbooks on abstract algebra, see for example [25].

We first recall some basic definitions for commutative rings. Let R be a commutative ring. Let a, b 6=
0 ∈ R but ab = 0, then a and b are zero divisors. If ab = ba = 1, then we say a is a unit. Two elements

a, b ∈ R are associates if a can be written as the multiplication of a unit and b. A non-unit element φ ∈ R
is a prime if whenever φ divides ab for some a, b ∈ R, either φ divides a or φ divides b. An integral

domain is a commutative ring with identity and no zero divisors. An additive subgroup I of R satisfying

ar ∈ I for a ∈ I and r ∈ R is called an ideal of R. An ideal I of R is proper if I 6= R. An ideal

generated by a singleton is called a principal ideal. A principal ideal domain (PID) is an integral domain

in which every ideal is principal. Famous and important examples of PID include Z, Z[i] and Z[ω]. Let

a, b ∈ R and I be an ideal of R; then a is congruent to b modulo I if a− b ∈ I. The quotient ring R/I
of R by I is the ring with addition and multiplication defined as

(a+ I) + (b+ I) = (a+ b) + I, and (9)

(a+ I) · (b+ I) = (a · b) + I. (10)

A proper ideal P of R is said to be a prime ideal if for a, b ∈ R and ab ∈ P , either a ∈ P or b ∈ P .

For two ideals I1 and I2 of R, let us define

I1 + I2 , {a+ b : a ∈ I1, b ∈ I2}, (11)

and

I1I2 ,

{

n
∑

j=1

ajbj : aj ∈ I1, bj ∈ I2, n ∈ N

}

. (12)

I1 and I2 are relatively prime if R = I1 + I2, which also implies that I1I2 = I1 ∩ I2. A proper ideal O
of R is said to be a maximal ideal if O is not contained in any strictly larger proper ideal. It should be

noted that every maximal ideal is also a prime ideal but the reverse may not be true. Let R1,R2, . . . ,RL

be a family of rings, the direct product of these rings, denoted by R1 × R2 × . . . × RL, is the direct

product of the additive Abelian groups Rl equipped with multiplication defined by the componentwise

multiplication.



5

Let R1 and R2 be rings. A function σ : R1 → R2 is a ring homomorphism if

σ(1) = 1, (13)

σ(a+ b) = σ(a)⊕ σ(b) ∀a, b ∈ R1, (14)

σ(a · b) = σ(a)⊙ σ(b), ∀a, b ∈ R1. (15)

A homomorphism is said to be an isomorphism if it is bijective. It is worth mentioning that for an ideal

I, mod I : R → R/I is a natural ring homomorphism. A R-module N over a ring R consists of an

Abelian group (N ,+) and an operation R×N → N which satisfies the same axioms as those for vector

spaces. Let N1 and N2 be R-modules. A function ϕ : N1 → N2 is a R-module homomorphism if

ϕ(a+ b) = ϕ(a)⊕ ϕ(b) ∀a, b ∈ N1 and (16)

ϕ(ra) = rϕ(a), ∀r ∈ R, a ∈ N1. (17)

We now present some lemmas which serve as the foundation of the paper.

Lemma 6. If R is a PID, then every non-zero prime ideal is maximal.

Lemma 7. Let I be an ideal in a commutative ring R with identity 1R 6= 0. If I is maximal and R is

commutative, then the quotient ring R/I is a field.

Lemma 8 (Chinese Remainder Theorem). Let R be a commutative ring, and I1, . . . , In be relatively

prime ideals in R. Then,

R/ ∩n
i=1 Ii

∼= (R/I1)× . . .× (R/In) . (18)

Example 9. Consider the PID Z and one of its ideal 6Z. Note that one can do the prime factorization

6 = 2 · 3. Now since 2 and 3 are primes, 2Z and 3Z are prime ideals. Also, since 2Z+ 3Z = Z, they are

relatively prime. This implies that 2 · 3Z = 2Z ∩ 3Z. One has that

Z6
∼= Z/6Z = Z/2 · 3Z
(a)
= Z/2Z ∩ 3Z
(b)∼= Z/2Z× Z/3Z
(c)∼= F2 × F3, (19)

where (a) follows from that 2Z and 3Z are relatively prime, (b) follows from CRT, and (c) is from

Lemma 7. An isomorphism is given by M(v1, v2) = p2v
1 + (−1)p1v

2 mod p1p2Z = 3v1 − 2v2 mod 6Z
where v1 ∈ F2 and v2 ∈ F3. One can easily see from this example that the product of two fields is not a

field. In this example, the product is isomorphic to Z6 which is a ring but not a field.

C. Construction A Lattices

We now review Construction A lattices and discuss some properties of such lattices and some related

constructions. For the sake of brevity, we only discuss Construction A lattices over Z but extensions to

other PID such as Z[i] and Z[ω] are possible (see for example [26]). It is worth noting that although

Construction A from codes over prime fields is more frequently seen in the literature, we consider here

the more general definition of Construction A of lattices from codes over a finite rings Zq (q-ary lattices

in [11]). This more general construction subsumes the construction proposed in Section III as a special

case.

Construction A [9] [10] [11, Page 31] Let q > 1 be an integer. Let k,N ∈ N be integers such that

k ≤ N and let G be a generator matrix of an (N, k) linear code over Zq . Construction A consists of the

following steps:

1) Consider the linear code C = {x = G⊙ y : y ∈ Zk
q}, where all operations are over Zq.
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2) “Expand” C to a lattice in ZN defined as:

ΛA ,
{

x ∈ Z
N : x mod q ∈ C

}

= C + qZ. (20)

It is shown in [11, page 31] that ΛA is a non degenerated lattice, qZN ⊂ Λ ⊂ ZN , and that the volume

of this lattice is qN/M , where M is the size of the code C.

Using lattices from Construction A with codes over Fp for communication over the AWGN channel

has been investigated for decades. It has been shown by Forney et al. [27] that Construction A yields

a sequence of lattices that is good for channel coding whenever the underlying linear codes achieve the

capacity of the corresponding mod pZ-channel and p is sufficiently large (tends to infinity). Loeliger in

[7] used the Minkowski-Hlawka theorem to show that randomly picking a code from the random (N, k)
linear code ensemble and applying the above construction would with high probability result in lattices

that are good for channel coding if p tends to infinity. Using such lattices for the power-constrained

AWGN channel, Loeliger showed that 1
2
log(SNR) is achievable. Erez et al. [17] then moved on and

showed that the random ensemble of Loeliger in fact produces lattices that are simultaneously good in

many senses including channel coding, MSE quantization, covering, and packing with high probability

if the parameters p, k, N are carefully chosen (and of course tend to infinity). This result has allowed

Erez and Zamir to show the existence of a sequence of nested lattice codes generated from Construction

A lattices that can achieve the AWGN capacity, 1
2
log(1 + SNR) bits/channel, under lattice decoding [8].

Since then, the nested lattice code ensemble of Erez and Zamir has been applied to many problems in

networks. It is worth noting that recently, there has been another ensemble of nested lattice codes from

Construction A lattices proposed by Ordentlich and Erez [19] which can achieve the AWGN capacity as

well.

