ENUMERATION OF A DUAL SET OF STIRLING PERMUTATIONS BY THEIR ALTERNATING RUNS

SHI-MEI MA AND HAI-NA WANG

Abstract

In this paper, we count a dual set of Stirling permutations by the number of alternating runs. Properties of the generating functions, including recurrence relations, grammatical interpretations and convolution formulas are studied.

Keywords: Stirling permutations; Alternating runs; Eulerian polynomials

1. Introduction

Let $[n]=\{1,2, \ldots, n\}$. The Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the number of ways to partition $[n]$ into k blocks. Denote by D the differential operator $\frac{d}{d x}$, and let $\vartheta=x D$. It is well known that

$$
\vartheta^{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} z^{k} D^{k} .
$$

Let

$$
r(x)=\frac{\sqrt{1+x}}{\sqrt{1-x}}
$$

By induction, one can easily verify that there are positive integers $T(n, k), k \in[2 n-1]$, such that

$$
\vartheta^{n}(r(x))=\frac{\sum_{k=1}^{2 n-1} T(n, k) x^{k}}{(1-x)^{n}(1+x)^{n-1} \sqrt{1-x^{2}}} \quad \text { for } n \geq 1
$$

It is clear that the numbers $T(n, k)$ satisfy the initial conditions $T(1,1)=1$ and $T(1, k)=0$ for $k \neq 1$. Let $T_{n}(x)=\sum_{k=1}^{2 n-1} T(n, k) x^{k}$. Using $\vartheta^{n+1}(r(x))=\vartheta\left(\vartheta^{n}(r(x))\right)$, we get that the polynomials $T_{n}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
T_{n+1}(x)=(2 n x+1) x T_{n}(x)+x\left(1-x^{2}\right) T_{n}^{\prime}(x) \tag{1}
\end{equation*}
$$

for $n \geq 0$, with the initial values $T_{0}(x)=1$ and $T_{1}(x)=x$. In particular,

$$
T_{n}(1)=-T_{n+1}(-1)=(2 n-1)!!\text { for } n \geq 1 .
$$

Equating the coefficients of x^{k} on both sides of (11), we get that the numbers $T(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
T(n+1, k)=k T(n, k)+T(n, k-1)+(2 n-k+2) T(n, k-2) . \tag{2}
\end{equation*}
$$

The motivating goal of this paper is to find a combinatorial interpretation of the numbers $T(n, k)$.
Let \mathfrak{S}_{n} denote the symmetric group of all permutations of $[n]$, where $[n]=\{1,2, \ldots, n\}$. Let $\pi=\pi(1) \pi(2) \cdots \pi(n) \in \mathfrak{S}_{n}$. An interior peak in π is an index $i \in\{2,3, \ldots, n-1\}$ such that $\pi(i-1)<\pi(i)>\pi(i+1)$. A left peak in π is an index $i \in[n-1]$ such that $\pi(i-1)<\pi(i)>\pi(i+1)$, where we take $\pi(0)=0$. Let $\operatorname{ipk}(\pi)$ (resp. $\operatorname{lpk}(\pi))$ be the number of interior peaks (resp. left peaks) in π. We say that π changes direction at position i if either $\pi(i-1)<\pi(i)>\pi(i+1)$, or $\pi(i-1)>\pi(i)<\pi(i+1)$, where $i \in\{2,3, \ldots, n-1\}$. We say that π has k alternating runs if there are $k-1$ indices i such that π changes direction at these positions. Denote by altrun (π) the number of alternating runs in π.

Define

$$
W_{n}(x)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{ipk}(\pi)}, \widehat{W}_{n}(x)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{lpk}(\pi)}, R_{n}(x)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{altrun}(\pi)} .
$$

From [14, Corollary 2, Theorem 3], we get

$$
\frac{(1+x)^{2}}{2 x} R_{n}(x)=x W_{n}\left(x^{2}\right)+\widehat{W}_{n}\left(x^{2}\right) .
$$

Let $R_{n}(x)=\sum_{k=1}^{n-1} R(n, k) x^{k}$. The study of alternating runs of permutations was initiated by André [2], and he proved that the numbers $R(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
R(n, k)=k R(n-1, k)+2 R(n-1, k-1)+(n-k) R(n-1, k-2) \tag{3}
\end{equation*}
$$

for $n, k \geq 1$, where $R(1,0)=1$ and $R(1, k)=0$ for $k \geq 1$. It follows from (3) that the polynomials $R_{n}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
R_{n+2}(x)=x(n x+2) R_{n+1}(x)+x\left(1-x^{2}\right) R_{n+1}^{\prime}(x) \tag{4}
\end{equation*}
$$

with the initial value $R_{1}(x)=1$. Recall that a descent of a permutation $\pi \in \mathfrak{S}_{n}$ is a position i such that $\pi(i)>\pi(i+1)$. Denote by des (π) the number of descents of π. Then the equations

$$
A_{n}(x)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{des}(\pi)+1}=\sum_{k=1}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k},
$$

define the Eulerian polynomial $A_{n}(x)$ and the Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$. The polynomial $R_{n}(x)$ is closely related to $A_{n}(x)$:

$$
\begin{equation*}
R_{n}(x)=\left(\frac{1+x}{2}\right)^{n-1}(1+w)^{n+1} A_{n}\left(\frac{1-w}{1+w}\right), \quad w=\sqrt{\frac{1-x}{1+x}}, \tag{5}
\end{equation*}
$$

which was first established by David and Barton [7, 157-162] and then stated more concisely by Knuth [11, p. 605]. There is a large literature devoted to the polynomials $R_{n}(x)$ (see [22, A059427]). The reader is referred to [4, 14] for recent results on this subject.

In [5], Carlitz introduced $C_{n}(x)$ defined by

$$
\sum_{n=0}^{\infty}\left\{\begin{array}{c}
n+k \\
k
\end{array}\right\} x^{n}=\frac{C_{n}(x)}{(1-x)^{2 k+1}}
$$

and asked for a combinatorial interpretation of $C_{n}(x)$. Riordan 19 noted that $C_{n}(x)$ is the enumerator of trapezoidal words with n elements by number of distinct elements, where trapezoidal words are such that the i-th element takes the values $1,2, \ldots, 2 i-1$. Gessel and Stanley [8] gave another combinatorial interpretation of $C_{n}(x)$ in terms of descents of Stirling permutations. A Stirling permutation of order n is a permutation $\sigma=\sigma(1) \sigma(2) \cdots \sigma(2 n-1) \sigma(2 n)$ of the multiset $\{1,1,2,2, \ldots, n, n\}$ such that for each $i, 1 \leq i \leq n$, all entries between the two occurrencies of i are larger than i. Denote by \mathcal{Q}_{n} the set of Stirling permutation of order n. For $\sigma \in \mathcal{Q}_{n}$, let $\sigma(0)=\sigma(2 n+1)=0$, and let

$$
\begin{aligned}
\operatorname{des}(\sigma) & =\#\{i \mid \sigma(i)>\sigma(i+1)\}, \\
\operatorname{asc}(\sigma) & =\#\{i \mid \sigma(i-1)<\sigma(i)\}, \\
\operatorname{plat}(\sigma) & =\#\{i \mid \sigma(i)=\sigma(i+1)\}
\end{aligned}
$$

denote the number of descents, ascents and plateaux of σ, respectively. Gessel and Stanley [8] proved that

$$
C_{n}(x)=\sum_{\sigma \in \mathcal{Q}_{n}} x^{\operatorname{des} \sigma} .
$$

Bóna [3, Theorem 1] introduced the plateau statistic on \mathcal{Q}_{n}, and proved that descents, ascents and plateaux are equidistributed over \mathcal{Q}_{n}. The reader is referred to [9, 10, 12 for recent progress on the study of statistics on Stirling permutations.

In the next section, we show that $T_{n}(x)$ is the enumerator of a dual set of Stirling permutations of order n by number of alternating runs.

2. Combinatorial interpretation of $T(n, k)$

Let $\sigma=\sigma(1) \sigma(2) \cdots \sigma(2 n) \in \mathcal{Q}_{n}$. Let Φ be the injection which maps each first occurrence of entry j in σ to $2 j$ and the second j to $2 j-1$, where $j \in[n]$. For example, $\Phi(221331)=432651$. The dual set $\Phi\left(\mathcal{Q}_{n}\right)$ of \mathcal{Q}_{n} is defined by

$$
\Phi\left(\mathcal{Q}_{n}\right)=\left\{\pi \mid \sigma \in \mathcal{Q}_{n}, \Phi(\sigma)=\pi\right\}
$$

Clearly, $\Phi\left(\mathcal{Q}_{n}\right)$ is a subset of $\mathfrak{S}_{2 n}$. For $\pi \in \Phi\left(\mathcal{Q}_{n}\right)$, the entry $2 j$ is to the left of $2 j-1$, and all entries in π between $2 j$ and $2 j-1$ are larger than $2 j$, where $1 \leq j \leq n$. Let $a b$ be an ascent in σ, so $a<b$. Using Φ, we see that $a b$ maps into $(2 a-1)(2 b-1),(2 a-1)(2 b),(2 a)(2 b-1)$ or $(2 a)(2 b)$, and vice versa. Note that $\operatorname{asc}(\sigma)=\operatorname{asc}(\Phi(\sigma))=\operatorname{asc}(\pi)$. Therefore, we have

$$
C_{n}(x)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\operatorname{asc}(\pi)}
$$

It should be noted that $\pi \in \Phi\left(\mathcal{Q}_{n}\right)$ always ends with a descending run. We now present the following result.

Theorem 1. We have

$$
T(n, k)=\#\left\{\pi \in \Phi\left(\mathcal{Q}_{n}\right) \mid \operatorname{altrun}(\pi)=k\right\}
$$

Proof. There are three ways in which a permutation $\pi \in \Phi\left(\mathcal{Q}_{n+1}\right)$ with altrun $(\pi)=k$ can be obtained from a permutation $\sigma \in \Phi\left(\mathcal{Q}_{n}\right)$ by inserting the pair $(2 \mathrm{n}+2)(2 \mathrm{n}+1)$ into consecutive positions.
(a) If altrun $(\sigma)=k$, then we can insert the pair $(2 n+2)(2 n+1)$ right before the beginning of each descending run, and right after the end of each ascending run. This accounts for $k T(n, k)$ possibilities.
(b) If altrun $(\sigma)=k-1$, then we distinguish two cases: when σ starts in an ascending run, we insert the pair $(2 n+2)(2 n+1)$ to the front of σ; when σ starts in an descending run, we insert the pair $(2 n+2)(2 n+1)$ right after the first entry of σ. This gives $T(n, k-1)$ possibilities.
(c) If altrun $(\sigma)=k-2$, then we can insert the pair $(2 n+2)(2 n+1)$ into the remaining $(2 n+1)-(k-2)-1=2 n-k+2$ positions. This gives $(2 n-k+2) T(n, k-2)$ possibilities. Therefore, the numbers $T(n, k)$ satisfy the recurrence relation (2), and this completes the proof.

Define

$$
M_{n}(x)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\operatorname{ipk}(\pi)}, N_{n}(x)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\operatorname{lpk}(\pi)}
$$

It follows from [16, Theorem 4] that $M_{n}(x)=x^{n} N_{n}\left(\frac{1}{x}\right)$. Moreover, from [16, Theorem 5], we have

$$
(1+x) T_{n}(x)=x M_{n}\left(x^{2}\right)+N_{n}\left(x^{2}\right)
$$

We now recall some properties of $N_{n}(x)$. Let $N_{n}(x)=\sum_{k=1}^{n} N(n, k) x^{k}$. Apart from counting permutations in the set $\Phi\left(\mathcal{Q}_{n}\right)$ with k left peaks, the number $N(n, k)$ also has the following combinatorial interpretations:
$\left(m_{1}\right)$ Let $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbb{Z}^{n}$, and let $I_{n, k}=\left\{e \in \mathbb{Z}^{n} \mid 0 \leq e_{i} \leq(i-1) k\right\}$, which known as the set of n-dimensional k-inversion sequences (see [20]). The number of ascents of e is defined by

$$
\operatorname{asc}(e)=\#\left\{i: 1 \leq i \leq n-1 \left\lvert\, \frac{e_{i}}{(i-1) k+1}<\frac{e_{i+1}}{i k+1}\right.\right\} .
$$

Savage and Viswanathan [21] discovered that $N(n, k)=\#\left\{e \in I_{n, 2}:\right.$ asc $\left.(e)=n-k\right\}$.
$\left(m_{2}\right)$ We say that an index $i \in[2 n-1]$ is an ascent plateau of $\pi \in \mathcal{Q}_{n}$ if $\pi(i-1)<\pi(i)=\pi(i+1)$. The number $N(n, k)$ counts Stirling permutations in \mathcal{Q}_{n} with k ascent plateaux (see [16, Theorem 3]).
$\left(m_{3}\right)$ The number $N(n, k)$ counts perfect matching on [2n] with the restriction that only k matching pairs with odd minimal elements (see [18]).
The polynomials $N_{n}(x)$ satisfy the recurrence relation

$$
N_{n+1}(x)=(2 n+1) x N_{n}(x)+2 x(1-x) N_{n}^{\prime}(x)
$$

with initial value $N_{0}(x)=1$. The first few of $N_{n}(x)$ are

$$
N_{1}(x)=x, N_{2}(x)=2 x+x^{2}, N_{3}(x)=4 x+10 x^{2}+x^{3}, N_{4}(x)=8 x+60 x^{2}+36 x^{3}+x^{4} .
$$

The exponential generating function for $N_{n}(x)$ is given as follows (see [13, Section 5]):

$$
\begin{equation*}
N(x, z)=\sum_{n \geq 0} N_{n}(x) \frac{z^{n}}{n!}=\sqrt{\frac{1-x}{1-x e^{2 z(1-x)}}} . \tag{6}
\end{equation*}
$$

A polynomial $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$ is symmetric if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$, while it is unimodal if there exists an index $0 \leq m \leq n$, such that

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{m-1} \leq a_{m} \geq a_{m+1} \geq \cdots \geq a_{n}
$$

Theorem 2. The polynomial $T_{n}(x)$ is symmetric and unimodal.
Proof. It is immediate from (2) that $T_{n}(x)$ is a symmetric polynomial. We show the unimodality by induction on n. Note that $T_{1}(x)=x, T_{2}(x)=x+x^{2}+x^{3}$ and $T_{3}(x)=x+3 x^{2}+7 x^{3}+3 x^{4}+x^{5}$ are all unimodal. Thus it suffices to consider the case $n \geq 3$. Assume that $T_{n}(x)$ is symmetric and unimodal. For $1 \leq k \leq n+1$, it follows from (2) that

$$
\begin{aligned}
T(n+1, k)-T(n+1, k-1) & =(k-1)(T(n, k)-T(n, k-1))+(T(n, k-1)-T(n, k-2)) \\
& +(2 n-k+2)(T(n, k-2)-T(n, k-3))+(T(n, k)-T(n, k-3)) \\
& \geq 0
\end{aligned}
$$

where the inequalities are follow from the induction hypothesis. This completes the proof.
In the next section, we present a grammatical interpretation of $T_{n}(x)$.

3. Grammatical interpretations

The grammatical method was introduced by Chen 6] in the study of exponential structures in combinatorics. For an alphabet A, let $\mathbb{Q}[[A]]$ be the rational commutative ring of formal power series in monomials formed from letters in A. A context-free grammar over A is a function $G: A \rightarrow \mathbb{Q}[[A]]$ that replace a letter in A by a formal function over A. The formal derivative D is a linear operator defined with respect to a context-free grammar G. More precisely, the derivative $D=D_{G}: \mathbb{Q}[[A]] \rightarrow \mathbb{Q}[[A]]$ is defined as follows: for $x \in A$, we have $D(x)=G(x)$; for a monomial u in $\mathbb{Q}[[A]], D(u)$ is defined so that D is a derivation, and for a general element $q \in \mathbb{Q}[[A]], D(q)$ is defined by linearity.

The hyperoctahedral group B_{n} is the group of signed permutations of the set $\pm[n]$ such that $\pi(-i)=-\pi(i)$ for all i, where $\pm[n]=\{ \pm 1, \pm 2, \ldots, \pm n\}$. For each $\pi \in B_{n}$, we define

$$
\begin{aligned}
\operatorname{des}_{A}(\pi) & :=\#\{i \in\{1,2, \ldots, n-1\} \mid \pi(i)>\pi(i+1)\}, \\
\operatorname{des}_{B}(\pi) & :=\#\{i \in\{0,1,2, \ldots, n-1\} \mid \pi(i)>\pi(i+1)\},
\end{aligned}
$$

where $\pi(0)=0$. Following [1] , the flag descent number of π is defined by

$$
\operatorname{fdes}(\pi):= \begin{cases}2 \operatorname{des}_{A}(\pi)+1, & \text { if } \pi(1)<0 \\ 2 \operatorname{des}_{A}(\pi), & \text { otherwise }\end{cases}
$$

Let

$$
\begin{aligned}
& B_{n}(x)=\sum_{\pi \in B_{n}} x^{\operatorname{des}_{B}(\pi)}=\sum_{k=0}^{n} B(n, k) x^{k}, \\
& S_{n}(x)=\sum_{\pi \in B_{n}} x^{\mathrm{fdes}(\pi)}=\sum_{k=1}^{2 n} S(n, k) x^{k-1} .
\end{aligned}
$$

The polynomial $B_{n}(x)$ is called an Eulerian polynomial of type B, while $B(n, k)$ is called an Eulerian number of type B (see [22, A060187]). It follows from [1, Theorem 4.3] that the numbers $S(n, k)$ satisfy the recurrence relation

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1)+(2 n-k+1) S(n-1, k-2)
$$

for $n, k \geq 1$, where $S(1,1)=S(1,2)=1$ and $S(1, k)=0$ for $k \geq 3$. The polynomials $S_{n}(x)$ is closely related to the Eulerian polynomial $A_{n}(x)$:

$$
S_{n}(x)=\frac{1}{x}(1+x)^{n} A_{n}(x) \quad \text { for } n \geq 1,
$$

which was established by Adin, Brenti and Roichman [1]. It should be noted that $S_{n}(x)$ and $A_{n}(x)$ are both symmetric.

Consider the context-free grammar

$$
A=\{x, y, z\}, G=\{x \rightarrow p(x, y, z), y \rightarrow q(x, y, z), z \rightarrow r(x, y, z)\},
$$

where $p(x, y, z), q(x, y, z)$ and $r(x, y, z)$ are polynomials in x, y and z. The diamond product of z with the grammar G is defined by

$$
G \diamond z=\{x \rightarrow p(x, y, z) z, y \rightarrow q(x, y, z) z, z \rightarrow r(x, y, z) z\} .
$$

We now recall two results on context-free grammars.
Proposition 3 ([14, Theorem 6]). If

$$
\begin{equation*}
G=\left\{x \rightarrow x y, y \rightarrow y z, z \rightarrow y^{2}\right\}, \tag{7}
\end{equation*}
$$

then

$$
D^{n}\left(x^{2}\right)=x^{2} \sum_{k=0}^{n} R(n+1, k) y^{k} z^{n-k}
$$

Setting $x=z=1$, we have $\left.D^{n}\left(x^{2}\right)\right|_{x=z=1}=R_{n+1}(y)$.
Proposition 4 ([15, Theorem 10]). Consider the context-free grammar

$$
\begin{equation*}
G^{\prime}=\left\{x \rightarrow x y z, y \rightarrow y z^{2}, z \rightarrow y^{2} z\right\} \tag{8}
\end{equation*}
$$

which is the diamond product of z with the grammar G defined by (7). For $n \geq 1$, we have

$$
\begin{aligned}
D^{n}(x y) & =x \sum_{k=1}^{2 n} S(n, k) y^{2 n-k+1} z^{k}, \\
D^{n}(y z) & =\sum_{k=0}^{n} B(n, k) y^{2 n-2 k+1} z^{2 k+1}, \\
D^{n}(y) & =\sum_{k=1}^{n} N(n, k) y^{2 n-2 k+1} z^{2 k}, \\
D^{n}(z) & =\sum_{k=1}^{n} N(n, n-k+1) y^{2 n-2 k+2} z^{2 k-1}, \\
D^{n}\left(y^{2}\right) & =2^{n} \sum_{k=1}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle y^{2 n-2 k+2} z^{2 k} .
\end{aligned}
$$

We can now conclude the following result.
Theorem 5. Let G^{\prime} be the context-free grammar given by (8). Then for $n \geq 1$, we have

$$
\begin{aligned}
D^{n}(x) & =x \sum_{k=1}^{2 n-1} T(n, k) y^{k} z^{2 n-k}, \\
D^{n}\left(x^{2}\right) & =2 x^{2}(y+z)^{n-1} \sum_{k=1}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle y^{k} z^{n-k+1} .
\end{aligned}
$$

Setting $x=z=1$, we have $\left.D^{n}(x)\right|_{x=z=1}=T_{n}(y)$ and $\left.D^{n}\left(x^{2}\right)\right|_{x=z=1}=2(1+y)^{n-1} A_{n}(y)$.
Proof. Note that $D(x)=x y z$ and $D^{2}(x)=x y z^{3}+x y^{2} z^{2}+x y^{3} z$. For $n \geq 1$, we define $t(n, k)$ by

$$
D^{n}(x)=x \sum_{k \geq 1} t(n, k) y^{k} z^{2 n-k} .
$$

Then

$$
\begin{aligned}
D^{n+1}(x) & =D\left(D^{n}(x)\right) \\
& =x \sum_{k \geq 1} t(n, k) y^{k+1} z^{2 n-k+1}+x \sum_{k \geq 1} k t(n, k) y^{k} z^{2 n-k+2}+x \sum_{k \geq 1}(2 n-k) t(n, k) y^{k+2} z^{2 n-k} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
t(n+1, k)=k t(n, k)+t(n, k-1)+(2 n-k+2) t(n, k-2) . \tag{9}
\end{equation*}
$$

By comparing (19) with (21), we see that the numbers $t(n, k)$ satisfy the same recurrence relation and initial conditions as $T(n, k)$, so they agree. The assertion for $D^{n}\left(x^{2}\right)$ can be proved in a similar way.

It follows from Leibniz's formula that

$$
D^{n}(u v)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(u) D^{n-k}(v) .
$$

Hence

$$
\begin{gathered}
D^{n}\left(x^{2}\right)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(x) D^{n-k}(x), \\
D^{n+1}(x)=D^{n}(x y z)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(x) D^{n-k}(y z)=\sum_{k=0}^{n}\binom{n}{k} D^{k}(x y) D^{n-k}(z) .
\end{gathered}
$$

Therefore, we can use Proposition 4 and Theorem 5 to get several convolution identities.

Corollary 6. For $n \geq 1$, we have

$$
\begin{gather*}
2(1+x)^{n-1} A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} T_{k}(x) T_{n-k}(x), \tag{10}\\
T_{n+1}(x)=x \sum_{k=0}^{n}\binom{n}{k} T_{k}(x) B_{n-k}\left(x^{2}\right), \\
T_{n+1}(x)=x \sum_{k=0}^{n}\binom{n}{k} S_{k}(x) N_{n-k}\left(x^{2}\right) .
\end{gather*}
$$

Let $T(x, z)=\sum_{n=0}^{\infty} T_{n}(x) \frac{z^{n}}{n!}$. Recall that the exponential generating function for $A_{n}(x)$ is given as follows (see [22, A008292]):

$$
\begin{equation*}
A(x, t)=\sum_{n \geq 0} A_{n}(x) \frac{t^{n}}{n!}=\frac{1-x}{1-x e^{t(1-x)}} \tag{11}
\end{equation*}
$$

Combining (10) and (11), we get

$$
\begin{equation*}
T(x, z)=\frac{e^{z(x-1)(x+1)}+x}{1+x} \sqrt{\frac{1-x^{2}}{e^{2 z(x-1)(x+1)}-x^{2}}} . \tag{12}
\end{equation*}
$$

From (6), we have

$$
\sum_{n \geq 0} M_{n}\left(x^{2}\right) \frac{z^{n}}{n!}=\sum_{n \geq 0} x^{2 n} N_{n}\left(\frac{1}{x^{2}}\right) \frac{z^{n}}{n!}=\sqrt{\frac{1-x^{2}}{e^{2 z(x-1)(x+1)}-x^{2}}} .
$$

Note that

$$
\frac{e^{z(x-1)(x+1)}+x}{1+x}=1+\sum_{n \geq 1}(x-1)^{n}(x+1)^{n-1} \frac{z^{n}}{n!} .
$$

Therefore, from (12), we obtain

$$
T_{n}(x)=M_{n}\left(x^{2}\right)+\sum_{k=0}^{n-1}\binom{n}{k} M_{k}\left(x^{2}\right)(x-1)^{n-k}(x+1)^{n-k-1} \quad \text { for } n \geq 1
$$

4. Concluding remarks

In this paper, we show that the polynomial $T_{n}(x)$ has many similar properties to $R_{n}(x)$. In fact, there are more similar properties deserve to be studied. From the relation (5) and the fact that $A_{n}(x)$ have only real zeros, Wilf [23] proved that $R_{n}(x)$ have only real zeros for $n \geq 2$. Moreover, it follows from (4) that all zeros of $R_{n}(x)$ belong to $[-1,0]$, and the zeros of $R_{n}(x)$ separate that of $R_{n+1}(x)$ (see [17, Corollary 8]).

Let $f(x)$ and $F(x)$ be two polynomials with only real coefficients. Suppose that $f(x)$ and $F(x)$ both have only imaginary zeros. We say that $f(x)$ separates $F(x)$ if $\operatorname{deg} F=\operatorname{deg} f+2$ and the sequences of real and imaginary parts of the zeros of $f(x)$ respectively separate that of $F(x)$. In other words, let $f(x)=a \prod_{j=1}^{n-1}\left(x+p_{j}+q_{j} i\right)\left(x+p_{j}-q_{j} \mathrm{i}\right)$, and let $F(x)=b \prod_{j=1}^{n}(x+$ $\left.s_{j}+t_{j} \mathrm{i}\right)\left(x+s_{j}-t_{j} \mathrm{i}\right)$, where a, b are respectively leading coefficients of $f(x)$ and $F(x), p_{1} \geq p_{2} \geq$ $\cdots \geq p_{n-1}, q_{1} \geq q_{2} \geq \cdots \geq q_{n-1}, s_{1} \geq s_{2} \geq \cdots \geq s_{n}$ and $t_{1} \geq t_{2} \geq \cdots \geq t_{n}$. Then we have

$$
\begin{aligned}
s_{1} & \geq p_{1} \geq s_{2} \geq p_{2} \geq \cdots \geq s_{n-1} \geq p_{n-1} \geq s_{n}, \\
t_{1} \geq q_{1} & \geq t_{2} \geq q_{2} \geq \cdots \geq t_{n-1} \geq q_{n-1} \geq t_{n} .
\end{aligned}
$$

Based on empirical evidence, we propose the following conjecture.
Conjecture 7. For $n \geq 2$, all zeros of $T_{n}(x) / x$ are imaginary and $T_{n}(x) / x$ separates $T_{n+1}(x) / x$.

References

[1] R. Adin, F. Brenti, and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math., 27 (2001), pp.210-224.
[2] D. André, Étude sur les maxima, minima et séquences des permutations, Ann. Sci. École Norm. Sup., 3 no. 1 (1884) 121-135.
[3] M. Bóna, Real zeros and normal distribution for statistics on Stirling permutations defined by Gessel and Stanley, SIAM J. Discrete Math., 23 (2008/09), 401-406.
[4] E.R. Canfield, H. Wilf, Counting permutations by their alternating runs, J. Combin. Theory Ser. A, 115 (2008), 213-225.
[5] L. Carlitz, The coefficients in an asymptotic expansion,Proc. Amer. math. Soc., 16 (1965) 248-252.
[6] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci., 117 (1993) 113-129.
[7] F.N. David and D.E. Barton, Combinatorial Chance, Charles Griffin and Company, Ltd. London, UK, 1962.
[8] I. Gessel and R.P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A, 24 (1978), 25-33.
[9] J. Haglund, M. Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, European J. Combin., 33 (2012), 477-487.
[10] S. Janson, M. Kuba and A. Panholzer, Generalized Stirling permutations, families of increasing trees and urn models, J. Combin. Theory Ser. A, 118 (2011), 94-114.
[11] D.E. Knuth, The Art of Computer Programming, vol. 3, Fundamental Algorithms, Addison-Wesley, Reading, MA, 1973.
[12] M. Kuba, A. Panholzer, Enumeration formulae for pattern restricted Stirling permutations, Discrete Math., 312 (2012) 3179-3194.
[13] S.-M. Ma, A family of two-variable derivative polynomials for tangent and secant, Electron. J. Combin., 20(1) (2013), \#P11.
[14] S.-M. Ma, Enumeration of permutations by number of alternating runs, Discrete Math., 313 (2013), 18161822.
[15] S.-M. Ma, Some combinatorial arrays generated by context-free grammars, European J. Combin., 34 (2013), 1081-1091.
[16] S.-M. Ma, T. Mansour, The $1 / k$-Eulerian polynomials and k-Stirling permutations, Discrete Math., 338 (2015), 1468-1472.
[17] S.-M. Ma, Y. Wang, q-Eulerian polynomials and polynomials with only real zeros, Electron. J. Combin., 15 (2008), \#R17.
[18] S.-M. Ma, Y.-N. Yeh, Stirling permutations, cycle structures of permutations and perfect matchings, arXiv:1503.06601.
[19] J. Riordan, The blossoming of Schrø̈der's fourth problem, Acta Math., 137 (1976), no. 1-2, 1-16.
[20] C.D. Savage and M.J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences, J. Combin. Theory Ser. A, 119 (2012), 850-870.
[21] C.D. Savage and G. Viswanathan, The $1 / k$-Eulerian polynomials, Electron. J. Combin., 19 (2012), \#P9.
[22] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.
[23] H.S. Wilf, Real zeroes of polynomials that count runs and descending runs. Unpublished manuscript, 1998.
School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066004, P.R. China

E-mail address: shimeimapapers@163.com (S.-M. Ma)
Department of Mathematics, Northeastern University, Shenyang, 110004, China
E-mail address: hainawangpapers@163.com (H.-N. Wang)

