A conjecture on integer arithmetic which implies that there are infinitely many twin primes

Apoloniusz Tyszka

Abstract

Let f(1) = 2, f(2) = 3, and f(n + 1) = f(n)! for every integer $n \ge 2$. We write $x \nmid y$ to denote that x does not divide y. Let Φ_n denote the statement: if a system $S \subseteq \{x_i + 1 = x_k, x_i! = x_k, x_i \nmid x_k: i, j, k \in \{1, ..., n\}$ has only finitely many solutions in positive integers $x_1, ..., x_n$, then each such solution $(x_1, ..., x_n)$ satisfies $x_1, ..., x_n \le f(n)$. We prove: (1) the statement Φ_4 implies that there are infinitely many primes of the form m! + 1, (2) the statement Φ_5 implies that there are infinitely many primes of the form m! - 1, (3) the statement Φ_5 implies that there are infinitely many primes. We conjecture that the statements $\Phi_1, ..., \Phi_6$ are true.

2010 Mathematics Subject Classification: 11A41.

Key words and phrases: primes of the form n! + 1, primes of the form n! - 1, primes p such that p! + 1 is also prime, twin prime conjecture.

Let \mathcal{P} denote the set of prime numbers. Let f(1) = 2, f(2) = 3, and f(n + 1) = f(n)! for every integer $n \ge 2$. We write $x \nmid y$ to denote that x does not divide y. Let Φ_n denote the statement: if a system $S \subseteq \{x_i + 1 = x_k, x_i! = x_k, x_i \nmid x_k : i, j, k \in \{1, ..., n\}\}$ has only finitely many solutions in positive integers $x_1, ..., x_n$, then each such solution $(x_1, ..., x_n)$ satisfies $x_1, ..., x_n \le f(n)$.

Observation. The equation $x_1! = x_1$ has exactly two solutions in positive integers, namely $x_1 = 1$ and $x_1 = 2$. The system $\begin{cases} x_1! = x_1 \\ x_1 + 1 = x_2 \end{cases}$ has exactly two solutions in positive integers, namely (1,2) and (2,3). For every integer $n \ge 3$, the system

$$\begin{cases} x_1! = x_1 \\ x_1 + 1 = x_2 \\ \forall i \in \{2, \dots, n-1\} x_i! = x_{i+1} \end{cases}$$

has exactly two solutions in positive integers, namely (1, 2, ..., 2) and (f(1), ..., f(n)).

The Observation leads to the following conjecture.

Conjecture. *The statements* Φ_1, \ldots, Φ_6 *are true.*

Lemma 1. ([4, pp. 214–215]) For every positive integer $x, x \in \mathcal{P} \cup \{4\}$ if and only if $x \nmid (x-1)!$

Lemma 2. For every integer $n \ge 4$, $n \in \mathcal{P} \cup \{4\}$ if and only if $n \nmid (n-3)!$

Proof. If *n* is prime and $n \ge 4$, then $n \nmid (n-3)!$ If n = 4, then $n \nmid (n-3)!$ Assume that an integer n > 4 is composite. Hence, $n \ge 6$.

Case 1: *n* is a perfect square.

In this case, $n \ge 9$ and $\sqrt{n} \in \mathbb{N} \setminus \{0, 1, 2\}$. Hence, $\sqrt{n} < 2 \cdot \sqrt{n} \le n - 3$. Therefore, $\sqrt{n} \cdot (2 \cdot \sqrt{n})$ divides (n - 3)! In particular, $n = \sqrt{n} \cdot \sqrt{n}$ divides (n - 3)!

Case 2: *n* is not a perfect square.

Let *m* denote the smallest prime factor of *n*. We have:

$$\left(m \cdot \frac{n}{m} = n\right) \wedge (m > 1) \wedge \left(\frac{n}{m} > 1\right) \wedge \left(m \neq \frac{n}{m}\right)$$

Hence, $m \leq \frac{n}{2} \leq n-3$ and $\frac{n}{m} \leq \frac{n}{2} \leq n-3$. Since $m \neq \frac{n}{m}$, we conclude that $m \cdot \frac{n}{m} = n$ divides (n-3)!

Let \mathcal{A} denote the system

ĺ	x!	=	x_1
J	$x_1 + 1$	=	x_2
	$x_1!$	=	x_3
l	x_2	ł	<i>x</i> ₃

which is illustrated in Figure 1.