From the practical aspect, there have been some efforts in constructing lattices based on Construction A

with practical coding schemes. In [28] (also appeared in [29]), di Pietro et al. used non-binary low-density

parity-check (LDPC) codes in conjunction with Construction A to construct lattices and referred this family

of lattices to as the low-density A (LDA) lattices. Simulation results reported in [28] showed that such

lattices can approach the Poltyrev-limit to within 0.7 dB at a block length of 10000 under message-passing

decoding. They then moved on and rigorously showed in [30] that LDA lattices can achieve the Poltyrev-

limit under maximum likelihood decoding. Inspired by the success of spatially-coupled LDPC codes for

binary memoryless channels, Tunali et al. [31] replaced LDPC codes in LDA lattices by spatially-coupled

LDPC codes and reported a BP-threshold of 0.19 dB away from the Poltyrev-limit at a block length

of 1.29 × 106. Very recently, it has been shown in [32] that LDA lattice codes can achieve the AWGN

capacity without dithering. It is worth noting that there is another ensemble of lattice codes inspired by

LDPC codes called low-density lattice codes (LDLC) [33]. It has been shown by simulation that LDLC

can provide good error probability performance with low-complex decoding [34], [35]; however, to the

best of our knowledge, no goodness results have been shown for lattice codes drawn from this ensemble.

One crucial issue in Construction A lattices with codes over Fp is that typically speaking, the decoding

complexity depends on decoding the underlying linear code, which is over Fp. However, in order to get a

good lattice, one has to let p grow rapidly; hence this results in a huge decoding complexity. For instance,

the 0.7 dB gap result reported in [28] corresponds to using a linear code over F41 together with a prime

ideal (4 + 5i)Z[i] in Z[i] and the 0.19 dB result in [31] corresponds to a linear code over F31 with a

prime ideal (−1 − 6ω)Z[ω] in Z[ω]. This is mainly because after identifying the coset representative

(i.e., decoding the underlying linear code), lattice points inside a coset are unprotected by any code and

therefore the only obvious way to avoid errors is to increase the Euclidean distance, i.e., to increase p.

III. CONSTRUCTION πA LATTICES
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CL

C1

M
Fp1

FpL

Λ∗

+

Π
L
l=1

plZ
N

Λ
...

...

Fig. 1. The Construction πA of lattices.

In order to alleviate the high decoding complexity of Construction A lattices, we propose a lattice

construction called Construction πA. This construction is a special case of Construction A from codes

over rings. Note that Construction πA can be used for generating lattices over Z, Z[i], and Z[ω]. In this

section, we will only talk about Z and the cases of Z[i] and Z[ω] will follow similarly. A depiction

of Construction πA can be found in Fig. 1. Construction πA heavily relies on the existence of ring

isomorphisms guaranteed by CRT in Lemma 8 (see also [25, Corollary 2.27]).

Proposition 10. Let p1, p2, . . . , pL be a collection of distinct primes and let q = ΠL
l=1pl. There exists a

ring isomorphism M : ×L
l=1Fpl → Z/qZ.

Proof. Note that

Zq
∼= Z/qZ

(a)∼= Z/ ∩L
l=1 plZ

(b)∼= Z/p1Z× . . .× Z/pLZ
(c)∼= Fp1 × . . .× FpL, (21)

where (a) follows from that plZ are relatively prime, (b) is from CRT in Lemma 8, and (c) is due to

the fact that Z is a PID and Lemma 7. Therefore, a ring isomorphism M between the product of fields

×L
l=1Fpl and the quotient ring Z/ΠL

l=1plZ exists.

One way to obtain a ring isomorphism M is to first label every element ζ ∈ Zq , q = ΠL
l=1pl, by the

natural mapping and then define M−1 , (ζ mod p1, . . . , ζ mod pL). Another way is to directly solve

for a1, . . . , aL in Bézout’s identity given by

a1q1 + a2q2 + . . .+ aLqL = 1, (22)

where ql = q/pl and obtain

M(v1, . . . , vL) = a1q1v
1 + a2q2v

2 + . . .+ aLqLv
L mod q, (23)

where vl ∈ Fpl
∼= Zpl .

We are now ready to present the Construction πA lattices.

Construction πA Let p1, p2, . . . , pL be distinct primes. Let ml, N be integers such that ml ≤ N and let

Gl be a generator matrix of an (N,ml) linear code over Fpl for l ∈ {1, . . . , L}. Construction πA consists

of the following steps,

1) Define the discrete codebooks C l = {x = Gl ⊙ y : y ∈ Fml

pl
} for l ∈ {1, . . . , L}.

2) Construct Λ∗ , M(C1, . . . , CL) where M : ×L
l=1Fpl → Z/ΠL

l=1plZ is a ring isomorphism.

3) Tile Λ∗ to the entire RN to form Λ , Λ∗ +ΠL
l=1plZ

N .2

2Note that scaling by real numbers does not change the structure of a lattice; therefore, throughout the paper, we use Λ , Λ∗+ΠL
l=1plZ

N

and Λ ,
(

ΠL
l=1pl

)−1
Λ∗ + Z

N interchangeably.
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([0,0]T, [3,3]T)

([0,0]T, [1,1]T)

([1,2]T, [0,0]T)

([1,2]T, [1,1]T)

([1,2]T, [2,2]T)

([1,2]T, [3,3]T)

([1,2]T, [4,4]T)

([0,0]T, [0,0]T)

([2,1]T, [0,0]T)

([2,1]T, [1,1]T)

([0,0]T, [4,4]T)

([0,0]T, [2,2]T)

([2,1]T, [2,2]T)

([2,1]T, [3,3]T)

([2,1]T, [4,4]T)

Fig. 2. The set of coset representatives Λ∗ generated by M(C1, C2) where the corresponding codewords are also shown.

Note that the existence of the ring isomorphism in step 2) is guaranteed by Proposition 10. Now, let

q = ΠL
l=1pl. Every Construction πA lattice is a Construction A lattice with a linear code over Zq with the

generator matrix G such that G mod pl and Gl generate the same code C l. Consequently, similar to [11,

Proposition 2.5.1], the following properties hold.

Proposition 11. 1) Λ is a lattice and λ ∈ Λ if and only if σ(λ) ∈ C1 × . . .× CL where σ = M−1 ◦
mod ΠL

l=1plZ is the ring homomorphism given in Proposition 10.

2) qZN ⊂ Λ ⊂ ZN .

3) Vol(VΛ) =
∣

∣ZN/Λ
∣

∣ = qN/M , where M is the size of C1 × . . . × CL. Furthermore, if every Gl is

full rank, Vol(VΛ) = ΠL
l=1p

N−ml

l .

Example 12. Let us consider a two-level example where p1 = 3 and p2 = 5. One has Z/15Z ∼= F3 × F5

and a ring isomorphism M(v1, v2) = −p2v
1 + 2p1v

2 mod p1p2 = −5v1 + 6v2 mod 15, where v1 ∈ F3

and v2 ∈ F5. Let us choose G1 = [1, 2]T over F3 and G2 = [1, 1]T over F5 which define the discrete

codebooks C1 and C2, respectively. In Fig. 2, we show the step 2) of Construction πA where we use the

ring isomorphism M to modulate the codewords onto Z/15Z to form Λ∗. Each element λ∗ ∈ Λ∗ is a

coset representative of the coset λ∗ + 15Z2. In Fig. 3, we further tile this set of coset representatives to

the entire R2; this corresponds to the step 3) in Construction πA. It should be noted that, using the above

ring isomorphism, the lattice considered in this example is identical to the Construction A lattice from

the linear code over Z15 with G = [1, 11] (see Fig. 3).

One important reason that makes Construction πA lattices distinguish themselves from other Construc-

tion A lattices with codes over Zq is the close connection to multilevel coding over prime fields Fpl . This

structure is exploited to show the following properties.

Theorem 13. There exists a sequence of Construction πA lattices that is good for channel coding under

multistage decoding.

Proof: See Appendix A. This proof closely follows the steps by Forney in [27] instead of the

Loeliger’s proof in [7].

Remark 14. When proving the Poltyrev-goodness, unlike Construction A lattices with codes over Fp

letting p → ∞ and Construction D lattices [22] [27] letting L → ∞, for Construction πA, we let

ΠL
l=1pl → ∞. Thus, L and p1, p2, . . . , pL are parameters that can be chosen. This construction allows us

to achieve the Poltyrev-limit with a significantly lower decoding complexity compared to Construction A
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Fig. 3. Tiling Λ∗ to the entire R
2 to form Λ. i.e., Λ = Λ∗ + 15Z2.

lattices as now the complexity is not determined by the number of elements in Λ∗ but by the greatest prime

divisor in the prime factorization of |Λ∗|. However, the complexity is higher than that of the Construction

D lattices whose complexity is always determined by coding over F2. This is a direct consequence of the

fact that all primes should be distinct in Construction πA.

Remark 15. The possible values of |Λ∗| are confined in a subset of N. For example, for Z, Constellation

πA allows |Λ∗| to be any square-free integer [36]. Nonetheless, the choices of such |Λ∗| are very rich

and absorb Construction A lattices as special cases. There are many interesting things one can say about

square-free integers. For example, the asymptotic density of square-free integers in Z is 6/π2 ≈ 0.6079
which indicates that for a large portion of elements (infinitely many) in N, Construction πA can be used.

Moreover, the asymptotic density of primes p such that p − 1 is square-free equals the Artin constant

A ≈ 0.3739 which indicates that for a large portion (infinitely many) of p, Construction A over p can be

replaced by Construction πA over p − 1 to for reducing decoding complexity at a cost of a very small

rate loss. The interested reader is referred to [37].

So far, we have only talked about lattices instead of lattice codes. In what follows, we use the proposed

multilevel lattices in conjunction with sphere shaping for transmission over the AWGN channel. We follow

the steps of Loeliger [7] and obtain the following corollary.

Corollary 16. For the AWGN channel, there exists a sequence of lattice codes that can achieve R =
1
2
log

(

P
η2

)

under multistage decoding.

Proof: Let S ⊂ R
n be the spherical shaping region with radius

√
NP and let Λ′ be a good construction

πA lattice from Theorem 13. Let M be the desired number of codewords in the codebook. We scale Λ′

to obtain Λ such that Vol(VΛ) = Vol(S)/M . Note that scaling does not ruin the goodness for channel

coding and thus Λ is also good for channel coding. From [7, Lemma 2], there exists a v ∈ RN such that

|(v + Λ) ∩ S| ≥ Vol(S)/Vol(VΛ) = M . We pick such a v and adopt the translation (v + Λ) ∩ S as our

lattice codebook for transmission. By construction, every codeword lies inside S and thus satisfies the

power constraint.

Now, by the law of large numbers, we know that with high probability, the noise vector z will lie inside

the typical noise ball B(r) where r =
√

(1 + δ′)Nη2 for a δ′ > 0. This typical ball has the volume

Vol(B(r)) ≈ ((1 + δ′)2πeη2)
N
2

√
Nπ

, (24)
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where the approximation is due to Stirling’s approximation. Since Λ is good for channel coding, the

decoding probability of error vanishes if we pick Λ having

Vol(VΛ) ≈
((1 + δ)2πeη2)

N
2

√
Nπ

, (25)

for a δ > δ′ > 0. Therefore, arbitrarily reliable transmission is possible with (v + Λ) ∩ S as long as

R =
1

N
log (M)

=
1

2
log

(

Vol(S)
Vol(VΛ)

)
2
N

≈ 1

2
log

(

(2πeP )/(Nπ)1/N

(1 + δ)(2πeη2)/(Nπ)1/N

)

=
1

2
log

(

P

(1 + δ)η2

)

. (26)

Also note that this rate can be achieved by multistage decoding as Λ is good for channel coding under

multistage decoding. Letting N → ∞ and δ → 0 completes the proof.

Remark 17. Although good lattices with sphere shaping adopted in [7] and above can achieve the AWGN

capacity in the asymptotically high SNR regime, it plays a little role in the recent breakthroughs of

exploiting the channel structures via lattice structures. It is mainly because the spherical shaping cannot

guarantee an isomorphism between messages and lattice codewords, which has been shown crucial for

applications such as compute-and-forward [16]. Later in Section VIII, we will discuss how to construct

nested lattice codes from Construction πA lattices. This technique adopts nested lattice shaping and

guarantees an isomoprhism.

IV. COMPARISON WITH CONSTRUCTION D AND CONSTRUCTION BY CODE FORMULA

We compare and contrast the Construction πA lattices and the Construction D lattices [22] [10, Page

232]. In order to make a detailed comparison, we first summarize Construction D in the following. Let

C1 ⊆ C2 ⊆ . . . ⊆ CL+1 be a sequence of nested linear codes over Fp where CL+1 is the trivial (N,N)-
code and C l is a (N,ml)-code for l ∈ {1, 2, . . . L} with m1 ≤ . . . ≤ mL. The codes are guaranteed to be

nested by choosing {g1, . . . , gN} which spans CL+1 and then using the first ml vectors {g1, . . . , gml} to

generate C l. We are now ready to state Construction D of lattices.

Construction D A lattice ΛD generated by Construction D with L+ 1 level is given as follows.

ΛD =
⋃







pLZN +
∑

1≤l≤L

pl−1
∑

1≤i≤ml

aligi

∣

∣

∣
ali ∈ {0, 1, . . . , p− 1}







, (27)

where all the operations are over RN .

Recently in [38], Construction D has been adopted together with nested polar codes to construct polar

lattices. Polar lattice codes obtained from polar lattices with discrete Gaussian shaping is then shown to

be capacity-achieving [39]. Polar lattices are also shown to be able to achieve the rate distortion bound of

memoryless Gaussian source in [40]. One variant of Construction D called Construction by Code Formula

has attracted a lot of attention since its introduction by Forney in [41], see for example [42], [43]. It is

known that Construction by Code Formula does not always produce a lattice and it has been shown
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recently in [43] that one requires the nested linear codes to be closed under Schur product in order to

have a lattice. We summarize this construction in the following.

Construction by Code Formula A lattice Λcode generated by Construction by Code Formula over Fp

with L+ 1 levels is given as follows.

Λcode = C1 + pC2 + . . .+ pL−1CL + pLZN . (28)

Both Construction D and Construction by Code Formula admit an efficient decoding algorithm as

follows. The decoder first reduces the received signal by modulo pZ. This will get rid of all the contribution

from C2, . . . , CL+1 and the remainder is a codeword from the linear code C1. After successfully decoding,

the decoder reconstructs and subtracts out the contribution from C1 and divides the results by p. Now the

signal becomes a noisy version (with noise variance reduced by a factor of p2) of a lattice point from a

lattice generated by the same construction with only L levels. So the decoder can then repeat the above

procedure until all the codewords are decoded. In [27], Forney et al. showed that Construction D lattices

together with the above decoding procedure achieves the sphere bound (Poltyrev-limit) and hence is good

for channel coding.

At first glance, due to its multilevel nature, Construction πA looks similar to Construction D and Con-

struction by Code Formula. Some important differences between Construction πA and the two constructions

described above are discussed in the following.

1) Construction πA relies solely on the ring (or Z-module) isomorphism while Construction D and

Construction by Code Formula require the linear code at each level to be nested into those in the

subsequent levels. The removal of such requirement makes the rate allocation and code construction

much easier for the Construction πA lattices.

2) A fundamental difference is that Construction πA requires the codes used in different levels to be

over different fields while Construction D allows them to be over the same field but requires the

codes to be nested. Construction by code formula relaxes the nesting condition but may not always

form a lattice.

3) The mapping from C1× . . .×CL to Z/pL+1Z in Construction D and Construction by Code Formula

as a whole does not have the ring homomorphism property possessed by our Construction πA. i.e.,

integer linear combinations of lattice points may not correspond to linear combination of codewords

over Fp for C1, . . . , CL. The lack of ring homomorphisms renders these two constructions not

straightforward to be used for applications such as compute-and-forward [16]. However, if one does

not insist on working over finite fields, Construction D can again be used for compute-and-forward.

Please see the following remark.

Remark 18. In [23, Proposition 2], Feng et al. shows that Construction D can be viewed as Construction

A with a code over the finite chain ring ZpL−1 . Thus, if one would code over the ring ZpL−1 , compute-

and-forward can still be carried out in the ring level. Take (28) for example, although we may not be able

to know the codeword in each C l, l ∈ {1, . . . , L}, we will know the sum (weighted by pl) as an element

in the ring ZpL−1 .

V. CONSTRUCTION πD LATTICES

Motivated by the observation made in Remark 18, we now consider a generalization of the Construction

πA lattices. This generalization substantially enlarges the design space and further contains Construction D

as a special case. We refer to this generalization as Construction πD. The main enabler of this generalization

is the following proposition.

Proposition 19. Let q ∈ N be any natural number whose prime factorization is given by q = ΠL
l=1p

el
l .

There exists a ring isomorphism M : ×L
l=1Zp

el
l

→ Z/qZ. Moreover, σ = M−1 ◦ mod qZ is a ring

homomorphism.

Proof: Similar to the proof of Proposition 10.
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Fig. 4. The set of coset representatives Λ∗ generated by M(C1, C2) where the corresponding codewords are also shown.

Construction πD Let q ∈ N whose prime factorization is given by q = ΠL
l=1p

el
l . Let ml, N be integers

such that ml ≤ N and let Gl be a generator matrix of an (N,ml) linear code over Zp
el
l

for l ∈ {1, . . . , L}.

Construction πD consists of the following steps,

1) Define the discrete codebooks C l = {x = Gl ⊙wl : wl ∈ (Zp
el
l
)m

l} for l ∈ {1, . . . , L}.

2) Construct Λ∗ , M(C1, . . . , CL) where M : ×L
l=1Zp

el
l
→ Z/qZ is a ring isomorphism.

3) Tile Λ∗ to the entire RN to form ΛπD
, Λ∗ + qZN .

Similar to ΛπA
, it can be shown that a real vector λ belongs to ΛπD

if and only if σ(λ) ∈ C1 × . . .×CL

where σ , M−1 ◦ mod qZ is a ring homomorphism. Note that in the step 1) of the Construction πD

procedure, we use coding over the finite chain ring Zp
el
l

for the level l. Thus, thanks to [23, Proposition

2], this subsumes the Construction D procedure and hence one can implement Construction D for each

level. In the following, we provide an example with two levels where the first one is over a finite chain

ring and the second one is over a finite field.

Example 20. Let us consider a two level example with q = 12 = 22 · 3. One has Z/12Z ∼= Z4 × F3 and

a ring isomorphism M(0, 0) = 0, M(1, 1) = 1, . . ., M(3, 2) = 11. Let us choose

G1 =

[

0 1
1 1

]

, (29)

over Z4 and G2 = [1, 1]T over F3. Also, since Z4 is a finite chain ring, we can apply the Construction

D procedure for the first level. In Fig. 4, we show the step 2) of Construction πD where we use the ring

isomorphism M to modulate the codewords onto Z/12Z to form Λ∗. Each element λ∗ ∈ Λ∗ is a coset

representative of the coset λ∗ +12Z2. In Fig. 5, we further tile the coset representatives to the entire R2;

this corresponds to the step 3) in Construction πA. An illustration of Construction πD for this particular

example can be found in Fig. 6.

Note that when setting L = 1 and e1 = 1, Construction πD reduces to Construction A over a finite field

Fp1 . Setting L = 1 makes it Construction A over a finite chain ring Zp
e1
1

, which subsumes Construction D

as a special case. Finally, when setting e1 = . . . = eL = 1, we obtain Construction πA. Hence, Construction

πD is a general means of constructing lattices from codes and contains Construction A, Construction D,

and Construction πA as special cases. Moreover, Construction πD is more than these three special cases.

Particularly, q can take any natural number regardless its prime factorization. Thus, Construction πD

substantially expands the design space and further eases the rate allocation problem.
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Fig. 6. An example of the Construction πD lattice.

To show the ability to produce Poltyrev good lattices, for Construction πD, one can follow the proof

in Theorem 13 with a careful treatment to those levels with el 6= 1. One option is to use Construction D

for those levels, i.e., one uses a sequence of el nested linear codes to construct a linear code over Zp
el
l

.

Another option is to adopt a capacity-achieving linear code over Zp
el
l

proposed in [44] at the lth level.

VI. DISCUSSIONS

In this section, we first point out that ring isomorphisms are not necessary and Z-module isomorphisms

suffice in order to get a lattice. This is practically relevant as this increases the design space. An easy

way to generate a Z-module isomorphism is also provided which closely follows the set partition rule of

Ungerboeck [45]. We then provide a brief comparison of decoding complexity between the Construction

πA lattices and the Construction A lattices with codes over prime fields.

A. Z-Module Isomorphisms Suffice

One may have already noticed that in Proposition 11 and Theorem 13, we only use the fact that M is

a Z-module isomorphism instead of a ring isomorphism. In fact, since a lattice is a free Z-module so the

requirement of ring isomorphisms may be too strong and Z-module isomorphisms suffice. However, the

requirement of ring isomorphisms appears to be imperative for some applications such as compute-and-

forward [1]. In the sequel, we discuss Construction πA with Z-module isomorphisms.

We begin by noting that if we regard the both sides of (21) as finitely-generated Abelian groups, i.e.,

Z-modules, one has that the following Z-module homomorphisms exists

ϕ : Z
mod ΠL

l=1
plZ→ Z/ΠL

l=1plZ
M−1

→ Z/p1Z× . . .× Z/pLZ, (30)
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where now M is a Z-module isomorphism. One can show that Construction πA with this M in the step

2) would result in a lattice Λ and λ ∈ Λ if and only if ϕ(λ) ∈ C1 × . . . × CL. In the following, we

provide an explicit construction of a Z-module isomorphism and give an example in Z[ω] which relates

the proposed multilevel lattices to the Ungerboeck set partitions [45].

Theorem 21. Let p1, . . . , pL be a collection of primes which are relatively prime. The following mapping

M(v1, . . . , vL) ,

L
∑

l=1

vlΠL
l′=1,l′ 6=lpl′ mod ΠL

l=1plZ, (31)

where vl ∈ Fpl , is a Z-module isomorphism from ×L
l=1Fpl to Z/ΠL

l=1plZ. Therefore, ϕ , M−1 ◦
mod ΠL

l=1Z[ω] is a Z-module homomorphism.

Proof: Let vlk ∈ Fpl for k ∈ {1, 2} and l ∈ {1, . . . , L}. Consider

M(v1k, . . . , v
L
k ) =

L
∑

l=1

vlkΠ
L
l′=1,l′ 6=lpl′ mod ΠL

l=1plZ. (32)

One has that

M(v11, . . . , v
L
1 ) +M(v12, . . . , v

L
2 ) mod ΠL

l=1plZ

=

L
∑

l=1

(vl1 + vl2)Π
L
l′=1,l′ 6=lpl′ mod ΠL

l=1plZ

=

L
∑

l=1

(vl1 ⊕ vl2 + ζ lpl)Π
L
l′=1,l′ 6=lpl′ mod ΠL

l=1plZ

=
L
∑

l=1

(vl1 ⊕ vl2)Π
L
l′=1,l′ 6=lpl′ +

L
∑

l=1

ζ lΠ
L
l=1pl mod ΠL

l=1plZ

=
L
∑

l=1

(vl1 ⊕ vl2)Π
L
l′=1,l′ 6=lφl′ mod ΠL

l=1plZ

= M(v11 ⊕ v12, . . . , v
L
1 ⊕ vL2 ), (33)

where ζ l ∈ ZN .

It should be noted that there exist many other Z-module homomorphism and the design space is quite

large. We now provide an example in Z[ω] and relate the above construction of Z-module isomorphism

to the Ungerboeck set partitions [45].

Example 22. Consider Z[ω] the ring of Eisenstein integers. Let φ1 = 3 + 2ω and φ2 = 1− 2ω. One can

verify that both φ1 and φ2 are Eisenstein primes with |φ1|2 = |φ2|2 = 7 and φ1 and φ2 are relatively prime.

Thus, we have Z[ω]/φ1φ2Z[ω] ∼= F7 × F7. The above algorithm would produce a Z-module isomorphism

given by

M(v1, v2) , φ2v
1 + φ1v

2 mod φ1φ2Z[ω]. (34)

where v1, v2 ∈ Fq. This isomorphism is shown in Fig. 7 where the first and second digits represent

elements in the first and second fields, respectively. One observes that this mapping closely follows the

set partition rules of Ungerboeck that the minimum intra-subset distance is maximized when partitioning

at each level.
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Fig. 7. An example of the Z-module isomorphism in (31) from Z[ω] with φ1 = 3 + 2ω and φ2 = 1− 2ω.

B. Comparison of Complexity

To emphasize the advantage of Construction πA lattices over Construction A lattices, in Fig. 8, we

present a rough comparison of the decoding complexity between lattices from these two constructions.

The underlying linear codes are chosen to be non-binary LDPC codes. Recall that for Construction A

lattices the decoding complexity is dominated by |Λ∗| while for the Construction πA lattices over Z, it

only depends on the greatest prime divisor of |Λ∗|. For coding over Fp, we assume that a p-ary LDPC

code is implemented for which the decoding complexity is reported to be roughly O(p log(p)) [46]. Note

that for Construction πA, we exclude those lattices that can also be generated by Construction A and

those lattices that would result in higher complexity than Construction A. Because for those parameters,

one could just use Construction A. One observes in Fig. 8 that Construction πA significantly reduces

the decoding complexity. Moreover, one can expect the gain to be larger as the constellation size |Λ∗|
increases.

The same comparison is also performed for lattices over Z[i] and over Z[ω]. Note that allowing lattices

over such rings of integers enlarges the design space and may further decrease the decoding complexity.

For example, |Λ∗| = 25 was not an option for Construction πA over Z; however, we know that 5Z[i] splits

into two prime ideals (1+ 2i)Z[i] and (1− 2i)Z[i]. Moreover, these two prime ideals are relatively prime

so the CRT gives

Z[i]/5Z[i] ∼= Z[i]/(1 + 2i)Z[i]× Z[i]/(1 − 2i)Z[i]
∼= F5 × F5. (35)

One can use Construction πA over Z[i] with these two prime ideals. The resulted lattice would have

decoding complexity dominated by coding over F5. Another example can be found when |Λ∗| = 49
which was not an option for Construction πA over Z. However, 7Z[ω] = (2+ 3ω)(−1− 3ω)Z[ω]. Hence,

the CRT gives

Z[ω]/7Z[ω] ∼= Z[ω]/(2 + 3ω)Z[ω]× Z[ω]/(−1− 3ω)Z[ω]
∼= F7 × F7. (36)

One can use Construction πA over Z[ω] with prime ideals (2+3ω)Z[ω] and (−1−3ω)Z[ω]. The resulting

lattice would have decoding complexity dominated by coding over F7.
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VII. LOW-COMPLEXITY DECODERS

In Section III, it has been shown that Construction πA is able to produce a sequence of lattices that is

Poltyrev-good under multistage decoding. We now propose two decoders which further take advantage of

the additional structure of Construction πA lattices. Before starting, we note that the algorithms proposed

here can be straightforwardly extended to Construction πD lattices but we only present the algorithms for

Construction πA lattices for the sake of brevity. A remark (Remark 24) will be given later to discuss the

extension to Construction πD lattices.

The key property that we exploit here is that from CRT, any a ∈ Z can be uniquely represent as

a = M(b1, . . . , bL) + ã ·ΠL
l=1pl where bl ∈ Fpl and ã ∈ Z and

a mod pl = bl. (37)

We now discuss the first proposed decoder which is referred to as the serial modulo decoder (SMD). This

decoder is motivated by a decoding algorithm of Construction D lattices [27] and heavily relies on the

additional structure (37) provided by CRT . The SMD first removes the contribution from all but the first

level by performing mod p1Z
N to form

y1 , y mod p1Z
N = (x + z) mod p1Z

N

=
(

M(c1, . . . , cL) + ΠL
l=1plζ + z

)

mod p1Z
N

(a)
=

(

c1 + z mod p1Z
N
)

mod p1Z
N , (38)

where (a) follows from the distributive property of the modulo operation and (37). This procedure

transforms the channel into a single level additive mod p1Z
N channel. The decoder then forms ĉ1 an

estimate of c1 from y1 by decoding the linear code C1. This transformation converts the AWGN channel

into the mod p1 channel and thus is suboptimal; however, the loss is negligible in the high SNR regime

as mentioned in [27].

For the levels s ∈ {2, . . . , L}, the decoder assumes all the previous levels are correctly decoded, i.e.,

ĉl = cl for l < s. It then subtracts all the contributions from the previously decoded levels from y to

form

M(0, . . . , 0, cs, . . . , cL) + ΠL
l=1plζ + z. (39)

Note that both M(0, . . . , 0, cs, . . . , cL) and ΠL
l=1plζ are multiples of Πs−1

l=1 pl and dividing (39) by Πs−1
l=1 pl

results in

Ms(cs, . . . , cL) + ΠL
l=splζ + z̃s, (40)
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Fig. 9. The proposed SMD decoder for Construction πA lattices.

where Ms is a bijective mapping from Fps × . . .×FpL to Z/ΠL
l=splZ and z̃s , z/Πs−1

l=1 pl whose elements

are i.i.d. Gaussian distributed with zero mean and variance η2/(Πs−1
l=1 pl)

2. We can now again remove the

contributions from the next levels to form

ỹs =
(

Ms(cs, . . . , cL) + ΠL
l=splζ + z̃s

)

mod psZ
N

(a)
=

(

ds ⊙ cs + z̃s mod psZ
N
)

mod psZ
N , (41)

where (a) follows by the structure of mapping in (23) and ds = (asqs/Π
s−1
l=1 pl) mod ps. Note that since

Cs is linear, ds⊙cs ∈ Cs. This procedure makes the channel experienced by the sth coded stream a single

level additive mod psZ
N channel with noise variance reduced by a factor of (Πs−1

l=1 pl)
2. The decoder then

forms ĉs an estimate of cs from ỹs by decoding the linear code Cs.

In the last level of decoding, one does not have to perform the modulo operation as there is only one

level left. Therefore, the decoder at the last level directly decodes the uncoded integer ζ by quantizing

ỹL+1 , ζ + z̃L+1 to the nearest integer vector. We summarize the decoding procedure of the proposed

SMD in Fig. 9.

We now propose another decoder which is very similar to the SMD but can be implemented in a parallel

fashion. Thus, this decoder is referred to as the parallel modulo decoder (PMD). Due to its parallel nature,

depending on the total number of levels L, this decoder can have substantially smaller latency than the

multistage decoding and the SMD.

Note that, from (37), x mod plZ
N = cl for every l ∈ {1, . . . , L}. For the PMD, we simultaneously

form

ys = (x+ z) mod psZ
N

=
(

M(c1, . . . , cL) + ΠL
l=1plζ + z

)

mod psZ
N

(a)
=

(

cs + z mod psZ
N
)

mod psZ
N , (42)

for s ∈ {1 . . . , L} where (a) follows again from (37). The decoder then directly forms ĉs an estimate of

cs from ys by decoding the linear code Cs for s ∈ {1, . . . , L}. Now, instead of having a reduced noise z̃s

at the sth level as in (41), the noise random variables before the modulo operations are the same for all the

levels. Thus, the performance of the PMD would be worse than that of the SMD for a same Construction

πA lattice. For the last step, the parallel decoder finds the uncoded integer ζ from yL+1 , ỹL+1.
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mod p1

y

y1

...

DEC 1
ĉ1

mod pL
yL

ĉL

...

QZ(.)

(ΠL
l=1

pl)
−1

ζ̂

+
−

X

X

−ΠL
l=2

pl

X

−ΠL−1
l=1

pl

+

yL+1

DEC L

Fig. 10. The proposed PMD decoder for Construction πA lattices.

Remark 23. Depending on the performance and latency requirements, one can implement a mixed decoder

which is in between SMD and PMD in a fashion that some levels are implemented serial and others are

implemented parallel.

Remark 24. Note that the proposed algorithms can be extended to decoding of lattices from Construction

πD by first performing mod pell Z at the lth level to get a noisy version of the lth codeword which is

over the finite chain ring Zp
el
l

. Then the decoding problem becomes decoding of a Construction D lattice

constructed over Fpl with el levels and the decoding algorithm described in Section IV can be used.

We present some numerical results which consider using Construction πA lattices with the hypercube

shaping over the AWGN channel. i.e., we consider the AWGN channel given by y′ = γx + z′ where

x is an element of Λ mod ΠL
l=1plZ

N a Construction πA lattice shaped by a hypercubic coarse lattice,

γ is for the power constraint, and z′ is the additive Gaussian noise having distribution N (0, I). We can

equivalently consider the model

y = x+ z, (43)

where z , z′/γ having covariance matrix I/γ2.

We now discuss the information rates achievable by different decoders. For the multistage decoder, one

has

RMSD = I(X;Y)
(a)
= I(C1, . . . ,CL;Y)

(b)
= I(C1;Y) +

L
∑

l=2

I(Cl;Y|C1, . . . ,Cl−1), (44)

where (a) is due to the fact that M is a ring isomorphism and hence is bijective and (b) follows from

the chain rule of mutual information [47]. The achievable information rates for the SMD and PMD can

be analyzed similarly and are given by

RSMD = I(C1;Y1) +
L
∑

s=2

I(Cs; Ỹs|C1, . . . ,Cs−1), (45)
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Fig. 11. Average achievable rates for constellations with different size.

and

RPMD = I(C1;Y1) +
L
∑

s=2

I(Cs;Ys), (46)

respectively.

The information rates achievable by the multistage decoder, SMD, and PMD are computed via Monte-

Carlo simulation. In Fig. 11, we provide two examples with two levels where the lattices are generated

by p1 = 2, p2 = 3 and p1 = 2, p2 = 13, respectively. One observes that for both cases, as expected, the

multistage decoder performs the best among these decoders as it is also the most complex one. Also, since

we are using the hypercube shaping, the coding scheme suffers from a loss of 1.53 dB in the high SNR

regime that corresponds to the shaping gain. On the other hand, although being suboptimal, the SMD can

support information rates close to that provided by the multistage decoder, especially in the medium and

high SNR regimes. For the PMD, the achievable rates are much worse than the other two in the low SNR

regime but it is still of interest in the high SNR regime due to its low complexity and low latency.

VIII. NESTED LATTICE CODES FROM CONSTRUCTION πA

In this section, we construct multilevel nested lattice codes from Construction πA lattices. Our con-

struction closely follow the one by Ordentlich and Erez [19] rather than the frequently used one by Erez

and Zamir in [8]. For codes from the proposed construction, an isomorphism between lattice codewords

and messages can be easily identify as detailed in [1]. Again, we only consider constructing nested lattice

codes over Z but the generalizations to Z[i] and Z[ω] are straightforward.

A. Construction and Main Result

Let p1, . . . , pL be distinct primes and M : ×L
l=1Fpl → Z/ΠL

l=1plZ be a ring isomorphism. We first

generate a pair of nested linear codes (C l
f , C

l
c) such that C l

c ⊆ C l
f for each l ∈ {1, . . . , L} as follows,

C l
c = {Gl

c ⊙wl|wl ∈ F
ml

c
pl
}, (47)

C l
f = {Gl

f ⊙wl|wl ∈ F
ml

f
pl }, (48)

where Gl
c is a N ×ml

c matrix and

Gl
f =

[

Gl
c G̃l

]

, (49)
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where G̃l is a N × (ml
f −ml

c) matrix. We then generate (scaled) lattices Λf and Λc from Construction

πA with the linear codes C l
f and C l

c, respectively, as follows.

Λf , γ
(

ΠL
l=1pl

)−1M(C1
f , . . . , C

L
f ) + γZN ,

Λc , γ
(

ΠL
l=1pl

)−1M(C1
c , . . . , C

L
c ) + γZN , (50)

where γ is chosen such that the σ2(Λc) = P . Clearly, Λc ⊆ Λf and the design rate is given by

Rdesign =

L
∑

l=1

ml
f −ml

c

N
log(pl). (51)

The design rate becomes the actual rate if every Gl
f is full-rank which will be fulfilled with high probability.

B. Encoding and Decoding

The transmitter first decomposes its message into (w1, . . . ,wL), where wl is a length (ml
f −ml

c) vector

over Fpl , and bijectively maps it to a lattice point t ∈ Λf ∩ VΛc
where

t =
(

γ
(

ΠL
l=1pl

)−1M(c1, . . . , cL) + γζ
)

mod Λc, (52)

with ζ ∈ Z
N and cl , Gl

f ⊙ [0ml
c
wl]T . It then sends a dithered version

x = (t− u) mod Λc. (53)

Upon receiving y, the receiver scales it by the linear MMSE estimator given by

α ,
P

P + η2
, (54)

and adds the dithers back to form

[αy + u] mod Λc = [t− (1− α)x+ αz] mod Λc

= [t+ zeq] mod Λc

=
[

γ
(

ΠL
l=1pl

)−1M(c1f , . . . , c
L
f ) + γζ + zeq

]

mod Λc (55)

where

zeq , αz− (1− α)x mod Λc, (56)

with

1

N
E‖Zeq‖2 ≤

1

N
E‖αZ− (1− α)X‖2

= (1− α)2P + α2η2

=
Pη2

P + η2
. (57)

Due to the random dither, t and zeq are statistically independent to each other. One can now perform

multistage decoding to decode the fine lattice point t by decoding the equivalent codewords cl for l ∈
{1, . . . , L} level by level.
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C. Achievable Rate

Let Z
∗
eq be the i.i.d. Gaussian random vector having distribution N (0, σ2

eq) where σ2
eq ,

Pη2

P+η2
. The

achievable rate of the proposed nested lattice codes is given in the following theorem.

Theorem 25. For the AWGN channel, there exists a sequence of nested lattice codes from the proposed

ensemble that can achieve the following rate under multistage decoding,

R =
1

2
log

(

1 +
P

η2

)

− 1

2
log(2πeG(Λc)) +

1

N
D(Zeq||Z∗

eq), (58)

where D(.|.) is the Kullback-Leibler divergence [47].

Before proving this theorem, we discuss the implications of this result. We first note that if Λc happens

to be good for MSE quantization, then G(Λc) → 1/2πe and

1

N
D(Zeq‖Z∗

eq) → 0, (59)

from the main result in [48]. This will imply the existence of capacity-achieving multilevel nested lattice

codes under multistage decoding. Unfortunately, we have not been able to prove the existence of such Λc

with our construction3. On the other extreme, if Λc = γZN , that is, hypercube shaping, G(Λc) = 1/12,

we have

R =
1

2
log

(

1 +
P

η2

)

− 1

2
log(

πe

6
) +

1

N
D(Zeq||Z∗

eq)

→ 1

2
log

(

1 +
P

η2

)

− 1

2
log(

πe

6
), (60)

in the limit as SNR tends to infinity. This can be justified by observing that α → 1 and thus Zeq → Z
∗
eq

as SNR→ ∞. This result conforms with the 1.53 dB loss in shaping gain in the asymptotically high SNR

regime [27].

Proof: Lemma 26 in Appendix B establishes that there exists a sequence of the proposed lattices

whose probability of error under multistage decoding can be made arbitrarily small as N → ∞ if

Vol(Λf)
2
N > 2πeσ2

eq2
− 2

N
D(Zeq‖Z∗

eq). (61)

Therefore, there exists a sequence of proposed nested lattice codes with hypercube shaping that can achieve

the design rate per real dimension given by

Rdesign =
1

N
log

(

Vol(Λc)

Vol(Λf)

)

=
1

N
log(Vol(Λc))−

1

N
log(Vol(Λf))

N→∞→ 1

2
log

P

G(Λc)
− 1

2
log 2πeσ2

eq2
− 2

N
D(Zeq‖Z∗

eq)

=
1

2
log

(

1 +
P

η2

)

− 1

2
log(2πeG(Λc)) +

1

N
D(Zeq||Z∗

eq). (62)

Moreover, as mentioned above, with high probability, each Gl
f is full rank and the design rate becomes

the actual rate.

3Our preliminary result in [1] falsely claims that we can prove the existence of such lattices with our construction. The proof there was

wrong mainly because the correlation between codewords induced by the proposed construction prevents direct usage of the arguments in

[19].
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IX. CONCLUSIONS

In this paper, a subclass of Construction A lattices called Construction πA has been studied. This

construction has been shown to be able to produce a sequence of lattices that is good for channel coding

under multistage decoding. Inspired by the efficient decoding algorithm for Construction D lattices, two

low-complexity decoding algorithms have been proposed and shown offering reasonably good performance

in the medium and high SNR regimes. As an important application, Construction πA lattices have been used

to construct nested lattice code ensemble that guarantees an isomorphism between lattice codewords and

messages. The achievable rate of the proposed multilevel nested lattice codes under multistage decoding

has then been analyzed. A generalization of Construction πA called Construction πD was also studied

which substantially enlarges the design space and subsumes Construction A with codes over prime fields,

Construction D, and Construction πA as special cases.
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APPENDIX A

PROOF OF THEOREM 13

We begin by noting that any lattice Λ generated by Construction A can be written as (up to scaling)

Λ = Λ∗ + pZN , where Λ∗ is a coded level resulting from mapping a (N, k) linear code to FN
p via a ring

isomorphism and pZN , Λ′ can be viewed as an uncoded level. As shown in [27], one can first reduce

the received signal by performing mod Λ′. This will make the equivalent channel a Λ/Λ′ channel. When

the underlying linear code is capacity-achieving for the Λ/Λ′ channel, the probability of error for the

first level can be made arbitrarily small. Moreover, by choosing p arbitrarily large, the probability that

one would decode to a wrong lattice point inside the same coset can be made arbitrarily small. i.e., the

probability of error for the second level can be made arbitrarily small. Forney et al. in [27] showed the

existence of a sequence of lattices that is good for channel coding under the above two conditions.

In the following, we closely follow the steps in [27] to show the existence of lattices that are good for

channel coding generated by our construction. Let p1, p2, . . . , pL be a collection of distinct odd primes.

Similar to lattices from Construction A, a Construction πA lattice can be written as Λ = Λ∗ +ΠL
l=1plZ

N

where Λ∗ is obtained from the steps 1) and 2) in Section III and ΠL
l=1plZ

N , Λ′ is an uncoded level.

Similar to [27], the probability of error in the uncoded level can be made arbitrarily small when we

choose ΠL
l=1pl sufficiently large. Therefore, one then has to show that the linear code C1× . . .×CL over

Fp1 × . . .×FpL together with the mapping M is capacity-achieving for the Λ/Λ′ channel under multistage

decoding.

Now, by the chain rule of mutual information [47], one has that

I(Y;X) = I(Y;M(C1, . . . ,CL))

= I(Y;C1, . . . ,CL) =

L
∑

l=1

I(Y;Cl|C1, . . . ,Cl−1)). (63)

Hence, the only task remained is showing that linear codes over Fpl can achieve the conditional mutual

information I(Y;Cl|C1, . . . ,Cl−1). Note that in [49, Section III.A], it is shown that the average error

probability P̄
(N)
e over the ensemble of random linear codes (form a balanced set) exponentially decays

with N for all rates smaller than the capacity if the channel is regular. If we randomly choose one code

from this ensemble, by Markov inequality, we have

P(P (N)
e ≥ sP̄ (N)

e ) <
1

s
, ǫ, (64)
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where PN
e is the probability of error and s, ǫ > 0. This guarantees that by randomly picking a code from

this ensemble, with probability 1−ǫ, the error probability is not deviated too much from its average which

is exponentially decayed in N .

