A conjecture on integer arithmetic which implies that there are infinitely many twin primes

Apoloniusz Tyszka

Abstract

Let $f(1)=2, f(2)=3$, and $f(n+1)=f(n)$! for every integer $n \geqslant 2$. We write $x \nmid y$ to denote that x does not divide y. Let Φ_{n} denote the statement: if a system $\mathcal{S} \subseteq\left\{x_{i}+1=x_{k}, x_{i}!=x_{k}, x_{i} \nmid x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution (x_{1}, \ldots, x_{n}) satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. We prove: (1) the statement Φ_{4} implies that there are infinitely many primes of the form $m!+1$, (2) the statement Φ_{5} implies that there are infinitely many primes of the form $m!-1$, (3) the statement Φ_{6} implies that there are infinitely many primes p such that $p!+1$ is also prime, (4) the statement Φ_{5} implies that there are infinitely many twin primes. We conjecture that the statements $\Phi_{1}, \ldots, \Phi_{6}$ are true.

2010 Mathematics Subject Classification: 11A41.
Key words and phrases: primes of the form $n!+1$, primes of the form $n!-1$, primes p such that $p!+1$ is also prime, twin prime conjecture.

Let \mathcal{P} denote the set of prime numbers. Let $f(1)=2, f(2)=3$, and $f(n+1)=f(n)$! for every integer $n \geqslant 2$. We write $x \nmid y$ to denote that x does not divide y. Let Φ_{n} denote the statement: if a system $\mathcal{S} \subseteq\left\{x_{i}+1=x_{k}, x_{i}!=x_{k}, x_{i} \nmid x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$.

Observation. The equation $x_{1}!=x_{1}$ has exactly two solutions in positive integers, namely $x_{1}=1$ and $x_{1}=2$. The system $\left\{\begin{aligned} x_{1}! & =x_{1} \\ x_{1}+1 & =x_{2}\end{aligned}\right.$ has exactly two solutions in positive integers, namely $(1,2)$ and $(2,3)$. For every integer $n \geqslant 3$, the system

$$
\left\{\begin{array}{rll}
x_{1}! & = & x_{1} \\
x_{1}+1 & = & x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & = & x_{i+1}
\end{array}\right.
$$

has exactly two solutions in positive integers, namely $(1,2, \ldots, 2)$ and $(f(1), \ldots, f(n))$.
The Observation leads to the following conjecture.
Conjecture. The statements $\Phi_{1}, \ldots, \Phi_{6}$ are true.
Lemma 1. ([4] pp.214-215]) For every positive integer $x, x \in \mathcal{P} \cup\{4\}$ if and only if $x \nmid(x-1)$!
Lemma 2. For every integer $n \geqslant 4, n \in \mathcal{P} \cup\{4\}$ if and only if $n \nmid(n-3)$!

Proof. If n is prime and $n \geqslant 4$, then $n \nmid(n-3)$! If $n=4$, then $n \nmid(n-3)$! Assume that an integer $n>4$ is composite. Hence, $n \geqslant 6$.

Case $1: n$ is a perfect square.
In this case, $n \geqslant 9$ and $\sqrt{n} \in \mathbb{N} \backslash\{0,1,2\}$. Hence, $\sqrt{n}<2 \cdot \sqrt{n} \leqslant n-3$. Therefore, $\sqrt{n} \cdot(2 \cdot \sqrt{n})$ divides $(n-3)$! In particular, $n=\sqrt{n} \cdot \sqrt{n}$ divides $(n-3)$!

Case 2: n is not a perfect square.
Let m denote the smallest prime factor of n. We have:

$$
\left(m \cdot \frac{n}{m}=n\right) \wedge(m>1) \wedge\left(\frac{n}{m}>1\right) \wedge\left(m \neq \frac{n}{m}\right)
$$

Hence, $m \leqslant \frac{n}{2} \leqslant n-3$ and $\frac{n}{m} \leqslant \frac{n}{2} \leqslant n-3$. Since $m \neq \frac{n}{m}$, we conclude that $m \cdot \frac{n}{m}=n$ divides $(n-3)$!

Let \mathcal{A} denote the system

$$
\left\{\begin{aligned}
x! & =x_{1} \\
x_{1}+1 & =x_{2} \\
x_{1}! & =x_{3} \\
x_{2} & \nmid x_{3}
\end{aligned}\right.
$$

which is illustrated in Figure 1.

Fig. 1 The diagram of the system \mathcal{A}
Lemma 3. For every positive integer x, the system \mathcal{A} is solvable in positive integers x_{1}, x_{2}, x_{3} if and only if $x!+1$ is prime. In this case, the numbers x_{1}, x_{2}, x_{3} are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{1}=x! \\
& x_{2}=x!+1 \\
& x_{3}=(x!)!
\end{aligned}
$$

Proof. The system \mathcal{A} is solvable in positive integers x_{1}, x_{2}, x_{3} if and only if $x!+1 \nmid(x!)$! By Lemma 1, this condition means that $x!+1 \in \mathcal{P} \cup\{4\}$. For every positive integer $x, x!+1 \neq 4$. Hence, $x!+1 \in \mathcal{P} \cup\{4\}$ if and only if $x!+1$ is prime.

Theorem 1. The statement Φ_{4} implies that there are infinitely many primes of the form $x!+1$.

Proof. We take $x=11$ and remark that $x!+1$ is prime, see [1, p. 441], [4] p. 215], and [5]. By Lemma 3, there exists a unique tuple (x_{1}, x_{2}, x_{3}) of positive integers such that the tuple $\left(x, x_{1}, x_{2}, x_{3}\right)$ solves the system \mathcal{A}. Hence, $x_{1}=11!>6!=f(4)$. The statement Φ_{4} and the inequality $x_{1}>f(4)$ imply that the system \mathcal{A} has infinitely many solutions in positive integers x, x_{1}, x_{2}, x_{3}. According to Lemma3, there are infinitely many positive integers x such that $x!+1$ is prime.

Let \mathcal{B} denote the system

$$
\left\{\begin{aligned}
x! & =x_{1} \\
x_{2}+1 & =x_{1} \\
x_{3}+1 & =x_{2} \\
x_{3}! & =x_{4} \\
x_{2} & \nmid x_{4}
\end{aligned}\right.
$$

which is illustrated in Figure 2.

Fig. 2 The diagram of the system \mathcal{B}
Lemma 4. For every positive integer x, the system \mathcal{B} is solvable in positive integers $x_{1}, x_{2}, x_{3}, x_{4}$ if and only if $x!-1$ is prime. In this case, the numbers $x_{1}, x_{2}, x_{3}, x_{4}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{1}=x! \\
& x_{2}=x!-1 \\
& x_{3}=x!-2 \\
& x_{4}=(x!-2)!
\end{aligned}
$$

Proof. The system \mathcal{B} is solvable in positive integers $x_{1}, x_{2}, x_{3}, x_{4}$ if and only if

$$
(x \geqslant 3) \wedge(x!-1 \nmid(x!-2)!)
$$

By Lemma 1, the above conjunction means that

$$
\begin{equation*}
(x \geqslant 3) \wedge(x!-1 \in \mathcal{P} \cup\{4\}) \tag{1}
\end{equation*}
$$

The condition $x!-1 \in \mathcal{P} \cup\{4\}$ implies that $x \geqslant 3$. For every positive integer $x, x!-1 \neq 4$. The last two sentences prove that formula (1) equivalently expresses that $x!-1$ is prime.

Theorem 2. The statement Φ_{5} implies that there are infinitely many primes of the form x ! -1 .

Proof. We take $x=7$ and remark that x ! -1 is prime, see [1, p. 441], [4, p. 215], and [6]. By Lemma 4 , there exists a unique tuple ($x_{1}, x_{2}, x_{3}, x_{4}$) of positive integers such that the tuple $\left(x, x_{1}, x_{2}, x_{3}, x_{4}\right)$ solves the system \mathcal{B}. Hence, $x_{4}=(x!-2)!=(7!-2)!>720!=f(5)$. The statement Φ_{5} and the inequality $x_{4}>f(5)$ imply that the system \mathcal{B} has infinitely many solutions in positive integers $x, x_{1}, x_{2}, x_{3}, x_{4}$. According to Lemma 4, there are infinitely many positive integers x such that $x!-1$ is prime.

Let C denote the system

$$
\left\{\begin{aligned}
x_{1}+1 & =x \\
x! & =x_{2} \\
x_{2}+1 & =x_{3} \\
x_{1}! & =x_{4} \\
x_{2}! & =x_{5} \\
x & \nmid x_{4} \\
x_{3} & \nmid x_{5}
\end{aligned}\right.
$$

which is illustrated in Figure 3.

Fig. 3 The diagram of the system C
Lemma 5. For every positive integer x, the system C is solvable in positive integers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ if and only if x and $x!+1$ are prime. In this case, the numbers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{1}=x-1 \\
& x_{2}=x! \\
& x_{3}=x!+1 \\
& x_{4}=(x-1)! \\
& x_{5}=(x!)!
\end{aligned}
$$

Proof. The system C is solvable in positive integers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ if and only if

$$
\begin{equation*}
(x \geqslant 2) \wedge(x \nmid(x-1)!) \wedge(x!+1 \nmid(x!)!) \tag{2}
\end{equation*}
$$

By Lemma (1, formula (2) is equivalent to

$$
\begin{equation*}
(x \geqslant 2) \wedge(x \in \mathcal{P} \cup\{4\}) \wedge(x!+1 \in \mathcal{P} \cup\{4\}) \tag{3}
\end{equation*}
$$

The condition $x \in \mathcal{P} \cup\{4\}$ implies that $x \geqslant 2$. If $x=4$, then $x!+1 \notin \mathcal{P} \cup\{4\}$. For every positive integer $x, x!+1 \neq 4$. The last three sentences imply that formula (3) is equivalent to

$$
(x \in \mathcal{P}) \wedge(x!+1 \in \mathcal{P})
$$

Theorem 3. The statement Φ_{6} implies that there are infinitely many primes p such that $p!+1$ is also prime.

Proof. We take $x=26951$ and remark that the numbers x and $x!+1$ are prime ([7]). By Lemma 5, there exists a unique tuple ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$) of positive integers such that the tuple $\left(x, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ solves the system C. Hence, $x_{5}=(x!)!>((720)!)!=f(6)$. The statement Φ_{6} and the inequality $x_{5}>f(6)$ imply that the system C has infinitely many solutions in positive integers $x, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. According to Lemma 5 , there are infinitely many primes p such that $p!+1$ is also prime.

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [2], [3, p. 39], [4, p. 120], and [8, p. 3091]. Let \mathcal{D} denote the system

$$
\left\{\begin{aligned}
x_{1}+1 & =x \\
x+1 & =x_{2} \\
x_{2}+1 & =y \\
x_{1}! & =x_{3} \\
x & \nmid x_{3} \\
y & \nmid x_{3} \\
x & \nmid y
\end{aligned}\right.
$$

which is illustrated in Figure 4.

Fig. 4 The diagram of the system \mathcal{D}

Lemma 6. For every positive integers x and y, the system \mathcal{D} is solvable in positive integers x_{1}, x_{2}, x_{3} if and only if x and y are prime and $x+2=y$. In this case, the numbers x_{1}, x_{2}, x_{3} are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{1}=x-1 \\
& x_{2}=y-1 \\
& x_{3}=(x-1)!
\end{aligned}
$$

Proof. The system \mathcal{D} is solvable in positive integers x_{1}, x_{2}, x_{3} if and only if

$$
\begin{equation*}
(x \geqslant 2) \wedge(x \nmid x+2) \wedge(x+2=y) \wedge(x \nmid(x-1)!) \wedge(y \nmid(y-3)!) \tag{4}
\end{equation*}
$$

The conjunction $(x \geqslant 2) \wedge(x \nmid x+2)$ is equivalent to $x \geqslant 3$. By this and Lemmas 1 and 2 . formula (4) is equivalent to

$$
\begin{equation*}
(x \geqslant 3) \wedge(x+2=y) \wedge(x \in \mathcal{P} \cup\{4\}) \wedge(y \in \mathcal{P} \cup\{4\}) \tag{5}
\end{equation*}
$$

The conditions $x+2=y$ and $y \in \mathcal{P} \cup\{4\}$ imply that $x \neq 4$. The conditions $x \geqslant 3$ and $x+2=y$ imply that $y \neq 4$. The last two sentences prove that formula (5) is equivalent to

$$
(x \geqslant 3) \wedge(x+2=y) \wedge(x \in \mathcal{P}) \wedge(y \in \mathcal{P})
$$

The condition $x \in \mathcal{P}$ implies that $x \geqslant 2$. The conditions $x+2=y$ and $y \in \mathcal{P}$ imply that $x \neq 2$. Therefore, we can omit the inequality $x \geqslant 3$.

Theorem 4. The statement Φ_{5} implies that there are infinitely many twin primes.
Proof. Let $x=809$ and $y=811$. The numbers x and y are prime and $x+2=y$. By Lemma 6 , there exists a unique tuple $\left(x_{1}, x_{2}, x_{3}\right)$ of positive integers such that the tuple ($x, y, x_{1}, x_{2}, x_{3}$) solves the system \mathcal{D}. Hence, $x-1>720$. Therefore, $x_{3}=(x-1)!>720!=f(5)$. The statement Φ_{5} and the inequality $x_{3}>f(5)$ imply that the system \mathcal{D} has infinitely many solutions in positive integers $x, y, x_{1}, x_{2}, x_{3}$. According to Lemma 6, there are infinitely many twin primes.

References

[1] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448.
[2] C. R. Greathouse IV, Tables of special primes, http://oeis.org/wiki/User: Charles_R_Greathouse_IV/Tables_of_special_primes.
[3] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[4] W. Sierpiński, Elementary theory of numbers, 2nd ed. (ed. A. Schinzel), PWN (Polish Scientific Publishers) and North-Holland, Warsaw-Amsterdam, 1987.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that $n!+1$ is prime, http://oeis.org/A002981.
[6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002982, Numbers n such that $n!-1$ is prime, http://oeis.org/A002982.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A093804, Primes p such that $p!+1$ is also prime, http://oeis.org/A093804.
[8] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