Fig. 1 The diagram of the system \mathcal{A}

Lemma 3. For every positive integer x, the system \mathcal{A} is solvable in positive integers x_1, x_2, x_3 if and only if x! + 1 is prime. In this case, the numbers x_1, x_2, x_3 are uniquely determined by the following equalities:

$$\begin{array}{rcl}
x_1 &=& x! \\
x_2 &=& x! + 1 \\
x_3 &=& (x!)!
\end{array}$$

Proof. The system \mathcal{A} is solvable in positive integers x_1, x_2, x_3 if and only if $x! + 1 \nmid (x!)!$ By Lemma 1, this condition means that $x! + 1 \in \mathcal{P} \cup \{4\}$. For every positive integer $x, x! + 1 \neq 4$. Hence, $x! + 1 \in \mathcal{P} \cup \{4\}$ if and only if x! + 1 is prime.

Theorem 1. The statement Φ_4 implies that there are infinitely many primes of the form x! + 1.

Proof. We take x = 11 and remark that x! + 1 is prime, see [1, p. 441], [4, p. 215], and [5]. By Lemma 3, there exists a unique tuple (x_1, x_2, x_3) of positive integers such that the tuple (x, x_1, x_2, x_3) solves the system \mathcal{A} . Hence, $x_1 = 11! > 6! = f(4)$. The statement Φ_4 and the inequality $x_1 > f(4)$ imply that the system \mathcal{A} has infinitely many solutions in positive integers x, x_1, x_2, x_3 . According to Lemma 3, there are infinitely many positive integers x such that x! + 1 is prime.

Let $\mathcal B$ denote the system

	x!	=	x_1
<i>x</i> ₂ -	+ 1	=	x_1
<i>x</i> ₃ -	+ 1	=	x_2
	$x_3!$	=	x_4
	x_2	ł	<i>x</i> ₄

which is illustrated in Figure 2.

Fig. 2 The diagram of the system \mathcal{B}

Lemma 4. For every positive integer x, the system \mathcal{B} is solvable in positive integers x_1, x_2, x_3, x_4 if and only if x! - 1 is prime. In this case, the numbers x_1, x_2, x_3, x_4 are uniquely determined by the following equalities:

$$x_{1} = x!$$

$$x_{2} = x! - 1$$

$$x_{3} = x! - 2$$

$$x_{4} = (x! - 2)!$$

Proof. The system \mathcal{B} is solvable in positive integers x_1, x_2, x_3, x_4 if and only if

$$(x \ge 3) \land (x! - 1 \nmid (x! - 2)!)$$

By Lemma 1, the above conjunction means that

$$(x \ge 3) \land (x! - 1 \in \mathcal{P} \cup \{4\}) \tag{1}$$

The condition $x! - 1 \in \mathcal{P} \cup \{4\}$ implies that $x \ge 3$. For every positive integer $x, x! - 1 \ne 4$. The last two sentences prove that formula (1) equivalently expresses that x! - 1 is prime.

Theorem 2. The statement Φ_5 implies that there are infinitely many primes of the form x! - 1.

Proof. We take x = 7 and remark that x! - 1 is prime, see [1, p. 441], [4, p. 215], and [6]. By Lemma 4, there exists a unique tuple (x_1, x_2, x_3, x_4) of positive integers such that the tuple (x, x_1, x_2, x_3, x_4) solves the system \mathcal{B} . Hence, $x_4 = (x! - 2)! = (7! - 2)! > 720! = f(5)$. The statement Φ_5 and the inequality $x_4 > f(5)$ imply that the system \mathcal{B} has infinitely many solutions in positive integers x, x_1, x_2, x_3, x_4 . According to Lemma 4, there are infinitely many positive integers x such that x! - 1 is prime.

Let *C* denote the system

$x_1 + 1$	=	х
x!	=	x_2
$x_2 + 1$	=	<i>x</i> ₃
$x_1!$	=	x_4
$x_2!$	=	<i>x</i> ₅
X	ł	x_4
x_3	ł	<i>x</i> ₅

which is illustrated in Figure 3.

Fig. 3 The diagram of the system C

Lemma 5. For every positive integer x, the system C is solvable in positive integers x_1, x_2, x_3, x_4, x_5 if and only if x and x! + 1 are prime. In this case, the numbers x_1, x_2, x_3, x_4, x_5 are uniquely determined by the following equalities:

$$\begin{array}{rcl} x_1 &=& x-1 \\ x_2 &=& x! \\ x_3 &=& x!+1 \\ x_4 &=& (x-1)! \\ x_5 &=& (x!)! \end{array}$$

Proof. The system C is solvable in positive integers x_1, x_2, x_3, x_4, x_5 if and only if

$$(x \ge 2) \land (x \nmid (x-1)!) \land (x!+1 \nmid (x!)!)$$

$$(2)$$

By Lemma 1, formula (2) is equivalent to

$$(x \ge 2) \land (x \in \mathcal{P} \cup \{4\}) \land (x! + 1 \in \mathcal{P} \cup \{4\})$$
(3)