We now follow the proof in [27] and show that the equivalent channel at each level is regular in the

sense of Delsarte and Piret [49]. As restated in [27], a channel with transition probabilities {f(y|b), b ∈
B, y ∈ Y } is regular if the input alphabet can be identified with an Abelian group B that acts on the

output alphabet Y by permutation. In other words, if a set of permutations {τb, b ∈ B} can be defined

such that τb(τb′(y)) = τb⊕b′(y) for all b, b′ ∈ B and y ∈ Y such that f(y|b) depends only on τb(y). Note

that since we are considering the Λ/Λ′ channel, the additive noise is actually the Λ′-aliased Gaussian

noise given by

fΛ′(z) =
∑

λ∈Λ
gη2(z + λ), z ∈ R

N , (65)

where gη2(.) is the Gaussian density function with zero mean and variance η2.
Now, suppose we are at the lth level’s decoding. i.e., all the codewords in the previous levels have

been successfully decoded. The receiver first subtracts out the contribution from the previous levels by

y−M(c1, . . . , cl−1, 0, . . . , 0) mod Λ′. We show that the equivalent channel seen at the lth level’s decoding

is regular. For b ∈ Fpl define

b ,











M(0, . . . , 0, b, vl+1
1 , . . . , vL1 )

M(0, . . . , 0, b, vl+1
2 , . . . , vL2 )

...

M(0, . . . , 0, b, vl+1
S , . . . , vLS )











, (66)

where (vl+1
s , . . . , vLs ) ∈ Fpl+1

× . . . × FpL for s ∈ {1, . . . , S} and none of these vectors are exactly the

same. Therefore, there are total S = Πl′>lpl′ possibilities. Also, note that the ordering of elements in b

does not matter and can be arbitrarily placed. Thus, given the previously decoded codewords, b is fully

determined by b. For y ∈ RN , let us now define the following,

τb(y) , y − b mod Λ′

,











y −M(0, . . . , 0, b, vl+1
1 , . . . , vL1 ) mod Λ′

y −M(0, . . . , 0, b, vl+1
2 , . . . , vL2 ) mod Λ′

...

y −M(0, . . . , 0, b, vl+1
S , . . . , vLS ) mod Λ′











. (67)

One can verify that

τb(τb′(y)) = τb′(y)− b mod Λ′

(a)
=











y −M(0, . . . , 0, b′ ⊕ b, 2vl+1
1 , . . . , 2vL1 ) mod Λ′

y −M(0, . . . , 0, b′ ⊕ b, 2vl+1
2 , . . . , 2vL2 ) mod Λ′

...

y −M(0, . . . , 0, b′ ⊕ b, 2vl+1
S , . . . , 2vLS ) mod Λ′











=











y −M(0, . . . , 0, b′ ⊕ b, ṽl+1
1 , . . . , ṽL1 ) mod Λ′

y −M(0, . . . , 0, b′ ⊕ b, ṽl+1
2 , . . . , ṽL2 ) mod Λ′

...

y −M(0, . . . , 0, b′ ⊕ b, ṽl+1
S , . . . , ṽLS ) mod Λ′











, (68)

where (ṽl+1
s , . . . , ṽLs ) ∈ Fpl+1

× . . . × FpL for s ∈ {1, . . . , S} and (a) follows from the fact that M
is an isomorphism. Now, since the mapping from Zp to 2 ⊙ Zp is bijective for all odd primes p, it

is clear that none of (ṽl+1
s , . . . , ṽLs ) for s ∈ {1, . . . , S} are the same so one can rearrange (68) to get

τb(τb′(y)) = τb⊕b′(y).
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Let b ∈ Fpl be transmitted, the transition probability is given by

f(y|c1, . . . , cl−1, b) ∝
∑

(vl+1,...,vL)∈Fpl+1
×...×FpL

fΛ′(y|c1, . . . , cl−1, b, vl+1, . . . , vL), (69)

which only depends on τb(y). Hence the equivalent channel experienced by the lth level is regular and

linear codes suffice to achieve the mutual information. Repeating this argument to each level shows that

multilevel coding and multistage decoding suffice to achieve the capacity.

APPENDIX B

LEMMA 26 AND ITS PROOF

Lemma 26. Let Z∗
eq be the i.i.d. Gaussian random vector having distribution N (0, σ2

eq) where σ2
eq. There

exists a sequence of fine lattices Λf whose error probability can be made arbitrarily small under multistage

decoding whenever

Vol(Λ)
2
N > 2πeσ2

eq2
− 2

N
D(Zeq‖Z∗

eq). (70)

Proof: Let Λ be a lattice generated by Construction πA with primes p1, . . ., pL and let Λ′ be a

sublattice of Λ. Define CU(Λ/Λ
′,Zeq) and CU(Λ

′,Zeq) the uniform input capacity of the Λ/Λ′ and mod -

Λ′ channels [27], respectively, with noise distribution Zeq. We denote by Pe(Λ
′,Zeq) the error probability

when using Λ′ over the channel with additive Zeq noise. For a lattice Λ and noise variance σ2
eq, let us also

define

α2(Λ, σ2
eq) ,

Vol(VΛ)
2
N

2πeσ2
eq

. (71)

Similar to [27, Section V], we begin with a lattice partition Λ/Λ′ such that

1) CU(Λ/Λ
′,Zeq) ≈ CU(Λ

′,Zeq),
2) Vol(VΛ′) is large enough that Pe(Λ

′,Zeq) ≈ 0,

where the second condition is possible because Zeq is semi norm-ergodic [19] and requires q → ∞.

Recall that Z∗
eq is a zero-mean Gaussian random vectors having a variance σ2

eq. Consider the mod Λ′

channel

y′ = [x+ zeq] mod Λ′. (72)

We have the uniform input capacity given by

CU(Λ
′,Zeq) = I(Y′;X)

(a)
= log (Vol(VΛ′))− h(Zeq mod Λ′)

≥ log (Vol(VΛ′))− h(Zeq)
(b)
= log (Vol(VΛ′))− h(Z∗

eq) +D(Zeq||Z∗
eq)

= CU(Λ
′,Z∗

eq) +D(Zeq||Z∗
eq)

(c)≈ N

2
logα2(Λ′, σ2

eq) +D(Zeq||Z∗
eq), (73)

where (a) follows from the crypto lemma, (b) is due to the fact that D(Zeq||Z∗
eq) = h(Z∗

eq)− h(Zeq) [47],

and (c) is from [27, Theorem 3 and Theorem 10] that CU(Λ
′,Z∗

eq) = C(Λ′,Z∗
eq) ≈ N

2
logα2(Λ′, σ2

eq) the

true capacity of the mod Λ′ channel with noise Z
∗
eq.
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By the first assumption above, one has

2

N
CU(Λ

′,Zeq) ≈
2

N
CU(Λ/Λ

′,Zeq)

(c)≈ 2

N
log

(

Vol(VΛ′)

Vol(VΛ)

)

= logα2(Λ′, σ2
eq)− logα2(Λ, σ2

eq), (74)

where (c) is because the underlying linear codes are capacity-achieving. Combining (73) and (74) results

in

Vol(VΛ)
2

N ≈ 2πeσ2
eq2

− 2

N
D(Zeq ||Z∗

eq). (75)

The error probability can be union bounded as

P(errors in the coded levels) + P(errors in the uncoded level), (76)

which, similar to [27], can be made arbitrarily small since the code is capacity-achieving and Vol(VΛ′)
is large enough to avoid errors in the uncoded level. Moreover, similar to Appendix A, one can use the

chain rule to show that CU(Λ
′,Zeq) can be achieved with multilevel coding and multistage decoding.
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