The condition $x \in \mathcal{P} \cup \{4\}$ implies that $x \ge 2$. If x = 4, then $x! + 1 \notin \mathcal{P} \cup \{4\}$. For every positive integer $x, x! + 1 \ne 4$. The last three sentences imply that formula (3) is equivalent to

$$\left(x\in\mathcal{P}\right)\wedge\left(x!+1\in\mathcal{P}\right)$$

Theorem 3. The statement Φ_6 implies that there are infinitely many primes p such that p! + 1 is also prime.

Proof. We take x = 26951 and remark that the numbers x and x! + 1 are prime ([7]). By Lemma 5, there exists a unique tuple $(x_1, x_2, x_3, x_4, x_5)$ of positive integers such that the tuple $(x, x_1, x_2, x_3, x_4, x_5)$ solves the system *C*. Hence, $x_5 = (x!)! > ((720)!)! = f(6)$. The statement Φ_6 and the inequality $x_5 > f(6)$ imply that the system *C* has infinitely many solutions in positive integers $x, x_1, x_2, x_3, x_4, x_5$. According to Lemma 5, there are infinitely many primes p such that p! + 1 is also prime.

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [2], [3, p. 39], [4, p. 120], and [8, p. 3091]. Let \mathcal{D} denote the system

 $x \nmid y$

which is illustrated in Figure 4.

Lemma 6. For every positive integers x and y, the system \mathcal{D} is solvable in positive integers x_1, x_2, x_3 if and only if x and y are prime and x + 2 = y. In this case, the numbers x_1, x_2, x_3 are uniquely determined by the following equalities:

$$\begin{array}{rcl} x_1 &=& x-1 \\ x_2 &=& y-1 \\ x_3 &=& (x-1)! \end{array}$$

Proof. The system \mathcal{D} is solvable in positive integers x_1, x_2, x_3 if and only if

$$(x \ge 2) \land (x \nmid x+2) \land (x+2=y) \land (x \nmid (x-1)!) \land (y \nmid (y-3)!)$$

$$(4)$$

The conjunction $(x \ge 2) \land (x \nmid x + 2)$ is equivalent to $x \ge 3$. By this and Lemmas 1 and 2, formula (4) is equivalent to

$$(x \ge 3) \land (x + 2 = y) \land (x \in \mathcal{P} \cup \{4\}) \land (y \in \mathcal{P} \cup \{4\})$$

$$(5)$$

The conditions x + 2 = y and $y \in \mathcal{P} \cup \{4\}$ imply that $x \neq 4$. The conditions $x \ge 3$ and x + 2 = y imply that $y \neq 4$. The last two sentences prove that formula (5) is equivalent to

$$(x \ge 3) \land (x + 2 = y) \land (x \in \mathcal{P}) \land (y \in \mathcal{P})$$

The condition $x \in \mathcal{P}$ implies that $x \ge 2$. The conditions x + 2 = y and $y \in \mathcal{P}$ imply that $x \ne 2$. Therefore, we can omit the inequality $x \ge 3$.

Theorem 4. The statement Φ_5 implies that there are infinitely many twin primes.

Proof. Let x = 809 and y = 811. The numbers x and y are prime and x + 2 = y. By Lemma 6, there exists a unique tuple (x_1, x_2, x_3) of positive integers such that the tuple (x, y, x_1, x_2, x_3) solves the system \mathcal{D} . Hence, x - 1 > 720. Therefore, $x_3 = (x - 1)! > 720! = f(5)$. The statement Φ_5 and the inequality $x_3 > f(5)$ imply that the system \mathcal{D} has infinitely many solutions in positive integers x, y, x_1, x_2, x_3 . According to Lemma 6, there are infinitely many twin primes.

References

- [1] C. K. Caldwell and Y. Gallot, On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441–448.
- [2] C. R. Greathouse IV, *Tables of special primes*, http://oeis.org/wiki/User: Charles_R_Greathouse_IV/Tables_of_special_primes.
- [3] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [4] W. Sierpiński, *Elementary theory of numbers*, 2nd ed. (ed. A. Schinzel), PWN (Polish Scientific Publishers) and North-Holland, Warsaw-Amsterdam, 1987.
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that n! + 1 is prime, http://oeis.org/A002981.

- [6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002982, Numbers n such that n! 1 is prime, http://oeis.org/A002982.
- [7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A093804, Primes p such that p! + 1 is also prime, http://oeis.org/A093804.
- [8] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl